天然气水合物物化性质

合集下载

天然气水合物

天然气水合物



一般来说, 人为地打破天然气水合物稳定存在的温压条件使其分解, 是目 前开采天然气水合物的主要途径。但是要考虑到天然气水合物作为储存 区地层的构成部分,在稳定该区域地层方面起着相当重要的作用。 众所周知, 二氧化碳是最重要的温室气体, 其在大气中含量增高是导致全 球气候变暖的主要原因之一。因此深海地层处置被认为是减少CO2排向 大气的有效手段。研究显示,当CO2 被收集起来并注入深海地层,将形 成CO2 水合物。 因此人们设想,若将CO2注入天然气水合物聚集层,既能将其中的CH4 置换出来, 又能有效减少CO2 向大气排放,还可以保持地层的稳定性 。由此Ebinuma及Ohgaki等于1996年提出了CO2 置换法开采天然气水 合物。
天然气水合物
天然气水合物简介

天然气水合物是在一定条件下由轻烃、二氧 化碳及硫化氢等小分子气体与水相互作用形 成的白色固态结晶物质,是一种非化学计量 型晶体化合物,或称笼形水合物,也称为可 燃冰、甲烷水合物、甲烷冰。

在自然界发现的天然气水合物多为白色、淡 黄色、琥珀色、和暗褐色,呈亚等轴状、层 状、小针状结晶或分散状。
形成原因

海洋生成
有两种不同种类的海洋存量。 最常见的绝大多数都是甲烷包覆于结构Ⅰ型的包合物,而且一般都 在沉淀物的深处才能发现。在此结构下,甲烷中的碳同位素较轻,因此 指出其是微生物由CO2的氧化还原作用而来。 在接近沉积物表层所发现较少见的第二种结构中,某些样本有较高 比例的碳氢化合物长链包含于结构Ⅱ型的包合物中。其甲烷的碳同位素 较重,据推断是由沉积物深处的有机物质,经热分解后形成甲烷而往上 迁移而成。


当存在游离水时,CO2 比CH4有更高的亲和势,更易使游离水形成水合 物,这有利于反应向正方向进行。 CO2与CH4的水合物均为结构Ⅰ型,发生在CO2与CH4水合物之间的置换 反应方程式为:

天然气水合物的概念

天然气水合物的概念

天然气水合物的概念天然气水合物,也称气体水合物(gas hydrate),是由天然气与水分子在高压(>100大气压或>10MPa)和低温(0~10 ℃)条件下合成的一种固态结晶物质。

因天然气中80%~90%的成分是甲烷,故也有人叫天然气水合物为甲烷水合物(methane hydrate或methane gas hydrate)。

天然气水合物多呈白色或浅灰色晶体,外貌类似冰雪(图1),可以象酒精块一样被点燃(图2~4),故也有人叫它“可燃冰”。

从化学结构来看,天然气水合物是这样构成的:由水分子搭成象笼子一样的多面体格架,以甲烷为主的气体分子被包含在笼子格架中(图5)。

不同的温压条件,具有不同的多面体格架。

从物理性质来看(表1),天然气水合物的密度接近并稍低于冰的密度,剪切系数、电介常数和热传导率均低于冰。

天然气水合物的声波传播速度明显高于含气沉积物和饱和水沉积物,中子孔隙度低于饱和水沉积物,这些差别是物探方法识别天然气水合物的理论基础。

此外,天然气水合物的毛细管孔隙压力较高。

表1 天然气水合物的物理性质及与其它物质的比较参数纯水合物含水合物沉积物含气沉积物饱和水沉积物冰声波Vp(km/Sec) 3.25~3.6 2.05~4.5 0.06~1.45 1.6~2.5 3.8声波Vs(km/Sec) 1.65 0.14~1.56 0.38~0.39Vp/ Vs(0℃) 1.95 1.88密度(g/cm3)0.912 1.15~2.4 1.26~2.42平均1.75 0.916中子孔隙度(石灰岩单位%)50~60 70体积模量(-1℃) 5.6 8.8剪切系数(-1 ℃) 2.4 3.9柏松比0.33 0.33电阻率(Ω·M)1.75 1~3电介常数(0 ℃)56 94热传导率(-10 ℃,W/m·K)0.49±0.02 2.23。

海洋地球化学—天燃气水合物

海洋地球化学—天燃气水合物
天然气水合物
天然气水合物
• 天然气水合物的概念和性质 • 天然气水合物的用途 • 天然气水合物的分布和储量 • 天然气水合物的发展
2
3
一.天然气水合物的概念和性质
1.概念
• 天然气水合物(Natural Gas Hydrate,简称Gas Hydrate)是分布于深海沉积物或陆域的永久冻土 中,由天然气与水在高压低温条件下形成的类冰 状的结晶物质。因其外观象冰一样而且遇火即可 燃烧,所以又被称作“可燃冰”或者“固体瓦斯 ”和“气冰”。
13
感谢您的关注!
8
2.分布及储量
• 科学家的评价结果表明, 仅仅在海底区域,可燃冰 的分布面积就达4000万平 方公里,占地球海洋总面 积的1/4。目前,世界上已 发现的可燃冰分布区多达 116处,其矿层之厚、规 模之大,是常规天然气田 无法相比的。科学家估计 ,海底可燃冰的储量至少 够人类使用1000年。9来自1045
2.性质
• 自然界发现的天然气水合物多呈白色、淡黄色、 琥珀色、暗褐色亚等轴状、层状、小针状结晶体 或分散状 • 可存在于零下,又可存在于零上温度环境 • 主要成分是甲烷与水分子
6
二.天然气水合物的用途
最重要的性质 • 未来很有潜力的重要矿物燃料来源
7
三.天然气水合物的分布
1.形成条件
• 深海底层和永久结冰带 • 有充足的气体和水 • 低温(0~10)高压(10M pa)的条件 • 有一定的孔隙空间
12
我国状况
• 储量丰富
南海北部蕴藏量相当于陆地石油天然气的一半
• 研究落后国际水平
1992年:中科院兰州分院《国外天然气水合物研究进展》 2001年:中国地质大学《海洋地质与可燃冰》 2002年:国家天然气水合物专项 2003年:中国天然气水合物研讨会 近5年已在南海等3出处发现天然气水合物,预计在2020年 进行开采

