单片机外接键盘电路

合集下载

单片机键盘输入编程电路设计

单片机键盘输入编程电路设计

单片机键盘输入编程电路设计
输入电路的设计
1、电路的结构
本文的电路设计主要是用于实现单片机键盘输入编程的功能,所以电路的结构从上到下分为三部分,分别是:
(1)键盘输入部分:由上排按键及下排按键,两排按键组成。

(2)电源部分:由DC电源组成。

(3)输出部分:由多路复用器(一般称为MUX),控制部分组成,多路复用器可以将键盘输入的按键信号转变为单片机可以识别的数据位,控制部分是连接单片机的部分,可以与单片机连接,以实现键盘输入指令的操作。

2、基本电路
本文设计的电路主要由以下电路组件构成:
(1)DC电源:由7805,5V的DC电源模块组成,用于给键盘、多路复用器和控制部分提供电源。

(2)键盘输入部分:由上排按键及下排按键组成,每行按键由四列电路器件组成,四列电路器件的抽头线连接在一起,以实现按键的控制,当按键按下时,输入信号为低电平,反之,当按键处于松开状态时,输入信号为高电平。

(3)多路复用器:多路复用器主要用于将键盘输入的多个按键信号转换为单片机可以识别的数据,该多路复用器的信号输入端接收键盘上每行按键输入的信号。

1-单片机键盘与显示电路设计

1-单片机键盘与显示电路设计

独立式按键 单片机控制系统中,往往只需要几个 功能键,此时,可采用独立式按键结构。 1.独立式按键结构 独立式按键是直接用I/O口线构成的单 个按键电路,其特点是每个按键单独占 用一根I/O口线,每个按键的工作不会影 响其它I/O口线的状态。独立式按键的典 型应用如图9-3所示。
V CC
P 1.0 P 1.1 P 1.2 P 1.3 P 1.4 P 1.5 P 1.6 P 1.7
P1口某位结构

P1口电路中包含有一个数据输出锁存器、一个三态数据输入缓冲器 、一个数据输出的驱动电路。 P1口的功能和驱动能力

P1口只可以作为通用的I/O口使用;
P1可以驱动4个标准的TTL负载电路; 注意在P1口作为通用的I/O口使用时,在从I/O端口读入数据时,应 该首先向相应的I/O口内部锁存器写“1”。 举例:从P1口的低四位输入数据 MOV MOV P1,#00001111b ;;先给P1口底四位写1 A,P1 ;;再读P1口的底四位
依此规律循环,即可使各位数码管显 示将要显示的字符。虽然这些字符是在不 同的时刻分别显示,但由于人眼存在视觉 暂留效应,只要每位显示间隔足够短就可 以给人以同时显示的感觉。 采用动态显示方式比较节省I/O口,硬 件电路也较静态显示方式简单,但其亮度 不如静态显示方式,而且在显示位数较多 时,CPU要依次扫描,占用CPU较多的时 间。
矩阵式按键 单片机系统中,若使用按键较多时,通 常采用矩阵式(也称行列式)键盘 1.矩阵式键盘的结构及原理 矩阵式键盘由行线和列线组成,按键位 于行、列线的交叉点上,其结构如下图9-4 所示。
+5 V 0 4 8 12 0 1 5 9 13 1 2 6 10 14 2 3 7 11 15 3 0 1 2 3

单片机的外围电路

单片机的外围电路

键盘电路设计要点
1 2
去抖处理
消除按键按下时的抖动,确保一次只识别一个按 键。
独立按键与矩阵按键的选择
根据按键数量和单片机I/O口资源选择合适的键 盘形式。
3
接口类型
根据单片机和键盘的接口类型选择合适的连接方 式,如直接连接或通过I2C、SPI等通信协议连接。
05
通信接口电路
通信接口电路的作用与类型
寻址方式
每个设备具有唯一的地址,通过地址码进行访问。
数据传输速率
最高可达400kHz。
06
外围电路的干扰与防护
外围电路的干扰来源与影响
01
02
03
04
电源噪声
由于电源线路上的电压波动和 电流脉冲,可能导致单片机工
作异常。
信号线耦合
信号线之间的电磁场相互作用 ,可能导致信号的畸变或噪声

接地回路
不同电路之间的地线连接可能 形成地线回路,导致噪声和干
扰。
空间辐射
来自其他电子设备或自然界的 电磁波可能对单片机产生干扰

干扰的防护措施
电源滤波
在电源入口处加入滤波 器,减少电源噪声的干
扰。
隔离与屏蔽
对容易受到干扰的信号 线进行隔离或屏蔽,降 低信号线耦合的影响。
合理的接地
采用单点接地、多点接 地或混合接地方式,减
少地线回路的干扰。
空间滤波
在单片机周围加装电磁 屏蔽材料,减少空间辐
单片机外围电路
• 单片机外围电路概述 • 电源电路 • 输入输出接口电路 • 显示与键盘电路 • 通信接口电路 • 外围电路的干扰与防护
01
单片机外围电路概述
定义与作用
定义

