应用时间序列分析习题答案

合集下载

人大版应用时间序列分析(第5版)习题答案

人大版应用时间序列分析(第5版)习题答案

第一章习题答案略第二章习题答案2.1答案:(1)不平稳,有典型线性趋势(2)1-6阶自相关系数如下(3)典型的具有单调趋势的时间序列样本自相关图2.2答案:(1)不平稳(2)延迟1-24阶自相关系数(3)自相关图呈现典型的长期趋势与周期并存的特征2.3答案:(1)1-24阶自相关系数(2)平稳序列(3)非白噪声序列2.4计算该序列各阶延迟的Q统计量及相应P值。

由于延迟1-12阶Q统计量的P值均显著大于0.05,所以该序列为纯随机序列。

2.5答案(1)绘制时序图与自相关图(2)序列时序图显示出典型的周期特征,该序列非平稳(3)该序列为非白噪声序列2.6答案(1)如果是进行平稳性图识别,该序列自相关图呈现一定的趋势序列特征,可以视为非平稳非白噪声序列。

如果通过adf检验进行序列平稳性识别,该序列带漂移项的0阶滞后P值小于0.05,可以视为平稳非白噪声序列(2)差分后序列为平稳非白噪声序列2.7答案(1)时序图和自相关图显示该序列有趋势特征,所以图识别为非平稳序列。

(2)单位根检验显示带漂移项0阶延迟的P值小于0.05,所以基于adf检验可以认为该序列平稳(3)如果使用adf检验结果,认为该序列平稳,则白噪声检验显示该序列为非白噪声序列如果使用图识别认为该序列非平稳,那么一阶差分后序列为平稳非白噪声序列2.8答案(1)时序图和自相关图都显示典型的趋势序列特征(2)单位根检验显示该序列可以认为是平稳序列(带漂移项一阶滞后P值小于0.05)(3)一阶差分后序列平稳第三章习题答案 3.10101()0110.7t E x φφ===--() 221112() 1.96110.7t Var x φ===--() 22213=0.70.49ρφ==()12122221110.490.7=0110.71ρρρφρρ-==-(4) 3.21111222211212(2)7=0.515111=0.30.515AR φφφρφφφρφρφφφ⎧⎧⎧=⎪=⎪⎪⎪--⇒⇒⎨⎨⎨⎪⎪⎪=+=+⎩⎩⎪⎩模型有:,2115φ=3.312012(1)(10.5)(10.3)0.80.15()01t t t t t tt B B x x x x E x εεφφφ----=⇔=-+==--,22121212()(1)(1)(1)10.15=(10.15)(10.80.15)(10.80.15)1.98t Var x φφφφφφ-=+--+-+--+++=()1122112312210.83=0.70110.150.80.70.150.410.80.410.150.70.22φρφρφρφρφρφρ==-+=+=⨯-==+=⨯-⨯=() 1112223340.70.15=0φρφφφ====-()3.41211110011AR c c c c c ⎧<-<<⎧⎪⇒⇒-<<⎨⎨<±<⎪⎩⎩() ()模型的平稳条件是 1121,21,2k k k c c k ρρρρ--⎧=⎪-⎨⎪=+≥⎩() 3.5证明:该序列的特征方程为:320c c λλλ--+=,解该特征方程得三个特征根:11λ=,2λ=3λ=无论c 取什么值,该方程都有一个特征根在单位圆上,所以该序列一定是非平稳序列。

应用统计学时间序列习题及答案

应用统计学时间序列习题及答案

计算题:34323*22562584*22582603*22602502*2250254++++++++++=a = (人计算(1)第一季度该店平均每月商品销售额(2)第一季度平均销售员人数(3)第一季度平均每个销售员的销售额 (4)第一季度平均每月每个销售员的销售额 解:(1)商品销售额为时期总量指标时间序列,4月不属一季度,该数据无用3280350300++=a = (万元)(2) 销售员人数是时点总量指标时间序列,间断间隔相等,用首尾折半法,4月初人数相当于3月末人数,这个数据有用32424045240+++=b = (人) (3)32424045240280350300+++++==平均人数一季度销售额c = (万元/人) (4)3324240452403028350300c d =+++++==平均人数一季度月平均销售额 = (万元/人)要求:(1)根据表中资料 ,计算并填制表中空白栏指标(2)计算该地财政收入的这几年的年平均发展水平、年平均增长水平(水平法)和平均增长速度(几何平均法)(3)超过平均增长速度的年份有哪些年?解:注意平均时项数的确定,写计量单位,我以下省略了单位1430%02.193*430116430%02.193*4307%02.193*4304554301)26n 0010-=-=-='-=-=∆+++=+++=a a V V n a a n a a a a n n n ((3)填全表中各年的环比增长速度,和年平均增长速度进行比较即可4. 某地1980~1990年间(以1979年为基期:a0),地区生产总值以平均 每年25%的速度增长(平均增长速度),而1991~2000年间地区生产总值以平均每年30%的速度增长(平均增长速度),2001~2012年间地区生产总值以平均每年18%的速度增长,则1980~2012年间,该地区的生产总值平均每年的增长速度是多少?(重点:正确确定时间段长短)解:注意是以1979年为基期,经过33年发展到2012年,求这段时间的平均增长速度1%118*%130*%125133121011-=-='V V5. 某地1980年的人口是120万人,1981~2000年间人口平均增长率为1.2%,之后下降到1%,按此增长率到2008年人口会达到多少?如果要求到2012年人口控制在170万以内,则2008年以后人口的增长速度应控制在什么范围内? 解:1)2(%101*%2.101*)140812*******-='==V V V a a a a ((1)分别用最小平方法的普通法和简捷法配合直线方程,并预测2010年该企业产值 (2)比较两种方法得出的结果有无异同。

