12波动习题答案 第二版

合集下载

力学第二版习题答案第十章

力学第二版习题答案第十章

第十章波动基本知识小结⒈平面简谐波方程 )c o s ()(c o s kx t A t A y V xωω==;v V T v k T λπλπω====,/1,2,2。

⒉弹性波的波速仅取决媒质性质:弹性体中横波的波速ρ/N V =,弹性体中纵波的波速ρ/Y V =,流体中纵波波速ρ/k V =,绳波波速ρ/T V =。

⒊波的平均能量密度2221A ρωε=,波的平均能流密度 VA I 2221ρω=。

⒋波由波密射向波疏媒质,在边界处,反射波与入射波相位相同;波由波疏射向波密媒质,在边界处,反射波比入射波相位落后π,相当损失半个波长;例如:在自由端无半波损失,在固定端有半波损失。

⒌振动方向相同、频率相同、位相差恒定的二列波叫相干波,相干波叠加叫波的干涉。

⒍振幅相同、传播方向相反的两列相干波叠加产生驻波现象;驻波方程 t x A y ωλπcos cos 22=;波节两边质元振动相位相反,两个波节之间质元振动相位相同;相邻波节或相邻波腹间距离为λ/2,相邻波腹波节间距离为λ/4。

⒎多普勒公式:v v SV V V V --=0',在运用此公式时,以波速V 为正方向,从而确定V 0、V S 的正负。

10.2.1 频率在20至20000Hz 的弹性波能使人耳产生听到声音的感觉。

0ºC 时,空气中的声速为331.5m/s,求这两种频率声波的波长。

解:mv V v V v V 58.16/,/,205.33111≈===∴=λλλ mv V 3221058.1620/5.331/-⨯≈==λ10.2.2 一平面简谐声波的振幅A=0.001m ,频率为1483Hz ,在20ºC 的水中传播,写出其波方程。

解:查表可知,波在20ºC 的水中传播,其波速V=1483m/s.设o-x 轴沿波传播方向,x 表示各体元平衡位置坐标,y 表示各体元相对平衡位置的位移,并取原点处体元的初相为零,则:)22966cos(001.0)(2cos x t t v A y V xπππ-=-=10.2.3 已知平面简谐波的振幅A=0.1cm,波长1m,周期为10-2s,写出波方程(最简形式).又距波源9m 和10m 两波面上的相位差是多少?解:取坐标原点处体元初相为零,o-x 轴沿波传播方向,则波方程的最简形式为)100(2cos 10)(2cos )(cos 3x t A t A y xT t V x -=-=-=-ππωλ πππ2)10100(2)9100(2=---=∆Φt t10.2.4 写出振幅为A,频率v =f ,波速为V=C,沿o-x 轴正向传播的平面简谐波方程.波源在原点o,且当t=0时,波源的振动状态是位移为零,速度沿o-x 轴正方向。

大学物理课后习题册答案 第二版王建邦主编

大学物理课后习题册答案  第二版王建邦主编

参考答案 第一章1-1 已知质点运动学方程分量式为2x t =262y t =- (1)求轨道方程,并画出轨迹图;(2)求1t =到2t =之间的∆r ,r ∆和v ;(本题中x ,y的单位是m ,t 的单位是s ,v 的单位为1s m -⋅。

)[答案] (1)262x y =-,(2)26-i j ,0,26-i j .(1)由质点在水平方向、竖直方向的位置-时间函数关系:2x t=262y t =-消去t ,得轨道方程为262x y =-轨迹为抛物线,如题1-1图所示。

(2)将质点的位矢分量式:2x t =262y t =-代入位矢()()()t x t y t ==+r r i j ,可得质点的位置矢量22(62)t t =+-r i j 。

代入时间参量t ,得质点在某一时刻的位置r 。

由质点位移和平均速度的定义,可求得21∆=-r r r 21r r r ∆=- t∆=∆r v1-2 如图1-2所示,一足球运动员在正对球门前25.0m 处以120.0m s -⋅的初速/y率罚任意球,已知球门高为3.44m 。

若要在垂直于球门竖直平面内将足球直接踢进球门,问他应在与地面成什么角度的范围内踢出足球(足球可视为质点)?[答案] 171.1169.92θ≥≥,127.9218.89θ≥≥. 以踢球点为坐标原点取平面坐标系xOy 。

按高中物理,设斜抛小球初速度0v ,斜抛仰角0θ,写出小球水平方向、竖直方向的位置-时间函数关系:00cos x v t θ= (1)2001sin 2y v t gt θ=- (2)消去t 得足球的轨迹方程 202200tan 2cos gy x x v θθ=-依题意以25.0x m =,120.0v m s -=⋅及3.440m y ≥≥代入后,可解得 171.1169.92θ≥≥ 127.9218.89θ≥≥。

1-3 一质点在xy 平面内运动,在某一时刻它的位置矢量(45)m =-+r i j ,经5s t ∆=后,其位移(68)m ∆=-r i j 。

2018高考一轮总复习物理模拟演练第12章波粒二象性12波粒二象性有答案

2018高考一轮总复习物理模拟演练第12章波粒二象性12波粒二象性有答案

时间:45分钟满分:100分一、选择题(本题共11小题,每小题6分,共66分。

其中1~7为单选,8~11为多选)1.下列描绘两种温度下黑体辐射强度与波长关系的图中,符合黑体辐射实验规律的是( )答案 A解析随着温度的升高,辐射强度增加,辐射强度的极大值向着波长较短的方向移动,A正确。

2.用一束紫外线照射某金属时不能产生光电效应,可能使该金属产生光电效应的措施是( )A.改用红光照射B.改用X射线照射C.改用强度更大的原紫外线照射D.延长原紫外线的照射时间答案 B解析根据光电效应的条件ν>ν0,要产生光电效应,必须用能量更大,即频率更高的粒子。

能否发生光电效应与光的强度和照射时间无关。

X射线的频率大于紫外线的频率。

故A、C、D错误,B正确。

3.用强度相同的红光和蓝光分别照射同一种金属,均能使该金属发生光电效应。

下列判断正确的是( ) A.用红光照射时,该金属的逸出功小,用蓝光照射时该金属的逸出功大B.用红光照射时,该金属的截止频率低,用蓝光照射时该金属的截止频率高C.用红光照射时,逸出光电子所需时间长,用蓝光照射时逸出光电子所需时间短D.用红光照射时,逸出的光电子最大初动能小,用蓝光照射时逸出的光电子最大初动能大答案 D解析同种金属的逸出功、截止频率是相同的,A、B错误;只要金属能发生光电效应,逸出光电子的时间一样,C错误;蓝光的频率比红光大,由E k=hν-W知,用蓝光时逸出的光电子最大初动能大,D正确。

4.一个德布罗意波波长为λ1的中子和另一个德布罗意波波长为λ2的氘核同向正碰后结合成一个氚核,该氚核的德布罗意波波长为( )A.λ1λ2λ1+λ2B.λ1λ2λ1-λ2C.λ1+λ22D.λ1-λ22答案 A解析 中子的动量p 1=h λ1,氘核的动量p 2=hλ2,同向对撞后形成的氚核的动量p 3=p 2+p 1,所以氚核的德布罗意波波长λ3=h p 3=λ1λ2λ1+λ2,A 正确。

5.已知钙和钾的截止频率分别为7.73×1014Hz 和5.44×1014Hz ,在某种单色光的照射下两种金属均发生光电效应,比较它们表面逸出的具有最大初动能的光电子,钙逸出的光电子具有较大的( )A .波长B .频率C .能量D .动量答案 A解析 由爱因斯坦光电效应方程E k =hν-W 0,金属钙的逸出功大,则逸出的光电子的最大初动能小,即能量小,频率低,波长长,动量小,选项A 正确。

《大学物理》第二版课后习题答案第十章

《大学物理》第二版课后习题答案第十章

习题精解10-1 在平面简谐波的波射线上,A,B,C,D 各点离波源的距离分别是3,,,424λλλλ。

设振源的振动方程为cos 2y A t πω⎛⎫=+ ⎪⎝⎭ ,振动周期为T.(1)这4点与振源的振动相位差各为多少?(2)这4点的初相位各为多少?(3)这4点开始运动的时刻比振源落后多少? 解 (1) 122,2,2xxπϕπϕππλλ∆∆∆==∆==3432,222x xπϕπϕππλλ∆∆∆==∆==(2)112233440,,2223,222πππϕϕϕϕππϕϕπϕϕπ=-∆==-∆=-=-∆=-=-∆=-(3) 1212343411,,,24223,,,242t T T t T T t T T t T Tϕϕππϕϕππ∆∆∆==∆==∆∆∆==∆==10-2 波源做谐振动,周期为0.01s ,振幅为21.010m -⨯,经平衡位置向y 轴正方向运动时,作为计时起点,设此振动以1400u m s -=•的速度沿x 轴的正方向传播,试写出波动方程。

解 根据题意可知,波源振动的相位为32ϕπ= 2122200, 1.010,4000.01A m u m s T ππωπ--====⨯=• 波动方程231.010cos 2004002x y t m ππ-⎡⎤⎛⎫=⨯-+ ⎪⎢⎥⎝⎭⎣⎦10-3 一平面简谐波的波动方程为()0.05cos 410y x t m ππ=-,求(1)此波的频率、周期、波长、波速和振幅;(2)求x 轴上各质元振动的最大速度和最大加速度。

解 (1)比较系数法 将波动方程改写成0.05cos10 2.5x y t m π⎛⎫=-⎪⎝⎭与cos x y A t u ω⎛⎫=-⎪⎝⎭比较得1120.05;10;0.21015; 2.5;0.5A m T s v s u m s u T m Tπωππλ--=======•=•=(2)各质元的速度为()10.0510sin 410v x t m s πππ-=⨯-• 所以1max 0.0510 1.57()v m s π-=⨯=•各质元的加速度为()220.05(10)cos 410a x t m s πππ-=-⨯-• 所以22max 0.05(10)49.3()a m s π-=⨯=•10-4 设在某一时刻的横波波形曲线的一部分如图10.1所示。

大学物理第二版习题答案_罗益民_北邮出版社 (2)

大学物理第二版习题答案_罗益民_北邮出版社 (2)

