七年级上册数学知识结构图

合集下载

初中、小学数学知识结构图

初中、小学数学知识结构图

初中、小学数学知识结构图一、小学数学知识结构图⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧可能性平均数、中位数、众数统计表、统计图统计与概率图形与位置旋转对称图形与变换表面积、体积球圆锥圆柱—正方体—长方体立体图形周长和面积圆—正方形——长方形—平行四边形梯形四边形四边形钝角三角形直角三角形锐角三角形三角形角直线、射线、线段平面图形空间与图形比例比比和比例单位之间的进率量单位体积(容积)单位、质长度单位、面积单位、常见的量方程用字母表示数式与方程混合运算的顺序运算定律则运算整数、小数、分数的四数的运算数因数、倍数、质数、合分数然数、小数、分数、百正数、负数、整数、自比较数的大小十进制计数法数的认识数与代数.3.2.1。

二、初中数学知识结构图⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧锐角三角函数二次函数反比例函数一次函数函数分式方程分式的四则运算分式一元一次不等式一元二次方程二(三)元一次方程组一元一次方程整式方程乘法公式与因式分解整式的四则运算整式式与方程、不等式立方根—二次根式的四则运算—平方根无理数有理数的乘方有理数的四则运算整数与负数有理数实数的认识与运算数与代数.1⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧位似投影与视图旋转中心对称轴对称对称平移图形与变换平面直角坐标系弧长和扇形面积正多边形和圆置关系点、直线、圆和圆的位圆重心—特殊的平行四边形—平行四边形梯形四边形—多边形的内角和—多边形锐角三角函数相似三角形勾股定理与逆定理等腰三角形全等三角形与三角形有关的角与三角形有关的线段三角形角平分线系角的大小关系、位置关角的分类角平行线的性质平行线的判定平行线相交线直线、射线、线段平面图形空间与图形.2⎪⎪⎪⎩⎪⎪⎪⎨⎧随机事件的概率数据的波动数据的代表直方图调查统计统计与概率.3。

沪教版(上海)-初中数学七年级、八年级、九年级数学全册章节知识点结构思维导图集

沪教版(上海)-初中数学七年级、八年级、九年级数学全册章节知识点结构思维导图集
第二十五章 锐角三角比的章节知识点结构思维导图
- 14 -
第二十六章 二次函数的章节知识点结构思维导图 第二十七章 圆与正多边形的章节知识点结构思维导图
- 15 -
第二十八章 统计初步的章节知识点结构思维导图
- 16 -
-7-
第十四章 三角形的章节知识点结构思维导图 第十五章 平面直角坐标系的章节知识点结构思维导图
-8-
上海市(沪教版)八年级数学全册章节思维导图 共八个章节
第十六章 二次根式的章节知识点结构思维导图
-9-
第十七章 一元二次方程的章节知识点结构思维导图
- 10 -
第十八章 正比例函数和反比例函数的章节知识点结构思维导图 第十九章 几何证明的章节知识点结构思维导图
-3-
第七章 线段与角的画法的章节知识点结构思维导图 第八章 长方体的再认识的章节知识点结构思维导图
-4-
上海市(沪教版)七年级数学全册章节思维导图 共七章
第九章 整式的章节知识点结构思维导图
-5-
第十章 分式的章节知识点结构思维导图 第十一章 图形的运动的章节知识点结构思维导图
-6-
第十二章 实数的章节知识点结构思维导图 第十三章 相交线 平行线的章节知识点结构思维导图
- 11 -
第二十章 一次函数的章节知识点结构思维导图 第二十一章 代数方程的章节知识点结构思维导图
- 12 -
第二十二章 四边形的章节知识点结构思维导图 第二十三章 概率初步的章节知识点结构思维导图
- 13 -
上海市(沪教版)ቤተ መጻሕፍቲ ባይዱ年级数学全册章节思维导图 共五章
第二十四章 相似三角形的章节知识点结构思维导图
上海市(沪教版)初中数学全册思维导图集 共二十八章

