集合间的基本运算.ppt

合集下载

集合的基本运算课件(共11张PPT)

集合的基本运算课件(共11张PPT)

解析: M={x|-1≤x≤3},M∩N={1,3},有2个.
3:(必修1第一章复习参考题B组练习1) 学校举办运动会时,高一(1)班有28名同学参 加比赛,有15人参加游泳比赛,有8人参加田径比 赛,14人参加球类比赛,同时参加游泳和田径比赛的 有3人,同时参加游泳和球类比赛的有3人,没有人 同时参加三项比赛。问同时参加田径和球类比赛的 有_____人? 解析:设同时参加田径和球 类比赛的有x人,则 9+3+3+(8-3-x)+x+(14-3-x)=28
二:以点集为背景的集合运算:
例1:(必修1习题1.1B组练习2)在平面直角坐标系中,
集合 C ( x, y ) y x表示直线 y
x, 从这个角度看,集合
2 x y 1 D ( x, y ) ,表示什么?集合C , D之间有什么关系? x 4 y 5
(1) A B A, A B B; A A B, B A B
A (CU A) , A (CU A) U
( 2) A B A A B;
A B B A B
(3)德摩根定律: CU ( A B ) (CU A) (CU B ) CU ( A B ) (CU A) (CU B )
【解题回顾】将两集合之间的关系转化为两曲线之 间的位置关系,然后用数形结合的思想求出 的范围 (准确作出集合对应的图形是解答本题的关键).
a
课堂总结:
1、集合的基本运算:
2、集合的运算性质:
3、注重数形结合思想的应用:
(1)韦恩(Venn)图 (2)连续的数集——数轴 (3)点集的运算——曲线位置关系
游泳 田径

高中数学(新人教A版)必修第一册:集合的基本运算【精品课件】

高中数学(新人教A版)必修第一册:集合的基本运算【精品课件】
当A与B无公共元素时,A与B
的交集仍存在,此时A∩B=∅.
(三)交集
【做一做】
【探究2】
已知集合A={0,2},B={-2,-1,0,1,2},
则A∩B=(
)
A.{0,2}
C.{0}
B.{1,2}
D.{-2,-1,0,1,2}
交集的性质:
[答案]
A
①A∩B=B∩A;②A∩A=A;
③A∩∅=∅; ④若A⊆B,则A∩B=A;
(四)集合的交并运算
【巩固练习1】
(1) 已知集合A={x|(x-1)(x+2)=0},B={x|(x+2)(x-3)=0},则集合A∪B是(
A.{-1,2,3}
B.{-1,-2,3}
C.{1,-2,3}
D.{1,-2,-3}
(2) 若集合A={x|-2≤x<3},B={x|0≤x<4},则A∪B=________.
⑤(A∩B)⊆A;(A∩B)⊆B.
(四)集合的交并运算
1.集合的并集运算
例1.
(1)设集合M={x| 2 +2x=0,x∈R},N={x| 2 -2x=0,x∈R},则M∪N=(
A.{0}
B.{0,2} C.{-2,0} D.{-2,0,2}
(2)已知A={x|x≤-2,或x>5},B={x|1<x≤7},求A∪B。
(2)在解决问题时,用到了哪些数学思想?
第一章 集合与常用逻辑用语
1.3 集合的基本运算(第2课时)
教材分析
本小节内容选自:
《普通高中数学必修第一册》
人教A版(2019)
第一课时
课时内容
集合的并集、交集运算
集合的补集、综合运算
所在位置
教材第10页

课件集合的基本运算_人教版高中数学必修一PPT课件_优秀版

课件集合的基本运算_人教版高中数学必修一PPT课件_优秀版

(3)(∁SA)∪(∁SB);
6
解析:
• 【解析】(1)由并集的概念可知A∪B={1,2,3,4,5,6};

(2)借助数轴(如图)


∴M∪N={x|x<-5或x>-3}.
• 【答案】(1){1,2,3,4,5,6} (2)A
7
方法归纳:
• 并集的运算技巧: • (1)若集合中元素个数有限,则直接根据并集的定义求解,但要注意集合中元素的
互异性. • (2)若集合中元素个数无限,可借助数轴,利用数轴分析法求解,但是要注意含“=”
用实心点表示,不含“=”用空心点表示.
8
探究一 并集的运算
9
解析:
10
探究二 交集的运算
• 【例】(1)已知集合A={x|(x-1)(x+2)=0},B={x|(x+2)(x-3)=0},则A∩B=________.

