武汉大学《自动控制原理》实验报告
《自动控制原理》自动控制PID实验报告
![《自动控制原理》自动控制PID实验报告](https://img.taocdn.com/s3/m/911f41a26429647d27284b73f242336c1eb9306c.png)
《自动控制原理》自动控制PID实验报告课程名称自动控制原理实验类型:实验项目名称:自动控制PID一、实验目的和要求1、学习并掌握利用MATLAB 编程平台进行控制系统复数域和频率域仿真的方法。
2、通过仿真实验研究并总结PID 控制规律及参数对系统特性影响的规律。
3、实验研究并总结PID 控制规律及参数对系统根轨迹、频率特性影响的规律,并总结系统特定性能指标下根据根轨迹图、频率响应图选择PID 控制规律和参数的规则。
二、实验内容和原理一)任务设计如图所示系统,进行实验及仿真程序,研究在控制器分别采用比例(P)、比例积分(PI)、比例微分(PD)及比例积分微分(PID)控制规律和控制器参数(Kp、Ki、Kd)不同取值时,控制系统根轨迹和阶跃响应的变化,总结pid 控制规律及参数变化对系统性能、系统根轨迹、系统阶跃响应影响的规律。
具体实验容如下:1、比例(P)控制,设计参数Kp 使得系统处于过阻尼、临界阻尼、欠阻尼三种状态,并在根轨迹图上选择三种阻尼情况的Kp 值,同时绘制对应的阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 的变化情况。
总结比例(P)控制的规律。
2、比例积分(PI)控制,设计参数Kp、Ki 使得由控制器引入的开环零点分别处于:1)被控对象两个极点的左侧;2)被控对象两个极点之间;3)被控对象两个极点的右侧(不进入右半平面)。
分别绘制三种情况下的根轨迹图,在根轨迹图上确定主导极点及控制器的相应参数;通过绘制对应的系统阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 和Ki 的变化情况。
总结比例积分(PI)控制的规律。
3、比例微分(PD)控制,设计参数Kp、Kd 使得由控制器引入的开环零点分别处于:1)被控对象两个极点的左侧;2)被控对象两个极点之间;66 3)被控对象两个极点的右侧(不进入右半平面)。
分别绘制三种情况下的根轨迹图,在根轨迹图上确定控制器的相应参数;通过绘制对应的系统阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 和Kd 的变化情况。
自动控制原理实验报告答案
![自动控制原理实验报告答案](https://img.taocdn.com/s3/m/77a3de77777f5acfa1c7aa00b52acfc789eb9fbe.png)
自动控制原理实验报告答案实验报告
自动控制原理实验报告
实验目的:
1.掌握常见的系统传递函数及其特点。
2.了解PID控制器的结构、参数调节方法以及应用范围。
3.熟悉根轨迹和Nyquist稳定性判据,并能够应用这些方法进行控制系统设计。
实验器材:
1.计算机
2.控制系统实验装置
3.示波器
4.信号发生器
实验结果:
1.通过实验,我们得到了不同传递函数下的系统特性曲线,如
低通、高通、带通和带阻滤波器的频率响应曲线等。
2.在PID参数调节的实验中,我们学习了震荡法、根轨迹法、
频率法等方法,同时了解了实际的相应曲线特征和参数调节对系
统性能的影响。
3.在根轨迹方法实验中,我们通过手工计算和MATLAB仿真,掌握了如何绘制和分析控制系统的根轨迹图,并对掌握控制系统
稳定性提供了帮助。
4.通过Nyquist稳定性判据的实验,我们学会了如何分析控制系统的稳定性,如何设计系统的补偿器,并对控制系统的性能做出合理的分析和评价。
实验结论:
通过这次实验,我们深入了解了自动控制原理的基本原理、结构和特性,并通过实验学习了PID控制器调节参数的方法、如何设计控制系统的根轨迹和控制系统稳定性分析的方法。
同时,我们还练习了手工计算和MATLAB仿真的能力,为未来研究和实践中的控制系统设计提供了一定的帮助。
自控原理实验报告
![自控原理实验报告](https://img.taocdn.com/s3/m/12e19adbbdeb19e8b8f67c1cfad6195f312be8c4.png)
一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。
2. 掌握典型环节的数学模型及其在控制系统中的应用。
3. 熟悉控制系统的时间响应和频率响应分析方法。
4. 培养实验操作技能和数据处理能力。
二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。
本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。
2. 控制系统:开环控制系统和闭环控制系统。
3. 时间响应:阶跃响应、斜坡响应、正弦响应等。
4. 频率响应:幅频特性、相频特性等。
三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用示波器观察并记录各个环节的阶跃响应曲线。
- 分析并比较各个环节的阶跃响应曲线,得出结论。
2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。
- 分析并比较各个环节的频率响应特性,得出结论。
3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。
- 使用示波器观察并记录二阶系统的阶跃响应曲线。
- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。
4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。
- 使用示波器观察并记录系统的稳态响应曲线。
- 计算并分析系统的稳态误差。
五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。
- 积分环节:K=1,阶跃响应曲线如图2所示。
自动控制原理实训报告
![自动控制原理实训报告](https://img.taocdn.com/s3/m/d2bb4259cbaedd3383c4bb4cf7ec4afe04a1b128.png)
自动控制原理实训报告引言:自动控制原理是现代工程领域中的重要学科,它研究如何利用控制系统来实现对各种物理过程的自动化调节和控制。