单片机原理及接口技术单片机的开关检测键盘输入与显示的接口设计

单片机原理及接口技术单片机的开关检测键盘输入与显示的接口设计

单片机原理及接口技术单片机的开关检测键盘输入与显示的接口设计单片机是一种集成了中央处理器、存储器和输入/输出接口的微型电子计算机,其核心是一个集成电路芯片。

它简单、灵活,用于控制电子设备和执行各种任务。

单片机有很多种,其中C51单片机是一种非常常用的型号。

在C51编程中,开关检测、键盘输入和显示是非常常见的接口设计。

接下来,将分别介绍它们的原理和实现方法。

1.开关检测:开关检测是指通过单片机检测开关的状态,以实现对开关的控制。

常见的开关检测方法有两种,一种是使用外部电阻和开关,通过检测电流或电压来判断开关状态;另一种是使用内部电阻和开关,通过检测电阻的值来判断开关状态。

具体实现方法如下:a.外部电阻和开关:检测开关状态的方法是连接一个电阻到开关,并将另一端连接到单片机的输入引脚。

当开关打开时,电阻与单片机输入引脚之间形成一条路径,使得输入引脚接收到高电平信号;当开关关闭时,电阻与单片机输入引脚之间断开,使得输入引脚接收到低电平信号。

b.内部电阻和开关:单片机的引脚通常具有内部上拉或下拉电阻。

当引脚配置为输入模式时,可以选择使能内部上拉或下拉电阻。

通过连接一个开关到引脚,并将另一端连接到电源或地,从而完成开关状态的检测。

当开关打开时,引脚被拉高,输入引脚接收到高电平信号;当开关关闭时,引脚被拉低,输入引脚接收到低电平信号。

2.键盘输入:键盘输入是指通过单片机接收和处理来自键盘的输入信息。

键盘通常是一种矩阵按键结构,可以通过多行多列的方式进行编码。

键盘输入的实现需要通过接口电路将键盘连接到单片机,并在程序中编写相应的扫描算法。

具体实现方法如下:a.键盘连接方式:键盘的行和列线分别连接到单片机的输出和输入引脚上。

行线和列线可以使用独立的引脚,也可以使用矩阵开关编码的方式进行连接。

b.扫描算法:扫描算法是通过逐行扫描和逐列检测的方式来实现键盘输入的。

具体步骤如下:1)将所有行引脚置为高电平,所有列引脚配置为输入模式。

单片机 键盘接口实验

单片机 键盘接口实验

实验六键盘接口实验一、实验目的1、掌握Keil C51软件与Protues软件联合仿真调试的方法;2、掌握单片机的键盘接口电路;3、掌握单片机的键盘扫描原理;4、掌握键盘的去抖原理及处理方法。

二、实验仪器与设备1、微机一台2、Keil C51集成开发环境3、Protues仿真软件三、实验内容1、用Protues设计一矩阵键盘接口电路。

要求利用P1口接一4×4矩阵键盘。

串行口通过一74LS164接一共阴极数码管。

用线反转法编写矩阵键盘识别程序,用中断方式,并将按键的键值0-F通过串行口输出,显示在数码管上。

2、将P1口矩阵键盘改成8个独立按键,重新编写识别和显示程序。

四、实验说明矩阵键盘识别一般包括以下内容:⑴判别有无键按下。

⑵键盘扫描取得闭合键的行、列号。

⑶用计算法或查表发的到键值;⑷判断闭合键是否释放,如没释放则继续等待。

⑸将闭合键的键值保存,同时转去执行该闭合键的功能。

五、实验步骤1、用Protues设计键盘接口电路;2、在Keil C51中编写键盘识别程序,编译通过后,与Protues联合调试;3、按动任意键,观察键值是否能正确显示。

六、实验电路仿真图矩阵键盘电路图见附录1。

独立按键电路图见附录2。

七、实验程序实验程序见附录3、4。

八、实验总结1、矩阵键盘常用的检测方法有线反转法、逐行扫描法。

线反转法较简单且高效。

在矩阵键盘的列线上接一与门,利用中断方式查询按键,可提高CPU的运行效率。

2、注意用线反转法扫描按键时,得到的键值不要再赋给temp,最好再设一新变量接收键值,否则再按下按键显示数字的过程中,再按按键会出现乱码。

3、学会常用与门、与非门的使用方法。

附录1:矩阵键盘实验电路图附录2:独立按键实验电路图附录3:矩阵键盘实验程序#include <REG51.H>char code LED_TAB[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e};char code KEY_TABLE[]={0xee,0xde,0xbe,0x7e,0xed,0xdd,0xbd,0x7d,0xeb,0xdb,0xbb,0x7b,0xe7,0xd7,0xb7,0x77};char code tab1[10]={0xfe,0xde,0x9e,0x9a,0x92,0x82,0x82,0x80,0xff};char temp,num,i,m;int t;bit flag=0;void Delay_ms(t){int i;for(;t>0;t--)for(i=0;i<124;i++);}void main(void){TMOD=0x01;TH0=(65536-10000)/256;TL0=(65536-10000)%256;ET0=1; PT0=1; SCON=0;EX0=1; IT0=1; EA=1;P1=0xf0;while(1){SBUF=tab1[m];while(TI==0); TI=0;Delay_ms(400); //500msm++;if(m==9) m=0;}}void int_1() interrupt 0{P1=0xf0;if(P1!=0xf0){Delay_ms(10);if(P1!=0xf0){temp=P1;P1=0x0f;temp=temp|P1;for(i=0;i<16;i++){if(temp==KEY_TABLE[i]){temp=i; break;}}SBUF=LED_TAB[temp];while(TI==0); TI=0; TR0=1;while(flag==0); flag=0;} } P1=0xf0;}void timer_0() interrupt 1{TH0=(65536-10000)/256;TL0=(65536-10000)%256;t++;if(t==300){t=0; flag=1; TR0=0;}}附录4:独立按键实验#include <REG51.H>char code LED_TAB[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e};char code KEY_TABLE2[]={ 0xfe,0xfd,0xfb,0x f7, 0xef,0xdf,0xbf,0x7f,} ;char code tab1[10]={0xfe,0xde,0x9e,0x9a,0x 92, 0x82,0x82,0x80,0xff};char temp,i,m;int t;bit ff;bit flag=0;void Delay_ms(t){int i;for(;t>0;t--)for(i=0;i<124;i++);}void main(void){TMOD=0x01;TH0=(65536-10000)/256;TL0=(65536-10000)%256;ET0=1; SCON=0; EX0=1;IT0=1; PT0=1; EA=1;P1=0xff;while(1){ff=IE0;SBUF=tab1[m];while(TI==0); TI=0;Delay_ms(400);m++;if(m==9) m=0;}}void timer_0() interrupt 1{TH0=(65536-10000)/256;TL0=(65536-10000)%256;t++;ff=IE0;if(t==300){t=0;flag=1;}}void int_0() interrupt 0{EX0=0;Delay_ms(10);temp=P1;if(temp!=0xff){for(i=0;i<8;i++){if(temp==KEY_TABLE2[i]){temp=i; break;}}SBUF=LED_TAB[temp];while(TI==0); TI=0;TR0=1; while(flag==0);flag=0; TR0=0;P1=0xff; EX0=1;}}。

