立体图形的体积 (1)
6、立体图形的表面积和体积(1)
名称 长方体 正方体
圆柱
圆锥
图形
特征
有6个面,每个面一般是长方形,特殊两个面是 正方形,相对的两个面面积相等。 有12条棱,相对的四条棱互相平行且相等。 有8个顶点。 有6个面,每个面都是正方形,每个面面积都相 等。 有12条棱,每条棱长度都相等。 有8 个顶点。
有两个底面,是相等的两个圆。 有一个侧面,是个曲面,沿高展开一般是个长 方形。(当底面周长和高相等时是正方形。) 有无数条高,每条高长度都相等。
有一个底面,是个圆形。 有一个侧面,是个曲面,展开是个扇形。 有一个顶点。 有一条高。
a
h
hb a
a a
r
长方体表面积= (ab+ah+bh)×2
正方体表面积= 6a 2
圆 柱 表 面 积 = 2лrh+ 2лr2
h
a
b
a
V= abh V= a3
a
hh
as s
V= sh
V=
1
3
sh
V = shLeabharlann 六年级数学下册总复习
景洪市第三小学
杨会萍
我们学过哪些立体图形
高 h
宽b 长a
长方体
棱长a
正方体
圆柱
高 h 底面半径 r
高 h
底面半径 r
圆锥
名称 长方体 正方体
圆柱
圆锥
图形
特征
有6个面,每个面一般是长方形,特殊两个面是 正方形,相对的两个面面积相等。 有12条棱,相对的四条棱互相平行且相等。 有8个顶点。 有6个面,每个面都是正方形,每个面面积都相 等。 有12条棱,每条棱长度都相等。 有8 个顶点。
底面半径 r
立体图形的体积
立体图形的体积什么是立体图形的体积?为什么我们需要计算立体图形的体积呢?立体图形的体积是指立体图形所占据的空间的大小,可以用于计算物体的容积、液体的体量等。
准确计算立体图形的体积对于建筑设计、制造产品和解决实际问题等方面都具有重要意义。
在数学中,计算立体图形的体积可以根据不同的立体图形使用不同的公式。
下面将介绍一些常见的立体图形及其体积计算方法。
1. 立方体的体积计算:立方体是一种所有边长相等的六个面全都是正方形的立体图形。
计算立方体的体积非常简单,只需要将边长相乘即可。
假设立方体的边长为a,则其体积V等于a * a * a,即V = a³。
2. 长方体的体积计算:长方体是一种拥有六个面,其中相对的两个面是相等的长方形的立体图形。
计算长方体的体积也很简单,只需要将长、宽、高相乘即可。
假设长方体的长、宽、高分别为a、b、c,则其体积V等于a * b * c。
3. 圆柱体的体积计算:圆柱体是一种由两个相等的平行圆面与一个侧面围成的立体图形。
计算圆柱体的体积需要知道底面半径r和高h。
圆柱体的体积V等于底面积πr²乘以高h,即V = πr²h。
4. 圆锥体的体积计算:圆锥体是一种由一个圆锥面和一个底面圆围成的立体图形。
计算圆锥体的体积也需要知道底面半径r和高h。
圆锥体的体积V等于底面积πr²乘以高h再除以3,即V = (πr²h) / 3。
5. 球体的体积计算:球体是一种所有点到球心距离都相等的立体图形。
计算球体的体积需要知道半径r。
球体的体积V等于4/3乘以πr³,即V = (4/3)πr³。
除了上述列举的立体图形外,还有很多其他形状的立体图形可以通过特定的公式来计算体积,如圆环、棱柱、棱锥等。
不同的立体图形都有相应的体积公式,掌握这些公式能帮助我们准确计算立体图形的体积。
总结起来,立体图形的体积计算是根据不同的形状使用相应的公式来求解。
立体图形体积的教案
立体图形体积的教案1.1 教案背景本教案旨在通过教学使学生掌握立体图形的体积计算方法,培养学生的空间想象能力和动手操作能力。
1.2 教学意义通过学习立体图形的体积,学生能够更好地理解三维空间的概念,提高解决实际问题的能力。
1.3 教学方法采用讲解法、实践法、讨论法等多种教学方法,引导学生主动探究、积极思考。
二、知识点讲解2.1 立体图形的定义立体图形是三维空间中的图形,它有长度、宽度和高度三个维度。
2.2 体积的概念体积是指立体图形所占空间的大小,通常用立方单位(如立方米、立方分米等)来表示。
2.3 立体图形体积的计算方法常用的立体图形体积计算方法有:正方体体积公式、长方体体积公式、圆柱体体积公式、圆锥体体积公式等。
三、教学内容3.1 教学案例以正方体、长方体、圆柱体和圆锥体为例,讲解它们的体积计算方法。
3.2 实践操作学生分组进行实践操作,利用立体图形体积计算公式,计算给定立体图形的体积。
3.3 解决问题学生分组讨论,解决实际问题,如计算一个物体放入容器中是否能够溢出等。
四、教学目标4.1 知识与技能学生能够掌握正方体、长方体、圆柱体和圆锥体的体积计算方法,并能够应用于实际问题中。
4.2 过程与方法通过实践操作,培养学生的空间想象能力和动手操作能力。
4.3 情感态度与价值观培养学生对数学学科的兴趣,提高学生解决实际问题的能力。
五、教学难点与重点5.1 教学难点立体图形体积的计算方法,特别是圆锥体体积的计算方法。
5.2 教学重点正方体、长方体、圆柱体和圆锥体的体积计算方法,以及体积计算公式的应用。
六、教具与学具准备6.1 教具准备实体正方体、长方体、圆柱体和圆锥体模型直尺、剪刀、胶水等手工制作工具投影仪或白板6.2 学具准备正方体、长方体、圆柱体和圆锥体卡片或模板6.3 教学资源相关立体图形体积计算的电子教案和课件立体图形体积计算的相关视频资料七、教学过程7.1 导入新课通过展示实体模型,引导学生观察和描述立体图形的特点提问学生关于立体图形的体积的定义和计算方法的问题7.2 知识点讲解使用PPT或板书,讲解正方体、长方体、圆柱体和圆锥体的体积计算公式引导学生通过实际操作,验证体积计算公式的正确性7.3 实践操作学生分组进行实践操作,利用立体图形体积计算公式,计算给定立体图形的体积学生展示自己的成果,并讲解计算过程7.4 解决问题学生分组讨论,解决实际问题,如计算一个物体放入容器中是否能够溢出等学生展示解决问题的过程和答案八、板书设计8.1 正方体体积计算公式边长 × 边长 × 边长8.2 长方体体积计算公式长度 × 宽度 × 高度8.3 圆柱体体积计算公式底面半径 × 底面半径 × 高8.4 圆锥体体积计算公式底面半径 × 底面半径 × 高 ÷ 3九、作业设计9.1 巩固练习学生完成课后练习题,包括正方体、长方体、圆柱体和圆锥体的体积计算题目学生通过计算器验证答案的正确性9.2 拓展思考学生思考并回答如何计算更复杂的立体图形的体积学生探讨如何将体积计算方法应用于实际生活中的问题9.3 创新实践学生设计一个立体图形,并计算其体积学生展示自己的设计成果,并讲解计算过程十、课后反思及拓展延伸10.1 课后反思教师和学生一起回顾本节课的学习内容,总结立体图形体积计算的方法和应用教师和学生一起讨论教学过程中的优点和不足,提出改进措施10.2 拓展延伸学生通过阅读相关书籍、查找网络资源,深入了解立体图形的体积计算的原理和应用学生参加相关数学竞赛或活动,提高自己的数学水平和解决问题的能力以上是立体图形体积的教案,希望对您有所帮助。
