世界生物质能源发展现状及方向
生物质能源的发展及应用前景
生物质能源的发展及应用前景近年来,随着环境保护意识的不断提高,人们对于可再生能源的需求也越来越高,其中生物质能源作为一种理想的替代能源受到越来越多的关注。
生物质能源是指利用生物质作为能源源头的一种能源,比如木材、农作物废弃物、城市垃圾等。
与传统能源相比,生物质能源具有环保、可再生、分布广泛等一系列优点,同时也存在一些挑战和限制,下面我们就从几个方面来探讨生物质能源的发展及应用前景。
一、生物质能源的来源首先,生物质能源的来源非常广泛,包括但不限于以下几个方面:1.森林资源:木材、枝干、木屑、枝叶等。
2.农作物废弃物:包括稻草、棉秆、花生壳、玉米秸秆等。
3.家庭、商业、工业废弃物:包括厨余垃圾、纸张、衣服等。
4.生活垃圾:包括生活垃圾、污泥、畜禽粪便等。
由于生物质能源的来源广泛,因此其碳排放量也较低,而且在大量使用的情况下不会对环境产生日益严重的影响,因此生物质能源在环境保护方面具有很大的潜力。
二、生物质能源的优势生物质能源相比传统能源具有多个优势:1. 环保:生物质能源的主要源头生物质本身就是自然环境中的一部分,由于其碳排放量较低,因此生物质能源的应用对于降低温室气体产生的影响具有显著的效果。
2. 可再生:生物质能源可以通过种植和种植后淘汰生物质的迭代循环来实现能源的可持续性。
因此,在长期的应用中,其自然循环能力可以保持良好,不会因为大量使用而日益减少。
3. 分布广泛:生物质资源分布极广,可以在整个地球范围内产生所需的能量。
这意味着生物质能源的使用可以解决能源不足和能源转移扰动等问题。
4. 多元化:生物质能源来源广泛,种类丰富。
可以通过多种途径获取,如田间农作物、林地木材等。
三、生物质能源的应用前景随着可再生能源技术的不断发展,生物质能源的应用前景变得日益广阔。
从三个方面来分析生物质能源的应用前景:1. 生物质能源的发电应用生物质能源已成为一个很好的替代性发电能源。
除了传统零排放的生物质热电站外,还可以将生物质燃料转换成气体或液体来燃烧。
世界生物质能源发展现状及未来发展趋势
世界生物质能源发展现状及未来发展趋势生物质能源作为一种可再生能源,具有广泛的产能基础、环境友好和可持续发展的特点,被广泛研究和开发。
目前,世界生物质能源发展取得了显著的进展,但也面临一些挑战和需要解决的问题。
未来的发展趋势将集中在技术创新、市场扩大和政策支持。
本文将对世界生物质能源的现状和未来发展趋势进行详细论述。
首先,世界生物质能源的现状可以总结为以下几个方面。
一是生物质能源的利用途径多样化。
生物质能源可以通过生物质直接燃烧发电、生物质颗粒燃料、生物乙醇、生物柴油等多种途径转化为热能、电能和燃料等形式使用。
二是生物质能源的产业化水平不断提高。
世界各地已经建立了一批生物质能源示范项目和商业化生产基地,生物质能源工业化水平不断提高。
三是生物质能源的国际合作加强。
各国在生物质能源研究开发和应用方面加强了合作,共同推动生物质能源的发展。
四是生物质能源技术不断创新。
包括生物质颗粒燃料生产技术、生物乙醇和生物柴油生产技术、生物质膜分离和纯化技术等方面的研究和创新取得了重要进展。
然而,世界生物质能源发展还面临着一些问题和挑战。
首先,生物质资源可持续供应的问题。
生物质能源利用过程中需要大量的生物质资源,而其获取和储存成本较高,资源供应不稳定。
其次,生物质能源利用过程中产生的废弃物处理问题。
生物质能源的利用产生大量的废弃物,如生物质灰渣、废液等,如何高效处理和利用废弃物是一个亟待解决的问题。
再者,生物质能源的技术成本较高。
目前,生物质能源的生产技术相对成熟,但其生产成本较高,影响了其在能源市场的竞争力。
在未来,世界生物质能源的发展趋势将集中在以下几个方面。
一是技术创新和提高利用效率。
通过技术创新,降低生产成本,提高发电和燃料颗粒的利用效率,推动生物质能源的技术创新和进步。
二是市场扩大和推广应用。
大力发展生物质能源产业,推动生物质能源工业化发展,提高其在能源市场的占有率。
建立健全的市场机制和政策,激励生物质能源的推广和应用。
2023年生物质能源行业市场分析现状
2023年生物质能源行业市场分析现状随着全球能源需求的增长以及环境问题的日益严重,生物质能源作为一种清洁、可再生的能源已受到越来越多的关注和重视。
生物质能源指的是通过生物质(如农作物、林木、废弃物等)转化而来的能源,包括生物质固体燃料、生物质液体燃料、生物质气体燃料和生物质发电等。
目前,生物质能源在全球能源消费中的占比较小,但其市场潜力和发展前景巨大。
一、市场规模据市场研究机构的预测,全球生物质能源市场在未来几年内将保持较快的增长态势。
根据一些机构的预测,到2025年,全球生物质发电市场规模将超过500亿美元,生物质颗粒市场规模将达到170亿美元,生物质液体燃料市场规模将达到1100亿美元。
目前,生物质能源市场的主要消费者是工业和建筑领域以及城市居民。
在工业领域,生物质能源主要用于工厂的加热、干燥、烘焙等生产过程;在建筑领域,生物质能源主要用于供暖和热水供应;在城市居民领域,生物质能源主要用于采暖、热水等生活用途。
此外,在某些国家,生物质能源还被用于发电。
二、市场发展趋势1. 政策支持政策的支持是促进生物质能源发展的重要推动力。
目前,全球很多国家和地区都出台了针对生物质能源的政策,这些政策包括生物质能源定价机制、补贴政策、税收优惠等。
政策的制定和实施,将进一步推进生物质能源的应用和发展。
2. 技术创新生物质能源技术的发展将有助于提高生物质能源的利用效率,减少能源的消耗和环境污染。
技术创新包括生物质能源转化技术、生物质能源储存技术、生物质能源运输技术等。
技术创新的推进,将进一步推进生物质能源的发展和应用。
3. 市场竞争生物质能源市场的竞争将越来越激烈。
现在,全球生物质能源市场的主要竞争者来自于欧美地区。
除此之外,一些新兴市场,如亚太地区、非洲等,也开始涌现出一些生物质能源企业。
未来,随着全球生物质能源市场的热度持续升温,市场竞争将进一步加剧。
三、市场前景由于生物质能源的清洁和可再生特性,未来几年内,生物质能源市场的前景将非常广阔。
生物质能源的发展现状及未来趋势
生物质能源的发展现状及未来趋势生物质能源是指源自于生物质的可再生能源,包括从植物、废弃物以及动物排泄物等生物质所生产的能源。