4.3 单片机键盘接口电路设计

4.3 单片机键盘接口电路设计
}
//函数功能:键盘扫描 //检测到有键按下 //延时10ms再去检测 //按键k1被按下 //按键k2被按下 //按键k3被按下 //按键k4被按下
▲▲▲
独立式键盘接口设计案例
void forward(void) { P3=0xfe; led_delay(); P3=0xfd; led_delay(); P3=0xfb; led_delay(); P3=0xf7; led_delay(); P3=0xef; led_delay(); P3=0xdf; led_delay(); P3=0xbf; led_delay(); P3=0x7f; led_delay(); }
break;
}
}
}
▲▲▲
独立式键盘接口设计案例
void key_scan(void) { P1=0xff; if((P1&0x0f )!=0x0f ) { delay10ms(); if(S1==0) keyval=1; if(S2==0) keyval=2; if(S3==0) keyval=3; if(S4==0) keyval=4; }
//处理按下的k1键,“……”为处理程序 //跳出switch语句 //处理按下的k2键 //跳出switch语句 //处理按下的k3键 //跳出switch语句 //处理按下的k4键 //跳出switch语句 //处理按下的k5键 //跳出switch语句
独立式键盘接口设计案例
1.独立式键盘的查询工作方式
{
case 1:forward(); //键值为1,调用正向流水点亮函数
break;
case 2:backward(); //键值为2,调用反向流水点亮函数
break;
case 3:Alter(); //键值为3,调用高、低4位交替点亮函数

单片机4×4矩阵键盘设计方案

单片机4×4矩阵键盘设计方案

1、设计原理(1)如图14.2所示,用单片机的并行口P3连接4×4矩阵键盘,并以单片机的P3.0-P3.3各管脚作输入线,以单片机的P3.4-P3.7各管脚作输出线,在数码管上显示每个按键“0-F”的序号。

(2)键盘中对应按键的序号排列如图14.1所示。

2、参考电路图14.2 4×4矩阵式键盘识别电路原理图3、电路硬件说明(1)在“单片机系统”区域中,把单片机的P3.0-P3.7端口通过8联拨动拨码开关JP3连接到“4×4行列式键盘”区域中的M1-M4,N1-N4端口上。

(2)在“单片机系统”区域中,把单片机的P0.0-P0.7端口连接到“静态数码显示模块”区域中的任何一个a-h端口上;要求:P0.0对应着a,P0.1对应着b,……,P0.7对应着h。

4、程序设计内容(1)4×4矩阵键盘识别处理。

(2)每个按键都有它的行值和列值,行值和列值的组合就是识别这个按键的编码。

矩阵的行线和列线分别通过两并行接口和CPU通信。

键盘的一端(列线)通过电阻接VCC,而接地是通过程序输出数字“0”实现的。

键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么?还要消除按键在闭合或断开时的抖动。

两个并行口中,一个输出扫描码,使按键逐行动态接地;另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能。

