第三章应用光学

合集下载

应用光学【第三章】第二部分

应用光学【第三章】第二部分

应用光学讲稿

光阑概念
1、孔径光阑(Aperture Stop)
限制进入光学系统光束口径的光阑。限制光束最厉 害的光阑。 2、视场光阑(Field Stop)
限制成像范围的光阑 底片框 3、消杂光光阑(False Light Stop)
消除杂散光的光阑
应用光学讲稿
三 渐晕
由于轴外点斜光束宽度比轴上点光束宽度小,使 像平面边缘比中心暗的现象称为“渐晕”。 线渐晕系数
应用光学讲稿
§3-5-4 场镜的特性及其应用
一、场镜的作用
F目
物镜
目镜
应用光学讲稿
F´物 物镜 场镜 目镜
场镜的作用:在不改变光学系统成像特性的前 提下,改变成像光束的位置。
应用光学讲稿 二、应用举例:
O1 物镜
O2
-L
场镜

目镜
应用光学讲稿 三、场镜焦距的计算
O1
O2 -l 场镜 l´
物镜
应用光学讲稿
§3-5 光学系统中成像光束的选择
引入
F
H
H’
F’
应用光学稿
1. 成像光束的大小
D
2. 成像光束的位置
D1 D2
应用光学讲稿
§3-5-1 光阑及其作用
一 照相机的构造
镜头:起成像作用
底片:感光部分
光阑:限制成像光束,可
变光阑
光学系统中,不论是限制成像光束口径大小还是 限制成像范围的孔或框都称为“光阑”。
景深与相对孔径成反比。
视放大率: Г =6 成像范围(视场角):2ω =8°30’ 出瞳直径: D´=5mm
出瞳距离:
物镜焦距: 目镜焦距:
l´z≥11mm

应用光学课件-PPT

应用光学课件-PPT
4)若视阑为长方形或正方形,其线视场按对角线计算。
5)入射窗、出射窗、视阑之间得相互共轭关系。
大家应该也有点累了,稍作休息
大家有疑问得,可以询问与交流
10
例:有一光学系统,透镜O1、O2得口径D1=D2=50mm,焦距 f1′= f2′=150mm,两透镜间隔为300mm,并在中间置一光 孔O3,口径D3=20mm,透镜O2右侧150mm处再置一光孔O4,口 径D4=40mm,平面物体处于透镜O1左侧150mm处。求该系统 得孔径光阑、入瞳、出瞳、视场光阑、入窗、出窗得位 置与大小。
两正薄透镜组L1与L2得焦距分别为100mm与50mm,通光口径 分别为60mm与30mm,两透镜之间得间隔为50mm,在透镜L2之 前30mm处放置直径为40mm得光阑,问 1)当物体在无穷远处时,孔径光阑为哪个? 2)当物体在L1前方300mm处时,孔径光阑为哪个?
4、说明: 1)物体位置改变,原孔阑可能失去控制轴上点孔径角得作用,要重复上述 三个步骤确定孔阑。
工具显微镜中(β 准确)被测物得像与刻度尺相比较,可测物之长度。
物体不论处于何位 置,发出得主光线 都不随物体位置得 移动而变化;读出 刻尺面上光斑得中 心示值,即可求出 准确得象高。
三、 象方远心光路
1、 概念: 某些大地测量仪器或投影仪器中,为了消除像平面与标尺分划刻
线面不重合而引起得测量误差,在物镜得物方焦平面上加入一个光 阑作为孔径光阑,出瞳则位于像方无穷远,称为“像方远心光路”。 2、 应用:
3)物点在无限远时,各光孔像中,直径最小者即为入瞳。入瞳对应得实际 光孔即为孔径光阑。
例:有两个薄透镜L1与L2 ,焦距分别为90mm与30mm,孔径分 别为60mm与40mm,相隔50mm,在两透镜之间,离L2为 20mm处放置一直径为10mm得圆光阑,试对L1前120mm处 得轴上物点求孔阑、入瞳、出瞳得位置与大小。

应用光学各章知识点归纳

应用光学各章知识点归纳

第一章 几何光学基本定律与成像概念波面:某一时刻其振动位相相同的点所构成的等相位面称为波阵面,简称波面。

光的传播即为光波波阵面的传播,与波面对应的法线束就是光束。

波前:某一瞬间波动所到达的位置。

光线的四个传播定律:1)直线传播定律:在各向同性的均匀透明介质中,光沿直线传播,相关自然现象有:日月食,小孔成像等。

2)独立传播定律:从不同的光源发出的互相独立的光线以不同方向相交于空间介质中的某点时彼此不影响,各光线独立传播。

3)反射定律:入射光线、法线和反射光线在同一平面内,入射光线和反射光线在法线的两侧,反射角等于入射角。

4)折射定律:入射光线、法线和折射光线在同一平面内;入射光线和折射光线在法线的两侧,入射角和折射角正弦之比等于折射光线所在的介质与入射光线所在的介质的折射率之比,即nn I I ''sin sin = 光路可逆:光沿着原来的反射(折射)光线的方向射到媒质表面,必定会逆着原来的入射方向反射(折射)出媒质的性质。