天然气水合物的形成与防治

天然气水合物的形成与防治
脱除天然气的水分是杜绝水合物生成的根本。 为了防止天然气生成水合物,一般有四种途径: 1) 提高天然气的流动温度; 2) 降低压力至给定温度时水合物的生成压力 以下;
3) 脱除天然气中的水分;
4) 向气流中加入抑制剂(阻化剂)。
11
抑制剂的种类:
常 用 的 抑 制 剂 有 甲 醇 、 乙 二 醇 ( EG)、 二 甘 醇
天然气水化物的形成及防止
一、 概 述
• 气体水合物:是水不轻烃、CO2 及H2S等小分子气 体形成的非化学计量型笼形晶体化合物(clathratehy drates ),或称笼型水合物。 天然气水合物:是一种由水分子和碳氢气体分子组 成的结晶状固态简单化合物 (M·nH2O) 外观:如冰雪状,通常呈白色。结晶体以紧凑的格 子构架排列,不冰的结构非常相似。 组成:水合物是在一定压力和温度条件下,天然气 中的某些组分和液态水生成的一种丌稳定的、具 有非化合物性质的晶体。 密度:比水轻。
14
• Ⅲ、加热解堵法:确认冰堵点后,给 其冰堵点缠绕伴热带或者是给冰堵点 加保温层,还可以用热水冲浇冰堵管 道,使水合物分解、被气流带走而解 除堵塞。
15
谢谢观看
FIN.
16
(DEG)等。甲醇、乙二醇和二甘醇等。 从抑制剂结构及物化性质可看出:甘醇类的醚 基和羟基团形式相似于水的分子结构,不水有强的 亲合力。向天然气中注入的抑制剂不冷却过程凝析 的水形成冰点很低的溶液,天然气中的水汽被高浓 度甘醇溶液所吸收,导致水合物生成温度明显下降。 由于乙二醇同时具有挥发性低、吸收性强、再
2
水分子
水分子笼
天然气水合物模型
天然气分子
3
几个笼联成一体的形成物称为晶胞。
气体水合物的晶格 (a)I型结构体心立方晶格; (b)Ⅱ型结构金刚石型面心立方晶格

第四篇 第一章 天然气水合物

第四篇 第一章 天然气水合物

1第一章 天然气水合物第一节 水合物的形成及防止一、天然气的水汽含量天然气在地层温度和压力条件下含有饱和水汽。

天然气的水汽含量取决于天然气的温度、压力和气体的组成等条件。

天然气含水汽量,通常用绝对湿度、相对湿度、水露点三种方法表示。

1.天然气绝对湿度每立方米天然气中所含水汽的克数,称为天然气的绝对湿度,用e 表示。

2.天然气的相对湿度在一定条件下,天然气中可能含有的最大水汽量,即天然气与液态平衡时的含水汽量,称为天然气的饱和含水汽量,用e s 表示。

相对湿度,即在一定温度和压力条件下,天然气水汽含量e 与其在该条件下的饱和水汽含量e s 的比值,用φ表示。

即:se e =φ (1-1)3.天然气的水露点天然气在一定压力条件下与e s 相对应的温度值称为天然气的水露点,简称露点。

可通过天然气的露点曲线图查得,如图1-1所示。

图中,气体水合物生成线(虚线)以下是水合物形成区,表示气体与水合物的相平衡关系。

该图是在天然气相对密度为0.6,与纯水接触条件下绘制的。

若天然气的相对密度不等于0.6和(或)接触水为盐水时,应乘以图中修正系数。

非酸性天然气饱和水含量按下式计算:W =0.983WoC RD Cs (1-2)式中 W ——非酸性天然气饱和水含量,mg/m 3; W 0——由图1-1查得的含水量,mg/m 3; C RD ——相对密度校正系数,由图1-1查得;Cs ——含盐量校正系数,由图1-1查得。

对于酸性天然气,当系统压力低于2100kPa (绝)时,可不对H 2S 和(或)CO 2含量进行修正。

当系统压力高于2100kPa (绝)时,则应进行修正。

酸性天然气饱和水含量按下式计算:2 图1-1 天然气的露点3)W y W y W 0.983(yW S H S H CO CO HC HC2222++= (1-3)式中 W —酸性天然气饱和水含量,mg/m 3;2CO y ,S H 2y ——气体中CO 2,H 2S 的摩尔含量;HC y ——气体中除CO 2,H 2S 以外的其它组分的摩尔含量;W HC ——由图1-1查得的含水量,mg/m 3;2CO W ——CO 2气体含水量,由图1-2查得; S H 2W ——H 2S 气体含水量,由图1-3查得。

天然气水合物

天然气水合物

天然气水合物一、简介天然气水合物(Natural Gas Hydrate,简称Gas Hydrate)是分布于深海沉积物或陆域的永久冻土中,由天然气与水在高压低温条件下形成的类冰状的结晶物质。

因其外观象冰一样而且遇火即可燃烧,所以又被称作“可燃冰”或者“固体瓦斯”和“气冰”。

分子式为CH4·8H2O。

组成天然气的成分如CH4、C2H6、C3H8、C4H10等同系物以及CO2、N2、H2S 等可形成单种或多种天然气水合物。

形成可燃冰有三个基本条件:温度、压力和原材料。

首先,低温。

可燃冰在0—10℃时生成,超过20℃便会分解。

海底温度一般保持在2—4℃左右,所以一般在冰土带的地方较多。

;其次,高压。

可燃冰在0℃时,只需30个大气压即可生成,而以海洋的深度,30个大气压很容易保证,并且气压越大,水合物就越不容易分解。

最后,充足的气源。

海底的有机物沉淀,其中丰富的碳经过生物转化,可产生充足的气源。

海底的地层是多孔介质,在温度、压力、气源三者都具备的条件下,可燃冰晶体就会在介质的空隙间中生成。

二、特点天然气水合物具有分布广、资源量巨大、埋藏浅、能量密度高的特点。

1.分布广泛据推算,世界上占海洋总面积90%的海域具有天然气水合物形成的温压条件;据调查,世界天然气水合物矿藏的面积可达全部海洋面积的30%以上。

目前,实际上在所有海洋边缘水深大于300~500m 的大陆斜坡上均已发现了天然气水合物,在一些海洋边缘的深水海台或盆地的浅部地层中也都直接或间接地发现有天然气水合物,在极地冻土带和极地陆架海也发现有天然气水合物,证明天然气水合物分布十分广泛。