5、程序流程图(如图14.3所示)6、汇编源程序;;;;;;;;;;定义单元;;;;;;;;;;COUNT EQU 30H;;;;;;;;;;入口地址;;;;;;;;;;ORG 0000HLJMP STARTORG 0003HRETIORG 000BHRETIORG 0013HRETIORG 001BHRETIORG 0023HRETIORG 002BHRETI;;;;;;;;;;主程序入口;;;;;;;;;;ORG 0100HSTART: LCALL CHUSHIHUALCALL PANDUANLCALL XIANSHILJMP START;;;;;;;;;;初始化程序;;;;;;;;;;CHUSHIHUA: MOV COUNT,#00HRET;;;;;;;;;;判断哪个按键按下程序;;;;;;;;;;PANDUAN: MOV P3,#0FFHCLR P3.4MOV A,P3ANL A,#0FHJZ SW1LCALL DELAY10MS JZ SW1MOV A,P3ANL A,#0FHCJNE A,#0EH,K1 MOV COUNT,#0 LJMP DKK1: CJNE A,#0DH,K2 MOV COUNT,#4 LJMP DKK2: CJNE A,#0BH,K3 MOV COUNT,#8 LJMP DKK3: CJNE A,#07H,K4 MOV COUNT,#12K4: NOPLJMP DKSW1: MOV P3,#0FFH CLR P3.5MOV A,P3ANL A,#0FHJZ SW2LCALL DELAY10MS JZ SW2MOV A,P3ANL A,#0FHCJNE A,#0EH,K5 MOV COUNT,#1 LJMP DKK5: CJNE A,#0DH,K6 MOV COUNT,#5 LJMP DKK6: CJNE A,#0BH,K7 MOV COUNT,#9 LJMP DKK7: CJNE A,#07H,K8 MOV COUNT,#13K8: NOPLJMP DKSW2: MOV P3,#0FFH CLR P3.6MOV A,P3ANL A,#0FHJZ SW3LCALL DELAY10MS JZ SW3MOV A,P3ANL A,#0FHCJNE A,#0EH,K9 MOV COUNT,#2 LJMP DKK9: CJNE A,#0DH,KA MOV COUNT,#6 LJMP DKKA: CJNE A,#0BH,KB MOV COUNT,#10 LJMP DKKB: CJNE A,#07H,KC MOV COUNT,#14 KC: NOPLJMP DKSW3: MOV P3,#0FFH CLR P3.7MOV A,P3ANL A,#0FHJZ SW4LCALL DELAY10MSJZ SW4MOV A,P3ANL A,#0FHCJNE A,#0EH,KDMOV COUNT,#3LJMP DKKD: CJNE A,#0DH,KE MOV COUNT,#7LJMP DKKE: CJNE A,#0BH,KF MOV COUNT,#11 LJMP DKKF: CJNE A,#07H,KG MOV COUNT,#15KG: NOPLJMP DKSW4: LJMP PANDUAN DK: RET ;;;;;;;;;;显示程序;;;;;;;;;; XIANSHI: MOV A,COUNTMOV DPTR,#TABLEMOVC A,@A+DPTRMOV P0,ALCALL DELAYSK: MOV A,P3ANL A,#0FHXRL A,#0FHJNZ SKRET;;;;;;;;;;10ms延时程序;;;;;;;;;;DELAY10MS: MOV R6,#20D1: MOV R7,#248DJNZ R7,$DJNZ R6,D1RET;;;;;;;;;;200ms延时程序;;;;;;;;;;DELAY: MOV R5,#20LOOP: LCALL DELAY10MSDJNZ R5,LOOPRET;;;;;;;;;;共阴码表;;;;;;;;;;TABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H DB 7FH,6FH,77H,7CH,39H,5EH,79H,71H;;;;;;;;;;结束标志;;;;;;;;;;END7、C语言源程序#includeunsigned char code table[]={0x3f,0x66,0x7f,0x39,0x06,0x6d,0x6f,0x5e,0x5b,0x7d,0x77,0x79,0x4f,0x07,0x7c,0x71};void main(void){ unsigned char i,j,k,key;while(1){ P3=0xff; //给P3口置1//P3_4=0; //给P3.4这条线送入0//i=P3;i=i&0x0f; //屏蔽低四位//if(i!=0x0f) //看是否有按键按下//{ for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);if(i!=0x0f) //再次判断按键是否按下//{ switch(i) //看是和P3.4相连的四个按键中的哪个// { case 0x0e:key=0;break;case 0x0d:key=1;break;case 0x0b:key=2;break;case 0x07:key=3;break;}P0=table[key]; //送数到P0口显示//}}P3=0xff;P3_5=0; //读P3.5这条线//i=P3;i=i&0x0f; //屏蔽P3口的低四位//if(i!=0x0f) //读P3.5这条线上看是否有按键按下// { for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);i=P3; //再看是否有按键真的按下//i=i&0x0f;if(i!=0x0f){ switch(i) //如果有,显示相应的按键//{ case 0x0e:key=4;break;case 0x0d:key=5;break;case 0x0b:key=6;break;case 0x07:key=7;break;}P0=table[key]; //送入P0口显示//}}P3=0xff;P3_6=0; //读P3.6这条线上是否有按键按下// i=P3;i=i&0x0f;if(i!=0x0f){ for(j=50;j>0;j--)for(k=200;k>0;k--);i=P3;i=i&0x0f;if(i!=0x0f){ switch(i){ case 0x0e:key=8;break;case 0x0d:key=9;break;case 0x0b:key=10;break;case 0x07:key=11;break;}P0=table[key];}}P3=0xff;P3_7=0; //读P3.7这条线上是否有按键按下//i=P3;i=i&0x0f;if(i!=0x0f){ for(j=50;j>0;j--) for(k=200;k>0;k--); i=P3;i=i&0x0f;if(i!=0x0f){ switch(i){ case 0x0e:key=12;break;case 0x0d:key=13;break;case 0x0b:key=14;break;case 0x07:key=15;break;}P0=table[key];}}}}8、注意事项在硬件电路中,要把8联拨动拨码开关JP2拨下,把8联拨动拨码开关JP3拨上去。

51单片机按键电路

51单片机按键电路

51单片机键盘接口电路(含源程序)键盘是由若干按钮组成的开关矩阵,它是单片机系统中最常用的输入设备,用户能通过键盘向计算机输入指令、地址和数据。

一般单片机系统中采和非编码键盘,非编码键盘是由软件来识别键盘上的闭合键,它具有结构简单,使用灵活等特点,因此被广泛应用于单片机系统。

按钮开关的抖动问题组成键盘的按钮有触点式和非触点式两种,单片机中应用的一般是由机械触点组成的。

在下图中,当开&lt;键盘结构图>图1图2关S未被按下时,P1。

0输入为高电平,S闭合后,P1。

0输入为低电平。

由于按钮是机械触点,当机械触点断开、闭合时,会有抖动动,P1。

0输入端的波形如图2所示。

这种抖动对于人来说是感觉不到的,但对计算机来说,则是完全能感应到的,因为计算机处理的速度是在微秒级,而机械抖动的时间至少是毫秒级,对计算机而言,这已是一个“漫长”的时间了。

前面我们讲到中断时曾有个问题,就是说按钮有时灵,有时不灵,其实就是这个原因,你只按了一次按钮,可是计算机却已执行了多次中断的过程,如果执行的次数正好是奇数次,那么结果正如你所料,如果执行的次数是偶数次,那就不对了。