七年级上学期数学章节知识点总结

七年级上学期数学章节知识点总结

七年级上学期数学章节知识点总结第一章:有理数1、知识点结构图如下:2、回顾与思考本章我们在小学学习的基础上,进一步认识了负数,使数的范围扩充到有理数。

引入负数不仅可以表示具有相反意义的量,而且还拓展了减法运算的范围。

由此,类似于x+2=1的方程就可以解了。

我们知道,有理数是整数与分数的统称。

由于整数可以看成是分母为1的分数,因此有理数可以写成qp (p、q 是整数,q≠0)的形式;另一方面,形如q p (p、q 是整数,q≠0)的数都是有理数。

所以,有理数可用q p (p、q 是整数,q≠0)表示。

本章我们研究了有理数的加、减、乘、除和乘方运算。

实际上,与负数有关的运算,我们都借助绝对值,将它们转化为正数之间的运算。

数轴不仅能直观表示数,而且还能帮助我们理解数的运算。

在运算的过程中,数形结合、转化是很重要的思想方法。

我们从具体数的加法和乘法中,归纳出了交换律、结合律和分配律等运算律。

运算律不仅能给数的运算带来方便,而且还是今后研究代数问题(如解方程、不等式等)的基础。

请你带着下面的问题,复习一下全章的内容吧。

1。

你能举出一些实例,说明正数、负数在表示相反意义的量时的作用吗?2。

你能用一个图表示有理数的分类吗?引入负数后,减法中哪些原来不能进行的运算可以进行了?3。

怎样用数轴表示有理数?数轴与普通直线有什么不同?怎样利用数轴解释一个数的绝对值和相反数?4。

有理数的加法与减法、乘法与除法各有什么关系?有理数的混合运算都能转化为加法与乘法运算吗?5。

有理数有哪些运算律?结合例子说明运算律在有理数运算中的作用。

第二章:整式的加减法1、知识点结构图如下:2、回顾与思考本章学习了整式的有关概念与整式的加减运算。

由具体的数到用字母表示数,可以简明地表达一些一般的数量和数量关系,给研究问题和计算带来方便,这是数学上的一个重大发展。

从数到式,字母参与运算,得到了各种式子。

其中表示数或字母的积的式子叫做单项式,几个单项式的和叫做多项式。

七年级上册数学知识结构图[1]

七年级上册数学知识结构图[1]

第一章:有理数★知识结构图:正分数负分数 正整数负整数★正数和负数 概念、定义:1.大于0的数叫做正数(positive number)。

2.在正数前面加上负号“-”的数叫做负数(negative number)。

3.整数和分数统称为有理数(rational number)。

4.规定了原点、正方向和单位长度的直线叫做数轴(number axis)。

5.在直线上任取一个点表示数0,这个点叫做原点(origin)。

6.一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。

7.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

8.正数大于0,0大于负数,正数大于负数。

两个负数,绝对值大的反而小。

★有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

4.有理数的加法中,两个数相加,交换交换加数的位置,和不变。

5.有理数的加法中,三个数相加,先把前两个数相加,或者先将后两个数相加,和不变。

6.有理数减法法则:减去一个数,等于加上这个数的相反数。

★有理数乘法法则1.两数相乘,同号得正,异号得负,并把绝对值向乘;任何数同0相乘,都得0。

2. 有理数中仍然有:乘积是1的两个数互为倒数。

3. 一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

4.三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

5.一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

★有理数除法法则1.除以一个不等于0的数,等于乘这个数的倒数。

2.两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。

★做有理数混合运算时,应注意以下运算顺序:。

(完整版)七年级上册数学知识结构图

(完整版)七年级上册数学知识结构图

1 第一章:有理数★知识结构图:正分数负分数正整数0负整数第二章:整式的加减★知识结构图:2★概念、定义:1.都是数或字母的积的式子叫做单项式(monomial),单独的一个数或一个字母也是单项式。

单项式中的数字因数叫做这个单项式的系数(coefficient)。

32.一个单项式中,所有字母的指数的和叫做这个单项式的次数。

3.几个单项的和叫做多项式,其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

4.多项式里次数最高项的次数,叫做这个多项式的次数。

5.把多项式中的同类项合并成一项,叫做合并同类项。

6.合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母和字母的指数不变。

7.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;8.如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