(2)已知集合A={x|x≥5},集合B={x|x≤m},且A∩B={x|5≤x≤6},则实数m=
________.

11
解析:
• 【解析】(1)A={x|x=1或x=-2},B={x|x=-2或x=3},

∴A∩B={-2}.

(2)结合数轴:


由图可知m=6.
• 【答案】(1){-2} (2)6
是否存在?若存在,求出x;
∴(∁RA)∩B={x|2<x<3或7≤x<10}.
由此可得:(1)(∁SA)∩(∁SB)={x|1<x<2}∪{7}.(2)∁S(A∪B)={x|1<x<2}∪{7};
(3)(∁SA)∪(∁SB)={x|1<x<3}∪{x|5≤x≤7}={x|1<x<3,或5≤x≤7};

1.3集合的基本运算第1课时并集、交集课件(人教版)

1.3集合的基本运算第1课时并集、交集课件(人教版)
又2∈A,∴b=2,∴A∪B={1,2,5}.
答案:{1,2,5}
.
5.已知A={x|x<-2,或x>4},B={x|5-2x≤3},求A∪B,A∩B.
解:化简集合B得B={x|x≥1},用数轴表示集合A,B,如图所示,
所以A∪B={x|x<-2,或x≥1},A∩B={x|x>4}.
理能力与数学运算能力的培养.
自主预习·新知导学
合作探究·释疑解惑
思 想 方 法
随 堂 练 习
自主预习·新知导学
一、并集
【问题思考】
1.视察下列各个集合.
①A={-1,0},B={1,3},C={-1,0,1,3};
②A={x|x是偶数},B={x|x是奇数},C={x|x是整数};
③A={1,2},B={1,3,4},C={1,2,3,4}.
2.填表:
自然语言
符号语言
一般地,由所有属于集合
A 或属于集合 B 的元素
A∪B=
组成的集合,称为集合 A {x|x∈A,或 x∈B}
与 B 的并集
图形语言
3.做一做:若集合M={-1,0,1},N={0,1,2},则M∪N等于(
)
A.{0,1}
B.{-1,0,1}
C.{0,1,2} D.{-1,0,1,2}
且A∪B=A,求实数m的取值范围.
解:∵A∪B=A,∴B⊆A.
∵A={x|0≤x≤4}≠⌀,∴B=⌀或B≠⌀.
当B=⌀时,有m+1>1-m,解得m>0.
当B≠⌀时,用数轴表示集合A和B,如图所示,
+ ≤ -,
∵B⊆A,∴ ≤ + ,
- ≤ ,

《集合的基本运算》(第2课时补集及应用)PPT

《集合的基本运算》(第2课时补集及应用)PPT
分析:由于U,A,B均为连续的无限集,所求问题是集合间的交集、
并集、补集运算,故考虑借助数轴求解.
解:将集合U,A,B分别表示在数轴上,如图所示,
则∁UA={x|-1≤x≤3};
∁UB={x|-5≤x<-1,或1≤x≤3};
(∁UA)∩(∁UB)={x|1≤x≤3}.
探究一
探究二
探究三
思维辨析
随堂演练
∴A∩B={x|-1<x<2},∁UB={x|x≤-1,或x>3}.
又 P= ≤ 0,或 ≥
5
2
,
5
∴(∁UB)∪P= ≤ 0,或 ≥ 2 .
5
又∁UP= 0 < < 2 ,∴(A∩B)∩(∁UP)={x|-1<x<2}∩ 0 < <
5
={x|0<x<2}.
2
解:(1)∵B∩(∁UA)={2},∴2∈B,但2∉A.
∵A∩(∁UB)={4},∴4∈A,但4∉B.
8
= 7,
2
4 + 4 + 12 = 0,
∴ 2
解得
12
2 -2 + = 0,
=- 7 .
8 12
∴a,b 的值分别为7,- 7 .
探究一
探究二
探究三
思维辨析
随堂演练
集合中的新定义问题
)
A.{1,3,5,6} B.{2,3,7}
C.{2,4,7}
D.{2,5,7}
(2)已知全集U为R,集合A={x|x<1,或x≥5},则∁UA=
.
解析:(1)由A={1,3,5,6},U={1,2,3,4,5,6,7},得∁UA={2,4,7}.故选C.