习 题 解 答第8章 机械振动8-1 解:取固定坐标xOy ,坐标原点O 在水面上(图题所示)设货轮静止不动时,货轮上的A 点恰在水面上,则浮力为S ρga .这时 ga s Mg ρ= 往下沉一点时,合力 )(y a g s Mg F +-=ρ gy s ρ-=. 又 22d d t yMMa F == 故0d d 22=+gy s ty M ρ022=+y M gs dtdy ρ 故作简谐振动M g s ρω=2)(35.68.910102101022223334s g s M T =⨯⨯⨯⨯⨯===πρπωπ8-2 解:取物体A 为研究对象,建立坐标Ox 轴沿斜面向下,原点取在平衡位置处,即在初始位置斜下方距离l 0处,此时:)(1.0sin 0m kmg l ==θ(1) (1) A 物体共受三力;重mg, 支持力N, 张力T.不计滑轮质量时,有 T =kx列出A 在任一位置x 处的牛顿方程式220d d )(sin sin txm x l k mg T mg =+-=-θθ将(1)式代入上式,整理后得0d d 22=+x mkt x 习题8-1图故物体A 的运动是简谐振动,且)rad/s (7==mkω 由初始条件,000⎩⎨⎧=-=v l x 求得,1.00⎩⎨⎧===πϕml A 故物体A 的运动方程为x =0.1cos(7t+π)m(2) 当考虑滑轮质量时,两段绳子中张力数值不等,如图所示,分别为T 1、T 2,则对A 列出任一位置x 处的牛顿方程式为:221d d sin txm T mg =-θ (2)对滑轮列出转动方程为:22221d d 2121t x Mr r a Mr J r T r T =⎪⎭⎫ ⎝⎛==-β (3)式中,T 2=k (l 0+x ) (4)由式(3)、(4)知2201d d 21)(txM x l k T ++=代入(2)式知 22021)(sin dtxd m M x l k mg ⎪⎭⎫ ⎝⎛+=+-θ又由(1)式知0sin kl mg =θ故0d d )21(22=++kx t xm M即0)2(d d 22=++x m M ktxm M k +=22ω可见,物体A 仍作简谐振动,此时圆频率为:rad/s)(7.52=+=m M k ω由于初始条件:0,000=-=v l x可知,A 、ϕ不变,故物体A 的运动方程为:m t x )7.5cos(1.0π+=习题8-2图由以上可知:弹簧在斜面上的运动,仍为简谐振动,但平衡位置发生了变化,滑轮的质量改变了系统的振动频率.8-3 解:简谐振动的振动表达式:)cos(ϕω+=t A x由题图可知,m 1042-⨯=A ,当t=0时,将m 1022-⨯=x 代入简谐振动表达式,得:21cos =ϕ 由)sin(ϕωωυ+-=t A ,当t=0时,ϕωυsin A -= 由图可知,υ>0,即0sin <ϕ,故由21cos =ϕ,取3πϕ-= 又因:t=1s 时,,1022m x -⨯=将其入代简谐振动表达式,得213cos ,3cos 42=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=πωπω由t=1s 时,⎪⎭⎫⎝⎛--=3sin πωωυA <0知,03sin >⎪⎭⎫ ⎝⎛-πω,取33ππω=-,即 s 32πω= 质点作简谐振动的振动表达式为m t x ⎪⎭⎫ ⎝⎛-⨯=-332cos 1042ππ8-4 解:以该球的球心为原点,假设微粒在某一任意时刻位于遂道中的位矢为r,由高斯定理可知304R rQ E πε=,则微粒在此处受电场力为:r R Qq F 304πε-=式中,负号表明电场F的方向与r的正方向相反,指向球心.由上式及牛顿定律,得:04d d 04d d 043022302230=+⇒=+=+r mRQqt r r R Qq t r mr RQqF πεπεπε令 mR Qq3024πεω=则 0d d 222=+r trω习题8-3图故微粒作简谐振动,平衡点在球心处.由ωπ2=T知: QqmR T 3042πεπ=8-5 解:(1)取弹簧原长所在位置为O '点.当弹簧挂上物体A 时,处于静止位置P 点,有:P O k Mg =将A 与B 粘合后,挂在弹簧下端,静止平衡所在位置O 点,取O 点为原坐标原点如图题8-5所示,则有:g m M O O k )(+='设当B 与A 粘在一起后,在其运动过程的任一位置,弹簧形变量x O O +',则A 、B 系统所受合力为:kx x O O k g m M F -=+'-+=)()(即 0d d )(22=++kx txm M可见A 与B 作简谐和振动. (2) 由上式知,rad/s)(10=+=mM kω以B 与A 相碰点为计时起点,此时A 与B 在P 点,由图题8-5可知kmgk Mg g k m M P O O O OP =-+='-'= 则t=0时,m 02.00-=-=-=kmgOP x (负号表P 点在O 点上方) 又B 与A 为非弹性碰撞,碰撞前B 的速度为:m/s 2220101=-='gh υυ 碰撞后,A 、B 的共同速度为:m/s 4.0010=+'=mM m υυ (方向向上)则t=0时,⎩⎨⎧=-=sm mx /4.002.000υ可求得:)m (0447.022020=+=ωυx Aπωυϕ65.0arctan 00=⎪⎪⎭⎫⎝⎛-=x 可知A 与B 振动系统的振动表达式为:m t x )65.010cos(0447.0π+=习题8.5图(3) 弹簧所受的最大拉力,应是弹簧最大形变时的弹力,最大形变为:m A g kmM A O O x 1447.0=++=+'=∆则最大拉力 N 4.72max ==x k F ∆ 8-6 解:(1) 已知A=0.24m, 22ππω==T ,如选x 轴向下为正方向. 已知初始条件0m,12.000<=υx 即 3,21c o s ,c o s24.012.0πϕϕϕ±=== 而 ,0sin ,0sin 0><-=ϕϕωυA 取3πϕ=,故:m t x ⎪⎭⎫ ⎝⎛+=32cos 24.0ππ(2) 如图题所示坐标中,在平衡位置上方0.12m, 即x=-0.12m 处,有32322132cos πππππ±=+-=⎪⎭⎫ ⎝⎛+t t因为所求时间为最短时间,故物体从初始位置向上运动,0<υ.故0)32sin(>+ππt则取3232πππ=+t可得:s t 32min =(3) 物体在平衡位置上方0.12m 处所受合外力0.3N x m =-=ωF ,指向平衡位置.8-7 解:子弹射入木块为完全非弹性碰撞,设u 为子弹射入木块后二者共同速度,由动量定理可知:m/s)(0.2=+=υmM mu不计摩擦,弹簧压缩过程中系统机械能守恒,即:20221)(21kx u m M =+ (x 0为弹簧最大形变量) m u kmM x 20100.5-⨯=+=由此简谐振动的振幅 20100.5-⨯==x A 系统圆频率rad/s)(40=+=mM kω习题8-6图若取物体静止时的位置O (平衡位置)为坐标原点,Ox 轴水平向右为正,则初始条件为: t =0时,x =0,0m/s 0.20>==u υ由,sin ,cos 00ϕωυϕA A x -==得:2πϕ-=则木块与子弹二者作简谐振动,其振动表达式为:m t x )240cos(100.52π-⨯=-8-8 解:当物体m 1向右移动x 时,左方弹簧伸长x ,右方弹簧缩短x ,但它们物体的作用方向是相同的,均与物体的位移方向相反,即)(21x k x k F +-=令F =-kx ,有:N/m 421=+=k k k 由 kmT π2= 得)kg (1.0442212211≈==ππkT k T m则粘上油泥块后,新的振动系统质量为:kg 20.021=+m m新的周期 )s (4.12212=+=km m T π在平衡位置时,m 2与m 1发生完全非弹性碰撞. 碰撞前,m 1的速度m/s 10.0111πωυ==A 设碰撞后,m 1和m 2共同速度为υ. 根据动量守恒定律,υυ)(2111m m m +=则m/s 05.0)(2111πυυ=+=m m m新的振幅 m)(035.0222===πυωυTA 8-9 解:(1)由振动方程)25sin(60.0π-=t x 知,5(rad/s)m,6.0==ωA故振动周期: )s (26.1)s (256.1522≈===πωπT (2) t=0时,由振动方程得:)25cos(0.3|m60.0000=-==-==πυt dt dx x t (3) 由旋转矢量法知,此时的位相:3πϕ-=速度 m/s)(6.2m/s )23(560.0sin =-⨯⨯-=-=ϕωυA 加速度 )m /s (5.7m /s 21560.0cos 2222-=⨯⨯-=-=ϕωA a 所受力 N)(5.1N )5.7(2.0-=-⨯==ma F(4)设质点在x 处的动能与势能相等,由于简谐振动能量守恒,即:221kA E E E p k ==+ 故有: )21(21212kA E E E p k ===即 22212121kA kx ⨯=可得: m)(42.022±=±=A x 8-10 解:(1)砝码运动到最高点时,加速度最大,方向向下,由牛顿第二定律,有:N mg ma -=maxN 是平板对砝码的支持力.故N)(74.1)4()()(22max =-=-=-=vA g m A g m a g m N πω砝码对板的正压力与N 大小相等,方向相反.砝码运动到最低点时,加速度也是最大,但方向向上,由牛顿第二定律,有:mg N ma -'=max故 N)(1.8)4()(22max =+=+='A v g m a g m N π 砝码对板的正压力与板对砝码的支持力N '大小相等,方向相反. (2)当N=0时,砝码开始脱离平板,故此时的振幅应满足条件:m)(062.040)4(22max max 2===-=v g A vA g m N ππ(3) 由22max 4vg A π=,可知,2max v A 与成反比,当v v 2='时,m 0155.041max max=='A A 8-11 解:(1)设振子过平衡位置时的速度为υ,由机械能守恒,有:222121υm kA = A mk=υ 由水平方向动量定理: ⇒='+υm u m m )(υm m mu '+=此后,系统振幅为A ',由机械能守恒,有:22)(2121u m m A k '+=' 得: A m m mA '+='有: km m T '+='π2 (2)碰撞前后系统总能量变化为:)21()1(2121212222kA m m m m m m kA kA A k E '+'-=-'+=-'=∆ 式中,负号表示能量损耗,这是泥团与物体的非弹性碰撞所致.(3)当m 达到振幅A 时,m '竖直落在m 上,碰撞前后系统在水平方向的动量均为零,因而系统的振幅仍为A ,周期为km m '+π2,系统的振动总能量不变,为221kA (非弹性碰撞损耗的能量为源于碰撞前m '的动能). 物体系统过平衡位置时的速度υ'由:22)(2121υ''+=m m kA 得:A m m k'+±='υ8-12 解:(1)由放置矢量法可知,振子从2A 运动到2A -的位置处,角相位的最小变化为:3πϕ∆=则圆频率 rad/s 3π∆ϕ∆ω==t 周期 s T 62==ωπ由初始状态,在图示坐标中,初始条件为:m)(1.00m1.000=⇒⎩⎨⎧=-=A x υ则振幅 m 1.022020=+=ωυx A习题8-12图(2)因为E E p 41=又 2221,21kA E kx E p == 故 )21(412122kA kx =得: m)(05.0±=x 根据题意,振子在平衡位置的下方,取x =-0.05m.根据振动系统的能量守恒定律:222212121kA m kx =+υ 故 )s m (091.0122-⋅±=-±=x A ωυ根据题意,取m/s 091.0-=υ 再由 )sin()cos(ϕωωυϕω+-=+=t A t t A x)cos(d d 2ϕωω+-==t A tva x 2ω-= 得: )m/s (055.02=a(3)t=0时,(J)108.681)21(41413222-⨯====mA kA E E p ω (J)102183)21(43433222-⨯====mA kA E E k ω(J)108.273-⨯=+=p k E E E (4)由简谐振动的振动表达式)cos(ϕω+=t A x 当t=0时,0m/s 091.0m,05.000<-=-=υx ,可得:πϕ32= 又 3,10.0πω==m A故 m t x )323cos(1.0ππ+= 8-13 解:(1)据题意,两质点振动方程分别为:mt x mt x Q P )3cos(1000.2)3cos(1000.522ππππ-⨯=+⨯=--(2)P 、Q 两质点的速度及加速度表达分别为:)m/s )(3sin(1000.52ππωυ+⨯⨯-==-t dt dx P P )m/s )(3sin(1000.22ππωυ-⨯⨯-==-t dt dx QQ )m/s )(3cos(1000.5222ππωυ+⨯⨯-==-t dt d a P P )m/s )(3cos(1000.2222ππωυ-⨯⨯-==-t dtd a Q Q当t=1s 时,有:)(m/s 1087.9/32cos 1000.2)(m/s 1068.24/34cos 1000.5(m/s)1044.5/32sin 1000.2(m/s)1060.13/34sin 1000.5(m)1000.132cos 1000.2)(m 105.234cos1000.5222222222222222222------------⨯=⨯⨯-=⨯=⨯⨯-=⨯-=⨯⨯-=⨯=⨯⨯-=⨯-=⨯=⨯=⨯=s m a s m a s m s m m x m x Q P Q P Q P ππππππυππυππ(3)由相位差32)3(3)()(πππϕϕϕωϕωϕ∆=--=-=+-+=Q P Q P t t 可见,P 点的相比Q 点的相位超前32π. 8-14 解:(1)由题意得初始条件:⎪⎩⎪⎨⎧<=02100υA x 可得:3πϕ=(由旋转矢量法可证出)在平衡位置的动能就是质点的总能量)J (1008.3212152222-⨯====⇒=A m kA E m k m kωωω可求得:s rad m E A /221πω==则振动表达式为:m t x )32cos(1000.52ππ+⨯=-(2) 初始位置势能)32(cos 21212222ππω+==t A m kx E P 当t=0时,3cos 21222πωA m E P =J J 6222221071.73cos )1000.5()2(1000.121---⨯=⨯⨯⨯⨯⨯=ππ 8-15 解:(1)由初始条件:⎩⎨⎧<⨯=-0102.1010υm x 可知,3πϕ=且 22ππω==v则振动表达式为:m t x )32cos(24.0ππ+=当t=0.5s 时,m m x 21000.6)3212cos(24.0-⨯-=+⨯=ππ(2) t=0.5s 时,小球所受力:(N)1048.1)(32-⨯=-==x m ma f ω因t=0.5s 时,小球的位置在m x 21000.6-⨯-=处,即小球在x 轴负方向,而f 的方向是沿x 轴正方向,总是指向平衡位置.(3) 从初始位置m x 10102.1-⨯=到m x 1102.1-⨯-=所需最短时间设为t ,由旋转矢量法知,πϕπϕ32,3,0±=±=处处x x 习题8-15图)s (3223=⇒⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧==t t πωπω(4) 因为 )32sin(24.02)sin(πππϕωωυ+⨯-=+-=t t A )32cos(24.04)cos(22πππϕωω+⨯-=+-=t t A a 在s t m x 32102.11=⨯-=-处 )32cos(24.04)3322cos(24.04/1026.3/)3322sin(24.022212ππππππαπππυ+⨯-=+⨯⨯-=⨯-=+⨯⨯-=-t s m s m (5) t=4s 时, 22)]32sin([2121ππωυ+-==t A m m E k (J)1033.5J)342(sin 24.0)2(01.0214222-⨯=+⨯⨯⨯⨯=πππ)32(cos 21212222ππω+==t A m kx E P (J)1077.1J)342(cos 24.0)2(01.0214222-⨯=+⨯⨯⨯⨯⨯=πππ(J)107.10J 101.77J 1033.5-4-44⨯=⨯+⨯=+=-P k E E E 总 8-16 解:设两质点的振动表达式分别为:)cos()cos(2211ϕωϕω+=+=t A x t A x由图题可知,一质点在21Ax =处时对应的相位为: 32/arccos 1πϕω==+A A t同理:另一质点在相遇处时,对应的相位为:习题8-16图352/arccos2πϕω==+A A t 故相位差)()(12ϕωϕωϕ∆+-+=t tπππϕϕ3433512=-=-= 若21υυ与的方向与上述情况相反,故用同样的方法,可得:πππϕϕϕ∆32)3(312=--=-= 8-17 解:由图题8-17(图在课本上P 200)所示曲线可以看出,两个简谐振动的振幅相同,即m 05.021==A A ,周期均匀s 1.0=T ,因而圆频率为:ππω202==T由x -t 曲线可知,简谐振动1在t=0时,,010=x 且010>υ,故可求得振动1的初位相πϕ2310=.同样,简谐振动2在t=0时,πϕυ==-=202020,0,05.0可知m x 故简谐振动1、2的振动表达式分别为:mt x t x )20cos(05.0)2320cos(05.021ππππ+=+=因此,合振动的振幅和初相位分别为: m A A A A A 210202122211025)cos(2-⨯=-++=ϕϕ2021012021010cos cos sin sin arctanϕϕϕϕϕA A A A ++=ππ4541arctan 或== 但由x-t 曲线知,t=0时,πϕ45,05.021应取因此-=+=x x x . 故合振动的振动表达式:m t x )4520cos(10252ππ+⨯=-8-18 解:(1)它们的合振动幅度初相位分别为:)cos(212212221ϕϕ-++=A A A A Am )535cos(06.005.0206.005.022ππ-⨯⨯⨯++=m 0892.0=22112211cos cos sin sin arctanϕϕϕϕϕA A A A ++=316819.15.2arctan 5cos06.053cos 05.05sin06.053sin 05.0'︒===++=rad ππππ (2)当πϕϕk 21±=-,即ππϕπϕ53221+±=+±=k k 时,31x x +的振幅最大;当πϕϕ)12(2+±=-k ,即5)12()12(2ππϕϕ++±=++±=k k 时,32x x +的振幅最小.(3)以上两小问的结果可用旋转矢量法表示,如图题8-18所示.8-19 解:根据题意画出振幅矢量合成图,如习题8-19图所示.由习题8-19图及余弦定理可知cm 233.172023.172030cos 22212122⨯⨯⨯-+=︒-+=AA A A A 0.10m cm 10== 又因为)cos(cos 12ϕϕϕ∆-=0103.172)100300(4002)(2122212=⨯⨯+-=+-=A A A A A若2πϕ∆=,即第一、第二两个振动的相位差为2π第9章波动习题解答9-1 解:首先写出S 点的振动方程 若选向上为正方向,则有:0c o s 02.001.0ϕ=- 21cos 0-=ϕ ,0s i n 00>-=ϕωυA 0sin 0<ϕ即 πϕ320-=或π34初始相位 πϕ320-=则 m t y s )32cos(02.0πω-= 再建立如图题9-1(a)所示坐标系,坐标原点选在S 点,沿x 轴正向取任一P 点,该点振动位相将落后于S 点,滞后时间为: uxt =∆ 习题8-19图习题9-1图则该波的波动方程为:m ux t y ⎥⎦⎤⎢⎣⎡--=πω32)(cos 02.0 若坐标原点不选在S 点,如习题9-1图(b )所示,P 点仍选在S 点右方,则P 点振动落后于S 点的时间为: uLx t -=∆ 则该波的波方程为:m u L x t y ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0 若P 点选在S 点左侧,P 点比S 点超前时间为uxL -,如习题9-1图(c)所示,则 ⎥⎦⎤⎢⎣⎡--+=πω32)(cos 02.0u x L t y ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0u L x t ∴不管P 点在S 点左边还是右边,波动方程为: ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0u L x t y 9-2 解(1)由习题9-2图可知, 波长 m 8.0=λ 振幅 A=0.5m 频率 Hz 125Hz 8.0100===λuv 周期 s 10813-⨯==vT ππυω2502== (2)平面简谐波标准波动方程为:⎥⎦⎤⎢⎣⎡+-=ϕω)(cos ux t A y 由图可知,当t=0,x=0时,y=A=0.5m ,故0=ϕ。