据初步研究,我国东海陆坡和南海陆坡及盆地具备天然气水合物的成矿条件和找矿前景,其中南海西沙海槽、台湾东南陆坡已发现天然气水合物存在的地球物理标志。

2.资源量巨大天然气水合物是全球第二大碳储库,仅次于碳酸盐岩,其蕴藏的天然气资源潜力巨大。

据保守估算,世界上天然气水合物所含天然气的总资源量约为(1.8~2.1)×1016m3,其热当量相当于全球已知煤、石油和天然气总热当量的2倍,也就是说,水合物中碳的总量是地球已知化石燃料中碳总量的两倍。

天然气水合物

天然气水合物


天然气的露点是指在一定的压力条件下, 天然气中开始出现第一滴水珠时的温度。天然 气的露点降是在压力不变的情况下,天然气温 度降至露点温度时产生的温降值。 通常,要求埋地输气管道所输送的天然气 的露点温度比输气管道埋深处的土壤温度低 5℃左右。
12
二、天然气含水量的确定方法
1.天然气含水量测定方法
CRD W / W0.6
19

另 外 , 如 果 水 中 溶 解 有 盐 类 ( NaCl 、 MgCl2 等),则溶液上面水汽的分压将下降, 这样,天然气中水汽含量也就降低。此时, 就必须引入含盐度的修正系数Cs (见图 2-3 左上角的小图)。
Cs Ws / W
20

相对密度为的天然气含水量 CRD 相对密度为0.6时天然气含水量 水中含盐时天然气的含水量 Cs 水中不含盐时天然气的含水量
8
1.绝对湿度或绝对含水量e
给定条件下每立方米天然气所含水汽的质 量数,称为天然气的绝对湿度或绝对含水量。
G e V
式中: e——天然气的绝对湿度,g/m3; G——天然气中的水汽含量,g; V——天然气的体积,m3。
9
2.饱和湿度或饱和含水量
一定状态下天然气与液相水达到相平衡 时,天然气中的含水量称为饱和含水量。 用 es 表示在饱和状态时一立方米体积内的 水汽含量。如果 e<es ,天然气是不饱和的。 而e=es时,天然气则是饱和的。
1
一、水化物形成的主要条件 1.天然气的含水量处于饱和状态
Hale Waihona Puke 天然气中的含水汽量处于饱和状态时,常有 液相水的存在,或易于产生液相水。液相水 的存在是产生水合物的必要条件。
2
2.压力和温度

天然气水合物

天然气水合物

天然气水合物矿产姓名:张航飞学号:20081004218指导老师:张成、庄新国目录第一章天然气水合物的基本性质第二章天然气水合物的成因类型及主控因素第三章天然气水合物成藏系统第四章天然气水合物的形成机理第五章天然气水合物的识别标志附录参考文献第一章天然气水合物的基本性质一、天然气水合物的基本性质天然气水合物是一种由水分子和气体分子组成的似冰状笼形化合物, 其外形如冰晶状, 通常呈白色,它广泛分布于大陆边缘海底沉积物和永久冻土层中.它的分子式可以用M·nH2O 来表示, 式中M表示“客体”分子, n 表示水合系数. 在这种冰状的结晶体中, 甲烷( CH4) 、乙烷( C2H6) 、丙烷( C3H8) 、异丁烷、常态丁烷、氮( N2) 、二氧化碳( CO2) 和硫化氢( H2S) 等“客体”分子充填于水分子结晶骨架结构的孔穴中, 它们在低温高压( 0℃<T<10℃, P >10 MPa) 条件下通过范德华力稳定地相互结合在一起. 由于天然气水合物中通常含有大量的甲烷或其他碳氢气体分子, 因此极易燃烧, 所以有人称之为“可燃冰”. 它在燃烧后几乎不产生任何残渣和废弃物, 是一种非常洁净的能源.自然界的天然气水合物并非都是白色的, 它还有许多其他的颜色. 如从墨西哥湾海底获取的天然气水合物, 它们呈现绚丽的橙色、黄色, 甚至红色等多种很鲜艳的颜色; 而从大西洋海底Blake Ridge 取得的天然气水合物则呈灰色或蓝色. 赋存于天然气水合物中的一些其他物质( 如油类、细菌和矿物等) 都可能对这些色彩的产生起关键作用 .天然气水合物按产出环境可以分为海底天然气水合物和极地天然气水合物; 按结构类型可分为4类( 表1, 图1) , 即I 型、Ⅱ型、H 型和一种新型的水合物( 它是由生物分子和水分子生成的) . I 型结构的水合物为立方晶体结构, 其笼状格架中只能容纳一些较小分子的碳氢化合物, 如甲烷( C1) 和乙烷( C2) , 以及一些非碳氢气体, 如N2、CO2 和H2S. I 型结构的水合物是由46 个水分子构成2 个小的十二面体“笼子”以容纳气体分子[ 11] , I 型水合物中的甲烷主要是生物成因气. Ⅱ型结构的水合物为菱形晶体结构, 其笼状格架较大, 不但可以容纳甲烷( C1) 和乙烷( C2) , 而且可以容纳较大的丙烷( C3) 和异丁烷( iC4) 分子. H 型结构的水合物, 为六方晶体结构, 具有最大的笼状格架, 可以容纳分子直径大于iC4 的有机气体分子. Ⅱ型水合物和H 型水合物中的烃类主要来源于热成因, 常与油气藏的渗漏有关. Ⅱ型和H 型结构的天然气水合物比I 型的要稳定得多, 它们可以在较高温度和较低压力下保持稳定, 但自然界天然气水合物以I 型为主.图1 天然气水合物晶体结构类型第二章天然气水合物的成因类型及主控因素一、天然气水合物的成因类型依据气体水合物的物理化学特征,充足的水和气体供应是形成自然界天然气水合物的两个基本因素。

