【精选】七年级上册代数式单元测试卷 (word版,含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学代数式解答题压轴题精选(难)
1.已知整式P=x2+x﹣1,Q=x2﹣x+1,R=﹣x2+x+1,若一个次数不高于二次的整式可以表示为aP+bQ+cR(其中a,b,c为常数).则可以进行如下分类
①若a≠0,b=c=0,则称该整式为P类整式;
②若a≠0,b≠0,c=0,则称该整式为PQ类整式;
③若a≠0,b≠0,c≠0.则称该整式为PQR类整式;
(1)模仿上面的分类方式,请给出R类整式和QR类整式的定义,若,则称该整式为“R类整式”,若,则称该整式为“QR类整式”;
(2)说明整式x2﹣5x+5为“PQ类整式;
(3)x2+x+1是哪一类整式?说明理由.
【答案】(1)解:若a=b=0,c≠0,则称该整式为“R类整式”.
若a=0,b≠0,c≠0,则称该整式为“QR类整式”.
故答案是:a=b=0,c≠0;a=0,b≠0,c≠0
(2)解:因为﹣2P+3Q=﹣2(x2+x﹣1)+3(x2﹣x+1)
=﹣2x2﹣2x+2+3x2﹣3x+3=x2﹣5x+5.
即x2﹣5x+5=﹣2P+3Q,所以x2﹣5x+5是“PQ类整式”
(3)解:∵x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1),
∴该整式为PQR类整式.
【解析】【分析】(1)根据题干条件,可得若a=b=0,c≠0,则称该整式为“R类整式”;若a=0,b≠0,c≠0,则称该整式为“QR类整式”.
(2)根据"PQ类整式"定义,由x2﹣5x+5=﹣2(x2+x﹣1)+3(x2﹣x+1) = ﹣2P+3Q,据此求出结论.
(3)由x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1)= PQR,据此判断即可.
2.如图,在数轴上有两点A、B,点A表示的数是8,点B在点A的左侧,且AB=14,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)写出数轴上点B表示的数:________ ;点P表示的数用含t的代数式表示为________ .
(2)动点Q从点B出发沿数轴向左匀速运动,速度是点P速度的一半,动点P、Q同时出发,问点P运动多少秒后与点Q的距离为2个单位?
(3)若点M为线段AP的中点,点N为线段BP的中点,在点P的运动过程中,线段MN 的长度是否会发生变化?若变化,请说明理由;若不变,求出线段MN的长.
【答案】(1)解:8-14=-6;因此B点为-6;故答案为:-6
;解:因为时间为t,则点P所移动距离为4t,因此点P为8-4t ;故答案为:8-4t
(2)解:由题意得,Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;
所以①P在Q的右侧时
8-4t-(-2t-6)=2
解得x=6
②P在Q左侧时
-2t-6-(8-4t)=2
解得x=8
答:动点P、Q同时出发,问点P运动6或8秒后与点Q的距离为2个单位.
故答案为:6或8秒
(3)解:①当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t
因点M为线段AP的中点,点N为线段BP的中点
所以MP=AP=2t;NP=BP=7-2t
MN=MP+NP=2t+7-2t=7
②当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14
因点M为线段AP的中点,点N为线段BP的中点
所以MP=AP=2t;NP=BP=2t-7
MN=MP-NP=2t-(2t-7)=7
因此在点P的运动过程中,线段MN的长度不变, MN=7
【解析】【分析】(1)①由数轴上两点之间距离的规律易得B的值为8-14=16;
②因为时间为t,则点P所移动距离为4t,因此易得P为8-4t
(2)由题易得:Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;分别讨论P在Q 左侧或右侧的情况,由此列方程,易得结果为6或8秒;
(3)结合(1)(2)易得当P在AB间以及P在B左边时的两种情况;当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t;当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14;利用中点性质,易得结果不变,为7.
3.已知x1, x2, x3,…x2016都是不等于0的有理数,若y1= ,求y1的值.
当x1>0时,y1= = =1;当x1<0时,y1= = =﹣1,所以y1=±1
(1)若y2= + ,求y2的值
(2)若y3= + + ,则y3的值为________;
(3)由以上探究猜想,y2016= + + +…+ 共有________个不同的值,在y2016这些不同的值中,最大的值和最小的值的差等于________.
【答案】(1)解:∵ =±1, =±1,
∴y2= + =±2或0
(2)±1或±3
(3)2017;4032
【解析】【解答】解:(2)∵ =±1, =±1, =±1,
∴y3= + + =±1或±3.