光程:光在介质中传播的几何路程S 和介质折射率n 的乘积。

各向同性介质:光学介质的光学性质不随方向而改变。

各向异性介质:单晶体(双折射现象)马吕斯定律:光束在各向同性的均匀介质中传播时,始终保持着与波面的正交性,并且入射波面与出射波面对应点之间的光程均为定值。

费马原理:光总是沿光程为极小,极大,或常量的路径传播。

全反射临界角:12arcsinn n C = 全反射条件:1)光线从光密介质向光疏介质入射。

2)入射角大于临界角。

共轴光学系统:光学系统中各个光学元件表面曲率中心在一条直线上。

物点/像点:物/像光束的交点。

实物/实像点:实际光线的汇聚点。

虚物/虚像点:由光线延长线构成的成像点。

共轭:物经过光学系统后与像的对应关系。

(A ,A ’的对称性)完善成像:任何一个物点发出的全部光线,通过光学系统后,仍然聚交于同一点。

每一个物点都对应唯一的像点。

理想成像条件:物点和像点之间所有光线为等光程。

应用光学第二,三章ppt课件

应用光学第二,三章ppt课件

r d 2 2
r d 1 3
14. 假定显微镜物镜由相隔20mm的两个薄透镜组 构成,物平面和像平面之间的距离为180mm, 放大率β=-10×,要求近轴光线通过二透镜组时 的偏角Δu1和Δu2相等,求二透镜 组的焦距。 解:
' u u u 1 1 1
' u u u 2 2 2
应用视度公式就可以了
1 1 SD 1 l 1
注意符号,这里是-1
3、假定用眼睛直接观察敌人的坦克时,可以在400m的距离上看清
坦克上的编号,如果要求距离2km也能看清,问应使用几倍的望远镜 ?
l ' 36 . 12 m
若 l'50 m
l ' 1 1 1 300 l l ' l f '
3 50 10 f' 166 . 11 mm 301
16. 一个投影仪用5×的投影物镜,当像平面与投影屏不重合而
外伸10mm时,则须移动物镜使其重合,试问物镜此时应向 物平面移动还是向像平面移动?移动距离多少?
x 8 m x ' 0 . 703 mm
x 6 m x ' 0 . 9375 mm
x 4 m x ' 1 . 406 mm
x 2 m x ' 2 . 813 mm
7. 设一物体对正透镜成像,其垂轴放大率等于-1,
试求物平面与像平面的位置,并用作图法验证。
ห้องสมุดไป่ตู้
解:
2 2 dx 5 25
dx ' 25 dx
dx ' 10 dx ' 10

应用光学第二版胡玉禧课件第3章

应用光学第二版胡玉禧课件第3章

r = ∞
l ' = −l
即像与物相对于平面镜来说是对称的。(性质1)
第三章 平面零件成像
②放大率公式:
即物像大小一致,且成正像。但左右相反。(性质2)
第三章 平面零件成像
3、镜像与一致像 1)所谓镜像是指物体经平面反射镜成像时,像和物大小 相等形状不同,若物为右手坐标,像为左手坐标,这种 像称为镜像。见图3.10 特点:像与物上、下同向,但左右却颠倒,它可通过奇 数次反射得到。 2)一致像:物为右手坐标, y′
I1 I1′ o2 I2 I2′ o1
α
N M
α
图 3.12
β
第三章 平面零件成像
红旗渠最长的隧道——曙 光洞的施工,利用平面反 射镜将太阳光反射照明; 自行车尾灯——偶镜, 三对偶镜构成的角反射器。
第三章 平面零件成像
潜望镜
第三章 平面零件成像
例2.(补充题) 一光学系统由一透镜和平面镜组成,如图。平面镜MM与透 镜光轴交于D点,透镜前方离平面镜600mm处有一问题AB, 经过透镜和平面镜后,所成虚像A"B"至平面镜的距离为 150mm,且像高为物高的一 半,试分析透镜焦距的正 负,确定透镜的位置和焦 距,并画出光路图。
1、术语 ①偏向角:入射光线与出射光线的夹角。 ②折射棱:二个折射面的交线叫棱。 I ③折射角:二个折射面之间的夹角。 ④主截面:垂直于折射棱的平面。 B 2、最小偏向角δm 偏向角公式:
1
δ
C
图 3.2
(3.6)
第三章 平面零件成像
可见,偏向角δ的大小与折射角α、棱镜折射率n、入射角 I1有关,对于某一棱镜而言,其n, α是一定值,此时只有 一个变量就是I1 ,每给一个I1就有一个δ , I1不同, δ也不 同, 是个变量。称δ为最小值时的这个偏向角为最小偏向 当δ为最小偏向角时,它具有如下特点:即: I1 =- I2′, I1′=- I2, 当将I1 =- I2′, I1′=- I2 , 代入到偏向角公式时,可得到: (3.7) 角 δ m。

(应用光学)第三章.眼睛及目视光学系统

(应用光学)第三章.眼睛及目视光学系统

畸变
畸变
畸变是目视光学系统成像的一种 失真现象,表现为图像的几何形 状发生变化。畸变分为桶形畸变
和枕形畸变两种类型。
畸变的测量
畸变的测量通常采用畸变系数, 即实际图像与理想图像的几何形 状差异的比例。畸变系数越大,
畸变越严重。
畸变的影响因素
影响畸变的因素包括光学系统的 设计、镜片质量、制造误差等。
望远镜
用于观察远距离物体的目 视光学系统,通常具有较 大的视场和较长的焦距。
摄影镜头
用于拍摄照片的目视光学 系统,通常具有较高的成 像质量。
目视光学系统的基本参数
焦距
目视光学系统的焦距是指 物镜与目镜之间的距离, 决定了系统的放大倍数和 观察距离。
视场
目视光学系统的视场是指 物镜所能够覆盖的视野范 围,决定了观察者能够看 到的物体范围。
眼镜广泛应用于人们的日常生活和工 作,是矫正视力缺陷、保护眼睛健康 的重要工具。
摄影镜头
摄影镜头是一种将景物光线聚焦在感光材料上的目视光学仪器,能够将景物拍摄 成照片。
摄影镜头广泛应用于新闻报道、广告、电影和摄影等领域,为人们提供了记录和 分享美好瞬间的工具。
04
目视光学系统的性能评价
分辨率
分辨率
对比度
对比度
对比度是衡量目视光学系统区分 明暗变化的能力的指标。对比度 越高,光学系统呈现的图像明暗
差异越大,细节越丰富。
对比度的公式
对比度通常用公式表示为"明暗区 域的亮度比值"。比值越大,对比 度越高。
对比度的影响因素
影响对比度的因素包括光学系统的 透过率、反射率、像差等。优化这 些因素可以提高光学系统的对比度。
分辨率
目视光学系统的分辨率是 指系统能够分辨的最小细 节程度,通常以线对数表 示。