本篇报告旨在总结和分析我在自动控制原理实训中所学到的知识和经验,并对实训过程中遇到的问题进行探讨和解决。
一、实训目的和背景自动控制原理实训的主要目的是通过实际操作和实验验证,加深对自动控制原理的理解和掌握。
通过实际操控控制系统,我们可以更好地理解控制系统的工作原理、参数调节和性能评估等方面的知识。
二、实训内容和步骤本次实训主要包括以下内容和步骤:1. 实验仪器和设备的介绍:我们首先了解了实验室中常用的控制系统实验仪器和设备,包括传感器、执行器、控制器等,并学习了它们的基本原理和使用方法。
2. 控制系统的建模与仿真:我们学习了如何将实际的物理过程建立数学模型,并利用仿真软件进行系统性能分析和优化设计。
3. PID控制器的调节:PID控制器是最常用的控制器之一,我们学习了PID控制器的原理和调节方法,并通过实验验证了不同参数对系统响应的影响。
4. 系统性能评估与优化:我们学习了如何评估控制系统的性能指标,如稳定性、快速性和抗干扰能力,并通过调节控制器参数来优化系统性能。
三、实训中遇到的问题及解决方法在实训过程中,我们遇到了一些问题,下面列举了其中的几个,并给出了解决方法:1. 问题一:系统响应不稳定。
解决方法:通过调节PID控制器的参数,如比例系数、积分时间和微分时间,来使系统响应稳定。
2. 问题二:系统响应过慢。
解决方法:增大比例系数和减小积分时间可以提高系统的响应速度。
3. 问题三:系统受到干扰时响应不稳定。
解决方法:通过增加微分时间和加入滤波器等方法,可以提高系统的抗干扰能力。
四、实训心得和体会通过这次自动控制原理实训,我深刻体会到了理论与实践的结合的重要性。
在实际操作中,我们不仅需要理解控制原理,还需要灵活运用所学知识解决实际问题。
此外,实训过程中的团队合作也是非常重要的,通过与同学们的合作,我们共同解决了许多实际问题,加深了对自动控制原理的理解。
自动控制原理实验报告
![自动控制原理实验报告](https://img.taocdn.com/s3/m/a2c728b1aeaad1f346933f76.png)
实验报告课程名称: 自动控制原理 实验项目: 典型环节的时域相应 实验地点: 自动控制实验室实验日期: 2017 年 3 月 22 日(5)理想与实际阶跃响应对照曲线: ① 取R0 = 200K ;R1 = 100K 。
② 取R0 = 200K ;R1 = 200K 。
2.积分环节 (I) (1)方框图(2)传递函数: TS S Ui S Uo 1)()(=(3)阶跃响应: )0(1)(≥=t t Tt Uo 其中 C R T 0=(4)模拟电路图(5) 理想与实际阶跃响应曲线对照: ① 取R0 = 200K ;C = 1uF 。
② 取R0 = 200K ;C = 2uF 。
3.比例积分环节 (PI) (1)方框图:模拟电路图:②取 R0=R1=200K ;C=2uF 。
+Uo10VU o(t)2 1U i(t ) 00 .tUo无穷U o(t)21U i(t )0 .2st理想阶跃响应曲线实测阶跃响应曲线① 取R0 = R2 = 100K ,R3 = 10K ,C = 1uF ;R1 = 100K 。
② 取R0=R2=100K ,R3=10K ,C=1uF ;R1=200K 。
6.比例积分微分环节 (PID) (1)方框图:(2)传递函数: (3)阶跃响应: (4)模拟电路图:Uo无穷U o(t)2 1U i(t )0 .4stUo10VUo(t)2 1U i(t )0 .4stKp+ U i(S)1 Ti S+U o(S)+ +Td S(5)理想与实际阶跃响应曲线对照:①取 R2 = R3 = 10K,R0 = 100K,C1 = C2 = 1uF;R1 = 100K。
②取 R2 = R3 = 10K,R0 = 100K,C1 = C2 = 1uF;R1 = 200K。
四、实验步骤及结果波形1.按所列举的比例环节的模拟电路图将线接好。
检查无误后开启设备电源。
2.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。
自动控制原理实验实训报告 .docx
![自动控制原理实验实训报告 .docx](https://img.taocdn.com/s3/m/310a371a905f804d2b160b4e767f5acfa1c783aa.png)
自动控制原理实验实训报告 .docx【导言】自动控制原理实验实训是控制科学与工程专业的必修课程,是学生进行理论学习与实践操作结合的一个重要环节。
本次实训学习了控制系统的基本概念、控制器的类型以及控制系统的建模和分析方法,并通过实现传感器数据采集、信号控制和反馈调节等操作,掌握了控制系统的工作原理和实现方式。
本报告将对本次实训中的实验操作、实验结果和实验体会进行详细记录和总结。
【实验操作】1.传感器场景仿真实验本实验通过MATLAB仿真软件,实现了对不同场景下传感器采集数据的比较分析。
实验过程中需要设置不同的传感器样本数据和处理方式,并利用MATLAB的数据处理工具对数据进行处理分析,从而得出传感器对于不同场景下数据采集的适用性和准确性。
2.直流电动机速度调节实验本实验通过实现电动机的速度控制,实现对电动机的运行状态的控制调节。
实验需要完成对AC220V电源、TG-01速度控制器以及直流电动机的连接和调试,并通过电动机的运行状态和速度,实现对控制器的参数设置和调节操作。
4.磁悬浮控制实验本实验实现了对磁悬浮平台的控制和调节,并通过数据反馈实现了对磁悬浮平台的稳定运行。
通过对控制器的参数调节和磁悬浮平台的反馈数据分析,加深了对磁悬浮控制原理的理解和掌握程度。
本次实验操作中,通过对控制器的操作和数据反馈的分析,加深了对自动控制的认识和掌握程度,提高了对控制系统的工作原理和实现方式的理解。
同时,实验操作中也存在一些问题和不足,例如实验操作过程的不稳定性和实验数据分析的不准确性等问题。
需要在今后的学习和实践中,加强对理论知识和实验操作技能的学习和掌握,提高实验操作的准确性和稳定性,从而更好地掌握自动控制原理的知识和技能。
自动控制原理实验报告分析
![自动控制原理实验报告分析](https://img.taocdn.com/s3/m/3e0ba8ff970590c69ec3d5bbfd0a79563c1ed439.png)
自动控制原理实验报告分析自动控制原理实验报告分析引言:自动控制原理是现代工程领域中的重要学科,它研究的是如何设计和实现能够自动调节和控制系统的方法和技术。
在本次实验中,我们通过搭建一个简单的控制系统,来深入了解自动控制原理的基本概念和应用。