体积知识点总结
体积知识点总结一、立体几何中的体积在立体几何中,体积是一个基本的概念。
一个立体图形的体积指的是该图形所占据的三维空间的大小。
常见的立体图形包括长方体、正方体、圆柱、圆锥和球体等。
这些图形都有不同的体积计算公式,下面将逐一介绍。
1. 长方体的体积计算公式长方体是一个长、宽、高都不相同的立体图形,其体积可以用以下公式表示:长方体的体积 = 长 × 宽 × 高2. 正方体的体积计算公式正方体是一个长、宽、高相等的立体图形,其体积可以用以下公式表示:正方体的体积 = 边长³3. 圆柱的体积计算公式圆柱是一个底面为圆形的立体图形,其体积可以用以下公式表示:圆柱的体积 = 底面积 × 高其中,底面积指的是圆柱底面的面积,可以用公式πr²表示,其中r为底面的半径。
4. 圆锥的体积计算公式圆锥是一个底面为圆形的立体图形,其体积可以用以下公式表示:圆锥的体积 = 1/3 × 底面积 × 高其中,底面积指的是圆锥底面的面积,可以用公式πr²表示,其中r为底面的半径。
5. 球体的体积计算公式球体是一个半径相等的立体图形,其体积可以用以下公式表示:球体的体积= 4/3 × πr³其中,r为球体的半径。
以上是常见立体图形的体积计算公式,通过这些公式,我们可以方便地计算不同形状的立体图形的体积。
二、单位转换在体积的计算和测量中,我们经常需要进行不同单位之间的转换。
下面将介绍常用的体积单位及其之间的转换关系。
1. 常用的体积单位在国际单位制中,体积的基本单位是立方米(m³),其他常用的体积单位包括升(L)、立方分米(dm³)、立方厘米(cm³)等。
2. 体积单位之间的转换关系体积单位之间的转换关系如下:1立方米 = 1000升1升 = 1000立方分米1立方分米 = 1000立方厘米通过这些转换关系,我们可以方便地在不同单位之间进行换算。
北师版小学五年级数学下册《长方体(二)》第4课时 长方体的体积(1)
立方厘米。
生3:我摆的长方体长:3厘米,宽:2厘米,高:4厘米,小正方体:24个,体积:24立方厘米。
师:我们一起来把这三个长方体的数据整理在表格里吧。
师:
师:通过观察发现,长方体中含有几个小正方体,它的体积就是几立方厘米。
师:所以这两组数据是相等的。
师:我们在来仔细看看这些长方体的长、宽、高的数据。
师:第一个长方体,3乘2乘1=6。
师:第二个长方体,2乘2乘4=16。
师:第三个长方体,3乘2乘4=24。
师:那么,我们可以这样总结,长方体的体积=长×宽×高。
生1:那为什么长方体的体积=长×宽×高?
师:体积是多少,就看长方体中就含有多少个体积单位。
师:一个边长为1厘米的小正方体的体积是1立方厘米。
长是几厘米,就说明一排摆了多少个小正方体。
宽是几厘米,就说明摆了几排。
高是几厘米,就说明摆了几层。
师:长、宽、高相乘就得到了长方体厘米有多少个小正方体,也就知道它的体积了。
师:也可以这样理解。
先算出第一层小正方体的个数,再看有几层,也能得到长方体所含小正方体的个数,也就是长方体的体积。
师:同学们,相信你也已经了解了其中的道理。
3.长方体、正方体的体积公式
师:长方体的体积的公式为,长×宽×高,还可以用字母表示,体积一般用V表。
《不规则立体图形的表面积和体积(一)》配套练习题
《不规则立体图形的表面积和体积(一)》配套练习题一、解答题1、如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?2、在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?3、从一个棱长为10厘米的正方形木块中挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?(写出符合要求的全部答案)4、如图,在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体,求这个立体图形的表面积.5、如图,棱长分别为1厘米、2厘米、3厘米、5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是_______平方厘米.6、用棱长是1厘米的立方块拼成如右图所示的立体图形,问该图形的表面积是多少平方厘米?7、有30个边长为1米的正方体,在地面上摆成如图的形状,然后把露出的表面涂成红色.求被涂成红色的表面积.8、右图是一个零件的直观图.下部是一个棱长为40cm的正方体,上部是圆柱体的一半.求这个零件的表面积和体积(π=3.14).9、用铁皮做一个如图(单位:cm)所示的管道工件,需用铁皮多少平方厘米(π=3.14)?10、如图所示,三个圆柱堆放在一起,求这个立体图形的表面积和体积(单位:米)(π=3.14).答案部分一、解答题1、【正确答案】600【答案解析】我们从三个方向(前后、左右、上下)考虑,新几何体的表面积仍为原立方体的表面积:10×10×6=600.【答疑编号10296776】2、【正确答案】15000【答案解析】对于和长方体相关的立体图形表面积,一般从上下、左右、前后3个方向考虑.变化前后的表面积不变:50×50×6=15000(平方厘米).【答疑编号10296777】3、【正确答案】592平方厘米;632平方厘米;648平方厘米;672平方厘米【答案解析】按图1所示沿一条棱挖,为592平方厘米;按图2所示在某一面上挖,为632平方厘米;按图3所示在某面上斜着挖,为648平方厘米;按图4所示挖通两个对面,为672平方厘米.【答疑编号10296778】4、【正确答案】214平方分米【答案解析】我们把上面的小正方体想象成是可以向下“压缩”的,“压缩”后我们发现:小正方体的上面与大正方体上面中的阴影部分合在一起,正好是大正方体的上面.