新编基础物理学第二版习题解答

新编基础物理学第二版习题解答

习题二2-1.两质量分别为m 和M ()M m ≠的物体并排放在光滑的水平桌面上,现有一水平力F 作用在物体m 上,使两物体一起向右运动,如题图2-1所示,求两物体间的相互作用力。

若水平力F 作用在M 上,使两物体一起向左运动,则两物体间相互作用力的大小是否发生变化?解:以m 、M 整体为研究对象,有()F m M a =+…①以m 为研究对象,如解图2-1(a ),有Mm F F ma -=…②由①、②两式,得相互作用力大小若F 作用在M 上,以m 为研究对象,如题图2-1(b )有Mm F ma =…………③由①、③两式,得相互作用力大小MmmFF m M=+发生变化。

2-2.在一条跨过轻滑轮的细绳的两端各系一物体,两物体的质量分别为M 1和M 2,在M 2上再放一质量为m 的小物体,如题图2-2所示,若M 1=M 2=4m ,求m 和M 2之间的相互作用力,若M 1=5m ,M 2=3m ,则m与M 2之间的作用力是否发生变化?解:受力图如解图2-2,分别以M 1、M 2和m 为研究对象,有111T M g M a -=又12T T =,则2M m F =1122M mgM M m++当124M M m ==时 当125,3M m M m ==时2109M m mg F =,发生变化。