实验目的:本次实验的主要目的是通过实际操作,掌握自动控制原理的基本原理和方法,包括PID控制器的调节和系统的稳定性分析。
实验过程:首先,我们搭建了一个简单的温度控制系统。
该系统由一个加热器、一个温度传感器和一个PID控制器组成。
我们通过调节PID控制器的参数,使得系统能够稳定地控制温度在一个设定值附近。
然后,我们进行了一系列的实验操作。
首先,我们调节了PID控制器的比例、积分和微分参数,观察系统的响应情况。
随后,我们分别增大和减小了设定温度值,观察系统的稳定性和响应速度。
最后,我们还对系统进行了干扰实验,通过给系统施加一个外部干扰,观察系统的抗干扰能力。
实验结果:通过实验,我们得到了一系列的实验结果。
首先,我们发现当PID控制器的比例参数过大时,系统会出现超调现象,温度会波动较大。
而当比例参数过小时,系统的响应速度会变慢,温度调节不及时。
接着,我们发现当积分参数过大时,系统会出现积分饱和现象,温度无法稳定。
而当积分参数过小时,系统的稳定性会变差,温度波动较大。
最后,我们发现当微分参数过大时,系统会对噪声产生较大的响应,温度调节不平稳。
而当微分参数过小时,系统的响应速度会变慢,温度调节不及时。
讨论与分析:通过对实验结果的分析,我们可以得出以下结论:PID控制器的参数调节对系统的稳定性和响应速度有着重要的影响。
比例参数决定了系统对误差的响应程度,积分参数决定了系统对误差的积累程度,微分参数决定了系统对误差变化率的响应程度。
因此,在实际应用中,我们需要根据系统的特点和要求,合理选择PID控制器的参数,以达到最佳的控制效果。
结论:通过本次实验,我们深入了解了自动控制原理的基本概念和应用。
《自动控制原理》实验报告讲述
![《自动控制原理》实验报告讲述](https://img.taocdn.com/s3/m/fe23340576a20029bc642d7c.png)
《自动控制原理》实验报告姓名:学号:班级:11电气1班专业:电气工程及其自动化学院:电气与信息工程学院2013年12月目录实验一、典型环节的模拟研究实验二、二阶系统的阶跃响应分析实验三、线性系统的稳态误差分析实验四、线性系统的频率响应分析实验一典型环节的模拟研究1.1 实验目的1、熟悉并掌握TD-ACS设备的使用方法及各典型环节模拟电路的构成方法。
2、熟悉各种典型环节的理想阶跃曲线和实际阶跃响应曲线。
3、了解参数变化对典型环节动态特性的影响。
1.2 实验设备PC机一台,TD-ACS实验系统一套。
1.3 实验原理及内容下面列出各典型环节的方框图、传递函数、模拟电路图、阶跃响应,实验前应熟悉了解。
1. 比例环节(P)(1) 方框图:如图1.1-1 所示。
图1.1-1(2) 传递函数:Uo(S)/Ui(S)=K(3) 阶跃响应:Uo(t)=K(t≥0)其中K=R1/R0(4) 模拟电路图:图1.1-2注意:图中运算放大器的正相输入端已经对地接了100K 的电阻,实验中不需要再接。
以后的实验中用到的运放也如此。
(5) 理想与实际阶跃响应对照曲线:①取R0 = 200K;R1 = 100K。
理想阶跃响应曲线实测阶跃响应曲线2.积分环节(I)(1) 方框图:如右图1.1-3 所示。
图1.1-3(2) 传递函数:错误!未找到引用源。
(3) 阶跃响应:Uo(t) = 错误!未找到引用源。
(t 0) 其中T=R0C(4) 模拟电路图:如图1.1-4 所示。
图1.1-4(5) 理想与实际阶跃响应曲线对照:①取R0 = 200K;C = 1uF。
3.比例积分环节(PI)(1)方框图:如图1.1-5 所示。
图1.1-5(2) 传递函数:错误!未找到引用源。
(3)阶跃响应:Uo(t)=K+t/T(t) (t 0) 其中K=Ri/Ro; T=RoC(4) 模拟电路图:见图1.1-6图1.1-6(5) 理想与实际阶跃响应曲线对照:①取R0 = R1 = 200K;C = 1uF。
自动控制原理实验报告(实验一,二,三)分析
![自动控制原理实验报告(实验一,二,三)分析](https://img.taocdn.com/s3/m/a90512d24693daef5ef73dd5.png)
自动控制原理实验报告实验名称:线性系统的时域分析线性系统的频域分析线性系统的校正与状态反馈班级:学号:姓名:指导老师:2013 年12 月15日典型环节的模拟研究一. 实验目的1.了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式2.观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响二.实验内容及步骤观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响.。
改变被测环节的各项电路参数,画出模拟电路图,阶跃响应曲线,观测结果,填入实验报告运行LABACT 程序,选择自动控制菜单下的线性系统的时域分析下的典型环节的模拟研究中的相应实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。
具体用法参见用户手册中的示波器部分1).观察比例环节的阶跃响应曲线典型比例环节模拟电路如图3-1-1所示。
图3-1-1 典型比例环节模拟电路传递函数:01(S)(S)(S)R R K KU U G i O === ; 单位阶跃响应: K )t (U = 实验步骤:注:‘S ST ’用短路套短接!(1)将函数发生器(B5)所产生的周期性矩形波信号(OUT ),作为系统的信号输入(Ui );该信号为零输出时,将自动对模拟电路锁零。
① 在显示与功能选择(D1)单元中,通过波形选择按键选中矩形波’(矩形波指示灯亮)。
② 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度>1秒(D1单元左显示)。
③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 4V (D1单元‘右显示)。
(2)构造模拟电路:按图3-1-1安置短路套及测孔联线,表如下。
(a )安置短路套 (b )测孔联线(3)运行、观察、记录:打开虚拟示波器的界面,点击开始,按下信号发生器(B1)阶跃信号按钮(0→+4V 阶跃),观测A5B 输出端(Uo )的实际响应曲线。
自动控制原理实验报告
![自动控制原理实验报告](https://img.taocdn.com/s3/m/901dce72b5daa58da0116c175f0e7cd1842518ca.png)
一、实验目的1. 理解自动控制原理的基本概念,掌握自动控制系统的组成和基本工作原理。