应用时间序列分析王燕答案

应用时间序列分析王燕答案

人大时间序列课后习题答案第二章P341、(1)因为序列具有明显的趋势,所以序列非平稳。

(2)样本自相关系数:∑∑=-=+---≅=nt tkn t k t tk x xx x x xk 121)())(()0()(ˆγγρ5.10)2021(20111=+++==∑= n t t x n x=-=∑=2201)(201)0(x x t tγ35 =--=+=∑))((191)1(1191x x x x t t t γ29.75 =--=+=∑))((181)2(2181x x x x t t t γ25.9167 =--=+=∑))((171)3(3171x x x x t t t γ21.75 γ(4)=17.25 γ(5)=12.4167 γ(6)=7.25 1ρ=0.85(0.85) 2ρ=0.7405(0.702) 3ρ=0.6214(0.556)4ρ=0.4929(0.415) 5ρ=0.3548(0.280) 6ρ=0.2071(0.153)注:括号内的结果为近似公式所计算。

(3)样本自相关图:Autocorrelation Partial CorrelationAC PAC Q-Stat Prob . |*******| . |*******| 1 0.850 0.850 16.732 0.000 . |***** | . *| . | 2 0.702 -0.076 28.761 0.000 . |**** | . *| . | 3 0.556 -0.076 36.762 0.000 . |*** | . *| . | 4 0.415 -0.077 41.500 0.000 . |**. | . *| . | 5 0.280 -0.077 43.800 0.000 . |* . | . *| . | 6 0.153 -0.078 44.533 0.000 . | . | . *| . | 7 0.034 -0.077 44.572 0.000 . *| . | . *| . | 8 -0.074 -0.077 44.771 0.000 . *| . | . *| . | 9 -0.170 -0.075 45.921 0.000 .**| . |. *| . |10 -0.252 -0.072 48.713 0.000.**| . | . *| . | 11 -0.319 -0.067 53.693 0.000 ***| . |. *| . |12 -0.370 -0.060 61.220 0.0004、∑=⎪⎪⎭⎫ ⎝⎛-+=mk k k n n n LB 12ˆ)2(ρLB(6)=1.6747 LB(12)=4.9895205.0χ(6)=12.59 205.0χ(12)=21.0显然,LB 统计量小于对应的临界值,该序列为纯随机序列。

应用时间序列分析 第三版 王燕 课后答案

应用时间序列分析 第三版 王燕 课后答案

1 1.3738
2 -0.8736
(2) | 2 | 0.3 1 , 2 1 0.8 1 , 2 1 1.4 1,模型平稳。
1 0.6
2 0.5
(3) | 2 | 0.3 1 , 2 1 0.6 1 , 2 1 1.2 1 ,模型可逆。
2、解:对于 AR(2)模型:
22 0
1 1 0 2 1 1 2 1 0.5 2 1 1 2 0 1 1 2 0.3
解得:
1 7 / 15 2 1 / 15
3、解:根据该 AR(2)模型的形式,易得: E ( xt ) 0 原模型可变为: xt 0.8xt 1 0.15xt 2 t
j
eT (3) G0 t 3 G1 t 2 G2 t 1 t 3 1 t 2 12 t 1
第二章 P34 1、 (1)因为序列具有明显的趋势,所以序列非平稳。 (2)样本自相关系数:
(k ) ˆk (0)
(x
t 1
nk
t
x )( x t k x )
t
(x
t 1
n
x) 2
1 n 1 x xt (1 2 20) 10.5 n t 1 20
(4)=17.25
(5)=12.4167
(6)=7.25
1 =0.85(0.85)
2 =0.7405(0.702)
3 =0.6214(0.556)
4 =0.4929(0.415) 5 =0.3548(0.280)
注:括号内的结果为近似公式所计算。 (3)样本自相关图: Autocorrelation Partial Correlation . |*******| . |***** | . |**** . |*** . |**. . |* . . | . . *| . . *| . | | | | | | | . |*******| . *| . | . *| . . *| . . *| . . *| . . *| . . *| . . *| . | | | | | | |