故答案为±1或±3,
( 3 )由(1)(2)可知,
y1有两个值,y2有三个值,y3有四个值,…,
由此规律可知,y2016有2017个值,
最大值为2016,最小值为﹣2016,
最大值与最小值的差为4032.
故答案分别为2017,4032.
【分析】(1)根据题意先求出=±1,=±1,就可求出y2的3个值。
(2)根据题意先求出=±1,=±1,=±1,分情况讨论求出y3的4个值。
(3)根据(1)(2)的规律,可知y2016就有2017个不同的值,最大值的和是2016个1相加,最小值的和是2016个-1相加,再求出它们的差即可。
4.将连续的偶数2,4,6,8……,排成如下表:
(1)十字框中的五个数的和与中间的数16有什么关系?
(2)设中间的数为x,用代数式表示十字框中的五个数的和,
(3)若将十字框上下左右移动,可框住另外的五个数,其它五个数的和能等于2010吗?如能,写出这五个数,如不能,说明理由.
【答案】(1)解:十字框中的五个数的和为6+14+16+18+26=80=16×5,即是16的5倍(2)解:设中间的数为x,则十字框中的五个数的和为:
(x﹣10)+(x+10)+(x﹣2)+(x+2)+x=5x,所以五个数的和为5x
(3)解:假设能够框出满足条件的五个数,设中间的数为x,由(2)得
5x=2010,所以x=402,但402位于第41行的第一个数,在这个数的左边没有数,所以不能框住五个数,使它们的和等于2010
【解析】【分析】(1)按有理数的加法法则计算出十字框中的五个数的和,再将这个和除以最中间的数16,即可发现关系;
(2)设中间的数为x,则左边的数是(x-2),右边的数是(x+2),上边的数是(x-10),下边的数是(x+10),将这5个数相加,再合并同类项即可得出答案;
(3)假设能够框出满足条件的五个数,设中间的数为x,由(2)得这五个数的和是5x,由五个数的和等于2010,列出方程,求解,得出x的值,由于所得的x的值位于第41行的第一个数,在这个数的左边没有数,所以不能框住五个数,使它们的和等于2010。
5.用如图所示的甲、乙、丙木板做一个长、宽、高分别为a厘米,b厘米,h厘米的长方体有盖木箱(a>b),其中甲刚好能做成箱底和一个长侧面,乙刚好能做成一个长侧面和一个短侧面,丙刚好能做成箱盖和一个短侧面。
(1)填空:用含a、b、h的代数式表示以下面积:
甲的面积________;乙的面积________;丙的面积________.
(2)当h=20cm时,若甲的面积比丙的面积大200cm2,乙的面积为1400cm2,求a和b 的值;
(3)现将一张长、宽分别为a厘米、b厘米的长方形纸板(如图①)分割成两个小长方形。
左侧部分刚好分割成两个最大的等圆,和右侧剩下部分刚好做成一个圆柱体模型(如图②),且这样的圆柱体模型的高刚好与木箱的高相等。
问:一个上述长方体木箱中最多可以放________个这样的圆柱体模型。
【答案】(1)ab+ah;ah+bh;ab+bh
(2)解:,
化简得,
解得: .
(3)8
【解析】【解答】(1)甲的面积= ab+ah,乙的面积= ah +bh;丙的面积 =ab+bh;
(3)设圆的直径为d,
∵将一张长、宽分别为a厘米、b厘米的长方形纸板(如图①)分割成两个小长方形。
左侧部分刚好分割成两个最大的等圆,和右侧剩下部分刚好做成一个圆柱体模型,
∴b=2d,a-d=πd,
∴a=(π+1)d
∵圆柱体模型的高刚好与木箱的高相等,
∴只有比较木箱的上表面有几个正方形ACDF即可,
∴
∴可以放两层,
∴b=2r+πr
∴
∴一个上述长方体木箱中最多可以放8个这样的圆柱体模型.
故答案为:8.
【分析】(1)根据矩形的面积公式,分别求出甲,乙,丙的面积即可;
(2)根据甲的面积-丙的面积=200cm2,乙的面积为1400cm2,列出方程组,将h=20cm代入并解出方程组,即可求出a,b的值;
(3)设圆的直径为d,观察图像由已知可得到b=2d,a=(π+1)d,再根据圆柱体模型的高刚好与木箱的高相等,就可得到只有比较木箱的上表面有几个正方形ACDF即可,因此利用木箱的上表面的面积除以正方形ACDF的面积即可求解。
6.某家具厂生产一种课桌和椅子,课桌每张定价180元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:
方案一:每买一张课桌就赠送一把椅子
方案二:课桌和椅」都按定价的80%付款
某校计划添置100张课桌和把椅子,
(1)若,请计算哪种方案划算;
(2)若,请用含的代数式分别把两种方案的费用表示出来
(3)若,乔亚萍认为用方案一购买省钱,小兰认为用方案二购买省钱,如果两种方案可以同时使用,你能帮助学校设讣·种比乔亚萍和小兰的方案都更省钱的方案吗?若能,请你写出方案,若不能,请说明理由.