为使CPU能正确地读出P1口的状态,对每一次按钮只作一次响应,就必须考虑如何去除抖动,常用的去抖动的办法有两种:硬件办法和软件办法。

单片机中常用软件法,因此,对于硬件办法我们不介绍。

软件法其实很简单,就是在单片机获得P1。

0口为低的信息后,不是立即认定S1已被按下,而是延时10毫秒或更长一些时间后再次检测P1。

0口,如果仍为低,说明S1的确按下了,这实际上是避开了按钮按下时的抖动时间。

而在检测到按钮释放后(P1。

0为高)再延时5-10个毫秒,消除后沿的抖动,然后再对键值处理。

不过一般情况下,我们常常不对按钮释放的后沿进行处理,实践证明,也能满足一定的要求。

当然,实际应用中,对按钮的要求也是千差万别,要根据不一样的需要来编制处理程序,但以上是消除键抖动的原则。

键盘电路

键盘电路

键盘电路在单片机应用系统中,除了复位按键外,可能还需要其他按键,如键盘按键,以便控制系统的运行状态或向系统输入运行参数。

键盘电路一般由键盘接口电路、按键(由控制系统运行状态的功能键和向系统输入数据的数字键组合)以及键盘扫描程序等部分组成。

1、按键结构及其电压波形在单片机控制系统中广泛使用的机械键盘的工作原理是:按下键帽时,按键内的复位弹簧被压缩,动片触点与静片触点相连,按键两个引脚连通,接触电阻大小与按键触点面积及材料有关,一般在数十欧姆以下;松手后,复位弹簧将动片弹开,使动片触点与静片触点脱离接触,两引脚返回断开状态。

可见,机械键盘或按扭的基本工作原理就是利用动片触点和静片触点的接触和断开来实现键盘或按钮两引脚的通、断。

在如图所示的键盘电路中,按键没有被按下时,P1口内部上拉电阻将P1.3-P1.0引脚置为高电平,而当S3-S0之一被按下时,相应按键两引脚连通,P1口对应引脚接地。

在理想状态下,按键引脚电压变化如图6-29(a)所示。

但实际上,在按键被按下或释放的瞬间,由于机械触点弹跳现象,实际按键电压波形如图6-29(b)所示,即机械按键在按下和释放瞬间存在抖动现象。

抖动时间的长短与按键的机械特性有关,一般在5~10ms之间,而按键稳定闭合期的长短与按键时间有关,从数百毫秒到数秒不等。

为了保证按键由按下到松开之间仅视为一次或数次输入(对于具有重复输入功能的按键),必须在按键或软件上采取去抖动措施,避免一次按键输入一串数码。

硬件上,可利用单稳态电路或RS触发器消除按键抖动现象,但在单片机应用系统中最常采用的方法是利用软件延迟方式消除按键抖动问题,这样可以不增加硬件成本。

因此,在单片机系统中按键识别过程是:通过随机扫描、定时中断扫描或中断监控方式发现按键被按下后,延时10~20ms(因为机械按键由按下到稳定闭合的时间为5~10ms)再去判断按键是否处于按下状态,并确定是哪个按键被按下。

对于每按一次仅视为一次输入的按键设定来说,在按键稳定闭合后对按键进行扫描,读出按键的编码(或称为键号),执行相应操作;对于具有重复输入功能的按键设定来说,在按键稳定闭合期内,每个特定时间,如250ms或500ms 对按键进行检测,当发现按键仍处于按下状态时,就输入该键,直到按键被释放。

单片机IO口应用及键盘实验4-1

单片机IO口应用及键盘实验4-1
由程序和电路直接相应(预先设定功能,采用相应指令)
其他:
通道0作为I/O输出时,需要上拉电阻。驱动 MOS电路时,阻值为4.7K欧姆,驱动LED 显示器时为470欧姆;
通道0作为数据/地址线工作时,不需要上拉 电阻;
并口输出应用举例
VCC
R
VCC 220
2k Px.x
OUT LED
继电器
2 键盘扩展原理
消除键抖:JNB P口,分支
延迟程序
JB
P口,分支
按下一次键,在很短时间内弹起,算一次键抖
K3,K4处理程序结构
按键按下 消抖
寄存器加一/减一
寄存器判断
没有达到要求, 寄存器值赋值给A
达到要求, 寄存器值修改, 再把值送入A
查表显示
逻辑分析
先制一张表,表里面放入要显示的数值0~9共 十个数,表中数值地址也为0~9
KeyDown: CLR UpDown ;第四个键按下后的处理 KEY_RET: RET
采用中断方式 ?如何编程?
3 键盘实验(独立键盘)
键盘硬件连接如图 实验要求: 编写程序实现: 1)按K1,数码管显示0;按K2,数码管显示9 2)按K3,数码管当前数值加一 按K3,数码管当前数值减一
键盘的按键有触点式和非触点式 ; 按键开关的抖动问题 数字、功能、命令 键号、键值 重键
图2
键盘
键盘的类型: 独立式 行列式(或矩阵式) 键盘的工作方式 编程扫描(查询法) 定时扫描 中断
键盘和单片机的连接
和I/O相连:将每个按键的一端接到单片机的I/O口,另 一端接地,如图3所示是实验板上按键的接法,四个 按键分别接到P3.0 、P3.1、P3.2和P3.3
单片机I/O口应用及键盘实验

实验五:独立式键盘实验

实验五:独立式键盘实验

实验五:独立式键盘实验4.5.1 实验目的1. 掌握单片机独立键盘接口设计方法。

2. 掌握单片机键盘扫描程序设计方法。

3. 掌握按键功能设计方法。

4. 掌握软件消除按键抖动方法。

4.5.2 实验预习1.熟悉Keil集成编译环境的使用方法。

2. 复习单片机C语言程序设计方法。

3. 复习独立键盘工作原理。

4. 复习按键去抖动方法。

4.5.3 实验原理实验板上提供4个独立按键,与单片机接口如图4.5.1所示,每个按键单独接单片机一个I/O接口。

只要将相应端口设为1,然后判断端口状态,如果仍为1,则按键处于断开(释放)状态,如果为0,则按键处于接通(闭合)状态。

图4.5.1 独立键盘电原理图4.5.4 预作实验任务1. 用Proteus仿真软件绘制独立键盘电路图,包括如图4.5.1所示键盘接口,单片机最小系统以及数码管动态显示电路。