(应用光学)第三章.眼睛及目视光学系统

(应用光学)第三章.眼睛及目视光学系统
应用光学(第四版)
3 人眼及其光学系统
已知显微镜的视放大率为-300,目镜焦距为20mm,求显微镜物镜 的倍率。若人眼的视角分辨率为60’’ ,则用该显微镜能分辨的两物点 的最小距离是多少?

250
f目'
=物目
300

250 20

24
tan 仪 =
y' f目'
物 24
y' y
tan 60''
明视距离: 眼睛前方250mm 距离处,SD=(1 / (-0.25))= -4 近点距离: 眼睛通过调节能看清物体的最短距离. 远点距离: 眼睛能看清物体的最远距离 最大调节范围 = 近点视度 – 远点视度
应用光学(第四版)
3 人眼及其光学系统 不同年龄段正常的人眼调节能力
年龄 10 15 20 25 30 35 40 45 50
'
r'
0.61 n'sin U 'max
0.61 n'(D / 2R)
1.22R n'D
应用光学(第四版)
3 人眼及其光学系统
'
0.61 n'sin U 'max
1.22R n'D
当满足小角度时,sinU'max=tanU'max=U'max
'
0.61 n'sin U 'max
0.61 n’u '
最大调节范围/视度 -14 -12 -10 -7.8 -7.0 -5.5 -4.5 -3.5 -2.5
近点距离 (mm) 70 83 100 130 140 180 220 290 400

应用光学第三章理想光学系统

应用光学第三章理想光学系统

对横向放大率的讨论:
像方焦距与物方焦距之比等于相应介质折射率之比。 相应介质折射率之比。 像方焦距与物方焦距之比 根据β的定义和公式,可以确定物体的成像特性: 正立像; (1)若β>0, 即 y 与 y’ 同号,表示成正立像 反之y 与 y′ 异号,成倒立像 倒立像。 (2)若β>0, 即 l 与 l’ 同号,表示物像同侧, 物像虚实相反; 物像虚实相反 反之l 与 l’ 异号,物像虚实相同 虚实相同。
图3-12 作图法求像
(2)图解法求轴上点的像
(3)轴上点经两个光组的图解法求像
图3-13 作图法求光线
图3-14 轴上点经两个光组成的像
一定要看清楚主点和焦点的位置 注意实物、虚物
一定要看清楚主点和焦点的位置
§3.3.2 解析法求像 知道主平面这一对共轭面、以及无限远物点与像 方焦点和物方焦点与无限远像点这两对共轭点, 则 其它一切物点的像点都可以根据这些已知的共轭 面和共轭点来表示。这就是解析法求像的理论依 据。 (1)牛顿公式 (2)高斯公式
(1)牛顿公式
图3-15 牛顿公式中的符号意义
物和像的位置相对于光学系统的焦点来确定
物距: − x 像距:x'
(2)高斯公式
−l :物距、l':像距
物和像的位置相对于光学系统的主点来确定
x=l− f x ' = l '− f '
ΔABF ~ ΔHMF ΔA ' B ' F ' ~ ΔH ' N ' F '
(2) 垂直于光轴的平面物所成的共轭平面像的几何形 状完全与物相似,在整个垂轴物平面上无论那一部 分, 物和像的大小比例等于常数(横向放大率)。

应用光学(第三章)

应用光学(第三章)

2f ' 2x f' h
h
面反射镜的旋转特性。
Applied Optics
授课:任秀云
平面镜的平移效应
A B
A ′A ″=2h
P
Q
h
A” A’
2h
Applied Optics
授课:任秀云
综上所述, 单个平面镜的成像特性可归纳为:
①具有折转光路的作用,是唯一能成完善像的光学元件 ②β=1,物像虚实相反,具有对称性,故不影响光学系统 放大率和成像清晰度。 ③奇数次反射成镜像, 偶数次反射成一致像。
Applied Optics
授课:任秀云
这种系统就是原始的军用观察望远镜的光学系统,其体积、重 量都比较大,不能满足军用观察望远镜的要求,故早已被淘汰 了。目前使用的军用观察望远镜,由于在系统中使用了棱镜, 如图(b)所示,所以它不需要加入倒像透镜组即可获得正像,同 时又可大大地缩小仪器的体积和重量。
Applied Optics
授课:任秀云
此外,在很多仪器中,根据实际使用的要求,往往需要 改变共轴系统光轴的位置和方向。例如在迫击炮瞄准镜 中,为了观察方便,需要使光轴倾斜一定的角度,如图 所示:
Applied Optics
授课:任秀云
平面镜棱镜系统主要作用有: (1)将共轴系统折叠以缩小仪器的体积和减轻仪器 的重量; (2)改变像的方向——起倒像使用; (3)改变共轴系统中光轴的位置和方向——即形成 潜望高或使光轴转一定的角度; (4)利用平面镜或棱镜的旋转,可连续改变系统光 轴的方向,以扩大观察范围。 (5)利用平面镜转动作用扩大仪器的放大率 (6)实现分光、合像和微位移
3、当角锥棱镜绕其顶点旋转 时,出射方向不变仅产生一 个平移。