这样这个立体图形的表面积就可以分成这样两部分:上下方向:大正方体的两个底面;四周方向(左右、前后方向):小正方体的四个侧面,大正方体的四个侧面.上下方向:5×5×2=50(平方分米);侧面:5×5×4=100(平方分米),4×4×4=64(平方分米).这个立体图形的表面积为:50+100+64=214(平方分米).【答疑编号10296779】5、【正确答案】194【答案解析】(法1)四个正方体的表面积之和为:(12+22+32+52)×6=39×6=234(平方厘米),重叠部分的面积为:12×3+(22×2+12)+(32+22+12)+(32+22+12)=3+9+14+14=40(平方厘米),所以,所得到的多面体的表面积为:234-40=194(平方厘米).(法2)三视图法.从前后面观察到的面积为52+32+22=38平方厘米,从左右两个面观察到的面积为52+32=34平方厘米,从上下能观察到的面积为52=25平方厘米.表面积为(38+34+25)×2=194(平方厘米).【答疑编号10296780】6、【正确答案】46【答案解析】该图形的上、左、前三个方向的表面分别由9、7、7块正方形组成.该图形的表面积等于(9+7+7)×2=46个小正方形的面积,所以该图形表面积为46平方厘米.【答疑编号10296781】7、【正确答案】56【答案解析】4×4+(1+2+3+4)×4=56(平方米).【答疑编号10296782】8、【正确答案】11768cm2,89120cm3【答案解析】表面积=40×40×5+3.14×40×40÷2+3.14×(40÷2)2÷2×2=8000+2512+1256=11768cm2,体积=40×40×40+3.14×(40÷2)2×40÷2=64000+25120=89120cm3.【答疑编号10296783】9、【正确答案】2355cm2【答案解析】将两个同样的工件可拼成下图的圆柱体,所以一个工件需铁皮3.14×15×(46+54)÷2=2355(cm2)【答疑编号10296784】10、【正确答案】262.19平方米;240.995立方米【答案解析】表面积:[3.14×(5÷2)2×2+3.14×5×10]+3.14×3×5+3.14×2×3 =3.14×12.5+3.14×50+3.14×15+3.14×6=3.14×83.5=262.19(平方米)体积:3.14×(5÷2)2×10+3.14×(3÷2)2×5+3.14×(2÷2)2×3=3.14×62.5+3.14×11.25+3.14×3=3.14×76.75=240.995(立方米)【答疑编号10296785】。
《立体图形的体积》教案
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《立体图形的体积》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算物体体积的情况?”(如:计算沙堆的体积,水池的蓄水量等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索立体图形体积的奥秘。
-体积公式:让学生熟练记忆长方体、正方体、圆柱体、圆锥体等常见立体图形的体积计算公式。
-实际应用:培养学生将体积知识应用于解决生活中的实际问题。
举例:在讲解长方体体积时,强调长、宽、高三个维度的关系及其对体积的影响。
2.教学难点
-空间想象力:学生对立体图形的空间想象力不足,难以理解体积的概念。
-公式应用:学生容易混淆不同立体图形的体积公式,导致计算错误。
1.讨论主题:学生将围绕“立体图形体积在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
《立体图形的体积》教案
一、教学内容
《立体图形的体积》教案,本节课我们将围绕以下章节内容进行深入学习:
1.体积的概念与计量单位;
2.常见立体图形(长方体、正方体、圆柱体、圆锥体)的体积计算公式;
3.实际问题中立体图形体积的求解方法。
二、核心素养目标
《立体图形的体积》核心素养目标:
1.培养学生空间想象力,能通过观察和操作,理解立体图形的特征,建立体积概念;
专题16 规则立体图形的体积(原卷)
2022-2023学年小学六年级思维拓展举一反三精编讲义专题16 规则立体图形的体积知识精讲解答立体图形的体积问题时,要注意以下几点:(1)物体沉入水中,水面上升部分的体积等于物体的体积。
把物体从水中取出,水面下降部分的体积等于物体的体积。
这是物体全部浸没在水中的情况。
如果物体不全部浸在水中,那么派开水的体积就等于浸在水中的那部分物体的体积。
(2)把一种形状的物体变为另一种形状的物体后,形状变了,但它的体积保持不变。
(3)求一些不规则形体体积时,可以通过变形的方法求体积。
(4)求与体积相关的最大、最小值时,要大胆想象,多思考、多尝试,防止思维定。
典例分析【典例分析01】有大、中、小三个正方体水池,它们的内边长分别为6米、3米、2米。
把两堆碎石分别沉在中、小水池里,两个水池水面分别升高了6厘米和4厘米。
如果将这两堆碎石都沉在大水池里,大水池的水面升高多少厘米?中、小水池升高部分是一个长方体,它的体积就等同于碎石的体积。
两个水池水面分别升高了6厘米和4厘米,两堆碎石的体积就是3×3×0.06+2×2×0.04=0.7(立方米)。
把它沉到大水池里,水面升高部分的体积也就是0.7立方米,再除以它的底面积就能求得升高了多少厘米。
3×3×0.06+2×2×0.04=0.7(立方米)0.7÷6的平方=7/360(米)=1又17/18(厘米)答:大水池的水面升高了1又17/18厘米。
【典例分析02】一个底面半径是10厘米的圆柱形瓶中,水深8厘米,要在瓶中放入长和宽都是8厘米、高是15厘米的一块铁块,把铁块竖放在水中,水面上升几厘米?在瓶中放铁块要考虑铁块是全部沉入水中,还是部分沉入水中。
如果铁块是全部沉入水中,排开水的体积是8×8×15=960(立方厘米)。
而现在瓶中水深是8厘米,要淹没15厘米高的铁块,水面就要上升15—8=7(厘米),需要排开水的体积是(3.14×10×10—8×8)×7=1750(立方厘米),可知铁块是部分在水中。
五年级上册奥数试题-第9讲.立体图形的体积(含解析)人教版