4第三章:一元一次方程知识结构图:概念、定义:1.含有一个未知数,未知数的次数都是1,这样的方程叫做一元一次方程。

3等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

5.等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。

56.把等式一边的某项变号后移到另一边,叫做移项。

7.工程问题:工作总量=工作效率×时间盈亏问题:利润=售价-成本利率=利润÷成本×100%售价=标价×折扣数×10%储蓄利润问题:利息=本金×利率×时间本息和=本金+利息三:图形的初步认识知识结构图:61.我们把实物中抽象的各种图形统称为几何图形(geometric figure)。

72.有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solid figure)。

3.有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(plane figure)。

初中数学知识点及结构图

初中数学知识点及结构图

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

人教版(2024新版)七年级数学上册课件:第五章 一元一次方程 小结与复习

人教版(2024新版)七年级数学上册课件:第五章 一元一次方程 小结与复习

结果仍相等.

等式的性质2:等式两边乘同一个数,或除以同一个
不为0的数,结果仍相等.
知识梳理
➢ 解一元一次方程的一般步骤:
1. 去分母.
依据等式的性质2.
2. 去括号.
依据分配律.
3. 移项.
依据等式的性质1.
4. 合并同类项.
依据分配律.
5. 系数化为1.
依据等式的性质2.
随堂练习
1.列方程表示下列语句中的相等关系:
即a+b=-5.
当x=1时,原式=a·13+b·1-3=a+b-3=-8.
随堂练习
3.解下列方程:

Байду номын сангаас
(1) −8x=3− ;


解:(1)移项,得


-8x+ =3- .


合并同类项,得


- x= .


系数化为1,得

x=- .
(2)0.5x-0.7=6.5-1.3x;
(2)移项,得
1.1a-10=210.
(4)在5天中,第一小组共植树60棵,第二小组共植树x(x<60)棵,
平均每天第一小组比第二小组多植2棵树.
60 x
− =2.
5 5
随堂练习
2.已知x=-1是方程ax3+bx-3=2的解,则当x=1时,求代数式
ax3+bx-3的值.
解:将x=-1代入方程a(-1)3+b(-1)-3=2,
2.工程问题
工程问题中的基本数量关系:
工作量=工作效率×工作时间(或人均效率×时间×人数);
合作的效率=各部分单独做的效率和;

2024年秋新人教版七年级上册数学教学课件 第三章代数式章末小结课

2024年秋新人教版七年级上册数学教学课件 第三章代数式章末小结课

知识梳理 ➢ 列代数式
在解决一些数学问题与实际问题时,需要先把问题中的数量 关系用含有数、字母和运算符号的式子表示出来,也就是列代 数式. ➢ 列代数式的步骤:
(1)分析条件,找出数量关系. (2)用含有数、字母和运算符号理 ➢ 代数式的值:一般地,用数值代替代数式中的字母,按照代
...... 第n个图形共有4n枚棋子.
同学们,通过这节课的学习, 你有什么收获呢?
谢谢 大家
爱心.诚心.细心.耐心,让家长放心.孩子安心。
数式中的运算关系计算得出的结果,叫作代数式的值.当字母 取不同的数值时,代数式的值一般也不同. ➢ 求代数式的值的步骤: 1.代 . 2.算. 3.验.
随堂练习
1.用代数式表示:
(1)比a的3倍小4的数. 3a-4.
(2)a的一半与b的和的平方.
(3)我国自主研发的一种近防炮,每分钟可发射10 000发炮弹.近防
母与字母相乘.
略不写.相同字母写成幂的 如m×n写成m·n或mn.
形式.
m·m写成m2.
数字因数是1或-1. “1”常省略不写.
如1×a写成a,-1×a写成-a.
带分数与字母相乘. 将带分数化成假分数.
除法运算.
用分数线.
代数式是和或差的 把式子用括号括起来. 形式且后面有单位.
如(a - b)千克.
随堂练习
随堂练习 8.用含字母的式子填空: (1)长方形的宽为4,长比宽多a,则长方形的长为__4_+__a_, 面积为__4_(_4_+__a_) _; (2)一件衬衣的进价为a 元,售价为2a 元,则每件衬衣的利 润为__(_2_a_-a_)_元; (3)一个数的倒数为a,则这个数是_____.
随堂练习 5.用一根绳子围成一个长方形,相邻两边的长分别为x m和y m. (1)当绳子的长为12 m时,用式子表示y与x的关系; (2)当长方形的面积为12 m2时,用式子表示y与x的关系; 解:(1)2(x+y)=12.