天然气水合物物化性质

天然气水合物物化性质

天然气水合物物化性质在自然界发现的天然气水合物多呈白色、淡黄色、琥珀色、暗褐色亚等轴状、层状、小针状结晶体或分散状。

它可存在于零下,又可存在于零上温度环境。

从所取得的岩心样品来看,气水合物可以以多种方式存在:①占据大的岩石粒间孔隙;②以球粒状散布于细粒岩石中;③以固体形式填充在裂缝中;或者为④大块固态水合物伴随少量沉积物。

气水合物与冰、含气水合物层与冰层之间有明显的相似性:①相同的组合状态的变化——流体转化为固体;②均属放热过程,并产生很大的热效应——0℃融冰时需用0.335KJ的热量,0~20℃分解天然气水合物时每克水需要0.5~0.6KJ的热量;③结冰或形成水合物时水体积均增大——前者增大9%,后者增大26%~32%;④水中溶有盐时,二者相平衡温度降低,只有淡水才能转化为冰或水合物;⑤冰与气水合物的密度都不大于水,含水合物层和冻结层密度都小于同类的水层;⑥含冰层与含水合物层的电导率都小于含水层;⑦含冰层和含水合物层弹性波的传播速度均大于含水层。

天然气水合物中,水分子(主体分子)形成一种空间点阵结构,气体分子(客体分子)则充填于点阵间的空穴中,气体和水之间没有化学计量关系。

形成点阵的水分子之间靠较强的氢健结合,而气体分子和水分子之间的作用力为范德华力。

到目前为止,已经发现的天然气水合物结构有三种,即结构 I 型、结构 II 型(图1)和结构H型。

结构 I 型气水合物为立方晶体结构,其在自然界分布最为广泛,仅能容纳甲烷(C1)、乙烷这两种小分子的烃以及N2、CO2、H2S等非烃分子,这种水合物中甲烷普遍存在的形式是构成CH4·5.75H2O的几何格架;结构 II 型气水合物为菱型晶体结构,除包容C1、C2等小分子外,较大的“笼子”(水合物晶体中水分子间的空穴)还可容纳丙烷(C3)及异丁烷(i-C4)等烃类;结构H型气水合物为六方晶体结构,其大的“笼子”甚止可以容纳直径超过异丁烷(i-C4)的分子,如i-C5和其他直径在7.5~8.6A之间的分子(表1)。

可燃冰的物理性质

可燃冰的物理性质

可燃冰的物理性质:
可燃冰全称甲烷气水包合物(Methane clathrate),也称作甲烷水合物、甲烷冰、天然气水合物。

最初人们认为只有在太阳系外围那些低温、常出现冰的区域才可能出现,但后来发现在地球上许多海洋洋底的沉积物底下,甚至地球大陆上也有可燃冰的存在,其蕴藏量也较为丰富。

可燃冰,学名天然气水化合物,其化学式为CH4·8H2O “可燃冰”是未来洁净的新能源。

它是天然气的固体状态(因海底高压),它的主要成分是甲烷分子与水分子。

它的形成与海底石油的形成过程相仿,而且密切相关。

埋于海底地层深处的大量有机质在缺氧环境中,厌气性细菌把有机质分解,最后形成石油和天然气(石油气)。

其中许多天然气又被包进水分子中,在海底的低温与压力下又形成“可燃冰”。

这是因为天然气有个特殊性能,它和水可以在温度2~5摄氏度内结晶,这个结晶就是“可燃冰”。

因为主要成分是甲烷,因此也常称为“甲烷水合物”。

在常温常压下它会分解成水与甲烷,“可燃冰”可以看成是高度压缩的固态天然气。

外表上看它像冰霜,从微观上看其分子结构就像一个一个由若干水分子组成的笼子,每个笼子里“关”一个气体分子。

目前,可燃冰主要分布在东、西太平洋和大西洋西部边缘,是一种极具发展潜力的新能源,但由于开采困难,海底可燃冰至今仍原封不动地保存在海底和永久冻土层内。

天然气水合物

天然气水合物

天然气水合物引言天然气水合物(Methane Hydrates),简称NGHs,在过去几十年中备受关注。

天然气水合物是一种特殊的化学物质,它是天然气和水形成的结晶化合物。

它的结构中包含了天然气分子(主要是甲烷)和水分子,形成了固体晶体结构。

天然气水合物存在于寒冷的深海底部和极地地区的沉积物中,被认为是一种巨大的未开发能源资源。

这篇文章将会介绍天然气水合物的形成过程、分布情况、潜在的能源潜力以及对环境和气候的影响。

形成过程天然气水合物的形成需要同时具备压力和温度条件。

在大部分的天然气水合物形成地点,地下水的渗透会将水带到脆弱的沉积物层中。

当水和天然气接触时,由于寒冷的温度和高压力,水和天然气中的甲烷分子会结合成为水合物晶体。

这种过程被称为水合物形成。

天然气水合物形成的主要条件是温度低于零下6摄氏度且压力超过200个大气压。

分布情况天然气水合物广泛分布于全球寒冷的海洋和极地地区。

它们主要存在于深海海底的沉积物中,以及北极地区的冻土和冰川中。

据估计,全球的天然气水合物资源量巨大,可能比现有的天然气储量还要多。

然而,由于水合物存在的极端环境条件和技术挑战,目前还没有进行大规模开采。

潜在的能源潜力天然气水合物被认为是未来能源的候选者之一,因为它们拥有巨大的能源潜力。

根据估计,全球的天然气水合物储量可能远远超过传统天然气储量。

特别是在亚洲地区,天然气水合物被视为减少对进口石油和天然气依赖的一种替代能源。

然而,天然气水合物的开采和利用面临着技术挑战和环境风险。

技术挑战天然气水合物的开采和利用面临着许多技术挑战。

首先,水合物形成的地点通常位于深海或极地等极端环境中,需要克服高压、低温和深水等条件。

其次,水合物本身的物理性质使得开采过程更加困难,因为水合物在外部环境下会分解成天然气和水,导致压力下降和结构不稳定。

此外,无论是开采还是运输天然气水合物,都需要解决海底管道技术和安全问题。

环境风险天然气水合物开采和利用会对环境产生一定的影响和风险。

天然气水合物(可燃冰)的详解

天然气水合物(可燃冰)的详解

天然⽓⽔合物(可燃冰)的详解天然⽓⽔合物(可燃冰)的详解2017年5⽉18⽇,国⼟资源部中国地质调查局在我国南海神狐海域宣布可燃冰试开采成功,实现连续8天稳定产⽓,标志着我国成为在海域可燃冰试开采中少数⼏个获得连续稳定产⽓的国家。