1.掌握立体图形的体积计算常用公式.2.掌握求不规则立体图形体积的常用方法.本讲立体图形的体积计算,与第七讲的立体图形的表面积,是姐妹篇.对于小学几何而言,立体图形的体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试(比如仁华的入学考试,几乎每年必考)都很重视对立体图形的考查.其中,尤其要以“不规则立体图形的体积”为考查重点.立体图形的体积计算常用公式:立体图形示例体积公式相关要素长方体V abh=V Sh=三要素:a、b、h二要素:S、h正方体3V a=V Sh=一要素:a二要素:S、h 第9讲立体图形的体积圆柱体V=Sh二要素:S (或r 、d 、C ) 和h圆锥体V=13Sh 二要素:S 、h不规则形体的体积常用方法:一、 化虚为实法 二、 切片转化法 三、 先补后去法 四、 实际操作法 五、 画图建模法【例 1】 (第五届《小数报》数学竞赛决赛)一个长方体的宽和高相等,并且都等于长的一半(如图).将这个长方体切成12个小长方体,这些小长方体的表面之和为600平方分米.求这个大长方体的体积.【分析】 设大长方体的宽(高)为a 分米,则长为2a ,右(左)面积为2a ,其余面的面积为22a ,根据题意, 22222862600a a a ⨯++⨯= 所以225a =,5a =. 大长方体的体积2555250=⨯⨯⨯=(立方分米).[铺垫] (第十五届“迎春杯”决赛)把一根长2.4米的长方体木料锯成5段(如图),表面积比原来增加了96平方厘米.这根木料原来的体积是_____立方厘米.2.4米[分析] 96812÷=(平方厘米),122402880⨯=(立方厘米).所以这根木料原来的体积为2880立方厘米.【例 2】 (第九届“祖冲之杯”数学邀请赛)有一个长方体的盒子,从里面量长40厘米,宽12厘米,高7厘米,在这个盒子里放长5厘米,宽4厘米,高3厘米的长方体木块.最多可放 块.【分析】 下图表明34⨯的长方形可以填满712⨯的长方形.于是534⨯⨯的长方体可以填满40712⨯⨯的长方体,即盒子中最多可放这种长方体40712(534)56⨯⨯÷⨯⨯=(个).规则立体图形体积的计算444433333[巩固](第九届“迎春杯”数学竞赛决赛)把1个棱长是3厘米的正方体分割成若干个小的正方体,这些小正方体的棱长必须是整厘米数.如果这些小正方体的体积不要求都相等,那么最少可分割成个小正方体.[分析]因为小正方体的棱长只可能是2厘米或1厘米.必须分割出棱长是2厘米的小正方体才能使数量减少.显然,棱长是3厘米的正方体只能切割出一个棱长为2厘米的小正方体,剩余部分再切割出33322227819+=(个)⨯⨯-⨯⨯=-=个棱长是1厘米的小正方体,这样总共可以分割成11920小正方体.现有一张长40厘米、宽20厘米的长方形铁皮,请你用它做一只深是5厘米的长方体无盖铁皮盒(焊接处及铁皮厚度不计,容积越大越好),你做出的铁皮盒容积是多少立方厘米?【分析】如图,在4020⨯的长方形铁皮的四角截去边长5厘米的正方形铁皮,然后焊接成长方形无盖铁皮盒.这个铁皮盒的长405530=--=(厘米).宽205510=--=(厘米),高5=(厘米). 体积301051500=⨯⨯=(立方厘米).如图,在4020⨯长方形铁皮的左侧两角上割下 边长5厘米的正方形(二块),紧密焊接到右侧的中间部分,这样做成的无盖铁皮盒的长40535=-=(厘米),宽205510=--=(厘米), 高5=(厘米),体积351051750=⨯⨯=(立方厘米).如图,在4020⨯的长方形铁皮的左右两侧各割 下一条宽为5厘米的长方形铁皮(共二块),分 别焊到上、下的中间部分,这样做成的无盖铁 皮盒的长40555520=----=(厘米), 宽20=(厘米),高5=(厘米),体积202052000=⨯⨯=(立方厘米). 因此,最后一种容积最大.[铺垫] (第三届“华杯赛”复赛)如图从长为13厘米,宽为9厘米的长方形硬纸板的四角去掉边长2厘米的正方形,然后,沿虚线折叠成长方体容器.这个容器的体积是多少立方厘米?[分析] 容器的底面积是(134)(94)45-⨯-=(平方厘米),高为2厘米,所以容器的体积是,45290⨯=(立方厘米).【例 3】 (第七届“华杯赛”决赛)用大小相等的无色透明玻璃小正方体和红色玻璃小正方体拼成一个大正方体1111ABCD A B C D -(如图),大正方体内的对角线1AC ,1BD ,1CA ,1DB 所穿的小正方体都是红色玻璃小正方体,其它部分都是无色透明玻璃小正方体,小红正方体共用了401个,问:无色透明小正方体用了多少个?D 1C 1B 1A 1D CBA【分析】 1AC 、1BD ,1CA ,1DB ,四条对角线都穿过在正中央的那个小正方体.除此而外,每条对角线穿过相同的小正方体,所以每条对角线穿过401111014-+=个小正方体这就表明大正方体的每条边由101个小正方体组成.因此大正方体由3101个小正方体组成,其中无色透明的小正方体有310140110303014011029900-=-=. 即用了1029900个无色透明的小正方体.【例 4】 小明用若干个大小相同的正方体木块堆成一个几何体,这个几何体从正面看如下图左,从上面看如下图右.那么这个几何体至少用了 块木块.【分析】 这道题很多同学认为答案是26块.这是受思维定势的影响,认为右图中每一格都要至少放一块.其实,有些格不放,看起来也是这样的.如右图,带阴影的3块不放时,小正方体块数最少,为23块.[拓展] 右图是由22个小正方体组成的立体图形,其中共有多少个大大小小的正方体?由两个小正方体组成的长方体有多少个?[分析] 正方体只可能有两种:由1个小正方体构成的正方体,有22个;由8个小正方体构成的222⨯⨯的正方体,有4个. 所以共有正方体22426+=(个). 由两个小正方体组成的长方体,根据摆放的方向可分为下图所示的上下位、左右位、前后位三种,其中上下位有13个,左右位有13个,前后位有14个,共有13131440++=(个).【例 5】 有黑白两种颜色的正方体积木,把它摆成右图所示的形状,已知相邻(有公共面)的积木颜色不同,标A 的为黑色,图中共有黑色积木多少块?【分析】 分层来看,如下图(切面平行于纸面)共有黑色积木17块.A不规则立体图形体积的计算[拓展]这个图形,是否能够由112⨯⨯的长方体搭构而成?[分析]每一个112⨯⨯的长方体无论怎么放,都包含了一个黑色正方体和一个白色正方体,而黑色积木有17块,白色积木有15块,所以该图形不能够由112⨯⨯的长方体搭构而成.