集合的基本运算(共18张PPT)

集合的基本运算(共18张PPT)
(2)设A={4,5,6,8},B={3,5,7,8},C={1,3}, 求
A∪(B∩C) A∪(B∩C)={3,4,5,6,8}
(3)设集合A={x|-1<x<2},集合B={x|1<x<3},求
A∩B
A∩B={x|1<x<2}
(4)设集合A={x|-1<x≤2},集合B={x|x<0或x≥2},
Venn图


AB


B A
AB AB
学习新知

交集的性质
Venn图



B A
AB
AB
A∩A = A A∩φ = φ
AB
A∩B =B∩A
A∩B A A∩B B 若A∩B=A,则A B.反之,亦然.
应用新知
典例分析
例2.(1)设A={4,5,6,8},B={3,5,7,8},求A∩B
A∩B={5,8}
B={x| x是鄂州二中2021年9月在校的高一同学} C={x| x是鄂州二中2021年9月在校的高一女 同学}
集合C是由那些既属于集合A且属于集合B的所有 元素组成
学习新知
交集
交集:由AB 所有属于集合A且属于集合B的元素组成的集合,称
为集合A与B的交集记做 A B (读做A交B)
A B x x A,且x B
典例分析
例4 设平面内直线l1上点的集合为L1,直线l2 上点的集合为L2,试用集合的运算表示l1,l2的 位置关系
答:平面内直线l1与l2可能有三种位置关系,即相 交于一点,平行或重合。
(1)l1与l2交于一点P
L1∩L2={点P}
(2)l1与l2平行 (3)l1与l2重合

高一数学人教A版必修第一册1.3集合的基本运算课件

高一数学人教A版必修第一册1.3集合的基本运算课件
1.3 集合的基本运算
问题1 如何研究两个集合间的基本关系?
实数

<
=
类比

集合

=
问题2 实数可以进行加减乘除等运算,那么集合是否有类似
的运算呢?
学校食堂1号的菜品集合记为A={清炒白菜,炒豆芽,家常豆腐,
油闷大虾,炸鸡腿,红烧鸡块},2号的菜品集合记为B={清炒白
菜,苦瓜炒蛋,红烧茄子,土豆牛腩,玉米排骨,辣子鸡丁}。
已知全集为R,集合A={x|x<a},B={x|1<x<2},且
A∪(∁RB)=R,则实数a的取值范围是
.
答案 {a|a≥2}
解析 ∵B={x|1<x<2},
∴∁RB={x|x≤1,或x≥2}.
又A={x|x<a},且A∪(∁RB)=R,利用如图所示的数轴可得a≥2.
能力提升
已知集合A={x|0≤x≤2},B={x|a≤x≤a+3}.
解:A∪B={3,4,5,6,7,8}
A
4
5
3
6
8
7
B
!!!在求并集时,两个集合中相同的元素只列举一次!!!
2. 设 集 合 = x − < ≤ , = x 1 < x ≤ 3 , 求 ∪
.解

-1
0
1
2
3 x
PART 2 交集
1. 定义:由所有属于集合A且属于集合B的元素组成的
且A∪B={x|x<1},如图2所示,
图2
∴数轴上点x=a在点x=-1和点x=1之间,不包含点x=-1,但包含点x=1.
∴{a|-1<a≤1}.
例3 集合的交集、并集性质的应用