人教版七年级数学上册第四章《几何图形初步》知识点汇总

人教版七年级数学上册第四章《几何图形初步》知识点汇总

⎧⎨⎩⎧⎨⎩人教版七年级数学上册第四章《几何图形初步》知识点汇总一、知识结构框图二、具体知识点梳理(一)几何图形(是多姿多彩的)立体图形:棱柱、棱锥、圆柱、圆锥、球等.1、几何图形平面图形:三角形、四边形、圆等.主(正)视图---------从正面看;2、几何体的三视图 侧(左)视图-----从左面边看;俯视图---------------从上面看.(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.(2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平面图形不一样的.(2)了解直棱柱、圆柱、圆锥的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念图形直线射线线段端点个数无一个两个表示法直线a直线AB(BA)射线AB线段a线段AB(BA)作法叙述作直线AB作直线a 作射线AB作线段a作线段AB、连接AB延长叙述不能延长反向延长射线AB延长线段AB反向延长线段BA 2、直线的性质经过两点有一条直线,并且只有一条直线. 简称:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点叫做线段的中点.图形:A M B符号:若点M 是线段AB 的中点,则AM=BM=AB ,AB=2AM=2BM.126、线段的性质:两点的所有连线中,线段最短.简称:两点之间,线段最短.7、两点的距离:连接两点的线段长度叫做这两点的距离.8、点与直线的位置关系 (1)点在直线上; (2)点在直线外.(三)角1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种):∠1 ; ; ; .α∠β∠ABC ∠3、角的度量单位及换算4、角的分类:锐角、直角、钝角、平角、周角.5、角的比较方法 (1)度量法 (2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法,可以作出任意给定的角.8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.图形: 符号:9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:同(等)角的余角相等. 同(等)角的补角相等.10、方向角(1)正方向;(2)北(南)偏东(西)方向;(3)东(西)北(南)方向.。

七年级上册数学知识结构图

七年级上册数学知识结构图

1 第一章:有理数★知识结构图:正分数负分数正整数0负整数第二章:整式的加减★知识结构图:2★概念、定义:1.都是数或字母的积的式子叫做单项式(monomial),单独的一个数或一个字母也是单项式.单项式中的数字因数叫做这个单项式的系数(coefficient)。

32。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

3。

几个单项的和叫做多项式,其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

4。

多项式里次数最高项的次数,叫做这个多项式的次数。

5。

把多项式中的同类项合并成一项,叫做合并同类项。

6。

合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母和字母的指数不变。

7.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;8。

如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

4第三章:一元一次方程知识结构图:概念、定义:1.含有一个未知数,未知数的次数都是1,这样的方程叫做一元一次方程。

3等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

5。

等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等.56.把等式一边的某项变号后移到另一边,叫做移项。

7。

工程问题:工作总量=工作效率×时间盈亏问题:利润=售价-成本利率=利润÷成本×100%售价=标价×折扣数×10%储蓄利润问题:利息=本金×利率×时间本息和=本金+利息三:图形的初步认识知识结构图:61。