应用时间序列分析习题标准答案

应用时间序列分析习题标准答案

应⽤时间序列分析习题标准答案第⼆章习题答案2.1(1)⾮平稳(2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376(3)典型的具有单调趋势的时间序列样本⾃相关图2.2(1)⾮平稳,时序图如下(2)-(3)样本⾃相关系数及⾃相关图如下:典型的同时具有周期和趋势序列的样本⾃相关图2.3(1)⾃相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118(2)平稳序列(3)⽩噪声序列2.4,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。

显著性⽔平=0.05不能视为纯随机序列。

2.5(1)时序图与样本⾃相关图如下(2)⾮平稳(3)⾮纯随机 2.6(1)平稳,⾮纯随机序列(拟合模型参考:ARMA(1,2))(2)差分序列平稳,⾮纯随机第三章习题答案3.1 解:1()0.7()()t t t E x E x E ε-=?+0)()7.01(=-t x E 0)(=t x E t t x ε=-)B 7.01(t t t B B B x εε)7.07.01()7.01(221 +++=-=- 229608.149.011)(εεσσ=-=t x Var49.00212==ρφρ 022=φ3.2 解:对于AR (2)模型:=+=+==+=+=-3.05.02110211212112011φρφρφρφρρφφρφρφρ解得:==15/115/721φφ3.3 解:根据该AR(2)模型的形式,易得:0)(=t x E原模型可变为:t t t t x x x ε+-=--2115.08.02212122)1)(1)(1(1)(σφφφφφφ-+--+-=t x Var2)15.08.01)(15.08.01)(15.01()15.01(σ+++--+==1.98232σ=+==+==-=2209.04066.06957.0)1/(1221302112211ρφρφρρφρφρφφρ ??=-====015.06957.033222111φφφρφ 3.4 解:原模型可变形为:t t x cB B ε=--)1(2由其平稳域判别条件知:当1||2<φ,112<+φφ且112<-φφ时,模型平稳。

时间序列练习题答案

时间序列练习题答案

时间序列练习题答案一、选择题1. 时间序列分析中的自回归模型(AR)是指:A. 模型中的误差项B. 模型预测值依赖于自身过去的值C. 模型预测值依赖于其他变量的值D. 模型预测值依赖于未来的值2. 移动平均模型(MA)的主要特征是:A. 预测值依赖于过去的误差项B. 预测值依赖于过去的观测值C. 预测值依赖于未来的误差项D. 预测值依赖于未来的观测值3. 以下哪个不是时间序列分析中的平稳性检验方法?A. 单位根检验B. 协整检验C. KPSS检验D. 方差比检验4. 时间序列的差分操作通常用于:A. 消除季节性效应B. 消除趋势C. 消除周期性变化D. 消除随机波动5. 季节性调整的目的是:A. 消除随机波动B. 消除季节性效应C. 消除长期趋势D. 消除周期性变化二、简答题1. 简述自回归积分滑动平均模型(ARIMA)的基本组成部分。

2. 解释什么是时间序列的平稳性,并说明为什么在时间序列分析中需要考虑平稳性。

3. 描述季节性时间序列的特点,并说明如何识别和处理季节性效应。

三、计算题1. 给定以下时间序列数据:\[ y_t = \{10, 15, 20, 25, 30, 35, 40, 45, 50, 55\} \] 假设这是一个一阶自回归模型AR(1),其中自回归系数φ=0.8。

请计算下一个时间点的预测值。

2. 假设一个时间序列模型的ACF(自相关函数)在滞后1时显著不为0,而在滞后2及以后时显著为0。

根据这个信息,推测该时间序列可能属于哪种类型的模型?四、案例分析题1. 某公司销售数据呈现明显的季节性变化,如何在时间序列分析中对数据进行季节性调整?2. 一个时间序列模型的ADF(Augmented Dickey-Fuller)检验结果表明存在单位根,这意味着什么?如何对数据进行处理以消除单位根?五、论述题1. 论述时间序列分析在金融领域中的应用,并举例说明。