【答案】(1)解:当x=100时
方案一:100×180=18000;
方案二:(100×180+100×80)×80%=20800;
18000<20800
∴方案一划算;
(2)解:当x>100时
方案一:100×180+80(x-100)=80x+10000;
方案二:(100×180+80x)×80%=64x+14400;
(3)解:当x=320时
按方案一购买:80×320+10000=35600
按方案二购买:64×320+14400=34880
35600>34880
∴方案二更省钱.
【解析】【分析】(1)根据两种方案的优惠方式,分别列式计算,再比较大小即可作出判断。
(2)根据x>100,根据两种优惠方案,分别列式即可。
(3)将x=320分别代入(2)中的两种优惠方案的费用中进行计算,再比较大小可作出判断。
7.亚萍做一道数学题,“已知两个多项式,,试求.”其中多项式的二次项系数印刷不清楚
(1)乔亚萍看了答案以后知道,请你替乔亚萍求出多项式的二次项系数;
(2)在(1)的基础上,乔亚萍已经将多项式正确求出,老师又给出了一个多项式,要求乔亚萍求出的结果.乔亚萍在求解时,误把“ ”看成“ ”,结果求出的答案为,请你替乔亚萍求出“ ”的正确答案.
【答案】(1)解:设A的二次项系数为m,
由题意可得
mx2+4x+2(2x2-3x+1)=x2-2x+2
mx2+4x+4x2-6x+2=x2-2x+2
(m+4)x2-2x+2=x2-2x+2
∴m+4=1
解之:m=-3
∴多项式A的二次项系数为-3.
(2)解:∵A+C=x2-5x+2
∴-3x2+4x+C=x2-5x+2
∴C=x2-5x+2-3x2-4x=-2x2-9x+2
∴A-C=-3x2+4x-(-2x2-9x+2)=-3x2+4x+2x2+9x-2=-x2+13x-2
【解析】【分析】(1)设A的二次项系数为M,将其代入可得到mx2+4x+2(2x2-3x+1)=x2-2x+2,就可求出m的值.
(2)根据题意可得到A+C=x2-5x+2,代入求出多项式C,然后求出A-C即可。
8.已知多项式,,其中,马小虎同学在计算“ ”时,误将“”看成了“ ”,求得的结果为.
(1)求多项式;
(2)求出的符合题意结果;
(3)当时,求的值.
【答案】(1)解:∵,,
∴
;
(2)解:∵,,
∴
(3)解:当时,
【解析】【分析】(1)因为,所以,将代入即可求出;(2)将(1)中求出的与代
入,去括号合并同类项即可求;(3)根据(2)的结论,把代入求值即可.
9.将7张相同的长方形纸片(如图1)按图2所示的方式不重叠地放在长方形ABCD内,未被覆盖的部分恰好可以分割为两个长方形,面积分别为S1和S2.已知小长方形纸片的长为a,宽为b,且a>b.
(1)当a=9,b=2,AD=30时,S1-S2=________.
(2)当AD=30时,用含a,b的式子表示S1-S2.
(3)若AB长度不变,AD变长,将这7张小长方形纸片按照同样的方式放在新的长方形ABCD内,而且S1-S2的值总保持不变,则a,b满足的关系是________.
【答案】(1)48
(2)解:S1-S2
=a(30-3b)-4b(30-a)
=30a-120b+ab
(3)a=4b
【解析】【解答】(1)解:当a=9,b=2,AD=30时,S1=a(30-3b)=9×(30-3×2)=216
S2=4b(30-a)=4×2×(30-9)=168
S1-S2=216-168=48
3)解:设AD=m,
S1-S2
=(am-3ab)-(4bm-4ab)
=am-4bm+ab
若S1-S2的值总保持不变,则S1-S2的值与m的取值无关,所以有am-4bm=0
则a=4b.
【分析】(1)观察图形,分别求出S1和S2的面积,再求差即可;(2)用含a、b的代数式分别表示S1和S2的面积,再求差即可;(3)设AD=m, 用含a、b、m的代数式分别表示S1和S2的面积差,再去括号合并同类项,根据题意S1-S2的值总保持不变,即可解答.