《应用光学》第3章 理想光学模型(第4节)的放大率(有程序)

《应用光学》第3章 理想光学模型(第4节)的放大率(有程序)
第五节 理想光学模型的放大率
一、垂轴放大率
上节 已给出与牛顿公式相对应的垂轴放大率公式:
y' x' f (3-2)
y f' x 由 上节 式(3-5)及角放大率公式
u' l 有 fl' nu nl'
u l'
f 'l n'u' n'l
(3-6)
当n=n' 时有 l' u
n
当物像方介质相等时 2
上式表明,若物体在沿轴方向有一定的长度时,例如 一个正方体,则由于垂轴和沿轴方向有不等的放大率, 其像不再是一个正方体。
应指出,上述各式只对沿轴微小线段适用,若沿轴方
向为一有限线段,此时轴向放大率以下式表示:
x' x2 'x1' , l' l2 'l1'
x x2 x1
11
理想光学模型图解求像的要点:要寻求一物点经理
想光学模型所成的像点的位置,只要设法寻找由物 点发出的任意两条光线经光学以后的出射共轭光线, 这两条共轭光线的交点便是像点。而要寻找物方某 一条光线的像方共轭出射光线,只要找出它在像方 必定要通过的两点或者是它在像方必定要通过的一 点和它的出射方向。
21
• 例3.1. 用作图法求下图中各薄透镜的焦点 F,F'位置。
22
5
• 3.节点处的放大率 根据定义,xF'节点处的角放大
率 J =1,则由垂轴放大率和沿轴放大率公式有:
J
x' f'
f x
f f'
n n'
J
x' x
f f'
n n'

应用光学第三章

应用光学第三章
y' z'
o
x'
直角棱镜使光线折转90°
等腰棱镜使光线折转任意角度。
二者的特点是:入射面、出射面与光轴垂 直。
道威棱镜,入射面、出射面与光轴不垂 直。
道威棱镜90°旋转后,像旋转180°。
道威棱镜: 绕光轴旋转角,其对应的反射像同 方向2旋转角。
一次反射特点:
成镜像;
在主截面内坐标方向改 变,垂直于光轴截面内坐标方 向不变。
五角棱镜
第二节 平行平板
由两个相互平行的折射平面构成的光学元件
称为平行平面板。
用棱镜来代替平面镜,就相当于在光学系统 中多加了一块平行平面板。 如标尺、刻有标志的分划板、补偿板、滤光 镜、保护玻璃等等 下面讨论光线经过平行平面板的折射情况 假定平行平面板位于空气中
应用折射定律
sin I1 n sin I1'
即物空间为右手坐标
先看几个普通棱镜:
这主要看棱镜的反射次数
偶次反射成一致像,由右手 坐标确定其成像方向;
奇次反射成镜像,由左手坐 标确定其成像方向。
y
( 一
x


z

y′


z′
x′


(a)等腰直角棱镜

y x
z
(b)等腰棱镜
x′ z′
y′
y
o
x z
y
o
x z
(c)道威棱镜
o
x' z' y'
把棱镜的光轴截面沿着它 的反射面展开,取消棱镜的 反射,以平行玻璃板的折射 代替棱镜折射的方法称为
“棱镜的展开”
(1).为了使棱镜和共轴球面系统组合后, 仍能保持共轴球面系统的特性,必须对棱 镜的结构提出一定的要求:

应用光学课件第三章

应用光学课件第三章
盲点实验
应用光学课件第三章
应用光学讲稿
从光学角度看,人眼主要有三部分: 水晶体----镜头 网膜----底片 瞳孔----光阑
人眼相当于一架照 相机,能够自动调节
应用光学课件第三章
应用光学讲稿
视觉的产生 外界的光线进入人眼 成像在视网膜上,产生视神经脉冲 通过视神经传向大脑,经过高级的中枢神经
活动,形成视觉
物理过程,生理过程,心理过程
应用光学课件第三章
应用光学讲稿
人眼的光学特性
视轴:黄斑中心与眼睛光学系统的像方节点连线 人眼视场:观察范围可达150º
头不动,能看清视轴中心6º-8º 要看清旁边物体,眼睛在眼窝内转动,头也动
应用光学课件第三章
应用光学讲稿
二、人眼的调节:视度调节、瞳孔调节
1、视度调节 定义:随着物体距离改变,人眼自动改变焦距,使像 落在视网膜上的过程。
对二线的分辨率称为对 准精度,右图的对准精 度都是10”
应用光学课件第三章
应用光学讲稿
看得清楚的条件 必要条件:成像在视网膜上 充分条件:对二点,视角大于或等于60”
对二线,视角大于或等于10”
应用光学课件第三章
应用光学讲稿
§3-2 放大镜和显微镜的工作原理
被观察物体首先要成像在视网膜上,而且对人眼 的张角大于人眼的视角分辨率时,才能被看清。
望远镜的视放大率
f
' 物
f目'
要增大视角,要求 1 ,即要求 f物' f目'
物镜的焦距比目镜的焦距长几倍,仪器就放大几倍
倍率越高,物镜焦距越长,仪器的长度就越长
Γ可正可负:Γ >0,ω和ω’同号,成正立的像 Γ<0,ω和ω’异号,成倒立的像