2. 讨论时间序列分析中的因果关系检验方法,并说明在实际应用中如何选择合适的方法。

【分享】应用时间序列分析课后答案

【分享】应用时间序列分析课后答案

【分享】应用时间序列分析课后答案在学习应用时间序列分析这门课程的过程中,课后答案对于我们巩固知识、检验学习成果起着至关重要的作用。

今天,我就来和大家分享一下我所整理的应用时间序列分析课后答案,希望能对正在学习这门课程的同学们有所帮助。

首先,我们来谈谈为什么时间序列分析如此重要。

在现实生活中,许多现象都随着时间的推移而发生变化,比如股票价格的波动、气温的变化、销售量的起伏等等。

通过对这些时间序列数据的分析,我们可以揭示隐藏在数据背后的规律和趋势,从而做出更准确的预测和决策。

接下来,让我们直接进入课后答案的分享。

在第一章的课后习题中,有一道关于时间序列平稳性检验的题目。

对于这道题,我们需要先计算序列的均值和方差,如果均值和方差不随时间变化,那么初步可以判断该序列是平稳的。

然后,再通过自相关函数(ACF)和偏自相关函数(PACF)来进一步确定平稳性。

具体的计算过程和判断方法,答案中都有详细的步骤和解释。

再来看第二章关于模型识别的课后题。

在这部分,我们要根据给定的时间序列数据的自相关和偏自相关函数的特征,来判断适合的模型类型。

比如,如果 ACF 呈现拖尾,PACF 截尾,那么可能适合的模型是 AR 模型;反之,如果 ACF 截尾,PACF 拖尾,则可能是 MA 模型。

而当 ACF 和 PACF 都呈现拖尾时,就需要考虑 ARMA 模型了。

在第三章关于参数估计的习题中,涉及到了最小二乘法、极大似然估计等方法。

答案中会给出具体的计算公式和推导过程,帮助我们理解如何通过数据来估计模型的参数。

这部分的内容相对较难,需要我们认真思考和反复练习。

第四章的课后作业主要是关于模型诊断和检验。

我们需要通过残差分析来判断模型的拟合效果,如果残差是白噪声,说明模型拟合较好;否则,就需要对模型进行进一步的改进和调整。

答案中会有关于如何进行残差分析的详细示例和判断标准。

第五章则侧重于时间序列的预测。

这部分的课后题会让我们运用所建立的模型对未来的值进行预测,并计算预测误差。

统计学习题答案 第9章 时间序列分析

统计学习题答案 第9章  时间序列分析

第9章 时间序列分析——练习题●1. 某汽车制造厂2003年产量为30万辆。

(1)若规定2004—2006年年递增率不低于6%,其后年递增率不低于5%,2008年该厂汽车产量将达到多少?(2)若规定2013年汽车产量在2003年的基础上翻一番,而2004年的增长速度可望达到7.8%,问以后9年应以怎样的速度增长才能达到预定目标?(3)若规定2013年汽车产量在2003年的基础上翻一番,并要求每年保持7.4%的增长速度,问能提前多少时间达到预定目标?解:设i 年的环比发展水平为x i ,则由已知得:x 2003=30, (1)又知:320042005200620032004200516%x x x x x x ≥+(),2200720082006200715%x x x x ≥+(),求x 2008由上得32200820072008200320032007(16%)(15%)x x x x x x =≥++ 即为3220081.061.0530x ≥,从而2008年该厂汽车产量将达到 得 x 2008≥30× 31.06×21.05= 30×1.3131 = 39.393(万辆) 从而按假定计算,2008年该厂汽车产量将达到39.393万辆以上。

(2)规定201320032x x =,20042003x x =1+7.8%由上得=107.11%==可知,2004年以后9年应以7.11%的速度增长,才能达到2013年汽车产量在2003年的基础上翻一番的目标。

(3)设:按每年7.4%的增长速度n 年可翻一番, 则有 201320031.0742na a == 所以 1.074log 20.30103log 29.70939log1.0740.031004n ====(年)可知,按每年保持7.4%的增长速度,约9.71年汽车产量可达到在2003年基础上翻一番的预定目标。

原规定翻一番的时间从2003年到2013年为10年,故按每年保持7.4%的增长速度,能提前0.29年即3个月另14天达到翻一番的预定目标。

课后习题答案-时间序列分析及应用(R语言原书第2版)

课后习题答案-时间序列分析及应用(R语言原书第2版)
> plot(ts(rnorm(n=48)),type='o') # If you repeat this command R will use a new “random numbers” each time. If you want to reproduce the same simulation first use the command set.seed(#########) where ######### is an integer of your choice.
stationary.
(b) Find the autocovariance function for {Yt}. Cov(Yt,Yt − k) = Cov(X,X) = σ2 for all t and k, free of t (and k). (c) Sketch a “typical” time plot of Yt. The plot will be a horizontal “line” (really a discrete-time horizontal line)
relation functions are the same for θ = 3 and θ = 1/3. For simplicity, suppose that the process mean is known
to be zero and the variance of Yt is known to be 1. You observe the series {Yt} for t = 1, 2,..., n and suppose that you can produce good estimates of the autocorrelations ρk. Do you think that you could determine which value of θ is correct (3 or 1/3) based on the estimate of ρk? Why or why not?