2. 熟悉自动控制实验设备,学会使用相关仪器进行实验操作。
3. 通过实验验证自动控制理论在实际系统中的应用,加深对理论知识的理解。
二、实验原理自动控制原理是研究自动控制系统动态过程及其控制规律的科学。
实验主要验证以下原理:1. 线性时不变系统:系统在任意时刻的输入与输出之间关系可用线性方程表示,且系统参数不随时间变化。
2. 稳定性:系统在受到扰动后,能够逐渐恢复到稳定状态。
3. 控制器设计:通过控制器的设计,使系统满足预定的性能指标。
三、实验设备1. 自动控制实验台2. 计算机及控制软件3. 测量仪器(如示波器、信号发生器、数据采集器等)四、实验内容1. 线性时不变系统阶跃响应实验2. 线性时不变系统频率响应实验3. 控制器设计实验五、实验步骤1. 线性时不变系统阶跃响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为阶跃信号,观察并记录输出信号;(3)分析阶跃响应曲线,计算系统动态性能指标。
2. 线性时不变系统频率响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为正弦信号,改变频率,观察并记录输出信号;(3)分析频率响应曲线,计算系统频率特性指标。
3. 控制器设计实验(1)根据系统性能指标,选择合适的控制器类型;(2)搭建实验电路,连接好相关仪器;(3)调整控制器参数,观察并记录输出信号;(4)分析控制器效果,验证系统性能指标。
六、实验结果与分析1. 线性时不变系统阶跃响应实验(1)实验结果:绘制阶跃响应曲线,计算系统动态性能指标;(2)分析:与理论值进行对比,验证系统动态性能。
2. 线性时不变系统频率响应实验(1)实验结果:绘制频率响应曲线,计算系统频率特性指标;(2)分析:与理论值进行对比,验证系统频率特性。
3. 控制器设计实验(1)实验结果:调整控制器参数,观察并记录输出信号;(2)分析:验证系统性能指标,评估控制器效果。
自动控制原理实验报告分析
![自动控制原理实验报告分析](https://img.taocdn.com/s3/m/cd241a385bcfa1c7aa00b52acfc789eb172d9ee3.png)
自动控制原理实验报告分析1. 引言自动控制原理是现代工程中非常重要的一门学科。
它研究如何设计和分析能够实现自动化控制的系统,以满足特定的性能要求。
通过实验,我们可以验证控制系统的性能,并深入理解自动控制原理的基本概念和工作原理。
本文将对自动控制原理实验进行详细分析和总结。
2. 实验目的本次实验的目的是研究PID(比例-积分-微分)控制器在温度控制系统中的应用。
通过调节PID控制器的参数,我们可以观察到不同控制参数对系统稳定性、响应速度和超调量等性能指标的影响。
3. 实验步骤本次实验使用了一个温度控制系统。
我们需要调节PID控制器的三个参数(比例增益、积分时间和微分时间)来实现温度的稳定控制。
具体的实验步骤如下:3.1 准备工作在进行实验之前,我们需要确保实验所需的设备和软件已经准备就绪。
这包括温度传感器、温度控制器、计算机等。
3.2 连接系统将温度传感器连接到温度控制器,并将温度控制器连接到计算机。
确保连接正确并稳定。
3.3 设置初始参数在实验开始前,我们需要设置PID控制器的初始参数。
一般情况下,我们可以先将比例增益和积分时间设置为较小的值,微分时间设置为0。
3.4 开始实验启动温度控制系统,并记录温度的变化。
观察温度的稳定性、响应速度和超调量等指标,并记录下来。
3.5 调节参数根据实验结果,我们可以调节PID控制器的参数来改善系统的性能。
通过增大比例增益可以提高系统的响应速度,但可能会导致较大的超调量。
增大积分时间可以减小超调量,但可能会降低系统的稳定性。
调节微分时间可以改善系统的稳定性和响应速度。
3.6 重复实验根据实验结果,我们可以不断调节PID控制器的参数,并进行多次实验,以得到更好的控制效果。
4. 实验结果分析根据实验的记录数据,我们可以对实验结果进行分析。
通过观察温度的变化曲线以及性能指标的大小,我们可以得出如下结论:•较大的比例增益可以提高系统的响应速度,但会导致较大的超调量。
•较大的积分时间可以减小超调量,但会降低系统的稳定性。
《自动控制原理》课程实验报告(范例)
![《自动控制原理》课程实验报告(范例)](https://img.taocdn.com/s3/m/e14c69e950e2524de5187e83.png)
《自动控制原理》课程实验报告姓名: 班级: 学号: 实验时间: 实验成绩: 一、 实验目的:1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。
2.通过响应曲线观测特征参量ζ和ωn 对二阶系统性能的影响。
3.熟练掌握系统的稳定性的判断方法。
二、 实验要求:1.根据实验步骤,写出调试好的MATLAB 语言程序,及对应的MATLAB 运算结果。
2.记录各种输出波形,根据实验结果分析参数变化对系统的影响。
3.总结判断闭环系统稳定的方法,说明增益K 对系统稳定性的影响。
三、 实验步骤:1.观察函数step( )函数和impulse( )的调用格式,假设系统的传递函数模型为146473)(2342++++++=s s s s s s s G ,可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。
2.对典型二阶系统2222)(nn ns s s G ωζωω++= 1)分别绘制出ωn =2(rad/s),ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响。
2)绘制出当ζ=0.25,ωn 分别取1,2,4,6时单位阶跃响应曲线,分析参数ωn 对系统的影响。
3.单位负反馈系统的开环模型为)256)(4)(2()(2++++=s s s s Ks G ,试判断系统的稳定性,并求出使得闭环系统稳定的K 值范围四、 实验结果与结论时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。
为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。
本次实验从分析系统的性能指标出发,给出了在MATLAB 环境下获取系统时域响应和分析系统的动态性能和稳态性能的方法。
1.用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s 的降幂排列写为两个数组num 、den 。
