煤的直接加氢液化技术
洁净煤技术——直接液化技术
洁净煤技术——直接液化技术一、德国IGOR工艺1981年, 德国鲁尔煤矿公司和费巴石油公司对最早开发的煤加氢裂解为液体燃料的柏吉斯法进行了改进, 建成日处理煤200吨的半工业试验装置, 操作压力由原来的70兆帕降至30兆帕, 反应温度450~480摄氏度;固液分离改过滤、离心为真空闪蒸方法, 将难以加氢的沥青烯留在残渣中气化制氢, 轻油和中油产率可达50%。
原理图:IGOR直接液化法工艺流程工艺流程: 煤与循环溶剂、催化剂、氢气依次进入煤浆预热器和煤浆反应器, 反应后的物料进入高温分流器, 由高温分流器下部减压阀排出的重质物料经减压闪蒸, 分出残渣和闪蒸油, 闪蒸油又通过高压泵打入系统, 与高温分离器分出的气体及清油一起进入第一固定床反应器, 在此进一步加氢后进入分离器。
中温分离器分出的重质油作为循环溶剂, 气体和轻质油气进入第二固定床反应器再次加氢, 通过低温分离器分离出提质后的轻质油品, 气体经循环氢压机压缩后循环使用。
为了使循环气体中的氢气浓度保持在所需的水平, 要补充一定数量的新鲜氢气。
液化油经两步催化加氢,已完成提质加工过程。
油中的氮和硫含量可降低到10-5数量级。
此产品经直接蒸馏可得到直馏汽油和柴油,再经重整就可获得高辛烷值汽油。
柴油只需加少量添加剂即可得到合格产品。
与其他煤的直接液化工艺相比,IGOR工艺的煤处理能力最大,煤液化反应器的空速为0.36~0.50 t /( m3·h)。
在反应器相同的条件下,IGOR工艺的生产能力可比其他煤液化工艺高出50%~100%。
由于煤液化粗油的提质加工与煤的液化集为一体,IGOR煤液化工艺产出的煤液化油不仅收率高,而且油品质量好。
工艺特点: 把循环溶剂加氢和液化油提质加工与煤的直接液化串联在一套高压系统中,避免了分立流程物料降温降压又升温升压带来的能量损失, 并在固定床催化剂上使二氧化碳和一氧化碳甲烷化, 使碳的损失量降到最小。
投资可节约20%左右, 并提高了能量效率。
煤直接液化技术现状与发展趋势
醚键和杂
(2)脱硫反应 煤有机结构中的硫以硫醚、硫醇和噻吩等形式存在,脱硫反应 与上述脱氧反应相似。由于硫的负电性弱,所以脱硫反应更容易进行。 (3)脱氮反应 煤中的氮大多存在于杂环中,少数为氨基,与脱硫和脱氧相比,脱 氮要困难得多。一般脱氮需要激烈的反应条件和有催化剂存在时才能 进行,而且是先被氢化后再进行脱氮,耗氢量很大。
(4)降低循环油中沥青烯含量 (5)缩短反应时间
11
五、煤加氢液化催化剂种类
(1)金属氧化物催化剂 对煤加氢液化催化活性大小顺序: SnO2、ZnO2、GeO2、MoO3、PbO、 Fe2O3、TiO2、 Bi2O3、V2O5. (2)铁系催化剂 主要为三氯化铁、硫酸亚铁、或者加入无水氧化铁,有的加硫 或者不加硫。 (3)卤化物催化剂 使用卤化物催化剂有两种方式: 一种是使用少量催化剂;另一种是使用大量催化剂,熔融金属 卤化物,催化剂与煤的质量比可高达1。
要将煤转化为液体产物,首先要将煤的大分子裂解为较小 的分子,而要提高H/C原子比,降低O/C比,就必须增加H 原子或减少C原子。 煤液化的实质就是在适当温度、氢压、溶剂和催化剂条件 下,比提高H/C ,使固体煤转化为液体的油。
6
直接液化
制 氢 煤制备 油煤浆 制 备 加氢液化
450OC,20MPa
煤 浆 预 热 器 煤浆
2014-4-3
第 一 反 应 器
第 二 反 应 器
高 温 分 离 器
中 温 分 离 器
低 温 分 离 器
常 减 压 蒸 馏
加 氢 反 应 装 置
常 压 蒸 馏
煤直接液化
残渣
循环溶 剂去制 15 15 煤浆
工艺特点:
①采用两段反应,反应温度455℃、压力19M Pa,提高了煤浆空速; ②采用人工合成超细铁基催化剂 ③固液分离采用成熟的减压蒸馏; ④循环溶剂全部加氢,提高溶剂的供氢能力; ⑤液化粗油精制采用离线加氢方案。
煤的液化技术
市场发展前景
1 2 3
替代石油资源
随着石油资源的日益枯竭,煤液化技术作为一种 替代石油的能源资源,具有广阔的市场前景。
满足环保要求
煤液化技术能够降低煤炭燃烧过程中的污染物排 放,符合环保要求,有助于推动清洁能源市场的 发展。
对煤液化技术企业给予税收优惠政策,降低企业税负,提高市场 竞争力。