应用时间序列习题(含答案)

应用时间序列习题(含答案)

应用时间序列习题(含答案)一、单项选择题1.时间数列与变量数列( )A 都是根据时间顺序排列的B 都是根据变量值大小排列的C 前者是根据时间顺序排列的,后者是根据变量值大小排列的D 前者是根据变量值大小排列的,后者是根据时间顺序排列的 2.时间数列中,数值大小与时间长短有直接关系的是( )A 平均数时间数列B 时期数列C 时点数列D 相对数时间数列3.发展速度属于( )A 比例相对数B 比较相对数C 动态相对数D 强度相对数4.计算发展速度的分母是( )A 报告期水平B 基期水平C 实际水平D 计划水平5.某车间月初工人人数资料如下:则该车间上半年的平均人数约为( )A 296人B 292人C 295 人D 300人6.某地区某年9月末的人口数为150万人,10月末的人口数为150.2万人,该地区10月的人口平均数为( )A150万人 B150.2万人 C150.1万人 D 无法确定 7.由一个9项的时间数列可以计算的环比发展速度( ) A 有8个 B 有9个 C 有10个 D 有7个 8.采用几何平均法计算平均发展速度的依据是( )A 各年环比发展速度之积等于总速度B 各年环比发展速度之和等于总速度C 各年环比增长速度之积等于总速度D 各年环比增长速度之和等于总速度 9.某企业的产值2005年比2000年增长了58.6%,则该企业2001—2005年间产值的平均发展速度为( )A 5%6.58B 5%6.158C 6%6.58 D6%6.158 10.根据牧区每个月初的牲畜存栏数计算全牧区半年的牲畜平均存栏数,采用的公式是( )A 简单平均法B 几何平均法C 加权序时平均法D 首末折半法11、时间序列在一年内重复出现的周期性波动称为( )A 、长期趋势B 、季节变动C 、循环变动D 、随机变动1.C 2.B 3.C 4.B 5.C 6.C 7.A 8.A 9.B 10.D 11、B二、多项选择题1.对于时间数列,下列说法正确的有( )A 数列是按数值大小顺序排列的B 数列是按时间顺序排列的C 数列中的数值都有可加性D 数列是进行动态分析的基础E 编制时应注意数值间的可比性 2.时点数列的特点有( )A 数值大小与间隔长短有关B 数值大小与间隔长短无关C 数值相加有实际意义D 数值相加没有实际意义E 数值是连续登记得到的 3.下列说法正确的有( )A 平均增长速度大于平均发展速度B 平均增长速度小于平均发展速度C 平均增长速度=平均发展速度-1D 平均发展速度=平均增长速度-1E 平均发展速度×平均增长速度=14.下列计算增长速度的公式正确的有( )A%100⨯=基期水平增长量增长速度 B %100⨯=报告期水平增长量增长速度C 增长速度= 发展速度—100%D %100⨯-=基期水平基期水平报告期水平增长速度E %100⨯=基期水平报告期水平增长速度5.采用几何平均法计算平均发展速度的公式有( )A1231201-⨯⨯⨯⨯=n n a a a a a a a a nx B 0a a n x n =C1a a nx n= D n R x = En x x ∑=6.某公司连续五年的销售额资料如下:根据上述资料计算的下列数据正确的有( )A第二年的环比增长速度=定基增长速度=10%B第三年的累计增长量=逐期增长量=200万元C第四年的定基发展速度为135%D第五年增长1%绝对值为14万元E第五年增长1%绝对值为13.5万元7.下列关系正确的有( )A环比发展速度的连乘积等于相应的定基发展速度B定基发展速度的连乘积等于相应的环比发展速度C环比增长速度的连乘积等于相应的定基增长速度D环比发展速度的连乘积等于相应的定基增长速度E平均增长速度=平均发展速度-18.测定长期趋势的方法主要有( )A时距扩大法 B方程法 C最小平方法 D移动平均法 E几何平均法9.关于季节变动的测定,下列说法正确的是( )A目的在于掌握事物变动的季节周期性B常用的方法是按月(季)平均法C需要计算季节比率D按月计算的季节比率之和应等于400%E季节比率越大,说明事物的变动越处于淡季10.时间数列的可比性原则主要指( )A时间长度要一致 B经济内容要一致 C计算方法要一致 D总体范围要一致E计算价格和单位要一致1.BDE 2.BD 3.BC 4.ACD 5.ABD 6.ACE 7.AE 8.ACD 9.ABC 10.ABCDE三、判断题1.时间数列中的发展水平都是统计绝对数。

统计学:时间序列分析习题与答案

统计学:时间序列分析习题与答案

一、单选题1、根据季度数据测定季节比率时,各季节比率之和为()。

A.100%B.0C.400%D.1200%正确答案:C2、增长1%水平值的表达式是()。

A.报告期增长量/增长速度B.报告期发展水平/100C.基期发展水平/100D.基期发展水平/1%正确答案:C3、若报告期水平是基期水平的8倍,则我们称之为()。