自动控制原理实验报告
![自动控制原理实验报告](https://img.taocdn.com/s3/m/03a9ab2c5627a5e9856a561252d380eb629423a9.png)
⾃动控制原理实验报告实验⼀典型环节的模拟研究及阶跃响应分析1、⽐例环节可知⽐例环节的传递函数为⼀个常数:当Kp 分别为0.5,1,2时,输⼊幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。
实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号,相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满⾜理论值。
2、积分环节积分环节传递函数为:(1)T=0.1(0.033)时,C=1µf (0.33µf ),利⽤MATLAB ,模拟阶跃信号输⼊下的输出信号如图: T=0.1 T=0.033与实验测得波形⽐较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满⾜理论条件。
3、惯性环节惯性环节传递函数为:if i o R RU U -=TS1CS R 1Z Z U U i i f i 0-=-=-=1TS K)s (R )s (C +-=K=R f /R 1,T=R f C,(1)保持K=R f /R 1=1不变,观测T= 0.1秒,0.01秒(既R 1=100K,C=1µf ,0.1µf )时的输出波形。
利⽤matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较⼤。
K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近。
T=0.01时t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3%由于ts 较⼩,所以读数时误差较⼤。
K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近(2)保持T=R f C= 0.1s 不变,分别观测K=1,2时的输出波形。
自动控制原理实习报告
![自动控制原理实习报告](https://img.taocdn.com/s3/m/42ae2b55eef9aef8941ea76e58fafab069dc44bd.png)
实习报告:自动控制原理实验一、实验背景及目的随着现代工业的快速发展,自动控制技术在各个领域中的应用越来越广泛。
自动控制原理实验是电气工程及其自动化专业的一门重要实践课程,旨在让学生了解和掌握自动控制理论的基本原理和方法,培养学生的动手能力和实际问题解决能力。
本次实验主要涉及电动调节阀和PID控制器的相关知识。
二、实验内容及步骤1. 电动调节阀篇(1)了解电动调节阀的结构特点和工作原理。
电动调节阀主要由电动执行器与调节阀阀体构成,通过接收工业自动化控制系统的信号,来驱动阀门改变阀芯和阀座之间的截面积大小,控制管道介质的流量、温度、压力等工艺参数,实现远程自动控制。
(2)学习电动调节阀的调节稳定性和调节性能。
电动调节阀具有调节稳定,调节性能好等特点。
其结构特点包括:伺服放大器采用深度动态负反馈,可提高自动调节精度;电动操作器有多种形式,可适用于4~20mA DC或0~10mA DC;可调节范围大,固有可调比为50,流量特性有直线和等百分比;电子型电动调节阀可直接由电流信号控制阀门开度,无需伺服放大器;阀体按流体力学原理设计的等截面低流阻流道,额定流量系数增大30%。
(3)了解电动调节阀的分类及适用场合。
电动调节阀一般可分为单座式和双座式结构。
电动单座式调节阀适用于对泄漏要求严格,阀前后压差低及有一定粘度和含纤维介质的工作场合;电动双座式调节阀具有不平衡力小,允许压差大,流通能力大等待点,适用于泄漏量要求不严格的场合。
2. PID控制器篇(1)了解PID控制器的组成及作用。
PID控制器由比例控制、积分控制和微分控制组成。
比例控制是利用输入信号和参考信号的偏差量来控制;微分控制是利用输入信号的变化频率来控制;积分控制是利用输入信号的积分量来控制。
PID控制器能够通过设置比例、积分和微分三种参数来调节系统输出。
(2)学习PID控制器的开发现状。
PID控制器自发明以来已有近70年的历史,其结构简单、稳定性好、运行可靠、调节方便,已成为工业控制技术中的领先技术之一。
自动控制原理实验报告
![自动控制原理实验报告](https://img.taocdn.com/s3/m/97999e9cfab069dc51220158.png)
自动控制原理实验报告 The document was finally revised on 2021自动控制原理实验报告实验一、典型环节的时域响应一.实验目的1.熟悉并掌握TD-ACC+(TD-ACS)设备的使用方法及各典型环节模拟控制电路的构成方法。
2.熟悉各种典型环节的理想阶跃曲线和实际阶跃响应曲线。
对比差异、分析原因。
3.了解参数变化对典型环节动态特性的影响。
二.实验设备PC机一台,TD-ACC+(TD-ACS)实验系统一套。
三.实验内容1.比例环节2.积分环节3.比例积分环节4.惯性环节5.比例微分环节6.比例积分微分环节四、实验感想在本次实验后,我了解了典型环节的时域响应方面的知识,并且通过实践,实现了时域响应相关的操作,感受到了实验成功的喜悦。
实验二、线性系统的矫正一、目的要求1.掌握系统校正的方法,重点了解串联校正。
2.根据期望的时域性能指标推导出二阶系统的串联校正环节的传递函数二、仪器设备PC 机一台,TD-ACC+(或 TD-ACS)教学实验系统一套。
三、原理简述所谓校正就是指在使系统特性发生变接方式,可分为:馈回路之内采用的测点之后和放1.原系统的结构框图及性能指标对应的模拟电路图2.期望校正后系统的性能指标3.串联校正环节的理论推导四、实验现象分析校正前:校正后:校正前:校正后:六、实验心得次实验让我进一步熟悉了TD-ACC+实验系统的使用,进一步学习了虚拟仪器,更加深入地学习了自动控制原理,更加牢固地掌握了相关理论知识,激发了我理论学习的兴趣。
实验三、线性系统的频率响应分析一、实验目的1.掌握波特图的绘制方法及由波特图来确定系统开环传函。
2.掌握实验方法测量系统的波特图。
二、实验设备PC机一台,TD-ACC+系列教学实验系统一套。
三、实验原理及内容(一)实验原理1.频率特性当输入正弦信号时,线性系统的稳态响应具有随频率(ω由0变至∞)而变化的特性。