2. 简述按键识别过程中如何等待按键释放。

3. 简述按键抖动对单片机系统工作性能的影响,并简介消除按键抖动的方法。

4. 编写按键识别函数,要求正确识别4个按键的状态,如果有按键按下则返回键值,从左到右四个键值分别为1~4。

并通过仿真或实验板验证(要求用软件的方法消除按键抖动)。

5.为实验板上4个按键设定不同的功能,在数码管上显示数字128,4个按键按下后分别对显示的数字做如下修改:key1:数字+1;key2:数字-1;key3:数字+10;key4:数字-10;流程图如图4.5.2所示,试设计完整程序(按键识别子程序KEYSCAN和动态显示子程序DISPLAY可直接调用这里省略)。

图4.5.2 按键功能设计流程图4.5.5 实验任务1.开机时数码管显示1002.按键key1一次数字加1,按键key2一次数字减1。

加到999时再加1归零,减到000时再减1得999。

3.按住键key3不放实现连加功能,每0.2s加1。

4.按住键key4不放实现连减功能,每0.2s减1。

4.5.6 实验步骤1.分析题意,确定算法,绘制主程序流程图。

单片机矩阵式键盘连接方法及工作原理

单片机矩阵式键盘连接方法及工作原理

矩阵式键盘的连接方法和工作原理什么是矩阵式键盘?当键盘中按键数量较多时,为了减少I/O 口线的占用,通常将按键排列成矩阵形式。

在矩阵式键盘中,每条水平线和垂直线在交叉处不直接连通,而是通过一个按键加以连接。

这样做有什么好处呢?大家看下面的电路图,一个并行口可以构成4*4=16 个按键,比之直接将端口线用于键盘多出了一倍,而且线数越多,区别就越明显。

比如再多加一条线就可以构成20 键的键盘,而直接用端口线则只能多出一个键(9 键)。

由此可见,在需要的按键数量比较多时,采用矩阵法来连接键盘是非常合理的。

矩阵式结构的键盘显然比独立式键盘复杂一些,识别也要复杂一些,在上图中,列线通过电阻接电源,并将行线所接的单片机4 个I/O 口作为输出端,而列线所接的I/O 口则作为输入端。

这样,当按键没有被按下时,所有的输出端都是高电平,代表无键按下,行线输出是低电平;一旦有键按下,则输入线就会被拉低,这样,通过读入输入线的状态就可得知是否有键按下了,具体的识别及编程方法如下所述:二.矩阵式键盘的按键识别方法确定矩阵式键盘上任何一个键被按下通常采用“行扫描法”或者“行反转法”。

行扫描法又称为逐行(或列)扫描查询法,它是一种最常用的多按键识别方法。

因此我们就以“行扫描法”为例介绍矩阵式键盘的工作原理:1.判断键盘中有无键按下将全部行线X0-X3 置低电平,然后检测列线的状态,只要有一列的电平为低,则表示键盘中有键被按下,而且闭合的键位于低电平线与4 根行线相交叉的4 个按键之中;若所有列线均为高电平,则表示键盘中无键按下。

2.判断闭合键所在的位置在确认有键按下后,即可进入确定具体闭合键的过程。

其方法是:依次将行线置为低电平(即在置某根行线为低电平时,其它线为高电平),当确定某根行线为低电平后,再逐行检测各列线的电平状态,若某列为低,则该列线与置为低电平的行线交叉处的按键就是闭合的按键。

下面给出一个具体的例子:单片机的P1 口用作键盘I/O 口,键盘的列线接到P1 口的低4 位,键盘的行线接到P1 口的高4位,也就是把列线P1.0-P1.3 分别接4 个上拉电阻到电源,把列线P1.0-P1.3 设置为输入线,行线P1.4-P1.7 设置为输出线,4 根行线和4 根列线形成16 个相交点,如上图所示。

用两片I_2C总线接口通用器件PCF8574扩展的8_8键盘

用两片I_2C总线接口通用器件PCF8574扩展的8_8键盘
( 二) I2C 中断服务程序 I2C 中断后 ,即执行状态处理的散转程序转向相 应的状态处理程序 。因 I2C 中断只有 1 个 ,而状态处 理程序的入口地址多达 26 个 ,所以采用子程序返回 。
SIDA T (DA H)
D7 D6 D5 D4 D3 D2 D1 D0 SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0
它为串行输入输出结构的核心部分 ,用来存放一
个发送的数据字节或刚收到的一个数据字节 。
的编址方法 ,避免了片选线的连接方法 。 5. 所有带 I2C 总线接口的外围器件都具有应答功
(单片机 、微处理器等) 、外围器件等都连到同名端的
SIADR (DB H)
D7 D6 D5 D4 D3 D2 D1 D0 × × × × × × × GC
自己从地址
SDA (串行数据线) 、SCL (串行时钟线) 上 ,并通过这两 根线在器件之间传送信息 。
2. 系统中 有 多 个 主 器 件 时 , 任 何 一 个 主 器 件 在 I2C 上工作时都可成为主控制器 (无中心主机) 。
RET
;状态处理程序高、低位地址进入 PC
( 三) I2C 总线初始化及通用读写子程序
D7 D6 D5 D4 D3 D2 D1 D0
一般情况下 ,可把 I2C 总线的初始化和通用读写
0100 器件地址
× × × R/ W 引脚地址
子程序合写为一个包括 I2C 总线初始化的通用读写子 程序 。使用时只需满足通用读写子程序的入口条件 , 直接调用通用读写子程序 ,就可完成包括启动 I2C 总
I2C 总线 的 状 态 产 生 开 始 信 号 或 重 复 开 始 信 号 ; 当 STA = 0 时 ,SIO1 不产生开始信号或重复开始信号 。