THANKS FOR WATCHING
感谢您的观看
出口潜力
煤液化产品如柴油、汽油等可作为燃料或化工原 料,具有较大的出口潜力,有助于提升我国能源 产业的国际竞争力。
政策支持与推动
产业政策引导
政府通过制定产业政策,鼓励和支持煤液化技术的研发和应用, 推动产业健康发展。
资金扶持
政府提供资金扶持,支持企业进行技术研发和产业化推广,减轻 企业负担。
税收优惠
润滑油
煤液化过程中产生的润滑油具有 优良的润滑性能和稳定性,可用 于机械设备的润滑。
民用燃料
燃气
通过煤液化技术得到的液化石油气可作为居民生活和商业用 途的燃气。
供暖
煤液化燃料可用于集中供暖和家庭采暖,提高居民生活质量 。
化工原料
乙烯
煤液化技术可以生产乙烯等化工原料 ,进一步用于生产塑料、合成纤维等 高分子材料。
该技术最早由南非开发,主要 产品是柴油和航空煤油等。
间接液化技术的优点是工艺流 程相对简单,对原料煤的适应 性较强,但转化效率较低,且 催化剂消耗较大。
合成气液化
合成气液化是指将合成气在一定 条件下转化为液体燃料的过程。
该技术通常采用费托合成工艺, 将合成气在催化剂作用下转化为
煤的直接加氢液化技术
自由基碎片加氢(一)
可用如下方程式表示加氢反应
R-CH2-CH2-R’→ RCH2·+R’CH2· RCH2·+R’CH2·+2H·→ RCH3+R’CH3
煤加氢液化过程包括一系列的顺序反应和平行反 应,但以顺序反应为主,每一级反应的分子量 逐级降低,结构从复杂到简单,杂原子含量逐 级减少,H/C原子比逐级上升。
直接液化工艺流程简图
催
化
剂
H2
煤煤
反
浆
应
分
提
离
质
循环溶剂
残渣
汽油 柴油
其它
工艺过程
该工艺是把煤先磨成粉,再和自身组的部分液 化油(循环制剂)配成煤浆,在高温(450oC) 和高压(20—30MPa)下直接加氢,获得液化油, 然后再经过提质加工,得到汽油柴油等产品.1t 无水无灰煤可产500—600Kg油,加上制氢用 煤,约3—4t原料煤产1t油。
催化剂作用
催化剂的作用是吸附气体中的氢分子,并将其 活化成活性氢以便被煤的自由基碎片接受。一 般选用铁系催化剂或镍、钼和钴类催化剂。硫 是煤直接液化的助催化剂,有些煤本身含有较 高的硫,可少加或不加助催化剂。
催化剂的影响
催化剂是煤直接液化过程的核心技术 优良的催化剂可以降低煤液化温度,减少副
煤的直接加氢液化技术
煤直接液化反应机理
把固体煤转化为液体油,就必须采用增加温 度或其他化学方法以打碎煤的分子结构,使大 分子物质变成小分子物质,同时外界要供给足 够量的氢,提高其H/C原子比。
煤直接液化反应比较复杂,大致可分为热解、 氢转移、加氢三个反应步骤
氢源
煤在热解过程中外界不提供氢 煤在热解过程中外界不提供氢,煤热解
煤直接液化技术简介
煤液化技术研究所
二十多年来,煤液化技术研究所在我国政府 相关部门的支持下和通过广泛的国际合作, 从事我国煤炭直接液化的研究。从跟踪国际 煤炭液化领域技术发展趋势到结合我国资源 特点,独立开展煤液化催化剂的开发、我国 引进煤液化工艺的优化、煤液化关键技术和 煤直接液化先进工艺的开发等工作。
煤直接液化技术简介
煤直接液化反应
煤的热溶涨与热溶解 : 煤与溶剂加热到在250℃以上,煤 中可被极性溶剂萃取物明显增加。
煤直接液化技术简介
煤直接液化反应
煤热裂解产生大量的自由基: 随着温度的进一步提高,煤热裂解产生大 量的自由基,在氢原子的作用下,这些自 由基与氢原子结合形成稳定的分子,自由 基稳定后生成物的分子量分布很广,从气 体到油,分子量较大的是沥青烯、前沥青 烯。如果煤的自由基浓度较高,得不到氢 原子,它们就会相互结合形成分子量更大 的化合物甚至焦炭。
H含量 ≤2%
>2.0~3.0 >3.0
煤直接液化技术简介
煤的岩相
宏观煤岩组成:丝炭、镜煤、亮 煤和暗煤
煤的显微组成:镜质组、壳质组 和惰质组
煤直接液化技术简介
直接液化适宜的煤种
年老褐煤: 年轻烟煤:长焰煤、不粘煤、弱
粘煤、 1/2中粘煤、气煤
煤直接液化技术简介
2.煤直接液化基本原理
煤炭直接液化技术是通过高温高压 和催化剂的存在下,煤加氢转化 成洁净液体燃料(汽油、柴油、航 空煤油等)或化工原料的一种先进 的洁净煤技术。
煤 →腐植煤 →腐泥煤
煤直接液化技术简介