2-3.质量为M 的气球以加速度a v匀加速上升,突然一只质量为m 的小鸟飞到气球上,并停留在气球上。

若气球仍能向上加速,求气球的加速度减少了多少?题图2-2题图2-1解图2-1解图2-2解:设f r为空气对气球的浮力,取向上为正。

分别由解图2-3(a )、(b)可得 由此解得2-4.如题图2-4所示,人的质量为60kg ,底板的质量为40kg 。

人若想站在底板上静止不动,则必须以多大的力拉住绳子? 解:设底板和人的质量分别为M ,m ,以向上为正方向,受力图如解图2-4(a )、(b)所示,分别以底板、人为研究对象,则有3'0T F mg +-=F 为人对底板的压力,'F 为底板对人的弹力。

物理学教学教程(第二版)课后答案解析12

物理学教学教程(第二版)课后答案解析12

第十二章电磁感应电磁场和电磁波12-1一根无限长平行直导线载有电流I,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则()(A)线圈中无感应电流(B)线圈中感应电流为顺时针方向(C)线圈中感应电流为逆时针方向(D)线圈中感应电流方向无法确定题12-1 图分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B).12-2将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则()(A)铜环中有感应电流,木环中无感应电流(B)铜环中有感应电流,木环中有感应电流(C)铜环中感应电动势大,木环中感应电动势小(D ) 铜环中感应电动势小,木环中感应电动势大分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等, 但在木环中不会形成电流.因而正确答案为(A ).12-3 有两个线圈,线圈1对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且t i t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ).(A )2112M M = ,1221εε=(B )2112M M ≠ ,1221εε≠(C )2112M M =, 1221εε<(D )2112M M = ,1221εε<分析与解 教材中已经证明M21 =M12 ,电磁感应定律t i M εd d 12121=;ti M εd d 21212=.因而正确答案为(D ). 12-4 对位移电流,下述说法正确的是( )(A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷(C ) 位移电流服从传导电流遵循的所有定律(D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).12-5 下列概念正确的是( )(A ) 感应电场是保守场(B ) 感应电场的电场线是一组闭合曲线(C ) LI Φm =,因而线圈的自感系数与回路的电流成反比(D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而 正确答案为(B ).12-6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为t Φπ100sin 100.85⨯=,式中Φ的单位为Wb ,t 的单位为s ,求在s 100.12-⨯=t 时,线圈中的感应电动势.分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成tψt ΦN ξd d d d -=-=,其中ΦN ψ=称为磁链. 解 线圈中总的感应电动势())V (π100cos 51.2d d t tΦN =-=ξ 当s 100.12-⨯=t 时,V 51.2=ξ.12-7 载流长直导线中的电流以tI d d 的变化率增长.若有一边长为d 的正方形线圈与导线处于同一平面内,如图所示.求线圈中的感应电动势.分析 本题仍可用法拉第电磁感应定律t Φd d -=ξ,来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=SS B Φd 来计算.为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即B =B (x ),故取一个平行于长直导线的宽为d x 、长为d 的面元d S ,如图中阴影部分所示,则d S =d d x ,所以,总磁通量可通过线积分求得(若取面元d S =d x d y ,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tI M d d -=ξ求解. 解1 穿过面元d S 的磁通量为x d x I S B Φd π2d d 0μ=⋅=因此穿过线圈的磁通量为2ln π2d π2d 200⎰⎰===d d Id x x Id ΦΦμμ再由法拉第电磁感应定律,有 tI d t Φd d 21ln π2d d 0)(μξ=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为2ln π20dI Φμ=线圈与两长直导线间的互感为 2ln π20d I ΦM μ== 当电流以tI d d 变化时,线圈中的互感电动势为tI d t I M d d 21ln π2d d 0)(μξ=-=题 12-7 图12-8 有一测量磁感强度的线圈,其截面积S =4.0 cm 2 、匝数N =160 匝、电阻R =50Ω.线圈与一内阻R i =30Ω的冲击电流计相连.若开始时,线圈的平面与均匀磁场的磁感强度B 相垂直,然后线圈的平面很快地转到与B 的方向平行.此时从冲击电流计中测得电荷值54.010C q -=⨯.问此均匀磁场的磁感强度B 的值为多少?分析 在电磁感应现象中,闭合回路中的感应电动势和感应电流与磁通量变化的快慢有关,而在一段时间内,通过导体截面的感应电量只与磁通量变化的大小有关,与磁通量变化的快慢无关.工程中常通过感应电量的测定来确定磁场的强弱.解 在线圈转过90°角时,通过线圈平面磁通量的变化量为NBS NBS ΦΦΦ=-=-=0Δ12 因此,流过导体截面的电量为ii R R NBS R R Φq +=+=Δ 则 ()T 050.0=+=NSR R q B i12-9 如图所示,一长直导线中通有I =5.0 A 的电流,在距导线9.0 cm 处,放一面积为0.10 cm 2 ,10匝的小圆线圈,线圈中的磁场可看作是均匀的.今在1.0 ×10-2s 内把此线圈移至距长直导线10.0 cm 处.求:(1) 线圈中平均感应电动势;(2) 设线圈的电阻为1.0×10-2Ω,求通过线圈横截面的感应电荷.题 12-9 图分析 虽然线圈处于非均匀磁场中,但由于线圈的面积很小,可近似认为穿过线圈平面的磁场是均匀的,因而可近似用NBS ψ=来计算线圈在始、末两个位置的磁链.解 (1) 在始、末状态,通过线圈的磁链分别为1011π2r IS μN S NB ψ==,2022π2r IS μN S NB ψ== 则线圈中的平均感应电动势为V 1011.111πΔ2ΔΔ8210-⨯=⎪⎪⎭⎫ ⎝⎛-==r r t IS N t μψξ 电动势的指向为顺时针方向.(2) 通过线圈导线横截面的感应电荷为C 101.11821-⨯=∆=-=t RR q ξψψ 12-10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高?题 12-10 图分析 本题及后面几题中的电动势均为动生电动势,除仍可由t ΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰l E v 求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向.解1 如图(b)所示,假想半圆形导线OP 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫ ⎝⎛+=2π212 即B R tx RB t ΦE v 2d d 2d d -=-=-= 由于静止的 形导轨上的电动势为零,则E =-2RvB .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高.解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰- 由矢量(v ×B )的指向可知,端点P 的电势较高.解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律tΦE d d -=可知,E =0又因 E =E OP +E PO即 E OP =-E PO =2RvB由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法.12-11 长为L 的铜棒,以距端点r 处为支点,以角速率ω绕通过支点且垂直于铜棒的轴转动.设磁感强度为B 的均匀磁场与轴平行,求棒两端的电势差.题 12-11 图分析 应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同.在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向).本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是OA 棒与OB 棒上电动势的代数和,如图(b)所示.而E OA 和E OB 则可以直接利用第12-2 节例1 给出的结果.解1 如图(a)所示,在棒上距点O 为l 处取导体元dl ,则()()r L lB ωl lB ωE L-r r AB AB 221d d --=-=⋅⨯=⎰⎰-l B v 因此棒两端的电势差为()r L lB ωE U AB AB 221--== 当L >2r 时,端点A 处的电势较高解2 将AB 棒上的电动势看作是O A 棒和O B 棒上电动势的代数和,如图(b)所示.其中221r ωB E OA =,()221r L B ωE OB -= 则 ()r L BL ωE E E OB OA AB 221--=-=12-12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.题 12-12 图分析 如前所述,本题既可以用法拉第电磁感应定律tΦE d d -= 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用()l B d ⋅⨯=⎰lE v 来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得()l B d ⋅⨯=⎰OP OP E vl αB l o d cos 90sin ⎰=v ()()l θB θωl o d 90cos sin ⎰-=l ()⎰==L L B l l B 022sin 21d sin θωθω 由矢量B ⨯v 的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量Φ为零,则回路的总电动势QO PQ OP E E E tΦE ++==-=0d d 显然,E QO =0,所以 ()221PQ B ωE E E QO PQ OP ==-=2)sin (21θωL B = 由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.12-13 如图(a)所示,金属杆AB 以匀速12.0m s -=⋅v 平行于一长直导线移动,此导线通有电流I =40 A .求杆中的感应电动势,杆的哪一端电势较高?题 12-13 图分析 本题可用两种方法求解.方法1:用公式()l B d ⋅⨯=⎰lE v 求解,建立图(a )所示的坐标系,所取导体元x l d d =,该处的磁感强度xI μB π20=. 方法2:用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB 在一个静止的导轨上滑动,如图(b)所示.设时刻t ,杆AB 距导轨下端CD 的距离为y ,先用公式⎰⋅=SΦS B d 求得穿过该回路的磁通量,再代入公式tΦE d d -=,即可求得回路的电动势,亦即本题杆中的电动势. 解1 根据分析,杆中的感应电动势为()V 1084.311ln 2πd 2πd d 50m 1.1m 1.00-⨯-=-=-==⋅⨯=⎰⎰v v v I μx x μxl E AB AB l B 式中负号表示电动势方向由B 指向A ,故点A 电势较高.解2 设顺时针方向为回路ABCD 的正向,根据分析,在距直导线x 处,取宽为dx 、长为y 的面元dS ,则穿过面元的磁通量为x y xI μΦd 2πd d 0=⋅=S B 穿过回路的磁通量为 11ln 2πd 2πd 0m1.1m 1.00⎰⎰-===S Iy μx y x I μΦΦ 回路的电动势为V 1084.32πd d 11ln 2πd d 500-⨯-=-=-=-=Iy μt y x I μt ΦE 由于静止的导轨上电动势为零,所以V 1084.35-⨯-==E E AB 式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A ,故点A 电势较高.12-14 如图(a)所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.题 12 -14 图分析 本题亦可用两种方法求解.其中应注意下列两点:(1)当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足()0l B =⋅⨯d v ],因而线框中的总电动势为()()()()hg ef hgef gh ef E E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v 其等效电路如图(b)所示.(2)用公式tΦE d d -=求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有v =tξd d .