频率响应法的基本思想是:尽管控制系统的输入信号不是正弦函数,而是其它形式的周期函数或非周期函数,但是,实际上的周期信号,都能满足狄利克莱条件,可以用富氏级数展开为各种谐波分量;而非周期信号也可以使用富氏积分表示为连续的频谱函数。
自动控制原理实验报告(自动化专业电子版)
![自动控制原理实验报告(自动化专业电子版)](https://img.taocdn.com/s3/m/4575bf6d43323968011c92da.png)
精心整理自动控制原理实验报告课程编号:ME3121023专业班级实验目的和要求:通过自动控制原理实验牢固地掌握《自动控制原理》课的基本分析方法和实验测试手段。
能应用运算放大器建立各种控制系统的数学模型,掌握系统校正的常用方法,掌握系统性能指标同系统结构和参数之间的基本关系。
通过大量实验,提高动手、动脑、理论结合实际的能力,提高从事数据采集与调试的能力,为构建系统打下坚实的基础。
一、12341分环节和比例积分微分环节。
2、在阶跃输入信号作用下,记录各环节的输出波形,写出输入输出之间的时域数学关系。
3、在运算放大器上实现各环节的参数变化。
(三)、实验要求:1、仔细阅读自动控制实验装置布局图和计算机虚拟测量软件的使用说明书。
2、做好预习,根据实验内容中的原理图及相应参数,写出其传递函数的表达式,并计算各典型环节的时域输出响应和相应参数(K、T)。
3、分别画出各典型环节的理论波形。
5、输入阶跃信号,测量各典型环节的输入和输出波形及相关参数。
(四)、实验原理:实验原理及实验设计:1.2.3.时域输出响应:4.比例积分环节:Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:5.比例微分环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:6.123、123的原因。
(七)、记录实验数据:、实测实验二二阶系统的性能研究(一)、实验目的:通过实验加深理解二阶系统的性能指标同系统参数的关系。
(二)、实验内容:1、二阶系统的时域动态性能研究;(三)、实验要求:1、做好预习,根据实验原理图所示相应参数,写出系统的开环,闭环传递函数。
(八)、思考与讨论:将实验结果与理论知识作对比,并进行讨论。
实验三系统时域分析实验(一)、实验目的:1、深入掌握二阶系统的性能指标同系统闭环极点位置的关系。
2、掌握高阶系统性能指标的估算方法及开环零、极点同闭环零、极点的关系。
3、能运用根轨迹分析法由开环零极点的位置确定闭环零极点的位置。
自动控制原理-实验报告
![自动控制原理-实验报告](https://img.taocdn.com/s3/m/37c0ca22011ca300a7c39038.png)
《自动控制原理》实验报告姓名:学号:班级:指导老师:学院:日期: 2015年1月6日实验一 时域分析法一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步掌握线性系统的MATLAB 表示。
2.熟练掌握step( )函数,研究线性系统在单位阶跃作用下的响应。
3.熟练掌握系统的稳定性的判断方法。
4.熟练掌握系统稳态误差的求法。
二、实验内容与结果分析(一)已知 1、求G1G2串联的等效传递函数并显示;解:(1)所使用函数为:series( )格式:[num ,den]= series(num1,den1,num2,den2)num1和den1是传递函数G1(s)的分子和分母多项式的系数。
num2和den2是传递函数G2(s)的分子和分母多项式的系数。
返回值num 和den 是传递函数G(s)= G1(s)·G2(s)的分子和分母多项式的系数。
功能:实现两个环节的串联。
(2)生成传递函数G1和G2:命令行输入:>> G1=tf([1],[1,1])G1 =1-----s + 1Continuous-time transfer function.>> G2=tf([1],[1,2])11G (s ),s 1=+21G (s )s 2=+G2 =1-----s + 2Continuous-time transfer function.(3)实现两个传递函数的环节的串联:>> G3=series(G1,G2)G3 =1-------------s^2 + 3 s + 2Continuous-time transfer function.2、求G1G2并联的等效传递函数并显示;(1)所使用函数为:●parallel( )格式:[num,den]= parallel(num1,den1,num2,den2)返回值num和den是G(s)=G1(s)+G2(s)的分子和分母多项式的系数。
武汉大学《自动控制原理》实验报告
![武汉大学《自动控制原理》实验报告](https://img.taocdn.com/s3/m/1283bf55b7360b4c2e3f64c5.png)
2016~2017学年第一学期《自动控制原理》实验报告年级:2014级班号:姓名:He 学号:成绩:教师:实验设备及编号:实验同组人名单:实验地点:电气工程学院自动控制原理实验室实验时间:2016年10月目录:实验一典型环节的电路模拟 (3)一、实验目的 (3)二、实验内容 (3)三、实验电路图及参数 (3)四、实验分析 (10)五、实验思考题 (11)实验二二阶系统的瞬态响应 (12)一、实验目的 (12)二、实验设备 (12)三、实验电路图及其传递函数 (12)四、实验结果及相应参数 (14)五、实验分析 (16)六、实验思考题 (16)实验五典型环节和系统频率特性的测量 (17)一、实验目的 (17)二、实验设备 (17)三、传递函数.模拟电路图及波特图 (17)四、实验思考题 (22)实验六线性定常系统的串联校正 (24)一、实验目的 (24)二、实验设备 (24)三、实验电路图及其实验结果 (24)四、实验分析 (28)五、实验思考题 (28)实验七单闭环直流调速系统 (29)一、实验目的 (29)二、实验设备 (29)三、PID参数记录表及其对应图像 (30)四、PID控制参数对直流电机运行的影响 (37)实验一典型环节的电路模拟一、实验目的1.熟悉THKKL-B 型模块化自控原理实验系统及“自控原理软件”的使用;2.熟悉各典型环节的阶跃响应特性及其电路模拟;3.测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。
二、实验内容1.设计并组建各典型环节的模拟电路;2.测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响。