10.用若干块如左图所示的正方形或长方形纸片拼成图(1)和图(2)
(1)如图(1),若AD=7,AB=8,求与的值;
(2)如图(1),若长方形ABCD的面积为35,其中阴影部分的面积为20,求长方形ABCD的周长;
(3)如图(2),若AD的长度为5,AB的长度为 .
①当 =________, =________时,,的值有无数组;
②当 ________, ________时,,的值不存在.
【答案】(1)解:由图得
,
解得:
(2)解:由图可得:5个小长方形面积=长方形ABCD的面积-阴影部分的面积,
∴,
∴ab=3,
∵阴影部分的面积为20,
∴,
∴,
∴a+b= ,
方形ABCD的周长=2[(2a+b)+(2b+a)]=6(a+b)=6×4=24
(3)4;10;4;≠10.
【解析】【解答】解:(3)由图(2)得:
,
由①得a=5-2b,③
将③代入②得2(5-2b)+mb=n,
∴(m-4)b=n-10,
∴当时,a,b的解有无数组;
即m=4,n=10时,a,b的值有无数组;
当时,方程组无解,
即m=4,n≠10时,a,b的值不存在.
故答案为:①m=4,n=10;②m=4,n≠10
【分析】(1)由长方形的性质和图中的信息可得关于a、b的方程组,从而求解;
(2)由图和已知条件可列方程组:,解方程组即可求解;
(3)由题意联立解方程组,当两直线重合时,有无数组解;当两直线平行时,无解。
11.为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的价目表如下(注:水费按月份结算):
价目表
每月用水量价格
不超过6立方米的部分2元/立方米
超出6立方米,不超出10立方米的部分4元/立方米
超出10立方米的部分8元/立方米
(1)填空:若某户居民2月份用水4立方米,则应收水费________元;
(2)若该户居民3月份用水a立方米(其中6<a<10),则应收水费________元;(用含a
的代数式表示,并化简)
(3)若该户居民4、5两个月共用水15立方米(5月份用水量超过了4月份),设4月份用水x立方米,求该户居民4、5两个月共交水费多少元?(用含x的代数式表示,并化简)
【答案】(1)8
(2)4a-12
(3)解:当0<x<5时,则15-x>10,
应收水费为:2x+2×6+4×4+(15-x-10)×8=-6x+68(元);
当5≤x<6时,则9≤15-x≤10,
应收水费为:2x+2×6+(15-x-6)×4=-2x+48(元);
当6≤x,则6<x<15-x<9,
应收水费为:2×6+(x-6)×4+2×6+(15-x-6)×4=36(元)。
【解析】【解答】解:(1)4×2=8(元);
故答案为:8.
(2)因为6<a<10,
所以应收水费为:6×2+(a-6)×4=12+4a-24=4a-12(元)
故答案为:4a-12。
【分析】(1)水量不超过6立方米,故每立方米按2元/立方米;(2)因为6<a<10 ,所以a中6立方米水费按2元/立方米,(a-6)立方米水费按4元/立方米计算;(3)需要分类讨论x的取值范围,对15-x的取值范围的影响。
分别假设0<x<5,5≤x<6,6≤x时,再判别15-x的取值范围,并用x分别表示出4月和5月的水费,并求它们的和。
12.任何一个整数,可以用一个多项式来表示:
.
例如:.已知是一个三位数.
(1)为________.
(2)小明猜想:“ 与的差一定是的倍数”, 请你帮助小明说明理由.
(3)在一次游戏中,小明算出,,,与这个数和是,请你求出这个三位数.
【答案】(1)
(2)解:
;与的差一定是的倍数.
(3)解:,由已知条件可得
=
= = 即
.是个三位数至少从16开始,经尝试发现,只有满足条件,此时,这个三位数为
【解析】【解答】解:(1)
【分析】(1)根据每个数位上的数字所表示的意义:个位上的数字是几就表示几个1,十位上的数字是几就表示表示几个10,百位上的数字是几就表示几个100…,从而得出答案;
(2)根据(1)所得的方法,将被减数与减数分别改写成一个加法算式,然后根据整式的加法法则,去括号再合并同类项互为最简形式,根据结果判断是否是9的倍数即可;(3)根据,,,与这个数和是及(1)发现的改写规律列出方程,再根据等式的性质在方程的两边都加上,然后化简得出
,是个三位数a+b+c 至少从16开始,经尝试发现,只有满足条件,此时 .。