腐植煤的生成过程
泥炭化阶段 煤化阶段
1)成岩作用阶段 2)变质作用阶段
煤接液化技术简介
煤的生成与分类
植物→泥炭→褐煤→烟煤→无烟煤
煤炭液化技术
煤炭液化技术[编辑本段] 煤炭液化技术煤炭液化是把固体煤炭通过化学加工过程产品的先进洁净煤技术。
根据不同的加工,使其转化成为液体燃料路线,煤炭液化可分为直接、化工原料和液化和间接液化两大类:一、直接液化直接液化是在高温(400℃以上)、高压(10MPa以上),在催化剂和溶剂作用下使煤的分子进行裂解加氢,直接转化成液体燃料,再进一步加工精制成汽油、柴油等燃料油,又称加氢液化。
1、发展历史煤直接液化技术是由德国人于1913 年发现的,并于二战期间在德国实现了工业化生产。
德国先后有12套煤炭直接液化装置建成投产,到1944年,德国煤炭直接液化工厂的油品生产能力已达到423万吨/年。
二战后,中东地区大量廉价石油的开发,煤炭直接液化工厂失去竞争力并关闭。
70年代初期,由于世界范围内的石油危机,煤炭液化技术又开始活跃起来。
日本、德国、美国等工业发达国家,在原有基础上相继研究开发出一批煤炭直接液化新工艺,其中的大部分研究工作重点是降低反应条件的苛刻度,从而达到降低煤液化油生产成本的目的。
目前世界上有代表性的直接液化工艺是日本的NEDOL 工艺、德国的IGOR工艺和美国的HTI工艺。
这些新直接液化工艺的共同特点是,反应条件与老液化工艺相比大大缓和,压力由40MPa降低至17~30MPa,产油率和油品质量都有较大幅度提高,降低了生产成本。
到目前为止,上述国家均已完成了新工艺技术的处理煤100t/d 级以上大型中间试验,具备了建设大规模液化厂的技术能力。
煤炭直接液化作为曾经工业化的生产技术,在技术上是可行的。
目前国外没有工业化生产厂的主要原因是,在发达国家由于原料煤价格、设备造价和人工费用偏高等导致生产成本偏高,难以与石油竞争。
2、工艺原理煤的分子结构很复杂,一些学者提出了煤的复合结构模型,认为煤的有机质可以设想由以下四个部分复合而成。
第一部分,是以化学共价键结合为主的三维交联的大分子,形成不溶性的刚性网络结构,它的主要前身物来自维管植物中以芳族结构为基础的木质素。
煤温和加氢液化制高品质液体燃料关键技术与工艺
煤温和加氢液化制高品质液体燃料关键技术与工艺引言在当前全球能源供应紧张的背景下,开发和利用高品质液体燃料成为了国际能源领域的研究热点之一。
煤温和加氢液化技术作为一种重要的液体燃料制备方法,具有资源成本低、适用范围广的优势,对我国能源战略和经济发展具有重要意义。
本文将从煤温和加氢液化的原理、关键技术及工艺流程等方面进行综合分析和探讨。
原理煤温和加氢液化是一种将固体煤转化为液体燃料的技术。
其原理是通过高温和高压的条件下,将煤在氢气的催化作用下进行化学反应,使煤中的高分子化合物裂解,并生成液体燃料。
这一过程主要包括三个步骤:煤的热解、煤的气化和煤的加氢。
煤的热解煤的热解是指将煤暴露在高温环境中,使煤中的有机质在没有氧气的条件下发生热解反应,生成气体和液体产物。
热解过程中,煤中的高分子化合物会发生裂解,生成低分子量的化合物,如烃类等。
煤的气化煤的气化是指将煤中的热解产物(如烃类)在高温和高压的条件下与氢气反应,生成更高价态的化合物。
在气化过程中,煤中的烃类会与氢气发生反应,生成一系列的液体和气体产物,其中液体产物就是液体燃料的主要来源。
煤的加氢煤的加氢是指将煤中的气化产物在高温和高压的条件下与氢气进一步反应,将气体产物中的不饱和化合物加氢饱和,生成高品质的液体燃料。
加氢反应可以提高液体燃料的氢碳比,增加其能量密度,提高其燃烧效率。
关键技术煤温和加氢液化制高品质液体燃料的关键技术包括催化剂选择、温度和压力控制、反应器设计等。
催化剂选择催化剂的选择对煤温和加氢液化的反应效果和产物质量起到关键作用。
优质的催化剂应具有高催化活性、良好的稳定性和选择性,能够在适宜的温度下催化反应进行。
常用的催化剂包括铁、镍、钼等金属催化剂以及复合催化剂。
温度和压力控制温度和压力是影响煤温和加氢液化反应进行的重要因素。
适当的温度和压力可以促进反应物的转化率和产物的质量。
一般来说,较高的温度和压力有利于提高反应速率和产品收率,但过高的温度和压力会增加能源消耗和设备投资。
煤间接液化与直接液化技术的比较及缺点