单片机与键盘输入的接口设计与应用解析

单片机与键盘输入的接口设计与应用解析

单片机与键盘输入的接口设计与应用解析引言:单片机是一种集成电路芯片,具有处理器核、存储器和输入输出引脚等组成部分,可以控制各种外部设备。

键盘是计算机和其他电子设备的常用输入设备,通过按下不同的按键来输入信息。

在许多应用中,需要将键盘与单片机相连接,以实现键盘输入的功能。

本文将深入探讨单片机与键盘输入的接口设计与应用,包括接口电路的设计原理、接口方式的选择以及相关应用案例的分析。

一、接口电路设计原理1. 键盘扫描原理键盘通常是由一系列按键按排成矩阵状的结构,每个按键都有两个触点,当按键按下时,两个触点短接,形成闭合电路。

为了检测到具体按下的按键,需要通过扫描的方式来逐个检测。

2. 电路连接方式通常,键盘与单片机之间可以通过行列式和矩阵式两种方式实现连接。

行列式连接方式即将键盘的行和列通过引脚分别连接到单片机的IO口,通过单片机的输入输出控制来检测按键信号。

矩阵式连接方式则是采用矩阵键盘的形式,将所有的按键都连接到行和列的交叉点上,通过扫描的方式来检测按键信号。

二、接口方式的选择1. 行列式连接方式的优势和劣势行列式连接方式相对简单,常用于按键较少的情况下。

它的优势在于节省IO 口的使用,通过编写简单的行列扫描程序即可实现对按键的检测。

然而,它的劣势在于不能同时检测多个按键,当同时有多个按键按下时,只能检测到其中一个。

2. 矩阵式连接方式的优势和劣势矩阵式连接方式可以同时检测多个按键,因为所有的按键都连接到行和列的交叉点上。

它的优势在于可以通过编写复杂的扫描程序,实现同时检测多个按键,并且可以检测到按键的精确位置。

然而,它的劣势在于需要占用较多的IO口,且对于按键较多的情况下,编写扫描程序较为复杂。

三、相关应用案例的分析1. 数字密码锁数字密码锁是常见的应用之一,通过将键盘与单片机连接,可以实现输入密码的功能,比如开启或关闭某个装置。

在设计中,可以选择行列式连接方式,通过扫描程序来检测按键,进而判断输入的密码是否匹配。

单片机键盘显示接口电路设计

单片机键盘显示接口电路设计

单片机键盘显示接口电路设计设计单片机键盘显示接口电路,需要考虑到键盘输入与显示输出两个方面。

以下是一个简单的设计示例,供参考:键盘通常采用矩阵键盘连接电路的方式,通过扫描矩阵的方式读取键盘输入信息。

以下是矩阵键盘接口电路的设计流程:1.确定键盘的规格和类型:键盘一般有正方形、矩形、圆形等几种形状,需要根据键盘的规格和类型选择适合的扫描方式。

2.确定键盘的逻辑矩阵大小:根据键盘的布局和规格,确定键盘的逻辑矩阵的行和列数,例如4行4列。

3.确定键盘的连接方式:键盘的连接方式一般有行列扫描、列行扫描、行列+列行扫描等几种方式,需要根据键盘的输出信号特点和单片机的输入要求进行适当的选择。

4.设计按键输入的译码电路:将键盘的输出信号通过译码电路解码成易于读取的二进制数,以便单片机的输入端口读取。

显示输出接口电路设计一般有两种方式:数码管和液晶显示。

1.数码管显示电路设计:数码管是通过控制各个数码管的段选和位选,实现数字或字符的显示。

以下是数码管显示电路的设计流程:a.确定显示的数字或字符类型:根据设计需求,确定要显示的数字或字符类型,例如整数、小数、字母等。

b.确定数码管的位数和类型:根据显示需求,确定数码管的位数和类型,有共阴数码管和共阳数码管两种类型,需要选择适合的数码管。

c.设计数码管的译码电路:根据数码管的类型和位数,设计数码管的译码电路,将输入的数字或字符转换为控制各个数码管的段选和位选的电信号。

2.液晶显示电路设计:液晶显示器是一种常见的显示设备,通过控制液晶的极性来实现图形和字符的显示。

以下是液晶显示电路设计的流程:a.确定显示的内容类型:根据设计需求,确定要显示的内容,例如字符、图像等。

b.选择适合的液晶显示器:根据显示的内容和要求,选择适合的液晶显示器,有字符型液晶显示器和图形型液晶显示器两种类型。

c.设计液晶的驱动电路:根据液晶显示器的类型和特性,设计液晶的驱动电路,将输入的数字或字符转换为控制液晶的电信号。

实例制作一个51单片机连接PS2键盘

实例制作一个51单片机连接PS2键盘

实例制作的是用一个AT89C51单片机连接PS/2键盘接口和一个16x2的液晶显示屏,当敲击键盘时,字母可以显示在液晶显示屏上。

这个实例能启发你如何利用单片机来实现对PS/2接口的控制。

实例中提供的源代码修改后可以用到其他PS/2键盘制作项目中。

实例中提供的16x2字符型的液晶显示屏的驱动函数也可以其他项目。

电路原理主电路板中的AT89C51单片机(可以用AT89C52/S51/S52直接替换,如用AT89C2051/4051则需要改程序)组成了51最小化系统。

液晶显示屏于嗯了SMC1602A. 键盘通过PS/2六孔插座和主电路板。

PS/2设备的连接器使用mini-DIN连接器,正有6个引线,其中2个保留为用。

DATA和CLK是可双向通信的I/O线,也就是说通过这两根线,既可以把主机的数据发送到PS/2设备,有可以把设备的数据发向主机。

在无键按下是,DATA 和CLK一直处于高电平状态。

但有键按下时,键盘先检查CLK,看它是否处于高电平,如果是处在低电平,说明主机无空闲接收数据,这是键盘将会把数据放在自己的缓冲区(16Bytes).直到CLK重新被拉高。