【例 6】一个酒瓶里面深30cm,底面内直径是10cm,瓶里酒深15cm.把酒瓶塞紧后使其瓶口向下倒立这时酒深25cm.酒瓶的容积是多少?(π取3)253015【分析】观察前后,酒瓶中酒的总量没变,即瓶中液体体积不变.当酒瓶倒过来时酒深25cm,因为酒瓶深30cm,这样所剩空间为高5cm的圆柱,再加上原来15cm 高的酒即为酒瓶的容积.酒的体积:101015π375π22⨯⨯=瓶中剩余空间的体积1010 (3025)π125π22-⨯⨯=酒瓶容积:375π125π500π1500(ml)+==[巩固]输液100毫升,每分钟输毫升.如图,请你观察第12分钟时图中的数据,问:整个吊瓶的容积是多少毫升?[分析]100毫升的吊瓶在正放时,液体在100毫升线下方,上方是空的,容积是多少不好算.但倒过来后,变成圆柱体,根据标示的格子就可以算出来.由于每分钟输毫升,12分钟已输液2.51230⨯=(毫升),因此开始输液时液面应与50毫升的格线平齐,上面空的部分是50毫升的容积.所以整个吊瓶的容积是10050150+=(毫升).【例 7】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深10厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【分析】8010(8016)12.5⨯÷-=,因为12.512>,所以此时水已淹没过铁块,8010(8016)1232⨯--⨯=,32800.4÷=,所以现在水深为120.412.4+=厘米[铺垫]一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深8厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?[分析] 根据等积变化原理:用水的体积除以水的底面积就是水的高度.(法1):808(8016)6406410⨯÷-=÷=(厘米);(法2):设水面上升了x 厘米.根据上升部分的体积=浸入水中铁块的体积列方程为:8016(8)x x =+,解得:2x =,8210+=(厘米). (提问“圆柱高是15厘米”,和“高为12厘米的长方体铁块”这两个条件给的是否多余?)[拓展] 一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深13厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【分析】 玻璃杯剩余部分的体积为80(1513)160⨯-=立方厘米,铁块体积为1612192⨯=立方厘米,因为160192<,所以水会溢出玻璃杯,所以现在水深就为玻璃杯的高度15厘米总结铁块放入玻璃杯会出现三种情况①放入铁块后,水深不及铁块高.②放入铁块后,水深比铁块高但未溢出玻璃杯,③水有溢出玻璃杯.小故事 教师可以在此穿插一个关于阿基米德测量黄金头冠的体积的故事.一天国王让工匠做了一顶黄金的头冠,不知道工匠有没有掺假,必须知道黄金头冠的体积是多少,可是又没有办法来测量.(如果知道体积,就可以称一下纯黄金相应体积的重量,再称一下黄金头冠的重量,就能知道是否掺假的结果了)于是,国王就把测量头冠体积的任务交给他的大臣阿基米德.(小朋友们,你们能帮阿基米德解决难题吗?)阿基米德苦思冥想不得其解,就连晚上沐浴时还在思考这个问题. 当他坐进水桶里,看到水在往外满溢时,突然灵感迸发,大叫一声:“我找到方法了……”,就急忙跑出去告诉别人,大家看到了一个还光着身子的阿基米德.他的方法是:把水桶装满水,当把黄金头冠放进水桶,浸没在水中时,所收集的溢出来的水的体积正是头冠的体积.【例 8】 (武汉明心杯数学挑战赛)如图所示,一个555⨯⨯的立方体,在一个方向上开有115⨯⨯的孔,在另一个方向上开有215⨯⨯的孔,在第三个方向上开有315⨯⨯的孔,剩余部分的体积是多少?表面积为多少?【分析】 求体积:开了315⨯⨯的孔,挖去31515⨯⨯=,开了115⨯⨯的孔, 挖去11514⨯⨯-=;开了215⨯⨯的孔, 挖去215(22)6⨯⨯-+=,剩余部分的体积是:555(1546)100⨯⨯-++=.(另解)将整个图形切片,如果切面平行于纸面,那么五个切片分别如图:得到总体积为:22412100⨯+=. 求表面积:表面积可以看成外部和内部两部分.外部的表面积为55612138⨯⨯-=,内部的面积可以分为前 后、左右、上下三个方向,面积分别为()22515121320⨯⨯+⨯-⨯-⨯=、 ()2153513132⨯⨯+⨯-⨯-=、()2151511214⨯⨯+⨯-⨯-=,所以总的表面积为 138203214204+++=.(另解)运用类似于三视图的方法,记录每一方向上的不同位置上的裸露正方形个数: 前后方向:32上下方向:30 左右方向:40总表面积为()⨯++=.2323040204 Array[巩固]一个由125个同样的小正方体组成的大正方体,从这个大正方体中抽出若干个小正方体,把大正方体中相对的两面打通,右图就是抽空的状态.右图中剩下的小正方体有多少个?[分析]解法一:(用“容斥原理”来解)由正面图形抽出的小正方体有5525⨯=个,由侧面图形抽出的小正方体有5525⨯=个,由底面图形抽出的小正方体有4520⨯=个,正面图形和侧面图形重合抽出的小正方体有1221228⨯+⨯+⨯=个,正面图形和底面图形重合抽出的小正方体有⨯+⨯+⨯=个,三个面的⨯+⨯=个,底面图形和侧面图形重合抽出的小正方体有121122713227图形共同重合抽出的小正方体有4个.根据容斥原理,252520877452++---+=,所以共抽出了52个小正方体.1255273-=,所以右图中剩下的小正方体有73个.注意这里的三者共同抽出的小正方体是4个,必须知道是哪4块,这是最让人头疼的事.但你可以先构造空的两个方向上共同部分的模型,再由第三个方向来穿过“花墙”.这里,化虚为实的思想方法很重要.解法二:(用“切片法”来解)可以从上到下切五层,得:(1)从上到下五层,如图:(2)或者,从右到左五片,如图:请注意这里的挖空的技巧是:先认一种方向.比如:从上到下的每一层,首先都应该有第一层的空四块的情况,即——如果挖第二层:第(1)步,把中间这些位置的四块挖走如图:第(2)步,把从右向左的两块成线地挖走.(请注意挖通的效果就是成线挖去),如图:第(3)步,把从前向后的一块(请注意跟第二层有关的只是一块!)