集合的基本运算(并集、交集)课件-2024-2025学年高一上学期数学人教A版(2019)必修第一册

集合的基本运算(并集、交集)课件-2024-2025学年高一上学期数学人教A版(2019)必修第一册

作者编号:32101
归纳总结
并集的运算技巧
(1)若集合中元素个数有限,则直接根据并集的定义求解,但要注意集合中
元素的互异性.
(2)若集合中元素个数无限,可借助数轴,利用数轴分析法求解,但要注意
是否去掉端点值.
作者编号:32101
观察下面的集合,集合C与集合A、B之间有什么关系吗?
(1) A={2,4,6,8,10}, B={3,5,8,12}, C = {8}
(2)A={|是立德中学今年在校的女同学},
B={ | 是立德中学今年在校的高一年级同学},
C={ | 是立德中学今年在校的高一年级女同学}.
集合C 是由既属于集合A 且又属于集合B 的所有元素组成的.
作者编号:32101
新课讲授 ——知识点2 交集
一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A与
(1) A={1,3,5,7}, B={2,4,6,7},
C={1,2,3,4,5,6,7}.
(2)A={ |是有理数}, B={ |是无理数},
C={ |是实数}.
集合C 是由属于集合A 或属于B 的所有元素组成的.
作者编号:32101
新课讲授 ——知识点1 并集
一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集
是 m≤2
.
解:借助数轴得A∩B=A如图所示,
+1≤1

,解得m≤2.
1 − 3 ≥ 7
作者编号:32101
A
B
1
7
x
归纳总结
交集性质
性质① A∩B=B∩A
性质② A∩A=A
性质③ A∩∅=∅
性质④ A∩B=A⇔A⊆B

高中数学统编版第一册第一章集合与常用逻辑用语1.3集合的基本运算(第1课时)并集和交集课件

高中数学统编版第一册第一章集合与常用逻辑用语1.3集合的基本运算(第1课时)并集和交集课件
(4)已知集合A={1,3,5,6,7},B={2,4,5,6,8},则A∩B=
答案:(1)C (2)B (3)A (4){5,6}
)
)
.



三、并集、交集的性质
1.(1)一个集合与其本身的并集、交集分别是什么?
提示:都是这个集合本身.
(2)一个集合与空集的并集和交集分别是什么?
提示:并集是这个集合,交集是空集.
(2)利用数轴分别画出集合M、N,如图:
∴M∩N={x|1≤x<2};
(3)A∩C={1,2},(A∩C)∪B={1,2,3,4},故选D.
答案:(1)C (2)A (3)D
反思感悟 求两个集合交集、并集的方法技能
当求两个集合的并集、交集时,对于用描述法给出的集合,第一
明确集合中的元素,其次将两个集合化为最简情势;对于连续的数
当a=-3时,A={-4,-7,9},B={-8,4,9},符合题意.
综上可得a的值为5或-3.
答案:5或-3
探究一
探究二
探究三
思想方法
随堂演练
反思感悟 已知两个有限集运算结果求参数值的方法
对于这类已知两个有限集的运算结果求参数值的问题,一般先用
视察法得到不同集合中元素之间的关系,再列方程求解.另外,在处
解析:(1)A={-1,3},B={-1,1},A∪B={-1,1,3}.
答案:(1)C (2)D
探究一
探究二
探究三
思想方法
随堂演练
变式训练1(1)已知集合A={x∈N|1≤x≤3},B={2,3,4,5},则
A∪B=(
)
A.{2,3}
B.{2,3,4,5}
C.{2}

集合的基本运算第1课时.ppt

集合的基本运算第1课时.ppt

【解析】选D.由于A是数集,B是点集,故A∩B= .
优秀课件
点击进入相应模块
38
4.设集合M={1,2,m-2},N={-1,3},且M∩N={3},则m=____. 【解析】∵3∈M∩N,∴3∈M,∴m-2=3,m=5. 答案:5
优秀课件
点击进入相应模块
39
5.设A={x|x是锐角三角形},B={x|x是钝角三角形}, 则A∪B=______. 【解析】由并集的定义知A∪B为x是锐角三角形或钝角三角 形. 答案:{x|x是锐角三角形或钝角三角形}
此时A={0,1,-3},B={-3,-4,2},
则A∩B={-3}. …………………………………………11分
综上可知a=-1.…………………………………………12分
点击进入相应模块
优秀课件
33
【误区警示】对解答本题时易犯的错误具体分析如下:
优秀课件
点击进入相应模块
34
1.设集合A={1,2,3,4},集合B={1,3,5,7},则集合
2
点击进入相应模块
优秀课件
25
交集、并集的实际应用 【名师指津】 交集、并集的实际应用 在解决有关集合的交、并集的实际应用问题时,常借助于 Venn图来求解,利用Venn图可使集合中元素的个数、集合 间的关系更直观地显示出来,进而根据Venn图逐一把文字 陈述的语句“翻译”成数学符号语言,通过解方程和限制 条件的运用解决问题.
【特别提醒】若A∩B= ,则A与B均为非空集合且无公共 元素或A、B中至少有一个为空集.
优秀课件
点击进入相应模块
17
【例2】(2010·福建高考)若集合A={x|1≤x≤3},
B={x|x>2},则A∩B等于( )