随着人类社会对能源的需求越来越大,生物质能源作为一种环保、可持续的新型能源已经引起人们的广泛关注。
本文旨在分析生物质能源的发展现状及未来趋势。
一、生物质能源的发展现状在目前的能源结构中,生物质能源在能源总消费量中的占比仍然非常小。
但是,随着人们环保意识的提高以及新能源政策的倡导,生物质能源的应用将会越来越广泛。
1.生物质发电:发电是生物质能源的一种主要利用方式。
生物质可通过焚烧或气化方式进行能源转化,发电。
生物质发电的优势在于其能够使农林废弃物等生物质得到有效利用,同时减少了二氧化碳等有害气体的排放。
目前,生物质发电在欧洲等地的应用已经非常广泛。
2.生物质燃料:生物质燃料包括木质燃料、废弃物、农业余料、城市垃圾以及植物油等,具有环保、可再生的特点。
其中,生物质燃料的主要应用是作为替代传统石油燃料的能源。
例如,生物质燃料油可以通过加工处理后成为柴油等传统石油燃料的替代品。
3.生物质液态燃料:由于柴油、汽油等传统的石油燃料会对环境产生污染,生物质液态燃料因具有较低排放可替代传统燃料而受到越来越多的关注。
生物质液态燃料的主要来源是植物油和动物脂肪。
目前,生物质液态燃料已经逐步开始在农村、城市公交以及物流等领域得到应用。
二、生物质能源的未来趋势虽然目前生物质能源的占比很小,但是未来这种可持续、环保的新型能源的市场前景非常广阔。
1.技术创新:随着科技的进步,生物质能源的技术也会逐步完善和创新,生物质的转化效率会不断提高,生物质能源的应用范围也将不断扩大,特别是在高效利用生物质有效物料时的技术上,有望取得更加长足的进展。
2.政策支持:各国政府为了鼓励和推进生物质能源的发展,将会提供更多的政策支持。
例如,政府会根据绿色发展总体目标和排放限制目标,对生物质能源实行优惠政策,提高并扩大生物质能源的市场需求。
生物质能源的利用现状与发展趋势
生物质能源的利用现状与发展趋势随着环保意识的不断提高, 生物质能源成为了新的热门话题。
它是指从活性生物质中提取能量的技术或方式,包括来自农作物、林木、稻壳、废纸和废弃物等的能源。
相较于传统的化石燃料,生物质能源具有更为环保的优势,被认为是一种重要的可再生能源。
本文将会讨论目前生物质能源的利用现状以及未来的发展趋势。
一、生物质能源的利用现状目前,生物质能源主要有两种形式,一种是通过生物质发电和热能利用的方式,另一种是通过制氢等技术来生产生物质燃料。
这些技术都已经在实际应用中得到很好的运用。
1.生物质发电生物质发电是目前生物质利用的主要方式。
通过生物质发电可以转换生物质的化学能为电能,同时还可以产生热能。
这项技术广泛应用于农业、林业、能源和环境等领域。
生物质燃烧发电的原理主要是利用生物质中的碳、氢、氧等元素以及其他的一些元素质和能量状态的变化而产生的热能来驱动机组发电。
目前,我国的生物质燃烧发电主要使用的是垃圾焚烧、污泥焚烧和农作物秸秆焚烧等方式。
2.生物质燃料生物质燃料通过生物质的生化反应来生产氢气、甲烷、醇类等燃料。
利用这些燃料可以替代传统的石油和天然气等有限资源,从而实现环保和可持续发展的目标。
二、生物质能源的未来发展趋势随着生物质能源技术的不断发展和完善,它有望成为未来能源开发的主要方向之一。
1.技术创新生物质能源技术的发展方向主要集中在改进发电和燃料生产技术,提高燃烧效率和经济效益,并且减少对环境的影响。
2.政策支持政府的政策支持也是未来发展生物质能源的关键。
未来的发展会需要广泛的政策支持,包括资金、税收和能源政策等。
政府的支持将会鼓励更多的企业和科研机构投入到生物质能源的研发和应用中。
3.市场需求未来市场需求也是生物质能源发展的重要驱动力。
人们对环保和可持续发展的关注将会逐渐提高,这将推动生物质能源的市场需求,同时也鼓励企业投资生物质能源的开发和生产。
4.产业升级未来生物质能源的产业升级是不可避免的趋势。
生物能源发展现状与前景
生物能源发展现状与前景随着世界各地能源问题的日益严峻,生物能源逐渐成为国际社会重点研究的方向之一。
那么,目前生物能源的发展现状是怎样的呢?生物能源将来的前景又是怎么样的呢?一、生物能源的发展现状1. 生物质能源的发展生物质能源是指通过植物、农作物秸秆、草木芬陶、废弃物质等可再生生物资源制取的一种能源。
如今,生物质能源已被广泛应用于发电、供暖、制热等领域。
在生物质能源的发展过程中,生物质能源的制造技术得到了显著的进步。
如将生物质能源通过热解工艺转化为液体燃料,或通过气化升级生物质能源,改善了生物质能源的性能和环保性。
2. 生物燃料背景的发展生物燃料是指通过植物、垃圾、油脂等可再生生物资源制备的一种燃料。
生物燃料的使用有利于减少化石燃料的使用,保护环境。
然而,生物燃料背后的生产工序会消耗较多的水、化肥和除草剂等资源,同时也会对生产环境造成一定的影响。
因此,生物燃料的研究一直在探索如何利用生产过程中的废弃物来降低对环境的影响。
此外,通过发电厂、发酵厂等设施对废弃物进行加工利用,将是未来生物燃料发展的新方向。
3. 生物气体的发展生物气体是指通过生物发酵过程而产生的一种气体。
生物气体中含有90%以上的甲烷,是一种优质的可再生能源。
如今,生物气体的使用越来越广泛,被应用于电力、热力等行业,其中一种应用方式是将生物气体通过管道输送至用户司法所需。
未来,生物气体的发展方向将进一步拓展,探索其在农业领域以及生物燃料领域中的应用。
二、生物能源的前景由于生物能源具有可再生、可持续的特点,它被视为一种重要的替代能源。
未来,生物能源的发展前景十分广阔。
以下是几个典型的应用场景。
1. 汽车领域生物质能源和生物燃料的应用已经进入汽车工业领域。
一方面,生物质能源被广泛用于汽车座椅等耐热织物的生产;另一方面,利用生物燃料替代化石能源为汽车提供动力的技术也已突破。
未来,生物能源将会在汽车领域发挥越来越重要的作用。
2. 建筑领域生物质能源、生物燃料和生物气体在建筑领域中也有广泛的应用。
生物质能源的发展现状与前景如何
生物质能源的发展现状与前景如何在当今全球能源需求不断增长,同时对环境保护的要求日益严格的背景下,生物质能源作为一种可再生、清洁的能源形式,正逐渐引起人们的广泛关注。
那么,生物质能源的发展现状究竟如何?未来又有着怎样的前景呢?生物质能源,简单来说,就是来源于生物质的能源。
生物质包括各种植物、动物和微生物,以及由这些生命体排泄和代谢产生的有机物质。