应用光学第3章 理想光学系统

应用光学第3章 理想光学系统
2.设一焦距为50mm的负透镜在空气中,在其前 面设置一高度为50mm的物于 4f,3f,2f和 1 .5f 处。请分别用高斯公式和牛顿公式求其像的 位置和大小。
3.设一焦距为30mm的负透镜在空气中,在其后 面0.5f,1.5f,2.5f和 3.5f处分别置一高度为 60mm的虚物,请分别用高斯公式和牛顿公式 求其像的位置和轴向放大率。
y f
yx
三角形A’B’F’和三角形H’N’F’相似
,得:
y x
y f
xxff
————此式即为牛顿公式。
二、高斯公式
以物、像方主点为原点来确定物和像的位置。 物距:物方主点到物点的距离,用l表示。 像距:像方主点到像点的距离,用l'表示。
高斯公式:
x=l- f
x′ =l′ - f′
应用光学第3章 理想光学系统
教学目标
掌握理想光学系统的物像关系、基点和基 面。
牢固掌握解析法和图解法求像的方法。 牢固掌握理想光学系统的双光组组合和透
镜的焦距、基点(基面)。 理解多光组组合的焦距计算公式。 了解各种厚透镜的基点、基面位置。 掌握望远系统的成像特性。
引言
研究近轴光学的实际意义
依据: ①平行于光轴的光线经理想光学系统后必过像方焦点
②过物方焦点的光线经理想光学系统后必为平行于光 轴的光线;
由物方无限远射来的任何方向的平行光束,经光学 系统后会聚于像方焦平面上一点。
过F’点作垂直于光轴的平面,称为像方焦平面(或 后焦平面,或第一焦面)。
物方焦平面是像方无限远垂轴平面的共轭像面。
由光学系统物方焦平面上任一点发出的光束,经光 学系统后平行出射。
总结:
像方焦点和物方无限远轴上点是一对共轭点; 物方焦点和像方无限远轴上点是一对共轭点; 像方焦面和物方无限远垂轴平面是一对共轭面; 物方焦面和像方无限远垂轴平面是一对共轭面。

应用光学【第三章】习题第四部分答案

应用光学【第三章】习题第四部分答案

33.33 0.26664 150 25
由于 tgw3 最小,所以光阑 3 是视场光阑
2.解:1)由于透镜 1 的前面没有任何光组,所以它本身就是在物空间的像。
2)先求透镜 2 被透镜 1 所成的像。也就是已知像求物 利用高斯公式:
1 1 1 1 1 1 ;可得: l1 ' l1 f1 ' 20 l1 100
15 y ' l1 ' 20 0.8 ; y 18.75mm y l1 25 0.8
应用光学第三章习题第四部分答案应用光学课后习题答案应用光学习题应用光学例题与习题集应用光学第四版答案应用光学李林答案数据库第三章习题答案应用光学西安应用光学研究所物理光学与应用光学
1.限制进入光学系统的成像光束口径的光阑叫空径光阑。把孔径光阑在物空间的共轭 像称为入瞳,空径 光阑在系统像空间所成的像称为出瞳,入瞳和出瞳是物和像的对应关系。 2.限制成像范围的光阑叫视场光阑。视场光阑在物空间的像称为入射窗,在像空间所成 的像称为出射窗。 3.主要有七种:球差、彗差(正弦差)、像散、场曲、畸变、位置色差、倍率色差。 4. 光密到光疏。 5.F 数指的是物镜的相对孔径的倒数 五、计算题(共 35 分)
33.33 0.0952 可见 u2 为最小,说明光阑像 D2' 限制了物点的 350
孔径角,故透镜 2 为孔径光阑。 5)像高(D’/2)对入瞳中心的张角最小的为视场光阑 D’1 对入瞳中心的张角: tgw1
20 0.8 D’2 本身是入瞳中心 D’3 对入瞳中心的张角: 25
tgw3
求得: l1 25mm ;
3)求光阑 3 被前面光组所成的像。 a. 先求光阑 3 被透镜 2 所成的像 因为 l 2’ = 30mm,利用高斯公式得:

应用光学第三章

应用光学第三章
18
Hale Waihona Puke 三 棱镜的成像方向判断• 基本依据:反射定律 • 对具有单一主截面的系统
设物的坐标为oxyz,为右手坐标系,oz光轴方向,ox在主 截面内的方向,oy垂直于主截面的方向 ①o’z’光轴方向按反射定律定出 ②垂直于主截面的o’y’视屋脊面个数而定,没有或偶数个, 则同向,奇数个,方向 ③主截面内o’x’视反射系统的反射次数而定,奇数次反射 成镜像,偶数次反射物象一致。具体定时,先将光轴方 向定出,然后按是镜像还是相似像按左右手定出
β为两个光楔之间的夹角
当δ1=δ2=δ0时,

2
2 0
(1

cos
)

20
cos(
/
2)

2(n
1)
cos(
2
)
光楔是光学系统中对光线小角度偏折的元件,通常一对光楔配 对使用,分别旋转两个光楔,可以使出射光线位于一个以入射 光为轴线的角锥体内的任意方向上
33
几种特殊情况
34
作用:
• 折射棱镜定义
反射棱镜—— 利用表 面的反射作用
折射棱镜 —— 利用表 面的折射作用,工作面 为两个折射面
折射棱 —— 入射面与 出射面的交线
折射角 —— 顶角α
偏向角δ —— 入射光 线与出射光线的夹角从 入射光线转到出射光线, 顺正逆负
α
I1
I1´ n -I2
-I2´ δ
27
2
2
(I1'I2 )]
2
c
os[1 2
(I1