A.翻了 3番B.翻了 8番C.发展速度为700%D.增长速度为800%正确答案:A4、若时间数列呈现出长时间围绕水平线的周期变化,这种现象属于()。

A.无长期趋势、有循环变动B.有长期趋势、有循环变动C.无长期趋势、无循环变动D.有长期趋势、无循环变动正确答案:B5、银行年末存款余额时间数列属于()。

A.平均指标数列B.时点数列C.时期数列D.相对指标数列正确答案:B6、某一时间数列,当时间变量t=1,2,3,...,n时,得到趋势方程为y=38+72t,那么,取t=0,2,4,6,8,...时,方程中的b将为()。

A.36B.34C.110D.144正确答案:A7、某企业2018年的产值比2014年增长了 200%,则年平均增长速度为()。

A.50%B.13.89%C.29.73%D.31.61%正确答案:D8、2010年某市年末人口为120万人,2020年年末达到153万人,则年平均增长量为()万人。

A. 3B.33C. 3.3D.30正确答案:C9、在测定长期趋势时,如果时间数列逐期增长量大体相等,则宜拟合()。

A.抛物线模型B.直线模型C.曲线模型D.指数曲线模型正确答案:B10、在测定长期趋势时,当时间数列的逐期增长速度基本不变时,宜拟合()。

A.逻辑曲线模型B.二次曲线模型C.直线模型D.指数曲线模型正确答案:D二、多选题1、编制时间数列的原则有()。

A.经济内容的一致性B.计算方法的一致性C.时间的一致性D.总体范围的一致性正确答案:A、B、C、D2、以下表述正确的有()。

应用时间序列第四章习题解答1-4

应用时间序列第四章习题解答1-4
两边同时除以 t,得:
t x x x x x t 1 t (1 ) t 1 (1 ) t 1 (1 ) t 1 ……○ t t t t t t
令 A lim
t
t x t
1 式两端取极限,得: ○
lim
t
(2)
ˆ21 x 20 x20 (1 ) x19 (1 )2 x18 … (1 )19 x1 x
0.4 13 0.4 0.6 11 0.4 0.62 10 … 0.4 0.619 10 11.79240287
t x x lim (1 ) lim t 1 t t t t
即 A (1 ) A
lim
t
xt A 1。 t
另解:根据指数平滑的定义有(1)式成立, (1)式等号两边同乘 (1 ) 有(2)式成立
t t (t 1) (1 ) (t 2) (1 ) 2 (t 2) (1 )3 (1) x t (1 ) x t (1 ) (t 1) (1 ) 2 (t 2) (1 )3 (2)
1 1 ˆ21 ( x20 x19 x18 x17 x16 ) (13 11 10 10 12) 11.2 解:(1) x 5 5
1 1 ˆ22 ( x ˆ21 x20 x19 x18 x17 ) (11.2 13 11 10 10) 11.04 x 5 5
a
6 25 6 4 0.16 。 25 25
b a 0.4
4. 现有序列 xt t , t 1, 2,… ,使用平滑系数为 的指数平滑法

应用时间序列答案

应用时间序列答案

应用时间序列答案1、爸爸早上8:00上班,11:30下班;下午1:30上班,5:00下班,爸爸一天的工作时间是多少?解:上午上班3.5小时,下午上班3.5小时,所以爸爸一天的工作时间是7小时。

2、刘强骑著摩托车匀速高速行驶至汽车站乘汽车,例如每小时行30千米,则晚至1/4小时,例如每小时行15千米,则耽误1/12小时,如果急于提早五分钟至,那么摩托车的速度应当就是多少?解:设路程为s,标准时间为t则t-s/30=1/4 s/15-t=1/12解得s=10km t=7/12h 即35min要想提前5分钟即30分钟到即0.5ht'=10/0.5=20km/h3、一项工程,甲单独搞须要15天,乙和丙单独搞各须要10天.甲搞了一段时间后返回.乙、丙合作必须4天顺利完成。

甲搞了多少天?4、甲乙两打字员合打一份稿件,完成时甲打了稿件的5/9,已知甲单独打6.4小时完成,乙单独打几小时完成?5、一批零件,甲乙两人合作12天可以顺利完成。

他们合作若干天后,乙因事告假,乙这时只顺利完成了总任务的`十分之三。

甲继续做,从已经开始至顺利完成任务用了14天。

答:甲单独搞了多少天?解:设甲单独做了x天,则他们合作做了(14-x)天甲14天顺利完成了(1-3/10),因此纡出来甲的工作效率就是1/20乙(14-x)天做了3/10,因此可知乙的工作效率是3/10÷(14-x)他们的工作效率和就是1/12列方程:3/10÷(14-x)=1/12-1/20最后结果就是x=57、修一段公路,原计划120人50天完工。