常见的生物质能源有生物质发电、生物柴油、生物乙醇、生物质成型燃料等等。
目前,生物质能源的发展取得了一定的成果。
在生物质发电领域,许多国家和地区都建立了基于生物质燃烧的发电厂。
这些发电厂通常利用农业废弃物、林业剩余物、生活垃圾等作为燃料,既实现了废弃物的资源化利用,又产生了清洁的电力。
例如,在北欧一些国家,生物质发电已经成为电力供应的重要组成部分。
生物柴油和生物乙醇的生产也在逐步扩大。
生物柴油通常由植物油或动物脂肪经过化学处理制成,可以直接用于柴油发动机。
生物乙醇则主要由粮食作物(如玉米、小麦)或非粮食作物(如甜高粱、木薯)发酵而来,可与汽油混合使用。
然而,这两种能源的发展也面临一些挑战。
例如,大规模使用粮食作物生产生物燃料可能会对粮食安全产生一定影响,因此,开发非粮食来源的原料成为了当前的研究重点。
生物质成型燃料在供暖和工业用能方面发挥了一定作用。
通过将生物质压缩成颗粒或块状,提高了其能量密度和燃烧效率,方便了储存和运输。
在技术方面,生物质能源的转化技术不断进步。
例如,生物质气化技术可以将生物质转化为可燃气体,用于发电或供热;生物质热解技术能够生产生物油和生物炭,具有较高的能源利用价值。
不过,生物质能源的发展也存在一些问题和限制。
首先,生物质资源的收集和运输成本较高。
由于生物质通常分布较为分散,收集和运输需要耗费大量的人力和物力。
其次,生物质能源的转化效率还有待提高。
虽然技术在不断进步,但与传统的化石能源相比,在能量转换效率方面仍有差距。
再者,生物质能源的生产可能会带来一定的环境影响。
生物质能源产业发展现状与前景分析
生物质能源产业发展现状与前景分析近年来,全球能源需求的不断增长以及对环境友好型能源的需求推动了生物质能源产业的快速发展。
生物质能源是指以植物、动物等有机物质为原料,通过转化和利用技术生产的可再生能源,如生物质电力、生物质燃料和生物质热能。
本文将对生物质能源产业的现状和前景进行分析。
一、生物质能源产业发展现状1.政策支持:许多国家纷纷出台支持生物质能源发展的政策措施,包括财政补贴、税收优惠和能源法规等。
这些政策措施为生物质能源产业的发展提供了有力支持。
2.技术进步:生物质能源领域的技术不断创新和进步,固体废弃物、农作物秸秆、木材废料等可以有效利用,生物质能源的生产效率不断提高,生物质能源设备也越来越先进。
3.能源需求增长:全球能源需求的不断增长是推动生物质能源产业发展的重要因素之一。
随着全球人口的增加和经济的发展,对能源的需求不断上升,生物质能源作为可再生能源的一种,具有较高的替代能力。
4.环境友好型:生物质能源是一种清洁能源,其利用过程中产生的二氧化碳等温室气体相对较低,对环境污染较小。
在应对气候变化和保护生态环境的背景下,生物质能源的发展逐渐受到重视。
二、生物质能源产业发展前景1.市场潜力巨大:生物质能源是可再生能源的重要组成部分,其供给受到地域、季节和气候等因素的制约较少。
未来随着技术的进一步发展和突破,生物质能源供给能力将继续增强,市场潜力巨大。
2.产业链完善:随着生物质能源产业的发展,产业链不断完善。
从原料种植、采集、加工到生物质能源生产和利用,构建了完整的产业链。
这将带动相关行业的发展,形成产业协同效应。
3.经济效益显著:在过去的几年里,生物质能源产业在各国经济中的地位逐渐提升。
生物质能源的生产和利用能够创造就业机会,提高经济效益,对于农村经济发展和增加农民收入具有积极作用。
4.可持续发展:生物质能源是一种可持续发展的能源形式。
相对于石化能源,生物质能源具有更好的环境效益和可再生性。
在实现经济发展的同时,生物质能源也能够保护生态环境,推动经济可持续发展。
生物质能源技术的发展现状及未来趋势
生物质能源技术的发展现状及未来趋势随着全球能源危机日益突显,生物质能源成为近年来备受关注的能源领域之一。
生物质能源技术作为一种新型的清洁能源,其总体优势显著,符合可持续发展的绿色经济类需求,备受人们青睐。
随着科技的发展,生物质能源技术的研究取得了不少的进展,其未来发展前景值得关注。
一、生物质能源技术的发展现状生物质能源技术是利用可再生生物质资源进行能源转换的过程,其形成的主要原因是能源环境的负担和环境污染的减少。
生物质能得以大规模开发和利用,主要因为能够弥补传统能源的不足,逐渐成为新兴的可再生能源。
目前,生物质能源技术的发展形态多样,包括生物质燃料、生物质电力、生物质液体燃料和生物质气体燃料等,以及生物质能和新能源复合利用等。
其中,生物质电力技术的应用十分广泛,其装机容量和电量不断增加。
生物质能源技术的发展主要受以下因素的影响:早期的技术投资、技术成本、生物质供应成本、生物质能源市场化等。
在能源产业链中,生物质资源往往被视为燃料和生产原料的替代品,我国也大力推行生物质资源开发,鼓励技术创新,发掘生物质资源的潜力。
二、未来生物质能源技术的趋势未来的生物质能源技术发展将体现出以下趋势:1. 生物质供给链的改善生物质资源供应是生物质能源链中非常重要的环节,如果不能保障现有的生物质来源或者生物质来源无法持续,生物质能源未来的发展将面临巨大的挑战。
因此,在保障生物质供应可持续的前提下,制定合理的生物质供应计划,调整机制和价格政策,保障全球生物质供应链的稳定性,实现生态和经济双重效益。
2. 技术创新与产业化技术创新是生物质能源技术发展的核心,包括能源利用办法、生产技术和综合利用技术。
生物质能源技术的产业化是重要的技术创新成果之一,在产业化进程中,将生物质能源技术的具体实施与市场需求结合起来,促进生物质能源技术的发展,推动生物质能源技术逐步进入市场。
3. 协同创新和分享协同创新和分享是未来生物质能源技术发展的重要走向,各国在生物质能源技术研发中应加强协同创新和分享全球技术资源和专业人才,推动生物质能源技术的共同发展。
生物质能源的发展现状与未来趋势
生物质能源的发展现状与未来趋势第一章引言随着环保意识的不断提高和传统能源的储备日益枯竭,生物质能源作为一种新型的可再生能源备受关注。
本文将从生物质能源的定义入手,介绍其发展历程和当前发展情况。
随后,阐述生物质能源的应用领域和未来发展趋势,提出优化生产工艺和推广政策的建议。
第二章生物质能源的定义及发展历程生物质能源指的是利用农林废弃物、城市垃圾、食品店的剩余物等生物质资源进行化学、生物或热能转换后所获得的能源。