键盘获得总线权,这是键盘产生始终信号在CLK上输出。

同时每一个时钟周期在DATA 线上输出一位数据。

第1位是起始位为0,第2-9位为一个八位二进制数据由地位到高位依次输出,第10位为奇偶校验位下面是电路原理图PS/2设备接口用于许多现代的鼠标和键盘,PS/2连接器上有四个管脚:电源地、+5V、数据和时钟。

Host(计算机)提供+5V并且键盘/鼠标的地连接到host的电源地上,数据和时钟都是集电极开路的这就意味着它们通常保持高电平而且很容易下拉到地(逻辑0)。

任何你连接到PS/2鼠标、键盘或host 的设备,在时钟和数据线上要有一个大的上拉电阻。

置“0”就把线拉低,置“1”就让线上浮成高。

从键盘/鼠标发送到主机的数据在时钟信号的下降沿(当时钟从高变到低的时候)被读取;从主机发送到键盘/鼠标的数据在上升沿(当时钟从低变到高的时候)被读取。

3个IO口的4×4键盘电路

3个IO口的4×4键盘电路
ƒ ÉÎÃÌÕÄÅœ Ú¼ÆÕ‘¼ÉÎüÒÅÇ•‘ ŽÈž ƒ ÄÅÆÉÎÅ ÕÃÈÁÒÕÎÓÉÇÎÅÄÃÈÁÒ ÕÃÈÁÒÇÅÔËÅÙˆÖÏÉĉ ›
压的大小等于正输入电压 Œ
并可 提供 –••Í¡ 的 输 出 电
流 "然而必须保证在可调节
正输出端有最小 ‘ Ž’¡ 的负
载 Œ 以确保充电泵的正常工
Ž ËÅÙÖÏÌ• ÇÅÔËÅÙˆ‰ ›
Ž
• Š 调用键处理函数 Œ返回的数 据等于 ‘– 表示没有键按下 Œ • 至 ‘• 对应 «• 至 «‘• Š •
Ý Ý Ý ÒÅÔÕÒÎ Ø›
Ý
以下为键盘处理子程序 š
ÕÃÈÁÒÇÅÔËÅÙˆÖÏÉĉ Û
ÕÃÈÁÒØ
°‘ • °‘ Ü•Ø•— › Ø• °‘ † •Ø•— ›
作 "电阻 ² ‘ 用于使 £‘ 的充
电电流不大于 ¬-’•™“¨ ¶ 的 限制电流 "这种方法也可用 于其它简单的转换系统 "
• 典型应用
图 – ¬-’•™“¨ ¶ 的典型应用电路
外部元器件即可达到稳压的目的 Œ操作也很方便 !简 单 " 图 – 是 ¬-’•™“¨ ¶ 的典型应用电路图 "
收稿日期 š’••‘ • •– • ’‘
绍了一种可节省单片机 ©•¯ 端口的键盘电路 Œ分析了新型键盘电路的结构和工作原理 "最后给出了
基于该键盘电路的 £•‘ 语言程序和软件处理过程 "
主题词 š单片机 › ©•¯ 端口 › 键盘 › 组合 › 扫描
分类号 š´°“–˜
文献标识码 š¢
文章编号 š‘••– • –™——ˆ’••‘‰‘’ • ••”” • •’
‘ 新型键盘电路
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单片机外接键盘电路
一、原理简介
键盘接口电路是单片机系统设计非常重要的一环,作为人机交互界面里最常用的输入设备。

我们可以通过键盘输入数据或命令来实现简单的人机通信。

在设计键盘电路与程序前,我们需要了解键盘和组成键盘的按键的一些知识。

1. 按键的分类
一般来说,按键按照结构原理可分为两类,一类是触点式开关按键,如机械式开关、导电橡胶式开关等;另一类是无触点式开关按键,如电气式按键,磁感应按键等。

前者造价低,后者寿命长。

目前,微机系统中最常见的是触点式开关按键(如本学习板上所采用按键)。

按键按照接口原理又可分为编码键盘与非编码键盘两类,这两类键盘的主要区别是识别键符及给出相应键码的方法。

编码键盘主要是用硬件来实现对键的识别,非编码键盘主要是由软件来实现键盘的识别。

全编码键盘由专门的芯片实现识键及输出相应的编码,一般还具有去抖动和多键、窜键等保护电路,这种键盘使用方便,硬件开销大,一般的小型嵌入式应用系统较少采用。

非编码键盘按连接方式可分为独立式和矩阵式两种,其它工作都主要由软件完成。

由于其经济实用,较多地应用于单片机系统中(本学习板也采用非编码键盘)。

2. 按键的输入原理
在单片机应用系统中,通常使用机械触点式按键开关,其主要功能是把机械上的通断转换成为电气上的逻辑关系。

也就是说,它能提供标准的TTL 逻辑电平,以便与通用数字系统的逻辑电平相容。

此外,除了复位按键有专门的复位电路及专一的复位功能外,其它按键都是以开关状态来设置控制功能或输入数据。

当所设置的功能键或数字键按下时,计算机应用系统应完成该按键所设定的功能。

因此,键信息输入是与软件结构密切相关的过程。

对于一组键或一个键盘,通过接口电路与单片机相连。

单片机可以采用查询或中断方式了解有无按键输入并检查是哪一个按键按下,若有键按下则跳至相应的键盘处理程序处去执行,若无键按下则继续执行其他程序。

相关文档
最新文档