煤间接液化与直接液化技术的比较及缺点一.煤间接液化介绍煤的间接液化技术是先将煤全部气化成合成气,然后以合成气为原料,在一定温度、压力和催化剂存在下,通过F-T合成为烃类燃料油及化工原料和产品的工艺。
包括煤气化制取合成气、催化合成烃类产品以及产品分离和改制加工等过程。
煤炭间接液化技术主要有南非的萨索尔(Sasol)费托合成法、美国的Mobil(甲醇制汽油法)和荷兰SHELL的中质馏分合成(SMDS)间接液化工艺。
F-T合成的特点是:合成条件较温和,无论是固定床、流化床还是浆态床,反应温度均低于350℃,反应压力2.0-3.0MPa;转化率高,如SASOL公司SAS工艺采用熔铁催化剂,合成气的一次通过转化率达到60%以上,循环比为2.0时,总转化率即达90%左右。
二.煤直接液化介绍煤的直接液化是煤在适当的温度和压力下,催化加氢裂化生成液体烃类及少量气体烃,脱除煤中氮、氧和硫等杂原子的转化过程。
煤化工监理目前国内外的主要工艺有:1.美国HTI工艺该工艺是在两段催化液化法和H-COAL工艺基础上发展起来的,采用近十年来开发的悬浮床反应器和HTI拥有专利的铁基催化剂(GelCatTM)。
反应温度420~450℃,反应压力17MPa;采用特殊的液体循环沸腾床反应器,达到全返混反应器模式;催化剂是采用HTI 专利技术制备的铁系胶状高活性催化剂。
在高温分离器后面串联一台加氢固定床反应器,对液化油进行在线加氢精制。
2.日本NEDOL工艺该工艺由煤前处理单元、液化反应单元、液化油蒸馏单元及溶剂加氢单元等4个主要单元组成。
反应压力17M~19MPa,反应温度为430~465℃;催化剂采用合成硫化铁或天然硫铁矿。
离线加氢方式3.德国煤液化新工艺(IGOR工艺)1981年,德国鲁尔煤矿公司和费巴石油公司对最早开发的煤加氢裂解为液体燃料的柏吉斯法进行了改进,建成日处理煤200吨的半工业试验装置,操作压力由原来的70MPa降至30MPa,反应温度450~480℃,固液分离改过滤、离心为真空闪蒸方法,将难以加氢的沥青烯留在残渣中气化制氢,轻油和中油产率可达50%。
煤直接液化工艺流程
煤直接液化工艺流程煤直接液化,煤液化方法之一。
将煤在氢气和催化剂作用下通过加氢裂化转变为液体燃料的过程。
因过程主要采用加氢手段,故又称煤的加氢液化法。
详情如下:一、埃克森供氢溶剂法简称EDS法,为美国埃克森研究和工程公司1976年开发的技术。
原理是借助供氢溶剂的作用,在一定温度和压力下将煤加氢液化成液体燃料。
建有日处理250t煤的半工业试验装置。
其工艺流程主要包括原料混合、加氢液化和产物分离几个部分(图1)。
首先将煤、循环溶剂和供氢溶剂(即加氢后的循环溶剂)制成煤浆,与氢气混合后进入反应器。
反应温度425~450℃,压力10~14MPa,停留时间30~100min。
反应产物经蒸馏分离后,残油一部分作为溶剂直接进入混合器,另一部分在另一个反应器进行催化加氢以提高供氢能力。
溶剂和煤浆分别在两个反应器加氢是EDS法的特点。
在上述条件下,气态烃和油品总产率为50%~70%(对原料煤),其余为釜底残油。
气态烃和油品中C1~C4约占22%,石脑油约占37%,中油(180~340℃)约占37%。
石脑油可用作催化重整原料,或加氢处理后作为汽油调合组分。
中油可作为燃料油使用,用于车用柴油机时需进行加氢处理以减少芳烃含量。
减压残油通过加氢裂化可得到中油和轻油。
埃克森供氢溶剂法流程图二、溶剂精炼煤法简称SRC法,是将煤用溶剂制成浆液送入反应器,在高温和氢压下,裂解或解聚成较小的分子。
此法首先由美国斯潘塞化学公司于60年代开发,继而由海湾石油公司的子公司匹兹堡-米德韦煤矿公司进行研究试验,建有日处理煤50t的半工业试验装置。
按加氢深度的不同,分为SRC-Ⅰ和SRC-Ⅱ两种。
SRC-Ⅰ法(图2)以生产固体、低硫、无灰的溶剂精炼煤为主,用作锅炉燃料,也可作为炼焦配煤的黏合剂、炼铝工业的阳极焦、生产碳素材料的原料或进一步加氢裂化生产液体燃料。
近年来,此法较受产业界重视。
SRC-Ⅱ法用于生产液体燃料,但因当今石油价格下降以及财政困难,开发工作处于停顿状态。
煤的直接液化
煤的直接液化概述煤的液化是先进的洁净煤技术和煤转化技术之一,是用煤为原料以制取液体烃类为主要产品的技术。