我们把实物中抽象的各种图形统称为几何图形(geometric figure)。

72.有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solid figure)。

3。

有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(plane figure)。

七年级上册数学第一章知识结构图

七年级上册数学第一章知识结构图

1第一章:有理数★知识结构图:正分数负分数 正整数负整数★正数和负数概念、定义:1.大于0的数叫做正数(positive number)。

2.在正数前面加上负号“-”的数叫做负数(negative number)。

3.整数和分数统称为有理数(rational number)。

4.规定了原点、正方向和单位长度的直线叫做数轴(number axis)。

5.在直线上任取一个点表示数0,这个点叫做原点(origin)。

6.一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。

7.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

8.正数大于0,0大于负数,正数大于负数。

两个负数,绝对值大的反而小。

★有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

23.一个数同0相加,仍得这个数。

4.有理数的加法中,两个数相加,交换交换加数的位置,和不变。

5.有理数的加法中,三个数相加,先把前两个数相加,或者先将后两个数相加,和不变。

6.有理数减法法则:减去一个数,等于加上这个数的相反数。

★有理数乘法法则1.两数相乘,同号得正,异号得负,并把绝对值向乘;任何数同0相乘,都得0。

2. 有理数中仍然有:乘积是1的两个数互为倒数。

3. 一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

4.三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

5.一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

★有理数除法法则1.除以一个不等于0的数,等于乘这个数的倒数。

2.两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。

3★做有理数混合运算时,应注意以下运算顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

初一至初二上册课本内结构图及知识点总结

初一至初二上册课本内结构图及知识点总结

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (p q≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; 15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.第二章 整式的加减一.知识框架二.知识概念1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

初中数学知识点及结构图(新人教版)

初中数学知识点及结构图(新人教版)

1 -七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).2 -10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

初中数学知识点及结构图(新人教版)

初中数学知识点及结构图(新人教版)

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

人教版七年级数学上册第四、五章知识点详细梳理

人教版七年级数学上册第四、五章知识点详细梳理

人教版七年级数学上册第四、五章知识点详细梳理1.几何图形:现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。

长方体、正方体、球、圆柱、圆锥等都是立体图形。

此外棱柱、棱锥也是常见的立体图形。

平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

长方形、正方形、三角形、圆等都是平面图形。

立体图形与平面图形:许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。

2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。

包围着体的是面。

面有平的面和曲的面两种。

面和面相交的地方形成线;线和线相交的地方是点;几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

(2)点动成线,线动成面,面动成体。

3、生活中的立体图形圆柱柱体棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……生活中的立体图形球体(按名称分) 圆锥椎体棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

棱柱的所有侧棱长都相等,棱柱的上下两个底面是相同的多边形,直棱柱的侧面是长方形。

棱柱的侧面有可能是长方形,也有可能是平行四边形。

5、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

6、三视图物体的三视图指主视图、俯视图、左视图。

主视图:从正面看到的图,叫做主视图。

左视图:从左面看到的图,叫做左视图。

俯视图:从上面看到的图,叫做俯视图。

(精品)0有理数学的运算知识结构图

(精品)0有理数学的运算知识结构图

新课标人教版七年级数学上册有理数的运算知识结构框图如下:有理数的运算乘法乘法法则倒数乘法运算律交换律结合律分配律减法减法法则加减混合运算转减去一个统一成加法加法加法法则加法运算律交换律结合律乘方乘方的意义乘方运算科学记数法除法除法法则除法与乘法间的关系有理数的混合运算加、减、乘、除、乘方混合运算的法则准确数和近似数准确数和近似数的概念有效数字计算器的使用加、减、乘、除、乘方运算按键方法代数中有理数的主要内容是有理数的概念和有理数的运算,正确理解概念,熟练掌握运算是学好这一部分知识的关键和主要标志,下面就让我们针对这两点具体看一下如何学习,怎样学习才能把有理数这部分知识给学好。

一、要正确理解有理数的几个概念有理数一章的主要概念有:正数和负数、相反数、倒数、绝对值、数轴。

此外还有两数同号(异号)、非负数、非负整数、奇偶数,以及乘方(幂)、近似数与有效数字等概念。

正确理解上述概念,是学好代数的基础。

不要死背概念,要做到真正理解,才会真正运用。

1.要正确理解与运用相反数、倒数和绝对值三个重要概念第一,掌握定义,并能根据定义正确而迅速地回答诸如下述问题:例1.求下列各数的相反数、倒数与绝对值:注意零没有倒数,a与-b是否有倒数要进行讨论。

第二,掌握定义的其它描述形式。

诸如设a,b是两个有理数,那么a,b互为相反数的条件是a+b=0(即a=-b),ab 互为倒数的条件是a×b=1.第三,根据定义,掌握相反数、倒数、绝对值的一些基本性质。