生物质能源的发展历史可以追溯到古代,人们利用柴草等生物质燃料进行生活和生产。
随着石油等化石能源的开发和应用,生物质能源逐渐被淡化。
直到上世纪六七十年代,由于石油短缺和环保问题,生物质能源再次受到重视。
1981年,美国能源部发布了“生物质能源发展计划”,掀起了生物质能源的新一轮研究和开发潮流。
人们开始探索生物质的多种转换途径,并在各个领域进行实践。
第三章生物质能源的当前发展情况目前,生物质能源已经成为世界范围内的一种主要可再生能源。
中国是目前世界上生物质能源使用最多的国家之一,我国生物质能源的主要形式包括生物质热能、生物柴油、生物乙醇和生物气等。
生物质热能是生物质能源的主要利用形式,也是我国生物质能源利用最为广泛的形式,主要用于城市供暖、制热和工业热力需求等。
生物质热能发电也是发展前景广阔。
生物柴油和生物乙醇是生物质能源的主要液体形式,已得到广泛应用。
此外,生物气和生物质颗粒燃料也已广泛应用于城市供气和热的生产和生活方面。
第四章生物质能源的应用领域生物质能源的应用范围较广,主要包括以下几个领域:4.1 生活领域生物质能源可以用于居民的生活供暖、热水和烹饪等方面。
其热值高、污染少的特点,使其在偏远地区和山区等无法接触液化石油气和天然气的地方得到广泛应用。
4.2 工业领域生物质能源在工业领域的应用主要包括供热和供电。
生物质能源可以替代传统燃料,如煤和石油,避免了对环境的污染和可持续发展问题,并且维护了生态平衡。
生物能源的发展现状与未来趋势分析
生物能源的发展现状与未来趋势分析近年来,随着对环境问题的日益关注和对可持续发展的呼吁,生物能源作为一种可再生能源备受瞩目。
生物能源是指通过利用生物质资源进行能量转化的能源,主要包括生物质能、生物油、生物气等形式。
本文将对生物能源的发展现状与未来趋势进行分析。
一、生物能源的发展现状1. 生物质能的利用生物质能是生物能源中最主要的形式,主要通过利用农作物秸秆、木材废料、食品加工废弃物等生物质资源进行能源转化。
当前,生物质能的利用已经相对成熟,主要包括生物质发电、生物质热能利用等。
生物质发电已经成为一种重要的清洁能源,能够有效减少化石燃料的使用和降低温室气体排放。
同时,生物质热能利用也在一些地区得到了广泛应用。
2. 生物油的开发利用生物油是通过将生物质进行热解、压榨或发酵等方式提取得到的油脂,其在能源领域的应用前景广阔。
如生物柴油、生物液态燃料等,可以作为替代化石燃料的绿色能源。
目前,生物油的开发利用相对较少,但随着技术的进步和成本的降低,生物油有望在未来得到更广泛的应用。
3. 生物气的应用推广生物气是通过生物质的发酵产生的可燃气体,如沼气、生物甲烷等。
生物气不仅可以作为能源供给燃烧,还可以用于制取合成气和液体燃料等化工过程。
目前,生物气在农村地区得到了广泛应用,但在城市地区的推广还面临一定的挑战,主要是由于工艺设备的投资与运营成本较高。
二、生物能源的未来趋势1. 技术创新与发展随着科技的不断进步,生物能源的开发利用技术也在不断创新。
未来,生物能源的利用效率将进一步提升,生物质能转化技术、生物油提取技术和生物气利用技术将得到持续改进。
同时,新型的生物质资源开发技术也将逐渐成熟,如巨大藻类的高效利用、废弃物的资源化等,这将进一步丰富生物能源的来源。
2. 多元化的资源利用生物能源开发利用不仅可以减少对化石能源的依赖,还可以有效利用农作物秸秆、废弃物等资源,促进农村经济发展和生态环境改善。
未来,生物能源的开发利用将更加注重多元化资源利用,通过综合利用各类生物质资源,进一步提高资源的利用率和能源的可持续性。
生物质能源利用技术的现状和发展趋势
生物质能源利用技术的现状和发展趋势随着环境污染的日益严重和非可再生能源逐渐减少,人们开始寻找新的能源来源。
其中生物质能源逐渐成为一个备受关注的领域。
生物质能源指的是能够从动植物的有机体中提取的能源,包括生物质燃料、生物质气体、生物质液体和生物质固体等。
这其中最常见的是木材、农作物秸秆、生活废弃物等。
生物质能源还可以通过生物反应器等途径生产生物发酵制品,如乙醇和丙酮等。
一、生物质能源利用技术的现状生物质能源利用技术主要包括发酵、燃气化和燃烧三种形式。
在燃气化方面,包括间接燃气化和直接燃气化两种形式。
其中,直接液化和乙醇制氢等技术被广泛使用。
1. 燃气化技术燃气化利用生物质来生成可燃性气体,如甲烷、氢气和一氧化碳。
这种技术通常使用高温和高压的气化反应器,将生物质和其它氧化剂引入反应器,并加热至高温,生物质随后形成气体并产生可燃性气体。
这种技术可以用于发电和供暖以及工业生产。
2. 燃烧技术燃烧技术是将生物质直接燃烧成热和电能,可分为露天燃烧和配有炉窑设备的控制燃烧两种形式。
燃烧生物质可以用于发电、供暖、制造热水和生产化学品等。
3. 发酵技术发酵技术主要是利用微生物的代谢酸进行生物质发酵,这种反应生成了用于工业和家庭的燃料和化学品。
如乙醇燃料、丙酮燃料、乙酸和醋酸等。
二、生物质能源利用技术的发展趋势1. 升级现有技术随着环保方向主流趋势的发展,人们开始更加注重生物质能源技术的升级,以减少空气污染。
因此,目前的燃气化和燃烧技术正在不断改进中,以减少或消除气溶胶和NOX的排放量。
2. 开发新型技术生物质能源领域还存在许多未解决的问题,比如如何有效地合理生产、储存和运输。
针对这些问题,人们开始开发新型技术以提高效率和解决问题。
如微生境反应器生产生物液体、生物气体技术等。
3. 与其它领域的结合生物质能源技术还可以和其它领域结合,如通过与诸如植物培育和界面科学等领域的结合,开发高效的生态系统。
还可以研究、利用和改进微生物以提高生物质制备的效率和产品质量。
生物质能源利用现状及前景
生物质能源利用现状及前景随着全球能源需求的不断增长和对传统能源的限制,利用生物质能源已成为一种重要的选择。
生物质能源利用不仅符合可持续发展的原则,而且对大气环境和气候变化具有显著的减排效果。
本文将介绍生物质能源的利用现状以及未来的发展前景。
一、生物质能源的利用现状生物质能源是指利用植物、动物和微生物等有机物质转化而得到的可再生能源。
目前,生物质能源的利用已经涵盖了多个领域,包括能源生产、农业生产和废弃物处理等。
1. 能源生产生物质能源被广泛用于能源生产,特别是燃烧领域。
生物质燃料如木质颗粒、秸秆等成为了许多国家的重要能源补充,用于发电和供暖。