煤液化分为“煤的直接液化”和“煤的间接液化”两大类,煤的直接液化是煤直接催化加氢转化成液体产物的技术.煤的间接演化是以煤基合成气(CO+H2)为原料,在一定的温度和压力下,定向催化合成烃类燃料油和化工原料的工艺,包括煤气化制取合成气及其挣化、变换、催化合成以及产品分离和改质加工等过程。
通过煤炭液化,不仅可以生产汽油、柴油、LPG(液化石油气)、喷气燃料,还可以提取BTX(苯、甲苯、二甲苯),也可以生产制造各种烯烃及含氧有机化台物。
煤炭液化可以加工高硫煤,硫是煤直接液化的助催化剂,煤中硫在气化和液化过程中转化威H2S再经分解可以得到元素硫产品.本篇专门介绍煤炭直接液化技术早在1913年,德国化学家柏吉乌斯(Bergius)首先研究成功了煤的高压加氢制油技术,并获得了专利,为煤的直接液化奠定了基础。
煤炭直接加氢液化一般是在较高温度(400℃以上),高压(10MPa以上),氢气(或CO+H2, CO+H2O)、催化剂和溶剂作用下,将煤的分子进行裂解加氢,直接转化为液体油的加工过程。
煤和石油都是由古代生韧在特定的地质条件下,经过漫长的地质化学滴变而成的。
煤与石油主要都是由C、H、O等元素组成。
煤和石油的根本区别就在于:煤的氢含量和H/C 原子比比石油低,氧含量比石油高I煤的相对分子质量大,有的甚至大干1000.而石油原油的相对分子质量在数十至数百之间,汽油的平均分子量约为110;煤的化学结构复杂,它的基本结构单元是以缩合芳环为主体的带有侧链和官能团的大分子,而石油则为烷烃、环烷烃和芳烃的混合物。
煤还含有相当数量的以细分散组分的形式存在的无机矿物质和吸附水,煤也含有数量不定的杂原子(氧,氮、硫)、碱金属和微量元素。
通过加氢,改变煤的分子结构和H/C原子比,同时脱除杂原子,煤就可以液化变成油。
1927年德国在莱那(Leuna)建立了世界上第一个煤直接液化厂,规模10×l04 t/a。
煤制油之----直接液化技术解析
• 1952年,美国矿业局制定了煤炭液化的发展计划, 规划建设2座煤直接液化厂
• 联合碳化物公司从1935年开始就研究煤炭直接液化 技术,到五十年代初发展到300吨/天的试验规模, 试图生产各种芳香烃类化学品
• 1960年,成立了煤炭研究办公室(OCR)一直支持 一些公司和研究机构从事以气化、液化为重点的煤 炭加工利用的研究
煤制油之直接液化技术解析
• 基本原理 • 工艺问题 • 工程问题
第一部分 基本原理
• 定义 • 发展概况 • 基本过程 • 反应机理 • 煤质要求 • 催化剂 • 溶剂 • 液化油提质加工
一. 定义
1. 直接液化
煤
加氢
液化油 提质加工 成品油
2. 间接液化
煤 气化 合成气 合成 合成油 精炼 成品油
二战期间德国的煤直接液化厂
投产日期
1931 1936 1936 1936 1937 1939 1939 1940 1940 1941 1942 1943
所在地名
Leuna Bohlen Magdeberg Scholven Welheim Gelsenberg Zeitz Lutzkendorf Politz Wesseling Brux Blechhammer
Bottrop RAG VEBA
Saar SAAR Coal
日本鹿 NEDO 岛
澳大利 NEDO 亚
Point British of Ayr Coal 图拉市 ИГИ
试验煤种 鲁尔烟煤 烟煤 烟煤 褐煤 次烟煤 褐煤
国内煤液化的历史
五十年代: 抚顺石油三厂煤焦油加氢 锦州石油六厂合成油装置 煤低温热解计划
煤的液化和气化
煤的液化和气化煤的液化是先进的煤炭转化技术之一, 是以煤为原料制取液体烃类为主要产品的技术。
煤液化分为煤的直接液化和煤的间接液化两大类.一.煤炭直接液化是把煤直接转化成液体燃料,煤直接液化的操作条件苛刻,对煤种的依赖性强。
典型的煤直接液化技术是在400摄氏度、150个大气压左右将合适的煤催化加氢液化,产出的油品芳烃含量高,硫氮等杂质需要经过后续深度加氢精制才能达到目前石油产品的等级。
一般情况下,一吨无水无灰煤能转化成半吨以上的液化油。
煤直接液化油可生产洁净优质汽油、柴油和航空燃料。
但是适合于大吨位生产的直接液化工艺目前尚没有商业化,主要的原因是由于煤种要求特殊,反应条件较苛刻,大型化设备生产难度较大,使产品成本偏高。