高中数学(人教B版)必修第一册:集合的基本运算【精品课件】

高中数学(人教B版)必修第一册:集合的基本运算【精品课件】
在平面直角坐标系内,x轴与y轴相交于坐标原点,用集合语言
可以表示为:
{(x,y) | y=0}∩{(x,y) | x=0}={(0,0)}.
从定义可以看出,A∩B表示由集合A,B按照指定的法则构造出
一个新集合,因此“交”可以看成集合之间的一种运算,通常称为
交集运算.
交集运算具有以下性质,对于任意两个集合A,B,都有:
sF=M,
sM=F.
例如,如果U={1,2,3,4,5,6},A={1,3,5},则
UA={2,4,6}.
注意,此时UA仍是U的一个子集,因此U(UA)也是有意
义的,此例中的U(UA)={1,3,5}=A.
事实上,给定全集U及其任意一个子集A,补集运算具有如下
性质:
A∪(UA)=U;
英语成绩低于70分的所有同学组成的集合为N,
需要去参加意见征求会的同学组成的集合为P,
可以看出,集合P中的元素,要么属于集合M,要么属于集合
N.
一般地,给定两个集合A,B,由这两个集合的所有元素组成的
集合,称为A与B的并集,记作A∪B,读作“A并B”.
两个集合的并集可用图(1)或(2)所示的阴影部分形象地表
可以看出,集合S 中的元素既属于集合P,又属于集合M.
一般地,给定两个集合A,B,由既属于A又属于B的所有元素
(即A和B的公共元素)组成的集合,称为A与B的交集,记作A∩B,
读作“A交B ”.两个集合的交集可用下图所示的阴影部分形象地表
示.
因此,上述情境与问题中的集合满足P∩M=S.
例如,{1,2,3,4,5}∩{3,4,5,6,8}={3,4,5};
A∪B=A,试求实数m的取值范围.
解析:∵A∪B=A,∴B⊆A.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年11月19日星期四
思考考:察下列各个集合,你能说出集合C与集合
A、B之间的关系吗?
(1) A={1,3,5}, B={2,4,6}, C={1,2,3,4,5,6}.
(2)A={x|x是有理数}, B={x|x是无理数}, C={x|x是实数}.
(3) A={4,5,6, 8}, B={3,5,7 ,8}, C={3,4,5,6,7,8}.
典例剖析
题型一 并集的运算 【例1】 求下列两个集合的并集. (1)A={1,2,3,4,5},B={-1,0,1,2,3}; (2)A={x|x<-2},B={x|x>-5}. 解:(1).A∪B={-1,0,1,2,3,4,5}, (2)结合数轴(如图所示)
得: A∪B=R,
1.(1)若集合A={x|x>-1},
若 B≠∅时,2aa+≥3- ≤25 , 2a≤a+3
得:-1≤a≤2, 综上所述,a的取值范围是{a|-1≤a≤2或a>3}.
思考考:察下面的问题,集合C与集合A、B之间
有什么关系吗?
(1) A={2, 4, 6, 8, 10}, B={4, 5, 6, 7, 8,},
C={4, 6, 8}. (2)A={等腰三角形},
(2)设A={x|x<1},B={x|x>2},则A∩B= ∅.
D (3)设 S={x|2x+1>0},T={x|3x-5<0},则 S∩T= .
A.∅
B.{x|x<-12}
C.{x|x>53}
D.{x|-12<x<53}
(4)设A={1,2},B={a,3},若A∩B={1},则 a= 1;若A∩B≠∅,则a= 1.或2
6 : A A B, B A B
7 :(A B) C A (B C) 7 :(A B) C A (B C)
(5)设A={x|x>-1},B={x|x<-2},
则A∩B= ∅ .
类比并集的相关性质
1: A B B A
1: A B B A
2:A A A
2:A A A
3:A ΦΦ
3:A Φ A
4:A B A B A
4:A B A B A
5:B B A
当B={1}时,有a-2=0,即a=2 当B={2}时,有2a-2=0,即a=1 综上可知,适合题意的实数a所组成的集合C={0,1,2}
4.已知A={x|-2≤x≤5},B={x|2a≤x≤a+3}, 若A∪B=A,求实数a的取值范围. 解:∵A∪B=A,∴B⊆A. 若B=∅时,2a>a+3,即a>3,
要使A∪B=R, 解得-3≤a<-1.
则aa+ <-8≥1 5