工作一个月(按30天计算)后,有20人被调走,赶修其他路段。

这样剩下的人需比原计划多干多少天才能完成任务?求解:把这个工程看做1,则工人的工作效率可以看做就是1/(120×50),30天后完成了总工程的3/5,剩下2/5,那么剩下的100个工人的工作效率和是100/(120×50),所以2/5÷(100/(120×50))=24天24-20=4天8、五羊号轮船顺流航行135千米再逆流航行70千米共用12.5小时,而顺流航行75千米再逆流航行110千米也用12.5小时,那么水流速度就是多少千米/时?通过这题若想算是出来轮船顺水60千米和轮船逆水40千米所用的时间一样吗?(1)解:根据题意,可设船速为x千米/时,水流速度是y千米/时.列方程为:方程1:135/(y+x)+70/(y-x)=12.5方程2;:75/(y+x)+110/(y-x)=12.5解方程组可得x=16,y=3.2所以,水流速度为3.2千米/时(2)轮船顺水60千米时间 60/(16+3.2)=3.125轮船逆水40千米时间 40/(16-3.2)=3.125所以,轮船顺水60千米和轮船逆水40千米所用的时间一样9、学校早晨6:00开门,晚上6:40关门,下午有一名学生问老师现在的时间,老师说:从开校门到现在的时间的1/3,加上现在到关校门的时间的1/4,就是现在的时间,问现在是下午几点?10、甲乙两车从距离338千米的两地同时送出,并肩而行,甲车每小时行52千米,乙车每小时行42千米,经过几小时两车还距离56千米?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章习题答案2.1(1)非平稳(2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376(3)典型的具有单调趋势的时间序列样本自相关图2.2(1)非平稳,时序图如下(2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图2.3(1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118(2)平稳序列(3)白噪声序列2.4,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。

显著性水平=0.05不能视为纯随机序列。

2.5(1)时序图与样本自相关图如下(2) 非平稳 (3)非纯随机 2.6(1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机第三章习题答案3.1 解:1()0.7()()t t t E x E x E ε-=⋅+0)()7.01(=-t x E 0)(=t x E t t x ε=-)B 7.01(t t t B B B x εε)7.07.01()7.01(221 +++=-=- 229608.149.011)(εεσσ=-=t x Var49.00212==ρφρ 022=φ3.2 解:对于AR (2)模型:⎩⎨⎧=+=+==+=+=-3.05.02110211212112011φρφρφρφρρφφρφρφρ 解得:⎩⎨⎧==15/115/721φφ3.3 解:根据该AR(2)模型的形式,易得:0)(=t x E原模型可变为:t t t t x x x ε+-=--2115.08.02212122)1)(1)(1(1)(σφφφφφφ-+--+-=t x Var2)15.08.01)(15.08.01)(15.01()15.01(σ+++--+==1.98232σ⎪⎩⎪⎨⎧=+==+==-=2209.04066.06957.0)1/(1221302112211ρφρφρρφρφρφφρ ⎪⎩⎪⎨⎧=-====015.06957.033222111φφφρφ 3.4 解:原模型可变形为:t t x cB B ε=--)1(2由其平稳域判别条件知:当1||2<φ,112<+φφ且112<-φφ时,模型平稳。

由此可知c 应满足:1||<c ,11<-c 且11<+c 即当-1<c<0时,该AR(2)模型平稳。

3.5证明:已知原模型可变形为:t t x cB cB B ε=+--)1(32其特征方程为:0))(1(223=-+-=+--c c c λλλλλλ 不论c 取何值,都会有一特征根等于1,因此模型非平稳。

3.6 解:(1)错,)1/()(2201θσγε-==t x Var 。

(2)错,)1/()])([(21210111θσθγργμμε-===---t t x x E 。

(3)错,T lT x l x1)(ˆθ=。

(4)错,112211)(+--+-++++++=T l l T l T l T T G G G l e εεεε =11122111+--+-++++++T l l T l T l T εθεθεθε(5)错,22122121111]1[1lim )]([lim )](ˆ[lim εεσθσθθ-=--==-∞→∞→+∞→l l T l T lT l l e Var l x x Var 。

3.7解:12411112112111-=-+-=⇒+-=ρρθθθρ MA(1)模型的表达式为:1-+=t t t x εε。

3.8解法1:由1122=+t t t t x μεθεθε----,得111223=+t t t t x μεθεθε------,则111212230.5=0.5+(0.5)(0.5)+0.5t t t t t t x x μεθεθθεθε------+--, 与123=10+0.5+0.8+t t t t t x x C εεε----对照系数得12120.510,0.500.50.80.5Cμθθθθ=⎧⎪+=⎪⎨-=⎪⎪=⎩,故1220,0.5,0.55,0.275C μθθ=⎧⎪=-⎪⎨=⎪⎪=⎩。

解法2:将123100.50.8t t t t t x x C εεε---=++-+等价表达为()2323223310.82010.510.8(10.50.50.5)t ttB CB x B B CB B B B εε-+-=-=-+++++ 展开等号右边的多项式,整理为22334423243410.50.50.50.50.80.80.50.80.50.5B B B B B B B CB CB +++++--⨯-⨯-+++合并同类项,原模型等价表达为233020[10.50.550.5(0.50.4)]k k t t k x B B C B ε∞+=-=+-+-+∑当30.50.40C -+=时,该模型为(2)MA 模型,解出0.275C =。