煤直接液化煤在氢气和催化剂作用下,通过加氢裂化转变为液体燃料的过程称为直接液化。
裂化是一种使烃类分子分裂为几个较小分子的反应过程。
因煤直接液化过程主要采用加氢手段,故又称煤的加氢液化法。
二.煤间接液化是先把煤炭在高温下与氧气和水蒸气反应,使煤炭全部气化、转化成合成气(一氧化碳和氢气的混合物),然后再在催化剂的作用下合成为液体燃料的工艺技术。
间接液化首先将原料煤与氧气、水蒸汽反应将煤全部气化,制得的粗煤气经变换、脱硫、脱碳制成洁净的合成气(CO+H2),合成气在催化剂作用下发生合成反应生成烃类,烃类经进一步加工可以生产汽油、柴油和LPG等产品。
特点在煤炭液化的加工过程中,煤炭中含有的硫等有害元素以及无机矿物质(燃烧后转化成灰分)均可脱除,硫还可以硫磺的形态得到回收,而液体产品品质较一般石油产品更优质。
编辑本段煤间接液化技术的发展70 年代以后, 德国、美国、日本等主要工业发达国家, 为提高效率、降低生成成本, 相继开发了许多我国煤炭直接液化技术的开发研究为了解决我国石油短缺的问题, 寻求廉价生产人造石油的有效途径, 我国自1980 年重新开展煤炭直接液化技术研究。
在煤炭科学研究总院北京煤化学研究所建成具有先进水平的煤炭直接液化、油品提质加工、催化剂开发和分析检验实验室, 开展了基础和技术研究, 取得了一批科研成果, 培养了一支技术队伍, 为深入进行工艺开发和筹建大型煤炭直接液化生产厂奠定了基础。
《煤化工工艺学》__煤的直接液化
虽可实现煤就地液化,不必建井采煤,但还存在许多 技术和经济问题,近期内不可能工业化 。
§7.2 煤加氢液化原理
一、煤和石油的比较
煤和石油同是可燃矿物;有机质都由碳.氢、氧、氮和硫元素构 成,但它们在结构、组成和性质上又有很大差别: 化学组成上,石油的H/C原子比高于煤,而煤中的氧含量显著高
就会彼此结合,这样就达不到降低分子量的目的。多环芳
烃在高温下有自发缩聚成焦的倾向。
在煤加氢液化中结焦反应是不希望发生的。一旦发生,
轻则使催化剂表面积炭,重则使反应器和管道结焦堵塞。
采取以下措施可防止结焦:
•
① 提高系统的氢分压;
•
② 提高供氢溶剂的浓度;
•
③ 反应温度不要太高;
•
④ 降低循环油中沥青烯含量,
(3)高压催化加氢法
如:德国的新老液化工艺和美国的氢煤法。
(4)煤和渣油联合加工法
以渣油为溶剂油与煤一起一次通过反应器,不用循环 油。渣油同时发生加氢裂解转化为轻质油。美国、加 拿大、德国和苏联等各有不同的工艺。
(5)干馏液化法
煤先热解得到焦油,然后对焦油进行加氢裂解和提质 。
(6)地下液化法
为保证催化剂维持一定的活性,在反应中连续抽出约2%的催 化剂进行再生。同时补充足够的新催化剂。
反应产物的分离和IG新工艺相近,即经过热分离器到闪蒸塔4 ,塔顶产物经常压蒸馏塔7分为轻油、中油和重油;塔底产物经旋 流器10,含固体少的淤浆返回系统制煤浆,而含固体多的淤浆经 液固分离器9再进入减压蒸馏塔8进行减压蒸馏。塔底残渣用于气 化和中油与氢气混合后,经热交换器和预 热器,进入3个串联的固定床催化加氢反应器、产物 通过热交换器后进一步冷却分离,分出气体和油, 前者基本作为循环气,后者经蒸馏得到汽油作为主 要产品,塔底残油返回作为加氢原料油。
煤加氢的原理
煤加氢的原理煤加氢是一种利用氢气使煤分子发生结构变化,转化为液体燃料的过程。
该过程是一种重要的煤转化技术,被广泛应用于煤化工、石油化工和新能源领域。
煤是一种含碳高、含杂原子低的燃料,其主要成分是碳、氢、氧、氮和硫等。
在煤加氢过程中,通过在高温高压条件下,将煤与氢气反应,可以使煤分子结构发生改变,形成燃料或化工原料。
煤加氢的反应过程可以分为三个主要步骤:煤的液化、液化烃的生成和气体的生成。
首先是煤的液化过程。
在高温高压条件下,煤分子中的键能被破坏,煤的结构发生改变。
煤中的芳香环被打开,碳与氢原子结合形成饱和链烷烃,同时杂原子如氧、硫、氮也发生改变。
在液化过程中,产物液的主要成分是液化烃。
接下来是液化烃的生成过程。
液化烃是指在煤液化过程中产生的烃类化合物,包括饱和烃、不饱和烃和芳香烃等。
这些烃类化合物可以作为液体燃料或化工原料使用。
在液化烃生成过程中,一些具有催化性能的物质(如铁、镍等金属)被引入反应体系中,以加速反应速度和提高产率。
最后是气体的生成过程。