I
2
'
)]
对于给定的棱镜, 和n 为定值,所以由上式可知,偏向角

应用光学教案(第三章)——视光技术应用方向材料科学与工程专业

应用光学教案(第三章)——视光技术应用方向材料科学与工程专业
视力正常的眼睛,近点 距离约为10~12cm。
近视眼及矫正
屈光不正矫正
近点
正常眼近点
远视眼矫正
2
COPYRIGHT 2010 材料工程学院
金陵科技学院材料工程学院
第三章 球面透镜
透镜概述
透镜的概念 由前后两个折射面组成的透明介质称为透镜
(lens),这两个折射面至少有一个是弯曲面。弯曲面可
以为球面、柱面、环曲面或非球面。
15
COPYRIGHT 2005 视光学技术学院
金陵科技学院视光学技术学院
2.凹透镜成像规律
凹透镜所成的像,无 论物体的位置在焦点 以外还是焦点以内, 它经凹透镜折射后, 所成的像,都是缩小 的,正立的虚像。像 和物在透镜的同侧。 因此它的成像规律, 不同于凸透镜那样复 杂。
16
COPYRIGHT 2005 视光学技术学院
11 f2F4.00 0.2m 52c5m
f1F 14 1 .0 0 0.2m 5 2c5m 第二焦点和第一焦点均为实焦点
薄透镜位于空气中时,第二焦点和第一焦点分居透镜的两侧,
且与透镜的距离相等。
f2 f1
例:屈光度为-3.00D凹透镜,其焦距:
n2 n1
f2
f1
f2F 13 1 .0 0 0.3m 3 3 3.3 3 cm
COPYRIGHT
4
视光学技术学院
金陵科技学院材料工程学院
如图3-1-1
5
COPYRIGHT 2005 视光学技术学院
金陵科技学院材料工程学院
6
COPYRIGHT 2005 视光学技术学院
7
8
金陵科技学院材料工程学院
(二)透镜的种类 透镜为凸透镜和凹透镜两种,中央比边缘厚的透镜称为凸透 镜,也称为正透镜、会聚透镜;中央比边缘薄的透镜称为凹 透镜,也称为负透镜、发散透镜。根据凸、凹透镜的前后两 面的形状,透镜可以分为以下六种类型。 1、双凸透镜(bi-convex lens) 2、平凸透镜(plano-convex lens) 3、凸新月形透镜(meniscus- convex lens) 4、双凹透镜(bi-concave lens) 5、平凹透镜(plano-concave lens) 6、凹新月形透镜(meniscus- concave lens)

应用光学教学课件完整

应用光学教学课件完整
※从上述定律可以得到光线传播的一 个重要原理—光路的可逆性原理。利 用这一原理,可以由物求像,也可以 由像求物。
• 图1-9
※光学系统 的作用之一是对物体成像,因此必须搞 清物像的基本概念和它们的关系。
※物体通过光学系统(光组)成像,光学系统(各 种光学仪器)由一系列光学零件 组成。。
※光学系统一般是轴对称的,有一条公共轴线,
全反射现象

一般情况下,光线射至透明介质的分界面时将发 生反射和折射现象。
光 由
由公式 n sin I n' sin I ' 可知


sin I sin I '
介 质

即折射光线较入射光线偏离法线



sin I ' 不可能大于1,此时入射光线将不能射入
另一介质。
按照反射定律在介面上全部被反射回原介质
原点
+
-
原点
※ 原点规定:
(1)曲率半径 r ,以球面顶点O为原点,球
心C在右为正,在左为负。
E
A
C
O +r
E
A
C
-r O
(2)物方截距L 和像方截距L’ 也以顶点O为原点,到光线
与光轴交点,向右为正,向左为负。
E
A
A’
O
C
-L
+L’
E
A
A’
O
C
-L’
-L
(3)球面间隔 d 以前一个球面的顶点为原点, 向右为正,向左为负。
(在折射系统中总为正,在反射和折反系统中才有为负的情况)
O1
O2
+d
O1
O2

《应用光学》课件

《应用光学》课件

超材料与光操控技术在隐身衣、光镊、 光操控机器人等领域具有广泛的应用前 景,如实现物体隐身、微纳粒子的精确
操控等。
目前,超材料与光操控技术的研究重点 在于设计新型超材料、优化光操控效果 、提高操控精度等方面,同时也在探索
其在生物医学、能源等领域的应用。
量子光学与量子信息
量子光学是研究光的量子性质和光与物质相互作用的一门 学科,而量子信息则是利用量子力学原理进行信息处理和 传输的一门技术。
应用光学
目录
CONTENTS
• 应用光学概述 • 光学基础知识 • 光学仪器 • 光学系统设计与优化 • 现代光学技术 • 应用光学前沿研究
01 应用光学概述
应用光学的基本概念
应用光学的基本原理包括光的干涉、衍射、折射、反 射、偏振等,以及光学材料、光学元件和光学系统的 基本知识。
应用光学是研究如何将光学原理和技术应用于实际生 活和工业生产中的一门学科。它涉及到光的产生、传 播、变换、检测和应用,以及光学系统设计、光学仪 器制造和光学信息处理等领域。
光学系统优化算法
优化目标
明确优化的目标,如减小系统像差、提高成像质量或增加光学信 息量等。
优化方法
掌握常用的光学系统优化算法,如梯度优化、遗传算法、粒子群 算法等。
算法实现
具备使用编程语言实现优化算法的能力,如Python、C等。
光学系统性能评估
性能指标
结果分析
ห้องสมุดไป่ตู้
了解光学系统性能的评价指标,如分 辨率、对比度、信噪比等。
光学陀螺仪
利用光的干涉效应感知旋转角度变化,广泛应用于导航、航空、航 天等领域。
全息显示技术
3D全息投影
利用全息技术将三维图像投影到空中,无需佩戴 眼镜或头盔即可观看。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