3.9解::0)(=t x E22222165.1)1()(εεσσθθ=++=t x Var5939.065.198.0122212111-=-=+++-=θθθθθρ 2424.065.14.01222122==++-=θθθρ 30≥=k k ,ρ。

3.10解法1:(1))(21 +++=--t t t t C x εεε)(3211 +++=----t t t t C x εεε11111)1(------++=⎪⎭⎫ ⎝⎛+-+=t t t t t t t t C x C x C x εεεεε即 t t B C x B ε])1(1[)1(--=-显然模型的AR 部分的特征根是1,模型非平稳。

(2) 11)1(---+=-=t t t t t C x x y εε为MA(1)模型,平稳。

221122111+--=+-=C C C θθρ 解法2:(1)因为22()lim(1)t k Var x kC εσ→∞=+=∞,所以该序列为非平稳序列。

(2)11(1)t t t t t y x x C εε--=-=+-,该序列均值、方差为常数,()0t E y =,22()1(1)t Var y C εσ⎡⎤=+-⎣⎦自相关系数只与时间间隔长度有关,与起始时间无关121,0,21(1)k C k C ρρ-==≥+-所以该差分序列为平稳序列。

3.11解:(1)12.1||2>=φ,模型非平稳;=1λ 1.3738 =2λ-0.8736(2)13.0||2<=φ,18.012<=+φφ,14.112<-=-φφ,模型平稳。

=1λ0.6 =2λ0.5(3)13.0||2<=θ,16.012<=+θθ,12.112<-=-θθ,模型可逆。

=1λ0.45+0.2693i =2λ0.45-0.2693i(4)14.0||2<=θ,19.012<-=+θθ,17.112>=-θθ,模型不可逆。

=1λ0.2569 =2λ-1.5569 (5)17.0||1<=φ,模型平稳;=1λ0.7 16.0||1<=θ,模型可逆;=1λ0.6(6)15.0||2<=φ,13.012<-=+φφ,13.112>=-φφ,模型非平稳。

=1λ0.4124 =2λ-1.212411.1||1>=θ,模型不可逆;=1λ 1.1。

3.12 解法1: 01G =,11010.60.30.3G G φθ=-=-=,1111110.30.6,2k k k k G G G k φφ---===⨯≥所以该模型可以等价表示为:100.30.6kt t t k k x εε∞--==+⨯∑。

解法2:t t B x B ε)3.01()6.01(-=-t t B B B x ε)6.06.01)(3.01(22 +++-= t B B B ε)6.0*3.06.0*3.03.01(322 ++++= j t j j t -∞=-∑+=εε116.0*3.010=G ,16.0*3.0-=j j G3.13解:3)()5.01(])(3[])([2=-⇒Θ+=Φt t t x E B E x B E ε12)(=t x E 。

3.14 证明:已知112φ=,114θ=,根据(1,1)ARMA 模型Green 函数的递推公式得:01G =,2110110.50.25G G φθφ=-=-=,1111111,2k k k k G G G k φφφ-+-===≥01ρ=52232111112245011111142422(1)11112011170.27126111j jj j j j jj j G GGφφφφφφφφρφφφφφ∞∞++==∞∞+==++--+======-+++-∑∑∑∑()11111122200,2jj kjj k jj k j j j k k jjjj j j G G G GG Gk GGGφρφφρ∞∞∞++-+-===-∞∞∞=======≥∑∑∑∑∑∑3.15 (1)成立 (2)成立 (3)成立 (4)不成立3.16 解:(1)t t t x x ε+-=--)10(*3.0101, 6.9=T x88.9])10(*3.010[)()1(ˆ11=+-+==++T T t T x E x E xε 964.9])10(*3.010[)()2(ˆ212=+-+==+++T T t T x E x E xε 9892.9])10(*3.010[)()3(ˆ323=+-+==+++T T t T x E x E xε 已知AR(1)模型的Green 函数为:j j G 1φ=, ,,21=j 121213122130)3(++++++++=++=t t t t t t T G G G e εφεφεεεε 8829.99*)09.03.01()]3([22=++=T e Var3+t x %的置信区间:的95[9.9892-1.96*8829.9,9.9892+1.96*8829.9]即[3.8275,16.1509](2)62.088.95.10)1(ˆ11=-=-=++T T T xx ε 15.10964.962.0*3.0)()1(ˆ21=+==++t T x E x045.109892.962.0*09.0)()2(ˆ31=+==++t T x E x81.99*)3.01()]2([22=+=+T e Var3+t x %的置信区间:的95[10.045-1.96×81.9,10.045+1.96*81.9]即[3.9061,16.1839]。

相关文档
最新文档