此外,生物质燃料还可以替代传统石油、天然气和煤炭,减少对化石燃料的依赖。
2. 农业生产生物质能源在农业生产中发挥了重要作用。
农业废弃物、剩余物和能源作物等可以被用作生物质能源的原料。
例如,废弃的农作物秸秆可以通过生物质发电厂进行燃烧,产生电力和热能。
此外,能源作物的种植也可以为生物质能源的生产提供更多的原料。
3. 废弃物处理生物质能源的利用还解决了废弃物处理的问题。
例如,城市生活垃圾可以通过生物质气化技术转化为生物质能源。
这种方法不仅可以减少废弃物的排放,还能够产生可再生能源。
二、生物质能源利用的前景生物质能源利用的前景非常广阔,具有以下几个方面的发展趋势:1. 技术创新生物质能源利用的前景在于不断的技术创新。
随着技术的进步,生物质能源的生产效率将会得到提高,生产成本也会降低。
同时,新型的生物质能源技术将会不断涌现,为生物质能源的利用带来更多的可能性。
2. 跨界合作随着全球对可再生能源的需求增加,各国之间的合作将变得更加重要。
跨界合作能够促进生物质能源的研究和开发,推动行业的进一步发展。
国际合作还可以促进技术和经验的共享,加速生物质能源利用的推广。
3. 政策支持政府的政策支持对于生物质能源的发展至关重要。
各国政府应该出台相关的政策,鼓励生物质能源的利用和开发。
生物质能源发展现状及前景
生物质能源发展现状及前景一、引言生物质能源是指从天然生物体中得到的能源,如植物油、动物油、木材、秸秆等可再生的有机物质。
随着能源问题日益凸显,生物质能源作为新兴绿色能源备受关注。
本文将从现状和前景两个方面进行探讨。
二、生物质能源发展现状1.国内外生物质能源发展现状在全球范围内,生物质能源得到了广泛应用。
欧洲国家已经制定了生物质能源发展计划,且成为全球生物质能源消费的最大市场,其中以德国、英国、瑞典、奥地利等国为代表。
美国也将生物质能源列为能源战略重点发展领域之一,大力发展市场。
国内生物质能源行业也发展迅猛,如利用农林废弃物制成的生物质颗粒,已经成为重要的生物质能源品种之一,可以广泛应用于家居暖气、热水供应等领域。
2.生物质颗粒在发展现状生物质颗粒是由薪柴、秸秆和木质废料经过打碎、压缩等工艺处理而成的颗粒状物质,具有环保、经济、高效的特点。
目前,全球生物质颗粒市场有三个重要市场,即欧洲、美国和加拿大,市场占有率分别为48%、38%和5%。
生物质颗粒在国内市场上的应用也日趋广泛,可以 applied在能源领域、农业领域、工业领域等各个领域,具有巨大的开发和应用潜力。
三、生物质能源未来发展前景1.政策和补贴支持全球范围内,生物质能源发展都得到了良好的政策和补贴支持,国际上已有多个国家制定了生物质能源补贴政策,为生物质能源的发展创造了良好的环境。
国内目前也在积极推动相关政策和措施,如制定生物质能源补贴政策、推广生物质颗粒等,为生物质能源的未来发展奠定了坚实基础。
2.应用领域广泛生物质能源的应用领域非常广泛,不仅可以用于环保、清洁能源领域,也可以应用于农业、工业、家居等领域。
随着技术的进步和生产成本的下降,生物质能源将在更广泛的领域中有所应用,且用途也将越来越丰富。
3.开发潜力被认可生物质能源的开发潜力正在逐步被认可,未来已经成为清洁能源的重要补充。
与其它可再生能源相比,生物质能源代表着当前可持续性发展的最大希望之一,并可以为全球的能源供应和环境保护做出贡献。
生物质能的全球发展现状与趋势
生物质能的全球发展现状与趋势在当今全球能源格局中,生物质能作为一种可再生能源,正逐渐展现出其巨大的潜力和重要性。
从传统的生物质利用方式到现代的高效转化技术,生物质能的发展正经历着深刻的变革,并对全球能源供应、环境保护和可持续发展产生着深远的影响。
一、生物质能的定义与分类生物质能是指通过光合作用而形成的各种有机体,包括所有的动植物和微生物。
它所涵盖的能源形式多种多样,根据来源和性质的不同,可以大致分为以下几类:1、农业废弃物如农作物秸秆、稻壳、甘蔗渣等。
这些废弃物在农业生产中大量产生,如果不加以合理利用,不仅会造成资源浪费,还可能对环境造成压力。
2、林业废弃物包括木材采伐和加工过程中产生的木屑、边角料等。
森林资源的可持续管理和林业废弃物的能源化利用,对于保护森林生态和提供能源都具有重要意义。
3、能源作物专门种植用于能源生产的作物,如甜高粱、麻风树等。
这些作物具有较高的生物量和能源转化效率。
4、生活垃圾城市和农村生活中产生的有机垃圾,经过适当的处理和转化,可以成为生物质能的来源之一。
5、畜禽粪便养殖业产生的大量畜禽粪便,富含有机物,可以通过厌氧发酵等方式产生沼气。
二、全球生物质能的发展现状1、生物质发电在许多国家,生物质发电已经成为一种重要的可再生能源发电方式。
例如,北欧国家丹麦拥有世界领先的生物质发电技术和产业,其生物质发电占总电力供应的一定比例。
美国、德国等也在积极推进生物质发电项目,通过燃烧生物质燃料或利用沼气发电,为电网提供稳定的电力。
2、生物燃料生物燃料主要包括生物乙醇和生物柴油。
巴西是全球最大的生物乙醇生产国,其以甘蔗为原料生产的乙醇广泛应用于交通运输领域。
美国则以玉米为原料生产乙醇,同时也在大力发展生物柴油。
欧洲国家在生物柴油的生产和应用方面也取得了显著进展,通过利用植物油和废弃油脂等生产生物柴油,减少了对传统石油的依赖。
3、沼气利用沼气作为一种清洁的生物质能源,在全球范围内得到了广泛的应用。
生物质能源利用现状与发展
生物质能源利用现状与发展随着人们对环境保护意识的增强,生物质能源作为替代传统化石能源的一种可再生绿色能源备受关注。
那么,生物质能源的利用现状与发展前景究竟如何呢?一、生物质能源的定义生物质能源是指以植物、动物、微生物以及其代谢物为原料制造的可再生能源,包括生物质固体燃料、液体燃料、气体燃料等。
二、生物质能源的利用现状1.生物质能源的发展历程生物质能源由于其可再生性、低碳排放等优点,吸引了政府和企业的关注和投入,随着技术和政策的发展,生物质能源产业得到了迅速的发展。
如今,生物质能源已广泛应用于发电、加热、工业燃料、交通燃料等领域。
2.生物质发电生物质发电是利用生物质固体燃料,如木屑、秸秆、稻壳等进行热解或氧化反应以产生电能。
该技术已广泛应用于欧洲和北美等地。
中国也在积极推进生物质发电,目前已有一些生物质电厂投入运行。
3.生物质燃料乙醇生物质燃料乙醇是由淀粉类或纤维素类生物质发酵而成的可以与汽油混合使用的清洁能源。