综上可知:a的取值范围为{a| -3≤a<-1}
3.已知集合A={x|x2-3x+2=0},B={x|ax-2=0},
且A∪B=A,求实数a组成的集合C.
【解】 由x2-3x+2=0,得x=1或x=2, ∴A={1,2}. 又A∪B=A,∴B⊆A (1)若B=∅, 即方程ax-2=0无解, 此时a=0 (2)若B≠∅, 则B={1}或B={2}
解:(2)如图所示,
当a<-2时,A∪B=A; 当-2≤a<2时,A∪B={x|x>-2}; 当a≥2时,A∪B={x|-2<x<2或x>a}.
2.已知A={x|a<x≤a+8},B={x|x<-1或x>5}. 若A∪B=R,求a的取值范围. 解:由a<a+8,又B={x|x<-1或x>5}, 在数轴上标出集合A、B的解集,如图.
B={直角三角形},
C={等腰直角三角形}.
(3)A={x|x是宣汉中学2015年9月入学的女同学},
B={x|x是宣汉中学2015年9月入学的高一年级同学},
C={x|x是宣汉中学2015年9月入学的高一年级女同学}.
集合C是由那些既属于集合A且又属于集合B 的所有元素组成的.
交集概念
一般地,由属于集合A且属于集合B的所有元素组 成的集合,称为A与B的交集(intersection set).
B={x|-2<x<2},
则A∪B等于( A )
A.{x|x>-2}
B.{x|x>-1}
C.{x|-2<x<-1} D.{x|-1<x<2}
解析:(1) A∪B={x|x>-2}.
(2)若将(1)中A改为A={x|x>a},求A∪B.
(2) 若集合A={x|x>a} ,B={x|-2<x<2}, 求A∪B.
可以在数轴上表示例2中的并集,如集下合图运:算常用数轴画
图观察
并集性质
①A∪A= A ; ②A∪= A ;
③A∪B=A B____A
并集的相关性质: 1 : A B B A 并集的交换律
2:A A A
3:A A
4:A B A B A
5:B A A B A
6 : A A B, B A B
7 : ( A B) C A (B C ) 并集的结合律
Venn图表示:
AB A
B
A∪B
A∪B
A
B
A∪B
并集例题
例1.设A={4,5,6,8},B={3,5,7,8}, 求AUB.
解:A B {4,5,6,8} {3,5,7,8} {3, 4, 5, 6, 7, 8}
例2.设集合A={x|-1<x<2},B={x|1<x<3}, 求AUB.
解:A B {x | 1 x 2} {x |1 x 3} x | 1 x 3
记作:A∩B(读作:“A交B”)
即: A ∩ B ={x| x ∈ A 且x ∈ B}
说明:两个集合求交集,结果还是一个集合,是由集合A与 B 的公共元素组成的集合.
Venn图表示:
AB
A∩B
B
A∩B
A
B
A∩B=
(1) 设 A = {1 , 2} , B = {2 , 3 , 4} , 则 A∩B = {2}.
集合C是由所有属于集合A或属于B的元素组 成的.
并集概念
一般地,由所有属于集合A或属于集合B的元素所 组成的集合,称为集合A与B的并集(Union set).
记作:A∪B(读作:“A并B”)
即: A∪B ={x| x ∈ A ,或 x ∈ B}
说明:两个集合求并集,结果还是一个集合,是由集合A与 B 的所有元素组成的集合(重复元素只看成一个元素).
相关文档
最新文档