挖成线!如图:总结一下“切片法”: 全面打洞(例如本题,五层一样)挖块成线(例如本题,在前一次的基层上,一条线一条线地挖). 这里体现的思想方法是:化整为零,有序思考!【例10】 如图,已知A 、B 、C 分别是相邻的三条棱的中点.沿三个中点连成一个正三角形,把原来的立方体切掉一角.如果原来的立方体棱长为8,求:⑴切掉的小部分的体积是多少?⑵剩下的大部分的体积是多少?【分析】 本题应用相关体积公式.⑴2111244103323V Sh ==⨯⨯⨯=锥⑵3185013V V =-=剩锥⑴教师可以沿三个不相邻的顶点再切一下,求小的图形与大的图形的体积各是多少?小的是:21118885323⨯⨯⨯=;大的是:24263.⑵教师可以提问:去掉一个角上的部分后,它的体积是原立方体体积的几分之几?【例11】 如图,是一个正方体,将正方体的A 、C 、B '、D '四个顶点两两连接就构成一个正四面体,已知正方体的边长为3,求正四面体的体积.D′C′B′A′DC BA【分析】 这个正四面体可以看作由正方体切掉A '、C '、B 、D 四个角后得到的,如图所示:B C AD′D′D′D′C′B′B′B′B′A′DC CBA AA A所以正四面体的体积1133343332718932⎛⎫=⨯⨯-⨯⨯⨯⨯⨯=-= ⎪⎝⎭.【例12】 如图是一个四棱锥的展开图,该展开图由正三角形和正方形构成,其中正方形的面积为8平方厘米,那么该四棱锥的体积为多少?【分析】 知道四棱锥的底面面积,只要知道四棱锥的高就能求得四棱锥的体积.将四棱锥沿对角线和顶点构成的平面剖开,剖面是一个三角形.该三角形的斜边等于正方形的对角线,直角边等于正方形和等边三角形的边长,所以三角形是一个等腰直角三角形,它的高等于对角线的一半,根据对称性,这条高也等于四棱锥的高.本题,我们要想知道四棱锥的高,如果仅仅通过操作法,可能无法准确得知.我们隆重推出“画图建模法”,比如:请注意在一个正方体中如何作等边三角形,这一经验,会让我们“类比联想”到,如何让四个等边三角形围绕一个正方形,得到四棱锥.另外,这个四棱锥的高正好等于原正方体棱长的一半.根据小正方形面积是8推得,大正方形面积是小正方形的2倍, 所以大正方形面积是16,所以大正方体的边长是4. 所以小正方体的棱长为2. 即四棱锥的高度为2.四棱锥的体积为168233⨯÷=立方厘米.1.(第十一届“迎春杯”)有一个长方体,长是宽的2倍,宽是高的3倍;长的12与高的13之和比宽多1厘米.这个长方体的体积是 立方厘米.【分析】 长的12即宽,所以高的13就是1厘米,高是3厘米,宽是339⨯=厘米,长是9218⨯=厘米,体积是3918486⨯⨯=(立方厘米).2. (第六届“华杯赛”决赛口试)某工人用薄木板钉成一个长方体的邮件包装箱,并用尼龙编织条(如图所示)在三个方向上的加固.所用尼龙编织条分别为365厘米,405厘米,485厘米.若每个尼龙加固时接头重叠都是5厘米.问这个长方体包装箱的体积是多少立方米?【分析】 长方体中高+宽1(3655)1802=-=, ⑴高+长1(4055)2002=-=, ⑵长+宽1(4855)2402=-=, ⑶⑵-⑴:长-宽20=, ⑷ ⑷+⑶:长130=,从而宽110=, 代入⑴得高70=. 所以长方体体积为701101301001000⨯⨯=(立方厘米) 1.001=(立方米)3. 有三个大小一样的正方体,将接触的面用胶粘接在一起成图示的形状,表面积比原来减少了16平方厘米.求所成形体的体积.【分析】 三个小正方体拼接成图中的样子,减少了小正方体的4个侧面正方形的面积,表面积减少了16平方厘米,每个正方形侧面为1644÷=平方厘米,每个正方体棱长为2厘米,三个小正方体体积(即所成形体的体积)是33224⨯=立方厘米.4. 一个盖着瓶盖的瓶子里面装着一些水,瓶底面积为10平方厘米,(如下图所示),请你根据图中标明的数据,计算瓶子的容积是______.【分析】 由已知条件知,第二个图上部空白部分的高为752cm -=,从而水与空着的部分的比为4:22:1=,由图1知水的体积为104⨯,所以总的容积为()4022160÷⨯+=立方厘米. 5.有许多相同的立方体,每个立方体的六个面上都写着同一个数字(不同的立方体可以写相同的数字)先将写着2的立方体与写着1的立方体的三个面相邻,再将写着3的立方体写着2的立方体相邻(见左下图).依这样构成右下图所示的立方体,它的六个面上的所有数字之和是多少?高宽长33223323322323111111【分析】 第一层如下图,第二层、第三层依次比上面一层每格都多1(见下图).765434565第三层654323454第二层第一层343212345上面的9个数之和是27,由对称性知,上面、前面、右面的所有数之和都是27.同理,下面的9个数之和是45,下面、左面、后面的所有数之和都是45.所以六个面上所有数之和是(2745)3216+⨯=.6.把一个长方体形状的木料分割成3小块,使这3小块的体积相等.已知这长方体的长为15厘米,宽为12厘米,高为9厘米.分割时要求只能锯两次,如图1就是一种分割线的图.除这种分割的方法外,还可有其他不同的分割方法,请把分割线分别画在图2的各图中.图1图2【分析】 分割方法很多,如图3,给出以下9种分割方法:图3低地的价值加州海岸的一座城市中,所有适合建筑的土地在不断的开发中都已经被开发,并予以利用,城市的地皮不断飙升着。
简单几何体的表面积和体积(1)课件-高一下学期数学人教A版(2019)必修第二册
知识点一 棱柱、棱锥、棱台的体积
问题4:由祖暅原理可知,底面面积相等,高相等的两个棱锥,体 积相等.那么如果棱锥的底面积是S,高为h,则棱锥的体积公式 是什么?
因为棱锥2、3的底面积相等,即: SBBC SBCC 高也相等,即:点 到平面B 所以棱锥2、3的体积相等.
分析:正四棱台的上底面和下底面均为正方形,侧面是由四个等腰梯形组成的.
小结与反思
要计算棱台的体积关键是要弄清楚棱台的五个基本量(上、下 底面边长、高、斜高、侧棱),然后将基本量转化到直角三角形中 求解,最后再代入体积公式求出体积.
课堂检测
5-1、(金太阳P1141题)已知高为3的三棱柱ABC-A1B1C1的底面边长为1 的正三角形,如图所示,则三棱锥B1-ABC求它的体积.
多面体的表面积就是围成多面体的各个面的面积之和. 棱柱、棱锥、棱台的表面积就是围成它们的各个面的面积的和.