在求得线框在任意位置处的电动势E (ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势.解1 根据分析,线框中的电动势为hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgef l B l B d d v v ()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μv v()1202πl d d l I +=1vl μ由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为()ξξμξμ120020ln π2d π21l Il x x Il l +=+=Φ⎰ 相应电动势为 ()()1120π2d d l ξξl l I μt ΦξE +=-=v 令ξ=d ,得线框在图示位置处的电动势为 ()1120π2l d d l l I μE +=v 由E >0 可知,线框中电动势方向为顺时针方向.12-15 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率tB d d 为常量.试证:棒上感应电动势的大小为 2222d d ⎪⎭⎫ ⎝⎛-=l R l t B ξ题 12-15 图分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由⎰⋅=l k l E d ξ计算棒上感生电动势.此外,还可连接OP 、OQ ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP 、OQ 沿半径方向,与通过该处的感生电场强度E k 处处垂直,故0d =⋅l E k ,OP 、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势.证1 由电磁感应定律,在r <R 区域,⎰⎰⋅-=⋅=S B tl E k d d d d ξ tB r E r k d d ππ22-=⋅ 解得该区域内感生电场强度的大小tB r E k d d 2=设PQ 上线元dx 处,E k 的方向如图(b )所示,则金属杆PQ 上的电动势为 ()()222202/2d d d 2/d d 2d cos d l R l t B x r l R tB r xE l k k PQ -=-==⋅=⎰⎰θξx E 证2 由法拉第电磁感应定律,有22Δ22d d d d d d ⎪⎭⎫ ⎝⎛-==-==l R l t B t B S t ΦE E PQ 讨论 假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势? 该如何求解?12-16 截面积为长方形的环形均匀密绕螺绕环,其尺寸如图(a)所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L .题 12-16 图分析 如同电容一样,自感和互感都是与回路系统自身性质(如形状、匝数、介质等)有关的量.求自感L 的方法有两种:1.设有电流I 通过线圈,计算磁场穿过自身回路的总磁通量,再用公式IΦL =计算L .2.让回路中通以变化率已知的电流,测出回路中的感应电动势E L ,由公式t I E L L d /d =计算L .式中E L 和tI d d 都较容易通过实验测定,所以此方法一般适合于工程中.此外,还可通过计算能量的方法求解.解 用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图(b)所示,由安培环路定理可求得在R 1 <r <R 2 范围内的磁场分布为xNI μB π20= 由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为12200ln π2d π2d 21R R hI N μx h x NI μN N ψS R R ==⋅=⎰⎰S B 则1220ln π2R R h N μI ψL = 若管中充满均匀同种磁介质,其相对磁导率为μr ,则自感将增大μr 倍. 12-17 如图所示,螺线管的管心是两个套在一起的同轴圆柱体,其截面积分别为S 1 和S 2 ,磁导率分别为μ1 和μ2 ,管长为l ,匝数为N ,求螺线管的自感.(设管的截面很小)题 12-17 图分析 本题求解时应注意磁介质的存在对磁场的影响.在无介质时,通电螺线管内的磁场是均匀的,磁感强度为B 0 ,由于磁介质的存在,在不同磁介质中磁感强度分别为μ1 B 0 和μ2 B 0 .通过线圈横截面的总磁通量是截面积分别为S 1 和S 2 的两部分磁通量之和.由自感的定义可解得结果. 解 设有电流I 通过螺线管,则管中两介质中磁感强度分别为I L N μnl μB 111==,I LN μnl μB 222== 通过N 匝回路的磁链为 221121S NB S NB ΨΨΨ+=+=则自感2211221S μS μlN I ψL L L +==+= 12-18 有两根半径均为a 的平行长直导线,它们中心距离为d .试求长为l的一对导线的自感(导线内部的磁通量可略去不计).题 12-18 图分析 两平行长直导线可以看成无限长但宽为d 的矩形回路的一部分.设在矩形回路中通有逆时针方向电流I ,然后计算图中阴影部分(宽为d 、长为l )的磁通量.该区域内磁场可以看成两无限长直载流导线分别在该区域产生的磁场的叠加.解 在如图所示的坐标中,当两导线中通有图示的电流I 时,两平行导线间的磁感强度为()r d I μr I μB -+=π2π200 穿过图中阴影部分的磁通量为 aa d l μr Bl ΦS a d a -==⋅=⎰⎰-ln πd d 0S B 则长为l 的一对导线的自感为aa d l μI ΦL -==ln π0 如导线内部磁通量不能忽略,则一对导线的自感为212L L L +=.L 1 称为外自感,即本题已求出的L ,L 2 称为一根导线的内自感.长为l 的导线的内自感8π02l μL =,有兴趣的读者可自行求解. 12-19 如图所示,在一柱形纸筒上绕有两组相同线圈AB 和A ′B ′,每个线圈的自感均为L ,求:(1) A 和A ′相接时,B 和B ′间的自感L 1 ;(2) A ′和B 相接时,A 和B ′间的自感L 2 .题 12-19 图分析 无论线圈AB 和A ′B ′作哪种方式连接,均可看成一个大线圈回路的两个部分,故仍可从自感系数的定义出发求解.求解过程中可利用磁通量叠加的方法,如每一组载流线圈单独存在时穿过自身回路的磁通量为Φ,则穿过两线圈回路的磁通量为2Φ;而当两组线圈按(1)或(2)方式连接后,则穿过大线圈回路的总磁通量为2Φ±2Φ,“ ±”取决于电流在两组线圈中的流向是相同或是相反.解 (1) 当A 和A ′连接时,AB 和A ′B ′线圈中电流流向相反,通过回路的磁通量亦相反,故总通量为0221=-=ΦΦΦ,故L 1 =0.(2) 当A ′和B 连接时,AB 和A ′B ′线圈中电流流向相同,通过回路的磁通量亦相同,故总通量为ΦΦΦΦ4222=+=, 故L IΦI ΦL 4422===. 本题结果在工程实际中有实用意义,如按题(1)方式连接,则可构造出一个无自感的线圈.12-20 如图所示,一面积为4.0 cm 2 共50 匝的小圆形线圈A ,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面.设线圈A 内各点的磁感强度可看作是相同的.求:(1) 两线圈的互感;(2) 当线圈B 中电流的变化率为-50 A ·s-1 时,线圈A 中感应电动势的大小和方向.题 12-20 图分析 设回路Ⅰ中通有电流I 1 ,穿过回路Ⅱ的磁通量为Φ21 ,则互感M =M 21 =Φ21/I 1 ;也可设回路Ⅱ通有电流I 2 ,穿过回路Ⅰ的磁通量为Φ12 ,则21212I ΦM M == . 虽然两种途径所得结果相同,但在很多情况下,不同途径所涉及的计算难易程度会有很大的不同.以本题为例,如设线圈B 中有电流I 通过,则在线圈A 中心处的磁感强度很易求得,由于线圈A 很小,其所在处的磁场可视为均匀的,因而穿过线圈A 的磁通量Φ≈BS .反之,如设线圈A 通有电流I ,其周围的磁场分布是变化的,且难以计算,因而穿过线圈B 的磁通量也就很难求得,由此可见,计算互感一定要善于选择方便的途径.解 (1) 设线圈B 有电流I 通过,它在圆心处产生的磁感强度RI μN B B 200=,穿过小线圈A 的磁链近似为 A BA A A A S RI μN N S B N ψ200== 则两线圈的互感为H 1028.6260-⨯===RS μN N I ψM A B A A (2)线圈A 中感应电动势的大小为 V 1014.3d d 4-⨯=-=t I ME A 互感电动势的方向和线圈B 中的电流方向相同.12-21 如图所示,两同轴单匝线圈A 、C 的半径分别为R 和r ,两线圈相距为d .若r 很小,可认为线圈A 在线圈C 处所产生的磁场是均匀的.求两线圈的互感.若线圈C 的匝数为N 匝,则互感又为多少?题 12-21 图解 设线圈A 中有电流I 通过,它在线圈C 所包围的平面内各点产生的磁 感强度近似为()2/322202d R IR μB +=穿过线圈C 的磁通为 ()22/32220π2r d R IR μBS ψC +== 则两线圈的互感为 ()2/3222202πd R R r μI ψM +== 若线圈C 的匝数为N 匝,则互感为上述值的N 倍.12-22 如图所示,螺绕环A 中充满了铁磁质,管的截面积S 为2.0 cm 2 ,沿环每厘米绕有100 匝线圈,通有电流I 1 =4.0 ×10 -2A ,在环上再绕一线圈C ,共10 匝,其电阻为0.10 Ω,今将开关S 突然开启,测得线圈C 中的感应电荷为2.0 ×10 -3 C .求:当螺绕环中通有电流I 1 时,铁磁质中的B 和铁磁质的相对磁导率μr .题 12-22 图分析 本题与题12-8 相似,均是利用冲击电流计测量电磁感应现象中通过回路的电荷的方法来计算磁场的磁感强度.线圈C 的磁通变化是与环形螺线管中的电流变化相联系的.解 当螺绕环中通以电流I 1 时,在环内产生的磁感强度110I n μμB r =则通过线圈C 的磁链为S I n μμN BS N ψr c 11022==设断开电源过程中,通过C 的感应电荷为q C ,则有()RS I n μμN ψR ψR qc r c c 110201Δ1=--=-= 由此得 T 10.02110===SN Rq I n B C r μμ 相对磁导率 1991102==I n S N Rq C r μμ 12-23 一个直径为0.01 m ,长为0.10 m 的长直密绕螺线管,共1 000 匝线圈,总电阻为7.76 Ω.求:(1) 如把线圈接到电动势E =2.0 V 的电池上,电流稳定后,线圈中所储存的磁能有多少? 磁能密度是多少?*(2) 从接通电路时算起,要使线圈储存磁能为最大储存磁能的一半,需经过多少时间?分析 单一载流回路所具有的磁能,通常可用两种方法计算:方法 1: 如回路自感为L (已知或很容易求得),则该回路通有电流I 时所储存的磁能221LI W m =,通常称为自感磁能. 方法 2: 由于载流回路可在空间激发磁场,磁能实际是储存于磁场之中,因而载流回路所具有的能量又可看作磁场能量,即V w W V m m d ⎰=,式中mw 为磁场能量密度,积分遍及磁场存在的空间.由于μB w m 22=,因而采用这种方法时应首先求载流回路在空间产生的磁感强度B 的分布. 上述两种方法还为我们提供了计算自感的另一种途径,即运用V w LI V m d 212⎰=求解L .解 (1) 密绕长直螺线管在忽略端部效应时,其自感l SN L 20μ=,电流稳定后,线圈中电流RE I =,则线圈中所储存的磁能为 J 1028.3221522202-⨯===lRSE N μLI W m 在忽略端部效应时,该电流回路所产生的磁场可近似认为仅存在于螺线管中,并为均匀磁场,故磁能密度m w 处处相等,3m J 17.4-⋅==SLW w m m (2) 自感为L ,电阻为R 的线圈接到电动势为E 的电源上,其电流变化规律⎪⎪⎭⎫ ⎝⎛-=-t L R R E I e 1,当电流稳定后,其最大值R E I m = 按题意⎥⎦⎤⎢⎣⎡=22212121m LI LI ,则R E I 22=,将其代入⎪⎪⎭⎫ ⎝⎛-=-t L RR E I e 1中,得()s 1056.122ln 221ln 4-⨯=+=⎥⎦⎤⎢⎣⎡--=R L R L t 12-24 未来可能会利用超导线圈中持续大电流建立的磁场来储存能量.要储存1 kW ·h 的能量,利用1.0T的磁场,需要多大体积的磁场? 若利用线圈中500 A 的电流储存上述能量,则该线圈的自感系数应该多大? 解 由磁感强度与磁场能量间的关系可得302m 0.92/==μB W V m 所需线圈的自感系数为 H 2922==I W L m12-25 中子星表面的磁场估计为108T,该处的磁能密度有多大?解 由磁场能量密度 21021098.32⨯==μB w m 3m /J 12-26 在真空中,若一均匀电场中的电场能量密度与一 0.50T 的均匀磁场中的磁场能量密度相等,该电场的电场强度为多少?解 2021E εw e =,022μB w m =,按题意,当m e w w =时,0220221μB E ε=则 1800m V 1051.1-⋅⨯==μεB E 12-27 设有半径R =0.20 m 的圆形平行板电容器,两板之间为真空,板间距离d =0.50 cm ,以恒定电流I =2.0 A 对电容器充电.求位移电流密度(忽略平板电容器的边缘效应,设电场是均匀的).分析 尽管变化电场与传导电流二者形成的机理不同,但都能在空间激发磁场.从这个意义来说,变化电场可视为一种“广义电流”,即位移电流.在本题中,导线内存在着传导电流I c ,而在平行板电容器间存在着位移电流I d ,它们使电路中的电流连续,即c d I I =.解 忽略电容器的边缘效应,电容器内电场的空间分布是均匀的,因此板间位移电流2πd R j I d S d d =⋅=⎰S j ,由此得位移电流密度的大小222m A 9.15ππ-⋅===RI R I j c d d_。