为此,中共中央、国务院对此次试采成功发去贺电。

贺电称,天然⽓⽔合物是资源量丰富的⾼效清洁能源,是未来全球能源发展的战略制⾼点。

经过近20年不懈努⼒,我国取得了天然⽓⽔合物勘查开发理论、技术、⼯程、装备的⾃主创新,实现了历史性突破。

这是我国在掌握深海进⼊、深海探测、深海开发等关键技术⽅⾯取得的重⼤成果,是中国⼈民勇攀世界科技⾼峰的⼜⼀标志性成就,对推动能源⽣产和消费⾰命具有重要⽽深远的影响。

此次试开采同时达到了⽇均产⽓⼀万⽅以上以及连续⼀周不间断的国际公认指标,不仅表明我国天然⽓⽔合物勘查和开发的核⼼技术得到验证,也标志着中国在这⼀领域的综合实⼒达到世界顶尖⽔平。

⼀、各国天然⽓⽔合物的开发进程海底天然⽓和⽔在低温、⾼压条件下可形成的⼀种类似状的可燃固态物质,称为天然⽓⽔合物,由于外貌极像冰雪或固体酒精,点⽕即可燃烧,有“可燃⽔”、“⽓冰”、“固体⽡斯”之称,在⼤陆边缘陆坡区等地区有较⼴泛发育。

天然⽓⽔合物是20世纪科学考察中发现的⼀种新的矿产资源,早在1965年,前苏联就⾸次在西西伯利亚永久冻⼟带发现天然⽓⽔合物矿藏,并引起多国科学家的注意。

1971年,美国学者Stoll等⼈在深海钻探岩⼼中⾸次发现海洋天然⽓⽔合物,并正式提出“天然⽓⽔合物”概念。

1979年,DSDP 第66和67航次在墨西哥湾实施深海钻探,从海底获得91.24⽶的天然⽓⽔合物岩⼼,⾸次验证了海底天然⽓⽔合物矿藏的存在。

2000年开始,可燃冰的研究与勘探进⼊⾼峰期,世界上⾄少有30多个国家和地区参与其中。

在2013年3⽉12⽇,⽇本成功地在爱知县渥美半岛以南70公⾥、⽔深1000⽶处海底开采出可燃冰并提取出甲烷,成为世界上⾸个掌握海底可燃冰采掘技术的国家。

天然气水合物

天然气水合物

醇对天然气水合物的影响摘要:本文针对加入极性抑制剂甲醇的天然气体系建立了基于PR状态方程和随机一非随机理论的相平衡模型。

与作者改进Holder-john水合物模型相结合, 成功地解决了注甲醇体系水合物生成条件的预测问题。

曾对8个体系的122点实验数据进行了考核计算, 取得相当满意的结果本文所建立的模型和算法, 经补充关联有关二元交互作用参数值后可应用于其它抑制剂体系。

一.天然气水合物简介天然气水合物(Natural Gas Hydrate,简称Gas Hydrate)因其外观象冰一样而且遇火即可燃烧,所以又被称作“可燃冰”或者“固体瓦斯”和“气冰”。

它是在一定条件(合适的温度、压力、气体饱和度、水的盐度、PH值等)下由水和天然气在中高压和低温条件下混合时组成的类冰的、非化学计量的、笼形结晶化合物(碳的电负性较大,在高压下能吸引与之相近的氢原子形成氢键,构成笼状结构)。

它可用mCH4·nH2O来表示,m代表水合物中的气体分子,n为水合指数(也就是水分子数)。

组成天然气的成分如CH4、C2H6、C3H8、C4H10等同系物以及CO2、N2、H2S等可形成单种或多种天然气水合物。

形成天然气水合物的主要气体为甲烷,对甲烷分子含量超过99%的天然气水合物通常称为甲烷水合物(Methane Hydrate)。

天然气水合物在自然界广泛分布在大陆永久冻土、岛屿的斜坡地带、活动和被动大陆边缘的隆起处、极地大陆架以及海洋和一些内陆湖的深水环境。

在标准状况下,一单位体积的气水合物分解最多可产生164单位体积的甲烷气体,因而其是一种重要的潜在未来资源。

天然气水合物是20世纪科学考察中发现的一种新的矿产资源。

它是水和天然气在高压和低温条件下混合时产生的一种固态物质,外貌极像冰雪或固体酒精,点火即可燃烧,有“可燃水”、“气冰”、“固体瓦斯”之称,被誉为21世纪具有商业开发前景的战略资源,天然气水合物是一种新型高效能源,其成分与人们平时所使用的天然气成分相近,但更为纯净,开采时只需将固体的“天然气水合物”升温减压就可释放出大量的甲烷气体。

21世纪的新能源——天然气水合物

21世纪的新能源——天然气水合物

认 西倪 i 20 () t 02 2
新能源与农村能源
其次, 该文第 2 节中对排水法热效率的定义为
易对全年任一时 日的热性能进行预测的。而若真要
v dQ 二Q1 e
全年取 3 个典型日 6 进行实验, 从而进行回归预测,
式中 Q 为热水器采光面接收到的总太阳辐射量, 。
可想而之, 在操作上是相当繁琐耗时的。 Q= Q 为 水法得到的 量,d E 3 笔者一管之见 8 ; 用排 A d H 热 Q 二 7p / L C 笔者认为, 太阳热水器热性能评价指标, 前仍 目 ( t) I, i。我们认为, O一 . U 这个定义有不严谨之处。按 为好。日 平均效率在概念上是科学合理的, 且具有 较好的可比性, 操作上也简便可行。关于平均热损
水化合物。其化学成分不稳定, 可用 M H0表示, 2
M表示水合物中的气体分子, 为水分子数。 n
12 性能和用途 .
天然气水合物融化后会变成甲烷气体和水。由 于天然气水合物具有很强的浓缩( 吸附) 气体的能 力, 是其他非常规气源岩( 如煤层、 黑色页岩) 能量密 度的 1 倍 , 0 是常规天然气能量密度的 2 5 它的 一 倍, 能量密度很高, m 天然气水合物释放的能量相当 1 3
于 1 i 的天然气; 6 n 4 3 第二, 天然气水合物的燃烧值
高, 清洁无污染, 燃烧后几乎不产生任何废弃物, 即
物和微生物的尸体, 尸体分解出甲烷, 其中大部分是 不能逸出水面的, 而变成水化物状态, 压人疏松的沉 积岩微孔内, 形成丰富的天然气水合物矿藏。一般 来说, 天然气水合物广泛发育在浅海底层沉积物和 深海大陆边坡沉积层中, 其中大多数位于深海海底 , 一般是距海面至少 30- m深的范围, 0- 0 60 如中国的 东海、 南海、 黄海的海底。许多人认为亚热带地区的 南海海域不存在天然气水合物。但是, 由于特殊的 物理性能, 天然气和水也可以在 2℃ 一 5℃内结晶,