知识点一 棱柱、棱锥、棱台的表面积
问题2:在初中已经学过了正方体和长方体的表面积,你知道正方体 和长方体的展开图与其表面积的关系吗?
几何体表面积
展开图
空间问题
平面图形面积 平面问题
知识点一 棱柱、棱锥、棱台的表面积
棱柱、棱锥、棱台都是由多个平面图形围成的几何体,它们的侧 面展开图还是平面图形,计算它们的表面积就是计算它的各个侧面面 积和底面面积之和.
这样,求它们的表面积的问题就可转化为求平行四边形、三角形、梯 形的面积问题.
2
PART TWO
例题精讲
例1.(教材P114)四面体P-ABC的各棱长均为a,求它的表面积 .
=
立体图形的体积
圆锥体的体积公式:V=1/3*π*r^2*h 其中,V表示圆锥体的体积,π表示圆周率,r表示圆锥体的底面半径,h表示圆锥体的高
圆锥体的体积计算公式适用于所有圆锥体,无论其底面是圆形、椭圆形还是其他形状
圆锥体的体积计算公式在实际生活中有很多应用,例如计算圆锥形物体的体积、计算圆锥形物体的重量等
球体的体积公式: V=4/3πr^3
立体图形的表面积 可以通过计算其各 个面的面积之和得 到。
PART THREE
立方体的体积计算公式为:V=a^3,其中a为立方体的边长 立方体的体积可以通过测量其边长来计算 立方体的体积也可以通过其对角线长度来计算,公式为:V=(对角线长度/2)^3 立方体的体积还可以通过其表面积和密度来计算,公式为:V=表面积*密度
XXX,a click to unlimited possibilities
汇报人:XXX
CONTENTS
PART ONE
PART TWO
立体图形是三维空间中的图形,具有长度、宽度和高度三个维度。 立体图形可以分为两类:有规则的立体图形和无规则的立体图形。 有规则的立体图形包括:立方体、圆柱体、球体等。 无规则的立体图形包括:不规则形状的物体、自然物体等。
长方体的体积计算公式为:V=abc a、b、c分别表示长方体的长、宽、高 长方体的体积等于长、宽、高的乘积 长方体的体积计算公式适用于所有长方体
圆柱体的体积公式:V=πr^2h 其中,V代表体积,π代表圆周率,r代表半径,h代表高 圆柱体的体积可以通过公式计算得出 圆柱体的体积计算公式在实际生活中有广泛的应用
其中,V表示球体 的体积,r表示球 体的半径
球体的体积与半径 的关系:半径越大 ,体积越大
球体的体积与表面 积的关系:体积越 大,表面积越大
计算立体图形的体积
计算立体图形的体积在几何学中,立体图形是由平面形状延伸而成的三维物体,它们在现实世界中的应用广泛。
计算立体图形的体积是一个重要的数学问题,它可以帮助我们理解物体的容积和空间占用情况。
本文将介绍如何计算常见立体图形的体积,并提供一些实际应用的例子。
一、立方体的体积计算方法立方体是最简单的三维图形之一,其体积计算公式为边长的立方,即V = a³,其中V表示体积,a表示边长。
例如,一个边长为4厘米的立方体的体积为4³ = 64立方厘米。
二、长方体的体积计算方法长方体是由三个相邻的矩形面围成的立体图形,其体积计算公式为长乘以宽乘以高,即V = l × w × h,其中V表示体积,l表示长度,w表示宽度,h表示高度。
例如,一个长为6厘米,宽为3厘米,高为5厘米的长方体的体积为6 × 3 × 5 = 90立方厘米。
三、圆柱体的体积计算方法圆柱体是由一个圆形底面和一个平行于底面的圆柱侧面围成的立体图形,其体积计算公式为底面积乘以高,即V = πr²h,其中V表示体积,π约等于3.14159,r表示底面半径,h表示高度。
例如,一个底面半径为5厘米,高度为8厘米的圆柱体的体积为3.14159 × 5² × 8 = 628.319立方厘米。
四、球体的体积计算方法球体是由所有与一个固定点的距离相等的点组成的集合,其体积计算公式为4/3乘以π乘以半径的立方,即V = 4/3πr³,其中V表示体积,π约等于3.14159,r表示半径。
例如,一个半径为6厘米的球体的体积为4/3 × 3.14159 × 6³ = 904.778立方厘米。
五、金字塔的体积计算方法金字塔是由一个多边形的底面和一个顶点连接底面各个顶点形成的立体图形,其体积计算公式为底面积乘以高再除以3,即V = (底面积× h) / 3,其中V表示体积,底面积表示金字塔底面的面积,h表示金字塔的高度。
【小升初】小学数学《立体图形的体积专题课程》含答案
26.立体图形的体积知识要点梳理一、体积和容积1.体积:物体所占空间的大小叫做物体的体积。
2.容积:容器所能容纳物体的体积叫做容积。
容积单位一般用体积单位。
当容器所容纳的物体是液体时,常用升、毫升作单位。
(注:容积的计算方法跟体积的计算方法相同,但要从容器的里面量。
)二、立体图形的体积计算公式考点精讲分析典例精讲考点1方体和正方体的体积【例1】在一个长、宽、高分别是30厘米、25厘米、60厘米的长方体的箱子里,最多能装进棱长为1分米的立方体()个。
A.45 B.30 C.36 D.72【精析】把这个长方体箱子的长、宽、高分别换算成分米是3分米、2.5分米、6分米,这个箱子一层长可以装进3个,宽只能装进2个棱长1分米的立方体,高可以装进6个,因此只能装进(3×2×6)=36个。
【答案】 C【归纳总结】注意,此题容易出现的错误是不考虑实际,用这个箱子的容积除以每个立方体的体积。
考点2圆柱的体积【例2】下图是一根空心钢管,求它所用钢材的体积。
【精析】此题考查空心圆柱体积的求法。
根据空心圆柱的体积=大圆柱的体积-小圆柱的体积计算即可。
【答案】 3.14×[(1.22)2-(0.62)2]×2.5=2.1195(立方米)答:它所用钢材的体积是2.1195立方米。
【例3】有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是20升。
瓶中装有一些饮料,正放时饮料高度为20cm,倒放时空余部分高度为5cm,问瓶中现有饮料()升。
【精析】正放和倒放时,瓶中液体的体积不变,即空余部分体积相等。
【答案】20×[20÷(20+5)]=16(升)答:瓶中现有饮料16升。
【归纳总结】无论是正放还是倒放瓶子的饮料和瓶子的体积不变,所以它们的空余部分总是不变的。
考点2 圆锥的体积【例4】一个圆锥形沙堆,底面积是8平方米,高是1.5米。