三、实验电路图及参数1.比例(P)环节比例环节的特点是输出不失真、不延迟、成比例地复现输出信号的变化。
它的传递函数与方框图分别为:图1-1 比例环节的模拟电路图中后一个单元为反相器,其中R0=200k。
当U i(S)输入端输入一个单位阶跃信号,且比例系数为K 时的响应曲线如图1-2 所示。
自动控制原理_实验报告
![自动控制原理_实验报告](https://img.taocdn.com/s3/m/bb8fd8b7541810a6f524ccbff121dd36a32dc48e.png)
一、实验目的1. 理解自动控制系统的基本概念和组成;2. 掌握典型环节的传递函数和响应特性;3. 熟悉PID控制器的原理和参数整定方法;4. 通过实验验证理论知识的正确性,提高实际操作能力。
二、实验设备1. 自动控制原理实验箱;2. 示波器;3. 数字多用表;4. 个人电脑;5. 实验指导书。
三、实验原理自动控制系统是一种根据给定输入信号自动调节输出信号的系统。
它主要由控制器、被控对象和反馈环节组成。
控制器根据被控对象的输出信号与给定信号的偏差,通过调节控制器的输出信号来改变被控对象的输入信号,从而实现对被控对象的控制。
1. 典型环节(1)比例环节:比例环节的传递函数为G(s) = K,其中K为比例系数。
比例环节的响应特性为输出信号与输入信号成线性关系。
(2)积分环节:积分环节的传递函数为G(s) = 1/s,其中s为复频域变量。
积分环节的响应特性为输出信号随时间逐渐逼近输入信号。
(3)比例积分环节:比例积分环节的传递函数为G(s) = K(1 + 1/s),其中K为比例系数。
比例积分环节的响应特性为输出信号在比例环节的基础上,逐渐逼近输入信号。
2. PID控制器PID控制器是一种常用的控制器,其传递函数为G(s) = Kp + Ki/s + Kd(s/s^2),其中Kp、Ki、Kd分别为比例系数、积分系数和微分系数。
PID控制器可以实现对系统的快速、稳定和精确控制。
四、实验内容及步骤1. 实验一:典型环节的阶跃响应(1)搭建比例环节电路,观察并记录输出信号随时间的变化曲线;(2)搭建积分环节电路,观察并记录输出信号随时间的变化曲线;(3)搭建比例积分环节电路,观察并记录输出信号随时间的变化曲线。
2. 实验二:PID控制器参数整定(1)搭建PID控制器电路,观察并记录输出信号随时间的变化曲线;(2)通过改变PID控制器参数,观察并分析系统响应特性;(3)根据系统响应特性,整定PID控制器参数,使系统达到期望的响应特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016~2017学年第一学期《自动控制原理》实验报告年级:2014级班号:姓名:He 学号:成绩:教师:实验设备及编号:实验同组人名单:实验地点:电气工程学院自动控制原理实验室实验时间:2016年10月目录:实验一典型环节的电路模拟 (3)一、实验目的 (3)二、实验内容 (3)三、实验电路图及参数 (3)四、实验分析 (10)五、实验思考题 (11)实验二二阶系统的瞬态响应 (12)一、实验目的 (12)二、实验设备 (12)三、实验电路图及其传递函数 (12)四、实验结果及相应参数 (14)五、实验分析 (16)六、实验思考题 (16)实验五典型环节和系统频率特性的测量 (17)一、实验目的 (17)二、实验设备 (17)三、传递函数.模拟电路图及波特图 (17)四、实验思考题 (22)实验六线性定常系统的串联校正 (24)一、实验目的 (24)二、实验设备 (24)三、实验电路图及其实验结果 (24)四、实验分析 (28)五、实验思考题 (28)实验七单闭环直流调速系统 (29)一、实验目的 (29)二、实验设备 (29)三、PID参数记录表及其对应图像 (30)四、PID控制参数对直流电机运行的影响 (37)实验一典型环节的电路模拟一、实验目的1.熟悉THKKL-B 型模块化自控原理实验系统及“自控原理软件”的使用;2.熟悉各典型环节的阶跃响应特性及其电路模拟;3.测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。
二、实验内容1.设计并组建各典型环节的模拟电路;2.测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响。
三、实验电路图及参数1.比例(P)环节比例环节的特点是输出不失真、不延迟、成比例地复现输出信号的变化。
它的传递函数与方框图分别为:图1-1 比例环节的模拟电路图中后一个单元为反相器,其中R0=200k。
当U i(S)输入端输入一个单位阶跃信号,且比例系数为K 时的响应曲线如图1-2 所示。
若比例系数K=1 时,电路中的参数取:R1=100k,R2=100k。
若比例系数K=2 时,电路中的参数取:R1=100k,R2=200k。
图1-2 比例环节的响应曲线2.积分(I)环节积分环节的输出量与其输入量对时间的积分成正比。
它的传递函数与方框图分别为:根据积分环节的方框图,用CT01实验模块组建相应的模拟电路,如图1-9 所示。
图1-3 积分环节的模拟电路图中后一个单元为反相器,其中R0=200k。
设U i(S)为一单位阶跃信号,当积分系数为T 时的响应曲线如图1-4 所示。
若积分时间常数T=1s 时,电路中的参数取:R=100k,C=10uF(T=RC=100k×10uF=1s);若积分时间常数T=0.1s 时,电路中的参数取:R=100k,C=1uF(T=RC=100k×1uF=0.1s);图1-4 积分环节的响应曲线3.比例积分(PI)环节比例积分环节的传递函数与方框图分别为:其中T=R2C,K=R2/R1根据比例积分环节的方框图,用CT01实验模块组建相应的模拟电路,如图1-10 所示。
图1-5 比例积分环节的模拟电路图中后一个单元为反相器,其中R0=200k。
注:通过改变R2、R1、C 的值可改变比例积分环节的放大系数K 和积分时间常数T。
设U i(S)为一单位阶跃信号,图1-4 示出了比例系数(K)为1、积分系数为T 时的PI 输出响应曲线。
若取比例系数K=1、积分时间常数T=1s 时,电路中的参数取:R1=100k,R2=100k,C=10uF(K= R2/ R1=1,T=R2C=100k×10uF=1s);若取比例系数K=1、积分时间常数T=0.1s时,电路中的参数取:R1=100k,R2=100k,C=1uF(K= R2/ R1=1,T=R2C=100k×1uF=0.1s)。