近年来,生物乙醇燃料已被广泛应用于汽车、船舶、飞机等交通运输领域。
4.生物质柴油生物质柴油是一种由植物油、动物脂肪、微生物油等为原料生产的可替代石油柴油,其优点是低碳排放、环保、可再生。
目前,国内已经有一些生物质柴油工程在建设和运行中。
三、生物质能源的发展前景1.生物质能源将成为主要能源来源随着全球生态环境日益恶化,人们对可再生、绿色能源的需求日益增加。
生物质能源作为替代化石能源的一种可再生能源,将在未来成为主要能源来源。
2.产业链不断完善随着技术的不断进步和政策的不断引导,生物质能源的产业链将不断完善。
此外,生物质能源的规模化运营和经济效益的提高,也将推动生物质能源行业的发展。
3.技术的进一步创新生物质能源行业是一个技术密集型行业,随着技术的不断创新,生物质能源的利用效率将不断提高,其应用领域也将得到扩展。
综上所述,生物质能源是可持续、绿色、环保的能源形式,其利用现状良好,未来发展前景广阔。
2024年生物质颗粒燃料行业现状及发展趋势分析
概述生物质颗粒燃料作为一种可再生能源,具有广泛的应用前景。
在2024年,生物质颗粒燃料行业取得了显著的进展,但仍面临一些挑战。
本文将从市场规模、产业链、政策支持和技术创新等方面对2024年的生物质颗粒燃料行业现状及发展趋势进行分析。
市场规模2024年,全球生物质颗粒燃料市场规模约为140亿美元,在全球能源消耗中占比逐渐增加。
亚洲是全球生物质颗粒燃料市场的主要消费地区,其中中国市场规模最大。
随着人们对可再生能源需求的增加,生物质颗粒燃料的市场规模预计将继续增长。
产业链政策支持政府在2024年采取了一系列措施来支持生物质颗粒燃料的发展。
例如,加大对生物质能源领域的投资,提高生物质颗粒燃料的补贴政策,建立生物质颗粒燃料的标准和认证体系等。
这些政策措施促使企业增加投入生物质颗粒燃料领域,提升产品质量和技术创新能力。
技术创新2024年,生物质颗粒燃料行业加大了对颗粒化技术的研发和应用。
传统的颗粒化技术存在一些问题,如能耗高、生产效率低等。
因此,通过创新技术提高颗粒化效率、降低生产成本成为发展的重要方向。
此外,还有一些新技术得到广泛应用,如生物质颗粒燃料的稳定性改进、燃烧效率提高等。
发展趋势未来,生物质颗粒燃料行业将继续保持快速增长的态势。
一方面,随着能源需求的增加,生物质颗粒燃料的市场需求将继续增加;另一方面,政府的政策支持和技术创新将提高生物质颗粒燃料的竞争力。
此外,全球对环境保护意识的增强也将推动生物质颗粒燃料的发展。
总结2024年,生物质颗粒燃料行业取得了显著的进展,市场规模不断扩大,产业链不断完善,政策支持和技术创新推动行业发展。
未来,生物质颗粒燃料行业将继续保持快速增长态势,成为可再生能源领域的重要一员。
世界生物质能源发展现状及方向
世界生物质能源发展现状及方向一、本文概述本文旨在全面探讨世界生物质能源的发展现状及未来发展方向。
生物质能源,作为一种可再生的、环保的能源形式,近年来在全球范围内得到了广泛的关注和研究。
本文首先将对生物质能源的基本概念、特点及其在全球能源结构中的地位进行概述,为后续分析提供基础。
接着,文章将深入探讨当前世界生物质能源的发展现状。
这包括生物质能源的主要类型、技术应用、产业规模以及在全球范围内的分布情况等。
通过对这些方面的分析,我们可以清晰地看到生物质能源在全球能源转型中的重要作用,以及其在应对气候变化、推动可持续发展等方面的巨大潜力。
在分析了生物质能源的发展现状之后,文章将进一步探讨其未来发展方向。
这包括技术研发创新、政策支持与市场机制、产业融合与协同发展等方面。
通过对这些方面的探讨,我们可以更好地了解生物质能源未来的发展趋势,以及如何通过政策引导和市场机制推动其健康发展。
文章将总结生物质能源在全球能源转型中的战略意义,并提出针对性的政策建议和发展策略。
希望通过本文的分析和探讨,能够为全球生物质能源的发展提供有益的参考和借鉴。
二、生物质能源的分类与特点生物质能源,作为一种可再生的能源,源于生命的有机物质,包括所有的植物、动物和微生物,以及由这些生命物质派生、排泄和代谢出的许多有机质。
根据其来源和转换方式的不同,生物质能源可以大致分为以下几类:林业生物质能源:主要包括薪柴、林业废弃物和森林能源植物等。
这类生物质能源具有分布广泛、数量巨大、可再生性强等特点。
然而,其采集和运输成本较高,且过度采集可能会对生态环境造成一定影响。
农业生物质能源:主要来源于农业废弃物、水生植物和油料植物等。
这类生物质能源具有产量大、可再生性强、环境友好等优点。
通过合理的利用和处理,可以将废弃物转化为有价值的能源,实现资源的循环利用。
工业生物质能源:主要来源于工业废弃物和有机废水等。
这类生物质能源具有潜在能量大、利用价值高等特点。
生物质能源的应用现状与发展趋势
生物质能源的应用现状与发展趋势生物质能源是指利用植物、动物、微生物等生物质材料,通过化学或生物学反应转化成能源形式的一类能源。
相对于化石能源,生物质能源具有可再生性、低碳排放等优势,于是在全球范围内得到了广泛的重视和应用。
本文将介绍生物质能源的应用现状与发展趋势。
1. 生物质能源的应用现状1.1 生物质发电生物质发电是利用生物质能转化为电能的一种方式。
现阶段主要应用的技术有生物质燃烧发电和生物质气化发电。
在我国,生物质电力发电装机容量已接近10GW,主要利用的是秸秆、木材和生活垃圾等生物质资源。
1.2 生物质热电联产生物质热电联产是一种高效的利用生物质能的方式。
通过生物质燃烧或气化的方式,发电的同时产生余热,用于供暖、生活热水等热能需求。
这种方式的应用较为普遍,特别是在农村地区,采用小型的生物质热电联产设备,满足了当地的电和热需求。
1.3 生物质液态燃料生物质液态燃料主要是指生物柴油和生物乙醇。
生物柴油是通过生物质转化得到的一种可替代石油柴油的燃料,主要应用于交通领域。
生物乙醇则是以生物质为原料,通过发酵和蒸馏等过程制得的一种可替代汽油的燃料,主要应用于汽车和工业领域。
2. 生物质能源的发展趋势2.1 增加生物质资源利用生物质能源的发展取决于可利用的生物质资源。
因此,未来发展需要加大生物质资源的建设和维护。
在我国,要加强对农作物秸秆等生物质资源的统一收储和利用,提高生物质能源的可持续利用水平。
同时,研究新型的生物质能够提高生物质的利用效率。