5.17 天然气水合物

5.17 天然气水合物

第五章油气聚集与油气藏的形成5.17 天然气水合物一、基本概念及分类天然气水合物是在特定的低温和高压条件下,甲烷等气体分子天然地被封闭在水分子的扩大晶格中,形成似冰状的固态水合物。

自然界中存在的天然气水合物的天然气主要成分为甲烷,又称为甲烷水合物(Methane Hydrates)。

有时乙烷、丙烷、丁烷、二氧化碳及硫化氢也可与甲烷一起形成固态混合气体水合物,故又称固态气水合物(Solid Gas Hydrates)。

天然气水合物是甲烷等气体和水分子组成的类似冰状的固态物质,其分子式为M·nH2O,其中M是以甲烷气体为主的气体分子数,n为水分子数。

天然气水合物实质上是一种水包气的笼形物。

其中的水结晶成等轴晶系,水分子形成刚性笼架晶格,每个笼架晶格中均包括一个主要为甲烷的气体分子。

(图据张厚福等,1999)天然气水合物结构图天然气水合物的组成我国天然气水合物分布有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)天然气水合物的气体来源形成水合物的气体主要有3种来源:沉积物中的有机质在细菌降解作用下产生的生物成因气;深部有机物或石油在热裂解作用下产生的热解成因气;由火山作用产生的无机成因气。

天然气水合物可作为深部气藏的良好盖层,也可形成水合物气田。

形成天然气水合物需具备的四个基本条件:①充足的天然气和水,天然气主要是生物成因气,其次热成因气;②较低的温度,一般温度低于10℃;③较高的压力,一般压力大于10MPa;④有利的储集空间。

最重要的是低温和高压条件,且温度与压力可在一定范围内相互补偿。

气体水合物的压力-温度图解(据D.L.Katz等,1959)二、天然气水合物形成与分布二、天然气水合物形成与分布气体水合物的形成要求压力随温度线性升高而呈对数地增加,因而在大多数沉积盆地中,压力增加的幅度都远远无法满足这个要求,水合物在21~27℃温度下都将分解,因而形成水合物的深度下限约在1524m,随各地地温梯度的不同而有所变化。

天然气水合物

天然气水合物
2020年5月3日星期日
天然气水合物在外观上是白色的结晶体,类似于冰或 致密的雪。它的化学成分不稳定,一般用M nH2O 表示,M 为水合物中的气体分子,n为水分子的个数。也有多种气 体混合的水合物。水合物的相对密度为0.96到0.98之间, 可浮于水面,而沉于液烃中。天然气水合物是笼形包合 物:水分子借氢键形成了笼形多面体骨架,其中有孔穴, 孔穴体积由气体分子所占据,被包围在骨架中。甲烷、 乙烷和硫化氢可以占据较小的孔穴,而丙烷和丁烷只能 占据较大的孔穴,大于正构丁烷的分子因太大而不能形 成水合物。
2020年5月3日星期日
甲醇的蒸汽压比较高,注入管线和设备后容易汽化进 入湿气内,之后均匀地进入水相防止水合物生成。
乙二醇或二甘醇蒸汽压低,必须喷头雾化成小液滴散 于气流内。
当甲醇注入量超过0.11m³/h,不经济,需换乙二醇。
3、天然气脱水。天然气脱水的工艺方法一般包括:低 温脱水、溶剂吸收法脱水、固体吸附法脱水和化学反应 法脱水。
2020年5月3日星期日
形成水合物的压力-温度曲线
2020年5月3日星期日
液态水
低温
高压
气流速度和方向 改变的地方,即
气流的滞区
在节流阀、阀门关 闭不严处
形成水化物
2020年5月3日星期日
三、阻止天然气水合物生成的措施
1、给天然气加热,并且使天然气温度维持在水的露点 (-7℃/10MPa)以上或天然气水合物形成温度(12℃/MPa )以上。 伴热带
2、向气流中加入阻化剂 (水合物抑制剂),天然气中的 水分溶于抑制剂中,改变水分子间的相互作用,达到抑制 水合物形成的目的。
目前在天然气工业中多用甲醇和乙二醇或二甘醇作抑 制剂。甘醇类的醚基和羟基团形式相似于水的分子结构, 与水有强的亲合力。向天然气中注入的抑制剂与冷却过程 凝析的水形成冰点很低的溶液,天然气中的水汽被高浓度 甘醇溶液所吸收,导致水合物生成温度明显下降。