眼睛的像方节点与中心凹的连线为眼睛的视轴, 在观察物 体时眼睛本能地把物体瞄准在这根轴上.
11 Applied Optics
眼睛的视场很大,可达150,但只有黄斑附近才 能清晰识别,其他部分比较模糊, 所以能看清物 体的角度范围为6 ~ 8. 从光学角度看,眼睛中最主要的是:水晶体,视 网膜和瞳孔. 眼睛和照相机很相似,如果对应起来看: 人眼 照相机
巩膜 瞳孔 角膜 虹膜 脉络膜
*虹膜是脉络膜的最前端部分,含有色素细胞,决定眼的颜色; *瞳孔是虹膜中间的小孔,随着外界明亮程度的不同,虹膜肌肉能 使瞳孔的直径在2~8mm范围内变化;它是人眼的孔径光阑.
6 Applied Optics
巩膜 瞳孔 角膜 虹膜
网膜 脉络膜 黄斑中心凹
*网膜是眼球的第三层膜,上面布满着感光元素,即锥状细胞和杆状 细胞,锥状细胞直径约5微米,长约35微米;杆状细胞直径约2微米 ,长约60微米.它们在网膜上的分布式不均匀的.在黄斑中心凹处 是锥状细胞的密集区而没有杆状细胞,由中心向外,逐渐相对变化;
7 Applied Optics
巩膜 瞳孔 角膜 虹膜
网膜 脉络膜 黄斑中心凹
晶状体
盲斑
黄斑中心凹是人眼视觉最灵敏的地方. 光 视神经细胞 神经纤维 盲斑 大脑 盲斑是网膜上没有感光元素的地方,不能引起光刺激. 晶状体在虹膜后面,是由两个不同曲率的面组成的透明体,
8 Applied O0 Applied Optics
三,眼睛的分辨率(分辨本领) 人眼的分辨率是眼睛的重要光学特性,同时也是目 视光学仪器设计的重要依据之一. 用其它观测设备(如照相机,CCD等)替代人眼时 也可据此作为参考. 所谓人眼的分辨能力指的是成像在中央凹区时的分 辨能力. 眼睛能分辨出两个非常近的点的能力称为眼睛的分 辨率(分辨本领) 人眼的分辨率一般用极限分辨角来表示.
第三章 眼睛和目视光学系统
人眼的光学特性 放大镜和显微镜的工作原理 望远镜的工作原理 眼睛的缺陷和目视光学仪器的视度调节 空间深度感觉和双眼立体视觉 双眼观察仪器
2
Applied Optics
3-1 人眼的光学特性
这类光学系统是直接扩大人眼的视觉能力的, 称为目视光学系统 一,眼睛的结构——成像光学系统 人眼本身相当于摄影光学系统 在角膜和视网膜之间的生物构造均可以看作成 像元件.
34 Applied Optics
二,显微镜的工作原理 对于工作在可见光波长范围的光学显微镜 按用途区分,使用量较大的有三种: 工具显微镜(主要应用于精密机构制造工业等方 面进行精密测量); 生物显微镜(主要应用于生物学,医学,农学 等方面); 金相显微镜(主要应用于冶金和机械制造工业, 观察研究金相组织结构). 显微镜是人眼的辅助工具,显微镜的光学系统由物镜 和目镜两个部分组成.
tgω眼 tgω
31 Applied Optics
B' y' A'
物体经放大镜成像的简图 B y F A -f -x' f' a'
ω' F'
P'
虚像A′B′ 对眼 睛所张的视角 的正切为
y' tgω' = x' + a'
眼睛直接去观察物体时,是将其放在明视距离250mm 处.此时物体对人眼张角的正切为:
y tgω = 250
32 Applied Optics
放大镜的放大率Γ可由下式求得
y' tgω' x' + a' 250 y' Γ= = = y ( x' + a' )y tgω 250
将横向放大率
y' x' β = = y f'
代入上式得
250 x' Γ= f ' x' a'
33 Applied Optics
16 Applied Optics
后者是指正常的眼睛在正常照明(约50勒克斯)下 最方便和最习惯的工作距离,它等于250mm. 它不同于人眼的近点距离,两者不能混淆 人眼的调节能力是用远点距离r的倒数和近点距离 p 的倒数之差来描述,用A来表示,即
1 1 A= = RP r p
17 Applied Optics
3
Applied Optics
人眼的构造剖视图
4
Applied Optics
巩膜 角膜 脉络膜
*巩膜是眼球的第一层保护膜,白色,不透明,坚硬; *角膜是巩膜的最前端部分,无色而透明; 眼睛内的折射主要发生在角膜上; *脉络膜是眼球的第二层膜,上面有供给眼睛营养的网状微血管;
5 Applied Optics
在医院和眼镜店通常把1屈光度称为100度. 人眼的调节能力随年龄的增加而变化. 随着年龄的增大,近点位置往远移,远点位置往近移, 因而调节范围减少.
Applied Optics
19