2.2 推广生物质液态燃料生物质液态燃料是未来生物质能源应用的重要方向之一。
近年来,我国生物柴油和生物乙醇产量逐年上升,生物液态燃料市场潜力不断增大。
未来可采用多种手段,如加大政策扶持力度等,加速生物液态燃料的推广应用。
2.3 提高生物质发电效率生物质发电是生物质能源的重要应用方式之一。
提高生物质发电的效率可以降低发电成本和提高电能利用率。
未来可采用多种技术手段,如利用高效燃烧技术等,增加生物质发电的效率。
生物质能源的现状和发展前景
生物质能源的现状和发展前景其次,生物质能源的发展前景主要包括技术创新和政策支持。
技术创新是实现生物质能源大规模应用的关键。
目前,生物质能源的主要应用领域是热能利用和电力生产,以及生物质燃料的生产和利用。
未来,需要不断改进生物质能源的生产和利用技术,提高能源转化效率和资源利用率。
例如,发展新型的生物质能源生产装备,提高生物质的能量密度和稳定性,减少生产过程中的废弃物和排放物。
此外,生物质能源还可以用于生物化工和生物材料的生产,可以进一步拓展其应用领域。
政策支持是推动生物质能源发展的另一个重要因素。
许多国家已经制定了相关的政策和法规来促进生物质能源的发展和利用。
这些政策包括提供财政补贴和优惠税收,建立生物质能源发电价格补贴机制,鼓励研发和推广生物质能源技术等。
政府和企业还可以加强国际合作,共享技术和经验,促进生物质能源的国际贸易和技术交流。
然而,生物质能源的发展也面临着一些挑战。
首先,生物质能源的成本仍然较高,需要进一步降低生产成本,提高竞争力。
其次,生物质能源的生产和利用过程需要消耗大量的土地和水资源,可能导致资源竞争和环境问题。
第三,生物质能源的市场需求和消费者接受度仍然较低,需要加强宣传和教育,提高公众对生物质能源的认知和认可度。
综上所述,生物质能源在全球范围内的应用已经取得了显著的进展,但仍面临着许多挑战和发展前景。
通过技术创新和政策支持,可以进一步提高生物质能源的可持续性和环境友好性,推动其在能源领域的广泛应用。
同时,需要克服生物质能源的成本和资源竞争问题,提高市场需求和消费者接受度,实现生物质能源的可持续发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
世界生物质能源发展现状及方向20世纪90年代以来,以燃料乙醇和生物柴油为代表的第一代生物质能得以发展。
目前,美国为第一大燃料乙醇生产国,巴西位居第二,欧盟各国则是最主要的生物柴油生产地,其他国家也都在积极发展生物质能。
生物质能的发展带来粮食种植结构偏重玉米、粮食供应总量下降、粮食(油料)价格振荡上升、粮食危机引发动荡等一系列问题。
因此开发第二代、第三代生物燃料(即非粮生物燃料)成为世界各国关注的重要课题。
但由于麦秆、草和木材等农林废弃物为主要原料(第二代生物燃料)的技术成本较高,真正商业化的项目较少;而第三代生物燃料是以微藻为原料生物燃料的油脂很难提炼,从海藻中提炼生物燃料的研究正处于实验室阶段,距离商业化阶段还比较远。
因此,第一代生物质能短期内不会被第二、三代生物燃料所替代,第二、三代生物质能将是人类的理性选择,也是生物燃料必然的发展方向。
20世纪90年代以来,美欧等能源消费大国和巴西等农产品贸易大国开始大力发展新型可再生能源——生物质能[1]。
当前,生物质能为以燃料乙醇和生物柴油为代表的第一代生物质能,其发展建立在对农业资源大量占用和对农产品大量消耗基础之上,能源与农业及农产品被直接联系在一起,有可能过度开发而引发一系列问题。
1开发现状21世纪以来,由于国际能源价格基本上维持在高价位区间,为这一阶段的生物燃料产业发展提供了极大的支撑。
玉米、甘蔗等粮食的能源化在全球很多地方得以推广[2]。
随着2008年食用商品价格的高企,人们开始指责燃料乙醇的生产导致了全球粮食价格的高升,但全球生物燃料近年来却依然保持快速增长。
根据Clean Edge的数据,2008年全球生物燃料(主要指燃料乙醇和生物柴油)的产值达到348亿美元,较2007年的产值254亿美元增加37%。
1.1美国2005年,美国替代巴西跃升为世界头号燃料乙醇生产国,为美国经济带来了丰厚利益[3]。
从2001—2006年,美国燃料乙醇产业为联邦政府和地方州政府分别增加税收19亿美元和16亿美元;同时,美国相应减少石油进口1.7亿桶,减少支出外汇87亿美元。
2008年,美国燃料乙醇的生产能力增加了27亿加仑(1美加仑≈3.785L,下同),比2007年增加34%;燃料乙醇加工厂增加31家,总数达到170家,总产能为105.69亿加仑/a;燃料乙醇产量达到90亿加仑,年增长率为38.5%。
美国可再生燃料协会(RFA)认为,美国燃料乙醇近年来的快速增长主要得益于乙醇的新型生产技术以及纤维素转化技术的商业化应用[4]。
美国2007年出台的枟能源独立和安全法枠规定,到2022年前,要求国内汽车中加入360亿加仑的生物质燃料,主要是乙醇。
美国环保署2010年10月13日宣布,同意将美国汽油中的乙醇含量上限由目前的10%提高到15%,但只推荐2007年以后生产的汽车使用。
1.2巴西巴西是第二大燃料乙醇生产国。
与美国主要采用玉米不同,巴西主要利用甘蔗发酵生产燃料乙醇。
通过原料的综合利用,巴西显著降低了燃料乙醇的成本,是世界上燃料乙醇生产成本最低的国家。
2008年,巴西的甘蔗种植面积增加,种植品种更趋多样化,再加之良好的气候条件和燃料乙醇技术方面的投资增加,乙醇产量接近70亿加仑,较2007年的50亿加仑的产量增长近40%。
巴西在燃料乙醇的发展战略上除了倡导本国消费以减轻对石油的依赖之外,还鼓励进行国际贸易。
巴西的双燃料汽车已达500万辆,巴西政府强制在汽油中添加乙醇燃料的比例从2007年7月起提高到25%。
巴西燃料乙醇年产量的18%左右向美国、委内瑞拉、印度、韩国、瑞典和日本等国出口。
从巴西的资源看,发展甘蔗乙醇的潜力还很大。
1.3欧盟欧盟是世界上最主要的生物柴油生产地,生产原料主要是菜籽油。
欧盟提出,到2020年生物柴油的使用量将占所有交通燃料的10%。
为此,欧洲议会免除生物柴油90%的税收,欧洲国家对替代燃料的立法支持、差别税收以及油菜生产的补贴,共同促进了生物柴油产业的快速发展。
2008年欧盟27国的生物柴油产量为775.5×104t,年增长率为35.7%,其中德国、法国、意大利、比利时和波兰5个国家的生物柴油产量占欧盟27国总产量的3/4。