用这堆沙在5米宽的路上铺2厘米厚,能铺多少米?【精析】沙子都铺在路面上后的形状,是一个宽5米、厚2厘米的近似长方体。
立体图形概念及公式
一、常用空间图形公式:1、正方体(V:体积a:棱长L:棱长总和)正方体表面积=棱长×棱长×6 S表=a×a×6正方体棱长总和=棱长×12 L=a×12正方体体积=棱长×棱长×棱长=底面积×高V=a×a×a2、长方体(V:体积s:面积a:长b: 宽h:高)san长方体表面积=(长×宽+长×高+宽×高)×2 S=(ab+ah+bh)×2 长方体棱长总和×=(长+宽+高)×4=长×4+宽×4+高× 4长方体体积=长×宽×高V=abh(长方体、正方体)都适用:体积=底面积×高=横截面积×长高=体积÷底面积3、正方形(L:周长S:面积a:边长)正方形周长=边长×4 L=4a正方形面积=边长×边长S=a×a4、长方形(L:周长S:面积a:边长)长方形周长=(长+宽)×2 L=2(a+b)长方形面积=长×宽S=ab5、三角形(s:面a:底h:高)三角形面积=底×高÷2 s=ah÷2三角形的高=面积×2÷底三角形的底=面积×2÷高6、平行四边形(s:面积a:底h:高)平行四边形面积=底×高s=ah7、梯形(s:面积a:上底b:下底h:高)梯形面积=(上底+下底)×高÷2 s=(a+b)× h÷2表面积和体积只可能数值一样,但不能比较大小,因为它们所表示的意义不一样。
二、常用单位换算1、长度单位换算(10):1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米2、面积单位换算(100):1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米3、体(容)积单位换算(1000):1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升三、概念:1、体积:物体所占的空间大小。
立体几何体积:计算立体图形的体积
立体几何体积:计算立体图形的体积立体几何是几何学中的一个重要分支,它研究的是三维空间中的图形和体积。
在这个领域中,计算立体图形的体积是一项基本且常见的任务。
本文将介绍一些常见的立体几何体积计算公式和方法,帮助读者更好地理解和运用。
一、立方体的体积计算立方体是最简单的几何体之一,它的六个面都是正方形。
计算立方体的体积非常简单,只需要将边长进行立方运算即可。
立方体的体积计算公式如下:体积 = 边长 x 边长 x 边长例如,边长为6厘米的立方体的体积为:体积 = 6厘米 x 6厘米 x 6厘米 = 216立方厘米二、长方体的体积计算长方体是另一种常见的几何体,在现实生活中经常遇到。
它有六个面,其中对面的两个面是相等的矩形。
计算长方体的体积也很简单,只需要将长度、宽度和高度相乘即可。
长方体的体积计算公式如下:体积 = 长 x 宽 x 高例如,长为8厘米、宽为5厘米、高为3厘米的长方体的体积为:体积 = 8厘米 x 5厘米 x 3厘米 = 120立方厘米三、圆柱体的体积计算圆柱体是一个圆柱形的几何体,它有两个圆面和一个侧面。
计算圆柱体的体积需要用到圆的面积公式。
圆柱体的体积计算公式如下:体积 = 圆的面积 x 高圆的面积计算公式为:面积= π x 半径 x 半径其中,π 可以近似取3.14。
半径是圆的一半长度。
例如,半径为4厘米、高为6厘米的圆柱体的体积为:面积 = 3.14 x 4厘米 x 4厘米 = 50.24平方厘米体积 = 50.24平方厘米 x 6厘米 = 301.44立方厘米四、球体的体积计算球体是一个球形的几何体,它没有侧面,只有一个表面。
计算球体的体积同样需要用到球的面积公式。
球体的体积计算公式如下:体积= 4/3 x π x 半径 x 半径 x 半径例如,半径为5厘米的球体的体积为:体积 = 4/3 x 3.14 x 5厘米 x 5厘米 x 5厘米 = 523.33立方厘米五、锥体的体积计算锥体是一个由一个圆锥和一个圆锥顶点相连而成的几何体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.求一节通风管要用铁皮多少平方分米? 需要计算什么?
学情展示 计算下列立体图形的体积。(单位:厘米)4 5 Nhomakorabea10
10 4
10 2
小结:
这节课你有哪些收获?
我会选 我会填
我会判
我会算
我会填:
1 、同底同高的圆柱体的体积是圆锥体积 的。 2 、把一个长方体的长、宽、高同时扩大2 倍后,它的体积扩大了 。 3、把一个长、宽、高分别12cm,9cm,6cm 的长方体分成若干个棱长为3cm的正方体, 最多能分 个。 4.、一个圆锥与和它等底等高的圆柱的体积 相差12立方分米,圆锥的体积是( )dm³。
( )是相同的。
A、意义 B、计算公式 C、测量方法
2. 把一个圆柱体削成一个最大的圆锥体,
削去部分的体积是圆锥体的( )。
A、1倍
B、2倍
C、3倍
3. 以长方形的一条边所在的直线为轴,把
长方形旋转一周,可以得到( )。
A、长方体 B、圆柱体 C、圆锥体
我会算
在晒谷场上有一个圆锥形小麦堆,底 面周长是12.56米,高1.2米。这堆小 麦的体积是多少立方米?
我会判
1、 圆锥体积是圆柱的1/3,则它们一
定等底等高。 (×)
2、 一个圆柱的d与h相等,它的侧面
展开图就一定是正方形。 (×)
3、 圆锥的底面积一定,它的高和
体积成反比例。
(×)
4、 一个圆锥的底面积是6dm²,它的
体积是6dm³,它的高是1dm。(√ )
我会选
1. 计算一个长方体木箱的容积和体积时,
把这些小麦装进一个圆柱形粮囤中, 粮囤的底面积是2.4平方米, 高2米,请你算算粮囤能装 下晒谷场上的这堆小麦吗?
当堂训练
1、必做题 课本73页第4题
2,选做题 课本73页第5题
立体图形的体积
复习目标
能正确熟练地计算立体图形的体积, 并能利用所学知识解决实际问题。
自研共探展示方案
完成下面表格
V=abh
V=a³
sh
V=πr²h
V= 13πr²h
思考讨论并回答下列问题
1.做一个圆柱形油桶要用铁皮多少平方分 米?需要计算什么?
2.求一段圆柱形钢材重多少千克?需要计 算什么?