在煤加氢过程中,除了液化烃外,还会产生一部分气体。
主要的气体产物包括甲烷、乙烷、乙烯等。
这些气体可以作为燃料、制冷剂或化工原料使用。
煤加氢的原理在于通过引入氢气并改变煤的结构,使其转化为液体燃料或化工原料。
这种转化过程可以发挥煤炭资源的高效利用,减少对传统石油资源的依赖,同时还可以减少大气污染物的排放。
煤加氢技术的应用非常广泛,可以用于生产液体燃料、化工原料、润滑剂等。
其中,煤直接液化(DCL)是煤加氢的一种重要方法,广泛应用于煤化工领域。
煤间接液化(ICL)是另一种常用的煤加氢技术,其通过将煤转化为合成气,再经过催化反应生成液体燃料。
煤加氢技术的优势在于可以将煤这种传统能源转化为液体燃料,提高能源利用效率。
煤加氢还可以减少石油资源的依赖,降低石油价格的波动对经济的影响。
此外,煤加氢过程还可以减少大气污染物的排放,对环境有较好的影响。
然而,煤加氢也存在一些技术挑战。
煤的加氢液化工艺流程
煤的加氢液化工艺流程
煤的加氢液化工艺流程如下:
1. 煤的粉碎:首先将煤炭粉碎成小颗粒以增加反应表面积。
2. 煤的预处理:对煤进行脱灰、脱硫、脱氮和脱水等预处理,以减少反应过程中催化剂的磨损和生产废气的排放。
3. 煤的气化:将处理好的煤送入气化炉内进行气化,将煤分解成氢气、一氧化碳等气体和固体的炭黑。
4. 合成气的净化:合成气中含有大量杂质和固体颗粒物,需要进行净化处理,包括除尘、去硫、除异构烯和水煤气转化等。
5. 加氢反应:将净化后的合成气与催化剂在高压、高温下进行加氢反应,生成高碳链烃、低碳链烃和芳香烃等液体燃料。
6. 分离提纯:将反应产物进行分离、提纯,去除杂质和不需要的组分,得到高纯度的合成燃料。
7. 产品储运:对合成燃料进行储存、运输和分配,以满足工业和民用需求。
以上就是煤的加氢液化工艺流程的主要内容。
神华煤直接液化工艺技术特点和优势
神华煤直接液化工艺技术特点和优势神华煤直接液化示范工程采用的煤直接液化工艺技术是在充分消化吸收国外现有煤直接液化工艺的基础上,利用先进工程技术,经过工艺开发创新,依靠自身技术力量,形成了具有自主知识产权的神华煤直接液化工艺神华煤直接液化工艺技术特点1) 采用超细水合氧化铁(FeOOH)作为液化催化剂。
以Fe 2 + 为原料,以部分液化原料煤为载体,制成的超细水合氧化铁,粒径小、催化活性高。
2) 过程溶剂采用催化预加氢的供氢溶剂。
煤液化过程溶剂采用催化预加氢,可以制备45% ~50%流动性好的高浓度油煤浆;较强供氢性能的过程溶剂防止煤浆在预热器加热过程中结焦,供氢溶剂还可以提高煤液化过程的转化率和油收率。
3)强制循环悬浮床反应器。
该类型反应器使得煤液化反应器轴向温度分布均匀,反应温度控制容易;由于强制循环悬浮床反应器气体滞留系数低,反应器液相利用率高;煤液化物料在反应器中有较高的液速,可以有效阻止煤中矿物质和外加催化剂4)减压蒸馏固液分离。
减压蒸馏是一种成熟有效的脱除沥青和固体的分离方法,减压蒸馏的馏出物中几乎不含沥青,是循环溶剂的催化加氢的合格原料,减压蒸馏的残渣含固体50%左右。
5) 循环溶剂和煤液化初级产品采用强制循环悬浮床加氢。
悬浮床反应器较灵活地催化,延长了稳定加氢的操作周期,避免了固定床反应由于催化剂积炭压差增大的风险;经稳定加氢的煤液化初级产品性质稳定,便于加工;与固定床相比,悬浮床操作性更加稳定、操作周期更长、原料适应性更广。
神华示范装置运行结果表明,神华煤直接液化工艺技术先进,是唯一经过工业化规模和长周期运行验证的煤直接液化工艺。
神华煤直接液化工艺技术优势1)单系列处理量大。
由于采用高效煤液化催化剂、全部供氢性循环溶剂以及强制循环的悬浮床反应器,神华煤直接液化工艺单系列处理液化煤量为6000 t/d。
国外大部分煤直接液化采用鼓泡床反应器的煤直接液化工艺,单系列最大处理液化煤量为每天2500 ~3000 t。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
催化剂
循环油是主要的供氢载体,催化剂的功能是促 进溶于液相中的氢与脱氢循环油间的反应,使 脱氢循环油加氢并再生。
在直接液化过程中,煤的大分子结构首先受 热分解,而使煤分解成以结构单元缩合芳烃为 单个分子的独立的自由基碎片。在高压氢气和 催化剂存在下,这些自由基碎片又被加氢,形 成稳定的低分子物 。