物理学教程(第二版)上册课后答案第六章

物理学教程(第二版)上册课后答案第六章

第六章 机 械 波6-1 图(a )表示t =0 时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线.则图(a )中所表示的x =0 处振动的初相位与图(b )所表示的振动的初相位分别为( )题6-1 图(A) 均为零 (B) 均为2π (C) 均为2π-(D) 2π 与2π- (E) 2π-与2π分析与解 本题给了两个很相似的曲线图,但本质却完全不同.求解本题要弄清振动图和波形图不同的物理意义.图(a )描述的是连续介质中沿波线上许许多多质点振动在t 时刻的位移状态.其中原点处质点位移为零,其运动方向由图中波形状态和波的传播方向可以知道是沿y 轴负向,利用旋转矢量法可以方便的求出该质点振动的初相位为π/2.而图(b )是一个质点的振动曲线图,该质点在t =0 时位移为0,t >0 时,由曲线形状可知,质点向y 轴正向运动,故由旋转矢量法可判知初相位为-π/2,答案为(D ). 6-2 一横波以速度u 沿x 轴负方向传播,t 时刻波形曲线如图(a )所示,则该时刻() (A )A 点相位为 π (B )B 点静止不动 (C )C 点相位为2π3 (D )D 点向上运动 分析与解 由波形曲线可知,波沿x 轴负向传播,B 、D 处质点均向y 轴负方向运动,且B 处质点在运动速度最快的位置. 因此答案(B )和(D )不对. A 处质点位于正最大位移处,C 处质点位于平衡位置且向y 轴正方向运动,它们的旋转矢量图如图(b )所示.A 、C 点的相位分别为0和2π3.故答案为(C )题 6-2 图6-3 如图所示,两列波长为λ的相干波在点P 相遇.波在点S 1 振动的初相是φ1 ,点S 1 到点P 的距离是r 1 .波在点S 2的初相是φ2 ,点S 2 到点P 的距离是r 2 ,以k 代表零或正、负整数,则点P 是干涉极大的条件为( )()()()()()()π2/π2A π2/π2A π2A πA 211212121212k r r k r r k k r r =-+-=-+-=-=-λϕϕλϕϕϕϕ分析与解 P 是干涉极大的条件为两分振动的相位差π2Δk =,而两列波传到P 点时的两分振动相位差为()λϕϕϕ/π2Δ1212r r ---=,故选项(D )正确.题6-3 图6-4 在波长为λ的驻波中,两个相邻波腹之间的距离为( ) (A )4λ (B )2λ(C )43λ (D ) λ分析与解 驻波方程为t λxA y v π2cos π2cos 2=,它不是真正的波.其中λx A π2cos 2是其波线上各点振动的振幅.显然,当 ,2,1,0,2=±=k kxλ时,振幅极大,称为驻波的波腹.因此,相邻波腹间距离为2λ.正确答案为(B ).6-5 一横波在沿绳子传播时的波动方程为()x y ππ5.2cos 20.0-=,式中y 的单位为m ,t 的单位为s .(1) 求波的振幅、波速、频率及波长;(2) 求绳上质点振动时的最大速度;(3) 分别画出t =1s 和t =2 s 时的波形,并指出波峰和波谷.画出x = m处质点的振动曲线并讨论其与波形图的不同. 分析 (1) 已知波动方程(又称波函数)求波动的特征量(波速u 、频率、振幅A 及波长λ等),通常采用比较法.将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y 书写,然后通过比较确定各特征量(式中ux前“-”、“+”的选取分别对应波沿x 轴正向和负向传播).比较法思路清晰、求解简便,是一种常用的解题方法.(2) 讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别.例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即v =d y /d t ;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定.介质不变,波速保持恒定.(3) 将不同时刻的t 值代入已知波动方程,便可以得到不同时刻的波形方程y =y (x ),从而作出波形图.而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程y =y (t ),从而作出振动图. 解 (1) 将已知波动方程表示为()[]()m 5.2/π5.2cos 20.0x t y -=与一般表达式()[]0cos ϕω+-=u x t A y /比较,可得0s m 52m 20001=⋅==-ϕ,.,.u A则 m 0.2/,Hz 25.1π2/====v u λωv(2) 绳上质点的振动速度()[]()1s m 5.2/π5.2sin π5.0d /d -⋅--==x t t y v则 1maxs m 57.1-⋅=v(3) t =1s 和t =2s 时的波形方程分别为()()()()m ππ5cos 20.0m ππ5.2cos 20.021x y x y -=-=波形图如图(a )所示.x = 处质点的运动方程为()()m π5.2cos 20.0t y -=振动图线如图(b )所示.波形图与振动图虽在图形上相似,但却有着本质的区别.前者表示某确定时刻波线上所有质点的位移情况,而后者则表示某确定位置的一个质点,其位移随时间变化的情况.题6-5 图6-6 波源作简谐运动,其运动方程为()m tπcos240100.43-⨯=y ,它所形成的波形以30m·s-1的速度沿一直线传播.(1) 求波的周期及波长;(2) 写出波动方程.分析 已知波源运动方程求波动物理量及波动方程,可先将运动方程与其一般形式进行比较,求出振幅A 、角频率ω及初相φ0 ,而这三个物理量与波动方程的一般形式()[]0cos ϕω+-=u x t A y /中相应的三个物理量是相同的.再利用题中已知的波速u 及公式ω=2πν =2π/T 和λ=u T 即可求解. 解 (1) 由已知的运动方程可知,质点振动的角频率1s π240-=ω.根据分析中所述,波的周期就是振动的周期,故有s 1033.8/π23-⨯==ωT波长为λ=uT = m(2) 将已知的波源运动方程与简谐运动方程的一般形式比较后可得A = ×10-3m ,1s π240-=ω,φ0=0故以波源为原点,沿x 轴正向传播的波的波动方程为()[]()()m π8π240cos 100.4/cos 30x t u x t ωA y -⨯=+-=-6-7 波源作简谐运动,周期为s,若该振动以100m·s-1的速度沿直线传播,设t =0时,波源处的质点经平衡位置向正方向运动,求:(1) 距波源m 和 m 两处质点的运动方程和初相;(2) 距波源为 m 和的两质点间的相位差.分析 (1) 根据题意先设法写出波动方程,然后代入确定点处的坐标,即得到质点的运动方程.并可求得振动的初相.(2) 波的传播也可以看成是相位的传播.由波长λ的物理含意,可知波线上任两点间的相位差为Δφ=2πΔx /λ. 解 (1) 由题给条件1s m 100s 020-⋅==u T,.,可得m 2;s m π100/π21==⋅==-uT λT ω当t =0 时,波源质点经平衡位置向正方向运动,因而由旋转矢量法可得该质点的初相为φ0 =-π/2(或3π/2).若以波源为坐标原点,则波动方程为()[]2/π100π100cos --=x/t A y距波源为x 1 = m 和x 2 = m 处质点的运动方程分别为()()π5.5t π100cos π15.5t π100cos 21-=-=A y A y它们的初相分别为φ10 =-π和φ20 =-π(若波源初相取φ0=3π/2,则初相φ10 =-π,φ20 =-π.)(2) 距波源 和 m 两点间的相位差()π/π2Δ1212=-=-=λϕϕϕx x6-8 图示为平面简谐波在t =0 时的波形图,设此简谐波的频率为250Hz ,且此时图中质点P 的运动方向向上.求:(1) 该波的波动方程;(2) 在距原点O 为 m 处质点的运动方程与t =0 时该点的振动速度.分析 (1) 从波形曲线图获取波的特征量,从而写出波动方程是建立波动方程的又一途径.具体步骤为:1. 从波形图得出波长λ、振幅A 和波速u =λ;2. 根据点P 的运动趋势来判断波的传播方向,从而可确定原点处质点的运动趋向,并利用旋转矢量法确定其初相φ0 .(2) 在波动方程确定后,即可得到波线上距原点O 为x 处的运动方程y =y (t ),及该质点的振动速度=d y /d t .解 (1) 从图中得知,波的振幅A = m ,波长λ=,则波速u =λ= ×103m·s-1.根据t =0 时点P 向上运动,可知波沿Ox 轴负向传播,并判定此时位于原点处的质点将沿Oy 轴负方向运动.利用旋转矢量法可得其初相φ0 =π/3.故波动方程为()[]()[]()m 3/π5000/π500cos 10.0/cos 0++=++=x t u x t A y ϕω(2) 距原点O 为x =m 处质点的运动方程为()()m 12π13π5000.10cos y /t +=t =0 时该点的振动速度为()-10s m 40.6/12π13sin π50/d d ⋅=-===t t y v题6-8 图6-9 一平面简谐波以速度1sm 08.0-⋅=u 沿Ox 轴正向传播,图示为其在t =0 时刻的波形图,求(1)该波的波动方程;(2)P 处质点的运动方程.题6-9 图分析 (1) 根据波形图可得到波的波长λ、振幅A 和波速u ,因此只要求初相φ,即可写出波动方程.而由图可知t =0 时,x =0 处质点在平衡位置处,且由波的传播方向可以判断出该质点向y 轴正向运动,利用旋转矢量法可知φ=-π/2.(2) 波动方程确定后,将P 处质点的坐标x 代入波动方程即可求出其运动方程y P =y P (t ).解 (1) 由图可知振幅A = m, 波长λ= m, 波速u =m·s-1,则ω=2π/T =2πu /λ=(2π/5)s-1,根据分析已知φ=-π/2,因此波动方程为()m 2π08.05π20.04cos y ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=x t(2) 距原点O 为x =m 处的P 点运动方程为()m 2π52π0.04cos y ⎥⎦⎤⎢⎣⎡+=*6-10 一平面简谐波,波长为12 m ,沿O x 轴负向传播.图(a )所示为x = m 处质点的振动曲线,求此波的波动方程.题6-10图分析 该题可利用振动曲线来获取波动的特征量,从而建立波动方程.求解的关键是如何根据图(a ) 写出它所对应的运动方程.较简便的方法是旋转矢量法.解 由图(a )可知质点振动的振幅A = m,t =0 时位于x = m 处的质点在A /2 处并向Oy 轴正向移动.据此作出相应的旋转矢量图(b ),从图中可知3/π0-='ϕ.又由图(a )可知,t =5 s 时,质点第一次回到平衡位置,由图(b )可看出ωt =5π/6,因而得角频率ω=(π/6) .由上述特征量可写出x = m 处质点的运动方程为()m 3π6π0.04cos y ⎥⎦⎤⎢⎣⎡-=t将波速1s m 0.1π2//-⋅===ωλT λu 及x = m 代入波动方程的一般形式()[]0cos ϕω++=u x t A y /中,并与上述x = m 处的运动方程作比较,可得φ0=-π/2,则波动方程为()()m 2π10/6π0.04cos ⎥⎦⎤⎢⎣⎡-+=x t y6-11 平面简谐波的波动方程为()x t y π2π4cos 08.0-=,式中y 和x 的单位为m ,t 的单位为s,求:(1) t = s 时波源及距波源 两处的相位;(2) 离波源 m 及 m 两处的相位差. 