天然气水合物

天然气水合物
主要成分
甲烷
分子式
CH4·xH2O
性质
清洁能源
1简介
2历史沿革
3理化性质
4组成结构
5分布范围
6形成原因
▪海洋生成
▪大陆生成
7开采方法
▪传统开采
▪新型开采
8开采实例
9主要危害
10制备方法
11鉴别方法
12经济影响
天然气水合物简介
编辑
天然气水合物又称“可燃冰”,是分布于深海沉积物或陆域的永久冻土中,由天然气与水在高压低温条件下形成的类冰状的结晶物质。因其外观像冰一样而且遇火即可燃烧,所以又被称作“可燃冰”。其资源密度高,全球分布广泛,具有极高的资源价值,因而成为油气工业界长期研究热点。自上世纪60年代起,以美国、日本、德国、我国、韩国、印度为代表的一些国家都制订了天然气水合物勘探开发研究计划。迄今,人们已在近海海域与冻土区发现水合物矿点超过230处,涌现出一大批天然气水合物热点研究区。[1]
2014年,由中国地质调查局与中国科学院主办的第八届国际天然气水合物大会29日在北京开幕,记者从大会上获悉,我国计划于2015年在中国海域实施天然气水合物的钻探工程,将有力推动中国“可燃冰”勘探与开发的进程,引发中国能源开发利用的“革命”。
2017年1月,经10余年技术攻关,吉林大学科研团队研发出陆域天然气水合物冷钻热采关键技术,填补了国内该领域空白,总体达到国际先进水平。
与国际上通用的“被动式保压保温取样”钻探原理不同,新技术首次提出“主动式降温冷冻取样”原理,发明了钻井泥浆强化制冷方法、水合物孔底快速冷冻取样方法和高温脉冲热激发开采技术,主要技术指标超过国外同类技术。[3]
2017年5月,中国首次海域天然气水合物(可燃冰)试采成功。[4]5月18日,中共中央、国务院向参加这次任务的全体参研参试单位和人员,表示热烈的祝贺。[5]

天然气水合物

天然气水合物

化学选修3《物质结构与性质》P85选题2天然气水合物(一种潜在的能源)天然气水合物——可燃冰一、可燃冰相关概念可燃冰:天然气与水在高压低温条件下形成的类冰状结晶物质。

(又称笼形化合物)甲烷水合物(Methane Hydrate):用M·nH2O来表示,M代表水合物中的气体分子,n为水合指数(也就是水分子数)。

组成天然气的成分如CH4、C2H6、C3H8、C4H10等同系物以及CO2、N2、H2S等可形成单种或多种天然气水合物。

形成天然气水合物的主要气体为甲烷,对甲烷分子含量超过99%的天然气水合物通常称为甲烷水合物。

又因外形像冰,而且在常温下会迅速分解放出可燃的甲烷,因而又称“可燃冰”或者“固体瓦斯”和“气冰”)。

因为可燃冰的主要成分为甲烷,为甲烷水合物,而甲烷在常温中为气体,熔、沸点低,所以甲烷为分子晶体,因而可燃冰也为分子晶体。

可燃冰存在之处:天然气水合物在自然界广泛分布在大可燃冰陆、岛屿的斜坡地带、活动和被动大陆边缘的隆起处、极地大陆架以及海洋和一些内陆湖的深水环境。

天然气水合物在全球的分布图在标准状况下,一单位体积的气水合物分解最多可产生164单位体积的甲烷气体,因而其是一种重要的潜在未来资源。

笼状化合物(Clathrate):在天然气水合物晶体中,有甲烷、乙烷、氮气、氧气二氧化碳、硫化氢、稀有气体等,它们在水合物晶体里是装在以氢键相连的几个水分子构成的笼内,因而又称为笼状化合物。

天然气分子藏在水分子中水分子笼是多种多样的二、可燃冰的性质可燃冰的物理性质:(1)在自然界发现的天然气水合物多呈白色、淡黄色、琥珀色、暗褐色亚等轴状、层状、小针状结晶体或分散状。

(2)它可存在于零下,又可存在于零上温度环境。

(3)从所取得的岩心样品来看,气水合物可以以多种方式存在:①占据大的岩石粒间孔隙;②以球粒状散布于细粒岩石中;③以固体形式填充在裂缝中;或者为大块固态水合物伴随少量沉积物。

可燃冰的化学性质:1、在冰的空隙(“笼”)中可以笼合天然气中的分子的原因:(1)气水合物与冰、含气水合物层与冰层之间有明显的相似性:①相同的组合状态的变化——流体转化为固体;②均属放热过程,并产生很大的热效应——0℃融冰时需用0.335KJ的热量,0~20℃分解天然气水合物时每克水需要0.5~0.6KJ的热量;③结冰或形成水合物时水体积均增大——前者增大9%,后者增大26%~32%;④水中溶有盐时,二者相平衡温度降低,只有淡水才能转化为冰或水合物;⑤冰与气水合物的密度都不大于水,含水合物层和冻结层密度都小于同类的水层;⑥含冰层与含水合物层的电导率都小于含水层;⑦含冰层和含水合物层弹性波的传播速度均大于含水层。

《天然气水合物》课件

《天然气水合物》课件

05
天然气水合物的前景与挑 战
能源前景
1 2 3
清洁能源
天然气水合物是一种清洁能源,燃烧后几乎不产 生污染物,有助于减少环境污染和应对气候变化。
储量丰富
全球天然气水合物的储量巨大,据估计相当于全 球已探明石油和天然气储量的数倍,为未来能源 供应提供了保障。
地区性供应
天然气水合物主要分布在极地和深海区域,对于 这些地区来说,天然气水合物是重要的能源供应 来源。
感谢您的观看
THANKS
技术挑战
提取难度
天然气水合物的提取需要 解决一系列技术难题,如 水合物矿体的勘查、开采、 储存和运输等。
环境影响
在开采过程中,需要特别 注意对环境的影响,如防 止温室气体排放、减少对 海底生态系统的破坏等。
生产成本
目前天然气水合物的生产 成本相对较高,需要进一 步降低成本以实现商业化 应用。
经济考量
《天然气水合物》课件
目录 CONTENT
• 天然气水合物简介 • 天然气水合物的性质 • 天然气水合物的开采技术 • 天然气水合物对环境的影响 • 天然气水合物的前景与挑战
01
天然气水合物简介
定义与特性
定义
天然气水合物是一种由甲烷和水 在低温高压条件下形成的白色固 体化合物。
特性
具有高能量密度、环保、燃烧值 高等特点,是一种潜在的替代能 源。
气举开采法
利用气举泵将水合物层中的天然气和水一同抽出,降低水合物层的压力。
化学试剂注入开采技术
化学剂注入开采法
向水合物层中注入化学试剂,如醇类、 醚类等,以降低水合物的稳定性和分 碳、丙烷等) 溶解水合物,使其分解为天然气和水。
04
天然气水合物对环境的影 响