催化剂作用
催化剂的作用是吸附气体中的氢分子,并将其 活化成活性氢以便被煤的自由基碎片接受。一 般选用铁系催化剂或镍、钼和钴类催化剂。硫 是煤直接液化的助催化剂,有些煤本身含有较 高的硫,可少加或不加助催化剂。
催化剂的影响
催化剂是煤直接液化过程的核心技术 优良的催化剂可以降低煤液化温度,减少副
产生的自由基碎片只能靠自身的氢再分配,使 少量的自由基碎片形成低分子油和气,而大量 的自由基碎片则发生缩聚反应生成固体焦 。
煤在热解过程中外界供给氢
煤热解产生的自由基碎片与周围的氢结合成稳 定的H/C原子比较高的低分子物(油和气),这 样就能抑制缩聚反应,使煤全部或绝大部分转 化成油和气。一次加氢液化的实质是用高温切 断化学结构中的C-C键,在断裂处用氢来饱和, 从而使分子量减少和H/C原子比提高。反应温 度要控制合适,温度太低,不能打碎煤分子结 构或打碎的太少,油产率低。一般液化工艺的 温度为400℃~470℃。
自由基碎片加氢(一)
可用如下方程式表示加氢反应
R-CH2-CH2-R’→ RCH2·+R’CH2· RCH2·+R’CH2·+2H·→ RCH3+R’CH3
煤加氢液化过程包括一系列的顺序反应和平行反 应,但以顺序反应为主,每一级反应的分子量 逐级降低,结构从复杂到简单,杂原子含量逐 级减少,H/C原子比逐级上升。
第二类是金属卤化物催化剂如如ZnCl2、SnCl2酸性催 化剂
第三类是铁系催化剂,包括含铁的天然矿石、含铁的工 业残渣和各种纯态铁的化合物(如铁的氧化物、硫化 物和氢氧化物)。
催化原理
煤直接液化高效催化剂活性组分以其纳米级 的颗粒均匀地分布在煤粒表面最大限度地发挥 其催化活性,因而其用量只是常规催化剂的 1/4。煤液化油收率可高出常规铁系催化剂5个 百分点左右,其经济效益十分明显。
自由基碎片加氢 (二)
自由基碎片加氢稳定后的液态物质可分成油类、沥青 烯和前沥青烯等三种不同成分,对其继续加氢。
前沥青烯 沥青烯 油类物质
油类物质再继续加氢,脱除其中的氧、氮和硫等杂原 子,即转化为成品油
汽油 蒸馏 航空煤油
柴油
活化氢来源
与煤自由基碎片结合的氢必须是活化氢
(1)煤分子中的氢再分配; (2)供氢溶剂提供; (3)氢气中的氢分子被催化活化; (4)化学反应放出氢 据研究证明:系统中供CO+H2O或CO+H2的液化效果 比单纯供H2的效果好 这主要是CO+H2O的变化反应放出的氢容易与煤的自 由基碎片结合。
反应并降低能耗,提高氢转移效率,增加液体 产物的收率。在用于煤液化工艺的各种催化剂 中,铁基催化剂以其高效、廉价及低污染而倍 受青睐。专利技术集中在改善铁基催化剂的性 能、开发新型高效的催化剂、催化剂制备工艺 改进和催化剂的预处理等。
催化剂分类
煤炭直接液化中使用的催化剂通常有三大类
第一类是钴(Co)、钼(Mo)、镍(Ni)催化剂
直接液化工艺流程简图
催
化
剂
H2
煤煤
反
浆
应
分
提
离
质
循环溶剂
残渣
汽油 柴油
其它
工艺过程
该工艺是把煤先磨成粉,再和自身组的部分液 化油(循环制剂)配成煤浆,在高温(450oC) 和高压(20—30MPa)下直接加氢,获得液化油, 然后再经过提质加工,得到汽油柴油等产品.1t 无水无灰煤可产500—600Kg油,加上制氢用 煤,约3—4t原料煤产1t油。
例子: 神华集团已经决定在其煤直接液化示范工 程第一条示范生产线中采用高效催化剂。
溶剂的影响
1、一般溶剂的作用 2、溶剂的供氢作用 3、溶剂的传递氢作用
常见的溶剂有: 四氢萘、萘、蒽、菲、甲酚、 萘酚等;煤焦油和石油渣油等重质油作溶剂; 废塑料和废橡胶及废油脂作溶剂。
溶剂作用
溶剂在煤液化反应过程中起非常重要的作用, 它可以溶解溶胀、烯释分散煤粒,使气、液、 固三相反应系统处于一个相对均匀的体系。 这对于煤的热裂解反应,煤的热裂解生成的自 由基的保护作用,自由基碎片的加氢反应以及 抑制煤液化的副反应——缩聚反应都起着积极 的作用 。
煤的直接加氢液化技术
煤直接液化反应机理
把固体煤转化为液体油,就必须采用增加温 度或其他化学方法以打碎煤的分子结构,使大 分子物质变成小分子物质,同时外界要供给足 够量的氢,提高其H/C原子比。
煤直接液化反应比较复杂,大致可分为热解、 氢转移、加氢三个反应步骤
氢源