燃料乙醇在欧盟生物能源产业中是第二大生物燃料仅次于生物柴油,原料主要是谷物及甜菜等。
目前,欧盟现有生物燃料乙醇生产厂58家。
2006—2008年实际产量分别为125×104t、135×104t和170×104t;此外,欧盟还从国外进口燃料乙醇。
欧盟要求传统燃料(如汽油)必须至少掺入2%的乙醇或其他生物燃料,今后10a生物燃料乙醇消费将达到每年约10亿加仑。
1.4其他国家加拿大生产燃料乙醇的原料主要是玉米和小麦。
根据加拿大可再生燃料协会2004年发表的枟世界乙醇与生物燃料报告枠,2004年加拿大燃料乙醇总产量达到2.45×108L,比2003年增加了20%,位居世界第14位。
印度从2002年开始生产生物燃料,2003年起进行燃料乙醇试点,有12个邦推广使用含5%燃料乙醇的汽油(E5),计划把掺入燃料乙醇的比例提高到10%。
印度是世界第二产糖大国,产糖量接近巴西,但是丰富的原料用于生产燃料乙醇的数量远低于巴西,而主要是把甘蔗制糖的副产品糖蜜用做生产燃料乙醇,印度计划大力开发甜高粱燃料乙醇。
中国生物能源生产起步较晚,到2007年燃料乙醇总产量为160×104t。
根据国家发展和改革委员会制定的枟可再生能源中长期发展规划枠,到2010年,我国生物能源生产目标具体为:燃料乙醇200×104t,生物柴油20×104t;到2020年,燃料乙醇1000×104t,生物柴油200×104t。
2面临问题目前各国发展的第一代生物质能源使用的原料主要是玉米、甘蔗、油料作物。
其中美国主要是玉米和大豆油,欧盟则是玉米、小麦、大麦、菜籽油、甜菜和大豆油,巴西为甘蔗和大豆油,加拿大为玉米和小麦,中国和印度为玉米,马来西亚、印度尼西亚为棕榈油[5]。
粮食作为生物质能生产的主要原料势必带来一系列问题。
2.1粮食种植结构偏重玉米由于美国是世界最大的粮食生产和出口国,而生物质能源的主要原料又是与小麦、稻谷两大主要粮食存在直接资源竞争关系的玉米,因而国际社会普遍关注美国的玉米燃料乙醇战略对国际粮食供求的影响。
统计资料显示,因大规模发展生物质能源,美国三大粮食作物的种植结构发生了较为明显的变化。
与2003年相比,2007年美国三大作物的总种植面积下降了1.51%,其中小麦的种植面积下降了3.87%,稻谷下降了8.33%,但玉米的种植面积却上升了21.99%。
种植结构的改变导致其三大粮食出口全面下降,其中玉米下降28.17%,小麦下降9.13%,稻谷下降4.29%,总量达到1661.50×104t作物。
2.2粮食供应总量下降尽管世界小麦、玉米和大米的产量仍然在增长,但因生物质能源的发展耗费了大量的玉米、小麦和粗粮,2003年以来,世界食用粮供给下降。
其中,作为最大粮食出口国的美国,其2003年三大粮食出口占世界总出口的比重是38.97%,而2006年则降至34.54%。
2.3粮食(油料)价格振荡上升生物质能生产消耗粮食也是引起粮食(油料)价格上涨的原因之一。
自2006年以来,世界粮油价格迅速上涨,并在2007年进一步攀高,比2006年上涨37%。
其中小麦上涨63%,玉米上涨26.7%,大米上涨16.4%,油料依品种不同涨幅为60%~70%不等。
路透社商品研究所数据显示,粮食和油料种子价格指数自1971年以来呈上升趋势,目前处于新一轮上涨周期的爬坡阶段,国际粮价在中期内仍将上行。
2.4粮食危机引发动荡2008年以来,粮食危机席卷全球,部分国家和地区因缺粮出现饥荒、混乱和不稳定局面,贫穷的发展中国家是粮食危机的主要受害者,由于粮食普遍不能自给,居民的恩格尔系数很高,粮价飞涨,购买活命粮成为无法承受的沉重负担。
发达国家居民的恩格尔系数只有15%,粮食危机对其影响不大。
这些国家又都是世界粮食的主要生产国和出口国,趁粮食短缺哄抬粮价大发横财。
粮食危机将对国际关系和国际形势产生严重的负面影响。
生物质能源的大规模发展已经给世界粮食安全造成较严重影响,未来的影响将会更大。
根据2007年美国新能源法案,到2020年美国生物乙醇产量将达到360亿加仑,大约要耗费1442.91×104t玉米(相当于2007年美国玉米产量的41.2%)。
按照美国2007年的玉米单产计算,玉米种植面积要增加152.17万公顷(1公顷=10000m2)。
耕地资源的有限性和用途的竞争性使得小麦和稻米的种植面积必然会下降,势必影响世界粮食安全。
在全球生物质能源发展过程中,若不能统筹考虑综合协调将会导致更严重的后果。
3发展趋势3.1生物质能是人类实现能源可持续的重要领域生物质能产业的主产地——美国、巴西、欧盟各国都制定了生物质能发展规划,并且已经开始商业化生产或者修建生产设施。
美国预计到2016年,生物能源要替代5%的汽油,替代13%的交通消耗柴油。
欧盟到2020年,可再生能源将占能源消耗总量的20%,生物燃料在交通燃料消费中的比重达到10%。
各国政府为此不仅出台一系列财政补贴、投资政策、税收优惠、用户补助等经济激励政策,为生物质能产业的发展提供更好的支持,而且通过规划和政府指令,确保生物能源的长期持续发展。
3.2第二、三代生物质能是人类的理性选择当前,世界上生产燃料乙醇的原料主要是玉米、甘蔗等,生产生物柴油的原料主要是大豆、菜籽油等,需要利用大面积土地扩大种植,与粮争地。
因此,走原料多元化之路是长远之策。
开发非粮生物燃料(第二代、第三代生物燃料)成为世界各国关注的重要课题,也是生物燃料的必然发展方向。
第二代生物燃料指的是以麦秆、草和木材等农林废弃物为主要原料,采用生物纤维素转化为生物燃料的模式,主要有纤维素乙醇技术、合成生物燃油技术、生物氢技术、生物二甲醚技术等众多发展方向,其中,纤维素乙醇和合成生物燃油是最为重要的第二代生物燃料产品。
目前第二代生物燃料的技术成本较高,真正商业化的项目较少。
第三代生物燃料是以微藻为原料生产的各种生物燃料,也称为微藻燃料。
微藻作物可以用来生产植物油、生物柴油、生物乙醇、生物甲醇、生物丁醇、生物氢等生物燃料。
微藻作物可以在海洋或者废水中养殖,不会污染淡水资源,对生态环境的危害相对较小。
微藻燃料的研发始于1978年美国能源部资助的“水上能源作物计划”,起初是以生物氢为目的,1982年逐渐转向了生物柴油和燃料乙醇。
除美国外,以色列、欧洲各国、加拿大、阿根廷、澳大利亚和新西兰等国家也逐步开始了微藻燃料的研发。