如(1)正数的相反数是负数,负数的相反数是正数,0的相反数是其自身。

正数的倒数是正数,负数的倒数是负数。

(2)正数或者负数的绝对值是正数,零的绝对值是零。

因此:①任何一个有理数的绝对值是非负数,如果用a表示有理数,那么必有|a|>0或|a|=0,即|a|≥0.②非零的有理数的绝对值一定是正数,即当a≠0时,有|a|>0.第四,善于利用数轴,直观、形象地理解相反数与绝对值这两个概念,并能熟练地对有理数大小进行比较。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册数学知识结构图
1
第一章:有理数
★知识结构图:
有理数的运算
分配律
除 法
乘 方
乘 法交换律结合律减 法
加 法比较大小
数 轴
点与数的对应
有理数
分数
整数
正分数负分数
正整数0
负整数
★正数和负数概念、定义:
1.大于0的数叫做正数(positive number)。

2.在正数前面加上负号“-”的数叫做负数(negative number)。

3.整数和分数统称为有理数(rational number)。

4.规定了原点、正方向和单位长度的直线叫做数轴(number axis)。

5.在直线上任取一个点表示数0,这个点叫做原点(origin)。

6.一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。

7.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

8.正数大于0,0大于负数,正数大于负数。

两个负数,绝对值大的反而小。

★有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

2
3.一个数同0相加,仍得这个数。

4.有理数的加法中,两个数相加,交换交换加数的位置,和不变。

5.有理数的加法中,三个数相加,先把前两个数相加,或者先将后两个数相加,和不变。

6.有理数减法法则:减去一个数,等于加上这个数的相反数。

★有理数乘法法则
1.两数相乘,同号得正,异号得负,并把绝对值向乘;任何数同0相乘,都得0。

2. 有理数中仍然有:乘积是1的两个数互为倒数。

3. 一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

4.三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

5.一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

★有理数除法法则
1.除以一个不等于0的数,等于乘这个数的倒数。

2.两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。

3
★做有理数混合运算时,应注意以下运算顺序:
(1)先乘方,再乘除,最后加减;
(2)同级运算,从左到右进行;
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

1.把一个大于10数表示成a×10n 的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。

2.接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。

3.从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significant digit)4
5
第二章:整式的加减
★知识结构图:
整式的加减运算
去括号
合并同类项整式
多项式
单项式
列示表示数量关系
用字母表示数
★概念、定义:
1.都是数或字母的积的式子叫做单项式(monomial),单独的一个数或一个字母也是单项式。

单项式中的数字因数叫做这个单项式的系数(coefficient)。

2.一个单项式中,所有字母的指数的和叫做这个单项式的次数。

3.几个单项的和叫做多项式,其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

4.多项式里次数最高项的次数,叫做这个多项式的次数。

5.把多项式中的同类项合并成一项,叫做合并同类项。

6.合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母和字母的指数不变。

7.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
8.如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

6
第三章:一元一次方程知识结构图:


实际问题的答案
检验数学问题的解
(x=a)
一般步骤:
去分母
去括号
移项同类项
合并
系数化为一



设未知数-列方程 数学问题
(一元一次方程)
实际问题
概念、定义:
7
1.含有一个未知数,未知数的次数都是1,这样的方程叫做一元一次方程。

3等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

5.等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。

6.把等式一边的某项变号后移到另一边,叫做移项。

7.工程问题:工作总量=工作效率×时间
盈亏问题:利润=售价-成本利率=利润÷成本×100%
售价=标价×折扣数×10%
储蓄利润问题:利息=本金×利率×时间
本息和=本金+利息
三:图形的初步认识
知识结构图:
8
9
方位角
换算
两点之间、线段最短
两点确定一条直线
平面图形
展开立体图形
从不同的方向看立体图形
等角的补角相等等角的余角相等
角的平分线余角和补角
角的大小比较角的度量
角直线、射线、线段
展开
折叠
平面图形
立体图形
几何图形
1.我们把实物中抽象的各种图形统称为几何图形(geometric figure )。

2.有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solid figure)。

3.有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(plane figure)。

4.点动成面,面动成线,线动成体。

10
11。

相关文档
最新文档