图1-6 比例积分环节的响应曲线4.比例微分(PD)环节比例微分环节的传递函数与方框图分别为:根据比例微分环节的方框图,用CT01实验模块组建相应的模拟电路,如图1-11 所示。
图1-7 比例微分环节的模拟电路图中后一个单元为反相器,其中R0=200k。
若比例系数K=1、微分时间常数T=1s 时,电路中的参数取:R1=100k,R2=100k,C=10uF(K= R2/ R1=1,T=R1C=100k×10uF=1s);若比例系数K=1、微分时间常数T=0.1s 时,电路中的参数取:R1=100k,R2=100k,C=1uF(K= R2/ R1=1,T=R1C=100k×1uF=0.1s);图1-8 比例微分环节的响应曲线5.比例积分微分(PID)环节比例积分微分(PID)环节的传递函数与方框图分别为:R1C2R1C2S 设U i(S)为一单位阶跃信号.比例积分微分(PID)环节根据比例积分微分环节的方框图,用CT01实验模块组建相应的模拟电路,如图1-9 所示。
图1-9 比例积分微分环节的模拟电路图中后一个单元为反相器,其中R0=200k。
若比例系数K=2、积分时间常数T I =0.1s、微分时间常数T D =0.1s 时,电路中的参数取:R1=100k,R2=100k,C1=1uF、C2=1uF (K= (R1 C1+ R2 C2)/ R1 C2=2,T I=R1C2=100k×1uF=0.1s,T D=R2C1=100k×1uF=0.1s);若比例系数K=1.1、积分时间常数T I =1s、微分时间常数T D =0.1s 时,电路中的参数取:R1=100k,R2=100k,C1=1uF、C2=10uF (K= (R1 C1+ R2 C2)/ R1 C2=1.1,T I=R1C2=100k×10uF=1s,T D=R2C1=100k×1uF=0.1s);图1-10PID 环节的响应曲线6.惯性环节惯性环节的传递函数与方框图分别为:惯性环节根据惯性环节的方框图,用CT01实验模块组建相应的模拟电路,如图1-13 所示。
图1-11 惯性环节的模拟电路图中后一个单元为反相器,其中R0=200k。
通过改变R2、R1、C 的值可改变惯性环节的放大系数K 和时间常数T。
若比例系数K=1、时间常数T=1s 时,电路中的参数取:R1=100k,R2=100k,C=10uF(K= R2/ R1=1,T=R2C=100k×10uF=1s)。
若比例系数K=1、时间常数T=0.1s 时,电路中的参数取:R1=100k,R2=100k,C=1uF(K= R2/ R1=1,T=R2C=100k×1uF=0.1s)。
图1-12 惯性环节的响应曲线四、实验分析一介系统各典型环节电路参数对环节特性有什么影响?1、比例环节:输出量不失真,无惯性地跟着输入量变化,而且两者成比例关系;2、惯性环节:由于惯性环节中含有一个储能原件,当输入量突然变化时,输出量不能跟着变化,而是按指数规律变化;3、积分环节:只要有一个恒定的输入量作用于积分环节,其输出量就与时间成正比地无限增加。
(输出量取决于输入量对时间的积累,输入量作用一段时间后,即使输入量变化,输出量仍会保持在已达到的数值);4、微分环节:理想微分环节的输出与输入量的变化速度成正比,在阶跃输入作用下的输出响应为一理想脉冲(实际上无法实现)。
五、实验思考题1.用运放模拟典型环节时,其传递函数是在什么假设条件下近似导出的?(1)假定运放具有理想特性,即满足“虚短”“虚断”特性(2)运放的静态量为零,个输入量、输出量和反馈量都可以用瞬时值表示其动态变化.2.积分环节和惯性环节主要差别是什么?在什么条件下,惯性环节可以近似地视为积分环节?而又在什么条件下,惯性环节可以近似地视为比例环节?答:惯性环节的特点是,当输入x(t)作阶跃变化时,输出y(t)不能立刻达到稳态值,瞬态输出以指数规律变化.而积分环节,当输入为单位阶跃信号时,输出为输入对时间的积分,输出y(t)随时间呈直线增长. 当t趋于无穷大时,惯性环节可以近似地视为积分环节,当t趋于0时,惯性环节可以近似地视为比例环节.3.在积分环节和惯性环节实验中,如何根据单位阶跃响应曲线的波形,确定积分环节和惯性环节的时间常数?答:对积分环节,积分时间常数T的数值等于输出信号变化到与输入信号的阶跃变化量相等时所经过的一段时间。
在单位阶跃响应曲线上就能确定;对惯性环节,时间常数T就是当输入信号为阶跃函数时,输出信号以起始速度变化到最后平衡值所需的时间。
从单位阶跃响应曲线的起始点做切线与最后平衡值相交,则起始点到此交点所经历的时间就是惯性环节的时间常数T。
4.为什么实验中实际曲线与理论曲线有一定误差?答:选择的电子元器件,输入输出曲线,不可能像理论那样的线性,再加上元器件都有温度特性曲线.器件参数都有误差.综合起来,电路模拟实验中实际曲线和理论曲线有一定的误差是正常的.5.为什么PD 实验在稳定状态时曲线有小范围的振荡?答:因为积分环节对稳定曲线的外在扰动比较敏感。
实验二二阶系统的瞬态响应一、实验目的1.通过实验了解参数(阻尼比)(阻尼自然频率)的变化对二阶系统动态性能的影响;2.掌握二阶系统动态性能的测试方法。
二、实验设备1.THKKL-B 型模块化自控原理实验系统实验平台,实验模块CT02;2.PC 机一台(含上位机软件);3.USB 接口线。
三、实验电路图及其传递函数1.二阶系统的瞬态响应用二阶常微分方程描述的系统,称为二阶系统,其标准形式的闭环传递函数为针对不同的值,特征根会出现下列三种情况:图2-1 二阶系统的动态响应曲线虽然当=1 或>1 时,系统的阶跃响应无超调产生,但这种响应的动态过程太缓慢,故控制工程上常采用欠阻尼的二阶系统,一般取=0.6~0.7,此时系统的动态响应过程不仅快速,而且超调量也小。
2.二阶系统的典型结构典型的二阶系统结构方框图和模拟电路图如2-2、如2-3 所示。
图2-2 二阶系统的方框图图2-3 二阶系统的模拟电路图电路参考单元为:通用单元1、通用单元2、通用单元3、反相器单元、电位器组由图2-2可得其开环传递函数为:四、实验结果及相应参数1.值一定时,图2-3 中取C=1uF,R=100k(此时=10),Rx 阻值可调范围为0~470k。
系统输入一单位阶跃信号,在下列几种情况下,用上位机软件观测并记录不同值时的实验曲线。
(1) 当可调电位器R X=250k 时,=0.2,系统处于欠阻尼状态,其超调量为53%左右;(2)若可调电位器R X=70.7k 时,=0.707,系统处于欠阻尼状态,其超调量为4.3%左右;(3)若可调电位器R X=50k 时,=1,系统处于临界阻尼状态;(4)若可调电位器R X=25k 时,=2,系统处于过阻尼状态。