天然气水合物1

天然气水合物1

19
二、查图法
1. 水合物生成的平衡曲线

如果气体混合物的组成不知道,上述方 法就不能用来预测水化物形成的温度(或 压力)。这时如知道气体相对密度(实测 值)和气体压力(或温度),就可用图 5-7 近似地计算形成水化物的温度(或压力)。 这种方法称为相对密度曲线法。
20


图5-7是天然气水合物生成的压力— 温度曲线。已知天然气相对密度,按图 2-7可确定天然气水合物形成的最低压力 及最高温度。 图5-7是不含H2S和CO2的,对含H2S 的天然气,由于误差较大,不宜使用。 如果H2S和CO2含量小于1%(mol%),也 可应用此图。若相对密度在两条曲线之 间,可采用内插法进行近似计算。
28

天然气经过节流降压,温度降低现 象,称之为焦耳-汤姆逊效应。焦耳- 汤姆逊效应系数是每降低一个单位压力 时对应的温度降,用℃/100kPa表示。 图5-8是GPA推荐的用以确定节流降压所 引起的温度变化的曲线图。
29
图5-8给定压力降所引起的温度降
30

该曲线图是根据液态烃含量在11.3米3/106 米3(GPA标准)条件下得出来的。液态烃量愈 高,则温度降愈小。以11.3米3(液态烃)/106 米3(GPA)为标准,每增减5.6米3(液态 烃)/106米3(GPA标准),就应有相应的±2.8℃ 的温度修正值。这样,如果没有液态烃,则温 度降将比图5-8所求出的温度降要多5.6℃, 亦即气体的最终温度要更冷5.6℃。
33
f (Pr,Tr)用下式计算:
f ( Pr , Tr ) 2.343T
Cp用下式计算:
0.9965M ( P 105 )1.124 CP 13.19 0.09224T 0.6238 10 T (T / 100)5.08
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天然气水合物物化性质
在自然界发现的天然气水合物多呈白色、淡黄色、琥珀色、暗褐色亚等轴状、层状、小针状结晶体或分散状。

它可存在于零下,又可存在于零上温度环境。

从所取得的岩心样品来看,气水合物可以以多种方式存在:①占据大的岩石粒间孔隙;②以球粒状散布于细粒岩石中;③以固体形式填充在裂缝中;或者为④大块固态水合物伴随少量沉积物。

气水合物与冰、含气水合物层与冰层之间有明显的相似性:①相同的组合状态的变化——流体转化为固体;②均属放热过程,并产生很大的热效应——0℃融冰时需用0.335KJ的热量,0~20℃分解天然气水合物时每克水需要0.5~0.6KJ的热量;③结冰或形成水合物时水体积均增大——前者增大9%,后者增大26%~32%;④水中溶有盐时,二者相平衡温度降低,只有淡水才能转化为冰或水合物;⑤冰与气水合物的密度都不大于水,含水合物层和冻结层密度都小于同类的水层;⑥含冰层与含水合物层的电导率都小于含水层;⑦含冰层和含水合物层弹性波的传播速度均大于含水层。

天然气水合物中,水分子(主体分子)形成一种空间点阵结构,气体分子(客体分子)则充填于点阵间的空穴中,气体和水之间没有化学计量关系。

形成点阵的水分子之间靠较强的氢健结合,而气体分子和水分子之间的作用力为范德华力。

到目前为止,已经发现的天然气水合物结构有三种,即结构 I 型、结构 II 型(图1)和结构H型。

结构 I 型气水合物为立方晶体结构,其在自然界分布最为广泛,仅能容纳甲烷(C1)、乙烷这两种小分子的烃以及N2、CO2、H2S等非烃分子,这种水合物中甲烷普遍存在的形式是构成CH4·5.75H2O的几何格架;结构 II 型气水合物为菱型晶体结构,除包容C1、C2等小分子外,较大的“笼子”(水合物晶体中水分子间的空穴)还可容纳丙烷(C3)及异丁烷(i-C4)等烃类;结构H型气水合物为六方晶体结构,其大的“笼子”甚止可以容纳直径超过异丁烷(i-C4)的分子,如i-C5和其他直径在7.5~8.6A之间的分子(表1)。

结构H型气水合物早期仅存在于实验室,1993年才在墨西哥湾大陆斜坡发现其天然产物。

II 型和H型水合物比 I 型水合物更稳定。

除墨西哥外,在格林大峡谷地区也发现了 I 、 II 、H型三种气水合物共存的现象。

表1 墨西哥湾巴什山三种气水合物伴生气体及烃类组成(体积百分比)[2]
样品 C1 C2 C3 i-C4 n-C4 i-C5 n-C5
水合物(H) 21.2 9.5 7.5 2.5 17.5 41.1 0.8
排放气体 88.0 8.0 2.1 0.3 1.2 0.4 <0.1
排放气体 88.0 7.5 2.2 0.5 1.1 0.6 <0.1
水合物( I ) 71.8 3.4 18.8 5.7 0.3 N.D N.D
水合物( II ) 73.9 4.9 16.3 4.6 0.2 N.D N.D
N.D=未检测到
在一定的温压条件下,即在气水合物稳定带(HSZ)内,气水合物可以稳定存在,如果脱离HSZ水合物就会分解。

气水合物一般随沉积作用的发生而生成,随着沉积的进一步进行,稳定带基底处的水合物由于等温线的持续变化而分解。

孔隙中的水达到饱和后会产生游离气体,其向上运移到水合物稳定带并重新生成水合物。

但是在离开HSZ后,人们发现天然气水合物仍具有相对的稳定性。

Ershov和Yakushev在实验过程中发现,在一定晶体中生长的气体水合物,在大气压和零度以下可以保存好几天。

他们认为水合物的初始分解导致在水合物样品的表面形成一层脱离的膜,其可减缓或很可能阻止水合物的进一步分解。

Ershov和Yakushev(1992)将这一现象称为气水合物的自保性。

加拿大马更些三角洲Taglu气田92GSCTAGLU钻孔中可见气水合物的发现,证实了自然界中气水合物具有自保性。

这种水合物如薄冰层,其可在大气压条件和冻结温度以下稳定存在4小时。

相关文档
最新文档