2.瞳孔调节(适应特性) 人眼还能在不同亮暗程度的条件下工作. 这就是人眼的另一个特性,具有对周围空间光亮情况 适应的过程 称为适应(即为瞳孔的调节). 眼睛的虹膜可以自动改变瞳孔的大小,以控制眼睛的 进光亮(2mm~8mm).在设计目视光学仪器时要充 分考虑与眼瞳的配合. 适应是一种当周围照明条件发生变化是眼睛所产生的 变态过程,可分为对暗适应和对光适应两种,前者 发生在光亮处到黑暗处的时候,后者发生在自黑暗 处到光亮处的时候.
12
水晶体 镜头
视网膜 底片
瞳孔 光阑
Applied Optics
人眼相当于一架照相机,它可以自动对目标调焦 照相机中,正立的人在底片上成倒像,人眼也是成倒 像 但我们感觉为什么还是正立的? 这是视神经系统内部作用的结果.
Applied Optics
13
二,眼睛的调节 眼睛有两类调节功能:视度调节 和瞳孔调节. 1.视度调节 远近不同的其他物体,物距不同,则不会成像在视网 膜上,这样我们就看不清. 要想看清其他的物体,人眼就要自动地调节眼睛中水 晶体的焦距,使像落在视网膜上. 眼睛自动改变焦距的过程称为眼睛的调节.
27 Applied Optics
形成对眼睛瞄准有利的条件. 瞄准精度和分辨率是两个概念. 又有一定的联系,经验证明,人眼的最高瞄准精 度约为分辨率的1/6至1/10.
1,两实线瞄准 ±60" 2,两实线端部瞄准±10~20 " 3,双线平分或对称瞄准±5~10" 4,虚线压测件轮廓边缘±20~30"
Applied Optics
24
从衍射角度出发
1.22 × 0.00055 140 ε= × 206265 ≈ D D
可以看出,极限分辨角不仅与入射光线的波长有关, 而且还与眼睛的瞳孔直径有关. ε = 50~ 120"; 在良好的照明条件下,一般认为 ε = 60" = 1' 认为人眼的极限分辨角为1. 在设计光学系统时就必须考虑眼睛的分辨率.
35 Applied Optics
21 Applied Optics
眼睛在看物空间两点时,这两点对眼睛物方节点的 张角成为两点间的角距离或称为视角 人眼刚能将两点分开的视角称为眼睛的极限分辨角 人眼分辨率与极限分辨角成反比关系 现在从两个不同的角度来分析眼睛的极限分辨角的 大小. 首先从人眼的视网膜结构上来分析:
Applied Optics
由此可见,放大镜的放大率,除了和其焦距有关 之外,还和眼睛离开放大镜的距离有关 在实际使用过程中,眼瞳大致位于放大镜的像方焦 点的附近 上式分母中的a′相对于x′而言,是一个很小的值,可 以略去. 放大镜放大率的公式,通常采用以下形式
250 Γ= f'
放大镜的放大率仅由放大镜的焦距f ′ 所决定,焦距 越大则放大率越小.
14 Applied Optics
正常人眼在完全放松的自然状态下,无限远目标成像 在视网膜上,即眼睛的像方焦点在视网膜上. 在观察近距离物体时,人眼水晶体周围肌肉收缩,使 水晶体前表面半径变小 眼睛光学系统的焦距变短,后焦点前移,从而使该 物体的像成在视网膜上.
15 Applied Optics
当肌肉完全放松时(通过调节),眼睛所能看清的 最远的点称为远点,其相应的距离称为远点距离, 以 r 表示(米) 当肌肉在最紧张时(通过调节),眼睛所能看清的 最近的点称为近点,其相应的距离称为近点距离, 以 p 表示(米) 正常眼睛的远点距离为负的无限远,非正常眼睛(远 视或近视)的远点距离为一有限值. 这里必须指出,近点距离并不是明视距离
25 Applied Optics
经常需要将一条直线重合到另一条直线,但是,要 使两条直线完全重合是不可能的 眼睛虽具有发现一个平面上两根 平行直线的不重合能力,但也 有一定的限度 这个不重合限度的极限值称为人 眼的瞄准精度. 人眼的瞄准精度一般用角度值来表示
26 Applied Optics
即两线宽的几何中心线对人眼的张角小于某一角度 值α时,虽然还存在着不重合,但眼睛已经认为是完 全重合的,这时α角度值即为人眼瞄准精度. 人眼对于线条的变形或两条线 错开造成的外形变化或比较两 条线宽的变化具有很高的灵敏 度. 人眼通过两物的比较发现它们 外形变化的能力比分辨它们要 强得多.
30 Applied Optics
放大镜的放大率 与眼睛一起使用的目视光学仪器,其放大作用不能 由横向放大率来表征. 因为眼睛通过放大镜或显微镜等目视光学仪器来观察 物体时,所看到的是在眼睛视网膜上的物体像的大小. 放大镜的放大率为: 通过放大镜观察物体时,物体像的视角ω'正切与人眼 直接观察该物体时的视角ω正切之比. 这种放大率称为视角放大率. tgω仪 tgω ' 用字母Γ 表示 Γ = =
网膜 脉络膜 黄斑中心凹
晶状体
盲斑
似双凸透镜,是眼睛光学系统的成像元件,其密度和折射 率都是不均匀的,由里层到外层逐渐减少,有利于提高 成像质量.晶状体的平均折射率为1.40,其周围是毛状肌 能改变晶状体的表面曲率,使人眼在看远近不同的物体时,
相关文档
最新文档