解 (1)将t = s 和x =0 代入题给波动方程,可得波源处的相位π4.81=ϕ将t = s 和x ′= m 代入题给波动方程,得 m 处的相位为π2.82=ϕ(2)从波动方程可知波长λ= m .这样,x 1= m 与x 2= m 两点间的相位差πΔπ2Δ=⋅=λϕx6-12 为了保持波源的振动不变,需要消耗 W 的功率.若波源发出的是球面波(设介质不吸收波的能量).求距离波源 m 和 m 处的能流密度.分析 波的传播伴随着能量的传播.由于波源在单位时间内提供的能量恒定,且介质不吸收能量,故对于球面波而言,单位时间内通过任意半径的球面的能量(即平均能流)相同,都等于波源消耗的功率P .而在同一个球面上各处的能流密度相同,因此,可求出不同位置的能流密度I =P /S . 解 由分析可知,半径r 处的能流密度为2π4/r P I =当r 1 = m 、r 2 = 时,分别有22211m W 1027.1π4/--⋅⨯==r P I 22222m W 1027.1π4/--⋅⨯==r P I6-13 两相干波波源位于同一介质中的A 、B 两点,如图(a )所示.其振幅相等、频率皆为100 Hz ,B 比A 的相位超前π.若A 、B 相距 m ,波速为u =400 m·s -1 ,试求AB 连线上因干涉而静止的各点的位置.题6-13 图分析 两列相干波相遇时的相位差λϕϕϕrΔπ2Δ12--=.因此,两列振幅相同的相干波因干涉而静止的点的位置,可根据相消条件()π12Δ+=k ϕ获得.解 以A 、B 两点的中点O 为原点,取坐标如图(b )所示.两波的波长均为λ=u /= m .在A 、B 连线上可分三个部分进行讨论. 1. 位于点A 左侧部分()π14π2ΔA B A B -=---=r r ϕϕϕ因该范围内两列波相位差恒为2π的整数倍,故干涉后质点振动处处加强,没有静止的点. 2. 位于点B 右侧部分()π16π2ΔA B A B =---=r r ϕϕϕ显然该范围内质点振动也都是加强,无干涉静止的点. 3. 在A 、B 两点的连线间,设任意一点P 距原点为x .因x r -=15B ,x r +=15A ,则两列波在点P的相位差为()()π1/π2ΔA B A B +=---=x r r λϕϕϕ根据分析中所述,干涉静止的点应满足方程()()π152π1+=+k x x得 ()2,...1,0,k m2±±==k x因x ≤15 m,故k ≤7.即在A 、B 之间的连线上共有15 个静止点.6-14 图(a )是干涉型消声器结构的原理图,利用这一结构可以消除噪声.当发动机排气噪声声波经管道到达点A 时,分成两路而在点B 相遇,声波因干涉而相消.如果要消除频率为300 Hz 的发动机排气噪声,则图中弯管与直管的长度差Δr =r 2 -r 1 至少应为多少 (设声波速度为340 m·s -1)题6-14 图分析 一列声波被分成两束后再相遇,将形成波的干涉现象.由干涉相消条件,可确定所需的波程差,即两管的长度差Δr .解 由分析可知,声波从点A 分开到点B 相遇,两列波的波程差Δr =r 2 - r 1 ,故它们的相位差为()λλϕ/Δπ2/π2Δ12r r r =-=由相消静止条件Δφ=(2k +1)π,(k =0,±1,±2,…) 得 Δr =(2k +1)λ/2 根据题中要求令k =0 得Δr 至少应为m 57022.//===∆v u r λ讨论 在实际应用中,由于噪声是由多种频率的声波混合而成,因而常将具有不同Δr 的消声单元串接起来以增加消除噪声的能力.图(b )为安装在摩托车排气系统中的干涉消声器的结构原理图.*6-15 如图所示,x =0 处有一运动方程为t A y ωcos =的平面波波源,产生的波沿x 轴正、负方向传播.MN 为波密介质的反射面,距波源3λ/4.求:(1) 波源所发射的波沿波源O 左右传播的波动方程;(2) 在MN 处反射波的波动方程;(3) 在O ~MN 区域内形成的驻波方程,以及波节和波腹的位置;(4)x >0区域内合成波的波动方程.题6-15 图分析 知道波源O 点的运动方程t A y ωcos =,可以写出波沿x 轴负向和正向传播的方程分别为()u x t A y /+=ωcos 1和()u x t A y /-=ωcos 2.因此可以写出y 1在MN 反射面上P 点的运动方程.设反射波为y 3 ,它和y 1 应是同振动方向、同振幅、同频率的波,但是由于半波损失,它在P 点引起的振动和y 1 在P 点引起的振动反相.利用y 1 在P 点的运动方程可求y 3 在P 点的运动方程,从而写出反射波y 3 .在O ~MN 区域由y 1 和Y 3 两列同频率、同振动方向、同振幅沿相反方向传播的波合成形成驻波.在x >0区域是同传播方向的y 2 和y 3 合成新的行波.解 (1) 由分析已知:沿左方向和右方向传播的波动方程分别为()u x t A y /+=ωcos 1和()u x t A y /-=ωcos 2(2) y 1 在反射面MN 处引起质点P 振动的运动方程⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=2π3π2cos 43π2π2cos 1t T A t TA y pλλ因半波损失反射波y 3 在此处引起的振动为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-=2ππ2cos ππ23π2cos 3t TA t T A y p设反射波的波动方程为()ϕλ+-=/π2/π2cos 3x T t A y ,则反射波在x =-3λ/4处引起的振动为⎪⎭⎫⎝⎛++=ϕπ23π2cos 3t T A y p与上式比较得π2-=ϕ,故反射波的波动方程为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--=x λt TA x λt T A y π2π2cos π2π2π2cos 3(3) 在O ~MN 区域由y 1 和y 3 合成的驻波y 4 为()⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=+=t T x λA x λt T A x λt T A y y x t y π2cos π2cos 2π2π2cos π2π2cos ,314波节的位置:4/2/,2/ππ/π2λλk x k λx +=+=,取k =-1, -2,即x =-λ/4, -3λ/4处为波节.波腹的位置:2/,π/π2λk x k λx ==,取k =0,-1,即x =0,-λ/2 处为波腹.(4) 在x >0 区域,由y 2 和y 3 合成的波y 5 为()⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+=x λt TA x λt T A x λt T A y y x t y π2π2cos 2π2π2cos π2π2cos ,325这表明:x >0 区域内的合成波是振幅为2A 的平面简谐波.6-16 如图(a )所示,将一块石英晶体相对的两面镀银作电极,它就成为压电晶体,两极间加上频率为ν的交变电压,晶片就沿竖直方向作频率为ν的驻波振动,晶体的上下两面是自由的,故而成为波腹.设晶片d = mm ,沿竖直方向的声速13s m 1074.6-⋅⨯=u ,试问要激起石英片发生基频振动,外加电压的频率应是多少分析 根据限定区域内驻波形成条件(如图(b )所示),当晶体的上下两面是自由的而成为波腹时,其厚度与波长有关系式 k kd λ2=成立,k 为正整数.可见取不同的k 值,得到不同的k λ,晶体内就出现不同频率k ν的波.对应k =1称为基频,k =2,3,4,…称为各次谐频.解 根据分析基频振动要求2λ=d ,于是要求频率Hz 10685.126⨯===duuλν题 6-16 图6-17 一平面简谐波的频率为500 Hz ,在空气(ρ= kg·m -3 )中以u =340 m·s -1的速度传播,到达人耳时,振幅约为A = ×10 -6m .试求波在耳中的平均能量密度和声强. 解 波在耳中的平均能量密度2622222m J 1042.6π221--⋅⨯===v A A ρωρω声强就是声波的能流密度,即23m W 10182--⋅⨯==.ωu I这个声强略大于繁忙街道上的噪声,使人耳已感到不适应.一般正常谈话的声强约×10-6W·m -2左右. 6-18 面积为 m 2的窗户开向街道,街中噪声在窗口的声强级为80 dB .问有多少“声功率”传入窗内 分析 首先要理解声强、声强级、声功率的物理意义,并了解它们之间的相互关系.声强是声波的能流密度I ,而声强级L 是描述介质中不同声波强弱的物理量.它们之间的关系为L =lg (I /I 0 ),其中I 0 = ×10-12W·m -2为规定声强.L 的单位是贝尔(B ),但常用的单位是分贝(dB ),且1 B =10 dB .声功率是单位时间内声波通过某面积传递的能量,由于窗户上各处的I 相同,故有P =IS . 解 根据分析,由L =lg (I /I 0 )可得声强为I =10LI 0则传入窗户的声功率为P =IS =10L I 0S = ×10-4W6-19 一警车以25 m·s -1的速度在静止的空气中行驶,假设车上警笛的频率为v =800 Hz .求:(1) 静止站在路边的人听到警车驶近和离去时的警笛声波频率;(2) 如果警车追赶一辆速度为15m·s -1的客车,则客车上人听到的警笛声波的频率是多少 (设空气中的声速u =330m·s -1)分析 由于声源与观察者之间的相对运动而产生声多普勒效应,由多普勒频率公式可解得结果.在处理这类问题时,不仅要分清观察者相对介质(空气)是静止还是运动,同时也要分清声源的运动状态. 解 (1) 根据多普勒频率公式,当声源(警车)以速度υs =25 m·s -1 运动时,静止于路边的观察者所接收到的频率为su uvv υ ='警车驶近观察者时,式中υs 前取“-”号,故有Hz 6.8651=-='su uv v υ警车驶离观察者时,式中υs 前取“+”号,故有Hz 7.7432=+='su uv v υ(2) 客车的速度为0υ=15 m·s -1,声源(警车)与客车上的观察者作同向运动时,观察者收到的频率为Hz 2.82603=--='su u v v υυ6-20 蝙蝠在洞穴中飞来飞去,能非常有效地用超声波脉冲导航.假如蝙蝠发出的超声波频率为39 kHz ,当它以声速的401的速度朝着表面平直的岩壁飞去时,试求它听到的从岩壁反射回来的超声波频率为多少 分析 由题意可知,蝙蝠既是波的发出者,又是波的接收者.设超声波的传播速度为u .首先,蝙蝠是声源,发出信号频率为v ,运动速度为40su=υ,岩壁是接收者,利用多普勒频率公式,即可求得岩壁接收到的信号频率v '.经岩壁反射后频率不变,即岩壁发射信号频率为v ',这时蝙蝠是波的接收者,其运动速度为40u=υ,再次利用多普勒频率公式,可求得蝙蝠接收到的信号频率v ''. 解 将蝙蝠看成波源,则由分析可知,岩壁接收到的信号频率为sυ-='u uv v ,在蝙蝠接收岩壁反射信号时,又将它看成接收者.则蝙蝠接收到的信号频率为kHz41kHz 3940/1140/11/1/1s 0s 00=⨯-+=-+=-+='+=''v u uv u u v u u v υυυυυ。

普通物理学波动课后习题答案

普通物理学波动课后习题答案

第十一章 机械波一. 选择题 [C] 1.(基础训练1)图14-10为一平面简谐波在t = 2 s 时刻的波形图,则平衡位置在P 点的质点的振动方程是(A) ]31)2(cos[01.0π+-π=t y P (SI). (B) ]31)2(cos[01.0π++π=t y P (SI).(C) ]31)2(2cos[01.0π+-π=t y P (SI).(D) ]31)2(2cos[01.0π--π=t y P (SI).由t=2s 波形,及波向X 轴负向传播,波动方程}])2[(cos{0ϕω+-+-=ux x t A y ,ϕ为P 点初相。

以0x x =代入。

[D] 2.(基础训练2)一平面简谐波,沿x 轴负方向传播.角频率为ω ,波速为u .设 t = T /4 时刻的波形如图14-11所示,则该波的表达式为:(A) )(cos xu t A y -=ω.(B) ]21)/(cos[π+-=u x t A y ω.(C) )]/(cos[u x t A y +=ω.(D) ])/(cos[π++=u x t A y ω. 同1。

}])4[(cos{ϕω++-=uxT t A y 。

ϕ为0=x 处初相。

[B] 3.(基础训练5)在驻波中,两个相邻波节间各质点的振动(A) 振幅相同,相位相同. (B) 振幅不同,相位相同.(C) 振幅相同,相位不同. (D) 振幅不同,相位不同. 驻波特点[D] 4.(基础训练7) 如图14-14所示,两列波长为λ 的相干波在P 点相遇.波在S 1点振动的初相是φ 1,S 1到P 点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A) λk r r =-12. (B)π=-k 212φφ. (C) π=-π+-k r r 2/)(21212λφφ.(D)π=-π+-k r r 2/)(22112λφφ.y (m)x (m)0.0050.01u =200 m/sPO100图14-10xuA y -AO图14-11S 1S 2r 1r 2P图14-14S 1 S 2 P干涉极大条件 21212()2r r k πϕϕϕπλ-∆=--=[D] 5.(自测提高5)当一平面简谐机械波在弹性媒质中传播时,下述各结论哪个是正确的? (A) 媒质质元的振动动能增大时,其弹性势能减小,总机械能守恒.(B) 媒质质元的振动动能和弹性势能都作周期性变化,但二者的相位不相同. (C) 媒质质元的振动动能和弹性势能的相位在任一时刻都相同,但二者的数值不相等.(D) 媒质质元在其平衡位置处弹性势能最大. 波的能量特点。

大学物理课后习题附答案波动光学习题附答案

大学物理课后习题附答案波动光学习题附答案

d
dk
k
2n2
k0,1,2,
油膜边缘 k0,d00明纹
k 1 , d 125 n0 m
k2 , d 2 50 n0 m
波动光学习题课选讲例题
物理学教程 (第二版)
h
r
oR
第十四章 波动光学
k3 , d375 n0 m
d k4 , d4 10n0m
由于h8.010 2nm
故可观察到四条明纹 . 当 油滴展开时,条纹间距变 大,条纹数减少.
6n 0,m 02 30
解: k 2 ,( b b )s3 i n 0 2 6n 0m 0
b b 24 n0 m 2 0.400
(2)透光缝可能的最小宽度 b 等于多大?
bbk 3 b k k
b kb 3 k
当 k1 时
bm in 0.5b
透光缝可能的最小宽度 b = 0.800 um = 800 nm
长为 的光,A 是连线中垂线上的一点,S 1 与A 间插
e 入厚度为 的薄片,求 1)两光源发出的光在 A 点的
相位差;2)已知 50n0m, n1.5, A为第四级 明纹中心, 求薄片厚度 e 的大小.
S1 *
e
n
2(n1)e
S2*
* A (n1)e4
e4450 n0 m 4 130 nm
n1 1.51
则他将观察到油层呈什么颜色?
(2) 如果一潜水员潜入该区域水下,又将看到油
层呈什么颜色?
解 (1) Δ r2 d1n k
2n1d, k1,2,
k
k 1 , 2 n 1 d 11 n0 m 4
k 2 , n 1 d 5n 5m 2 绿色
k3, 3 2n1d36n8m

NO2波动1答案

NO2波动1答案

NO.2 机械波(1)班级 学号 姓名 成绩一 选择题1. 一沿x 轴负方向传播的平面简谐波在t = 2 s 时的波形曲线如下图,那么原点O 的振动方程为(A) )21(cos 50.0ππ+=t y , (SI). (B) )2121(cos 50.0ππ-=t y , (SI). (C) )2121(cos 50.0ππ+=t y , (SI).(D) )2141(cos 50.0ππ+=t y , (SI).【 C 】2. 图示一简谐波在t = 0时刻的波形图,波速 u = 200 m/s ,那么图中O 点的振动加速度的表达式为(A) )21cos(4.02π-ππ=t a (SI). (B) )23cos(4.02π-ππ=t a (SI).(C) )2cos(4.02π-ππ-=t a (SI).(D) )212cos(4.02π+ππ-=t a (SI)【 D 】3. 如下图,一平面简谐波沿x 轴正向传播,P 点的振动方程为)cos(0φω+=t A y ,那么波的表达式为 (A) }]/)([cos{0φω+--=u l x t A y .(B) })]/([cos{0φω+-=u x t A y . (C) )/(cos u x t A y -=ω. (D) }]/)([cos{0φω+-+=u l x t A y .【 A 】二 填空题1. 一横波的表达式为:m x t y )]5.2(10cos[01.0-=π,在t =0.1s 时,x =2m 处,y (m) (m) y (m)质点的位移是 0 m ,速度是 -π m/s 。

2.图示为一平面简谐波在t=2s 时刻的波形图,波的振幅为,周期为4 s ,那么图中P 点处质点的振动方程为:m t y P )22cos(2.0ππ-= 。

3.如下图为一平面简谐波在t=2s 时刻的波形图,该简谐波的波动方程是m u x t uA y ]23)2(2cos[πλπ+--=;P 处质点的振动方程是 m t uA y ]2)2(2cos[πλπ+-= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章 机械波(第二版) 一、基本要求掌握描述简谐波的各物理量(特别是位相)的物理意义及相互关系。

理解机械波产生的条件,掌握根据已知质点的谐振动方程建立平面简谐波的波动方程的方法(正向传播)。

理解波形图线和波动方程的物理意义。

理解波的能量的传播特征。

掌握波的相干条件,理解波的叠加原理。

了解波的多普勒效应二、内容提要 (一)、机械波的基本概念1.产生的条件波源、弹性介质 2.基本类型横波、纵波3.特征量波速、周期和频率、波长 4.几何描述波面与波前、波线 (二)、平面简谐波 1.波函数()cos /y A t x u ωα=-+⎡⎤⎣⎦2.能量 (1)能量密度()222sin /A t x u ωρωωα=-+⎡⎤⎣⎦平均能量密度2212A ωρω=(2)平均能流密度(强度)2212I u uA ωρω==(三)、机械波的干涉1.惠更斯原理 2.波的叠加原理3.波的相干条件频率相同,振动方向相同,相位差固定 4.二列波相干叠加的结果当()20,1,2,k k ϕπ∆=±=时,振幅最大;当()()210,1,2,k k ϕπ∆=±+=时,振幅最小.5.驻波由两列振幅相同,传播方向相反的波相干叠加形成,其波动方程()2cos 2/cos y A x tπλω=由此可解定波腹、波节的位置.相邻的波腹(或波节)间的距离为半个波长. (四)、多普勒效应: 由于声源与观察者的相对运动,造成接收频率发生变化的现象.V v v V u υ±'=。

三、习题解答 (一 )选择题1. 波传播所经过的介质中,各质点的振动具有______. (A) 相同的相位 (B )相同的振幅(C )相同的频率 (D )相同的机械能[ ] 【分析与解答】机械波在介质中传播过程的任意时刻,每个介质质点的振动频率都跟波源的振动频率相同。

正确答案是C2. 在下面几种说法中,正确的说法是______.(A )波源不动时,波源的振动周期与波动的周期在数值上是不同的。

(B )波源振动的速度与波速相同。

(C )在波传播方向上的任一质点振动相位总是比波源的相位滞后。

(差值<= π) (D )在波传播方向上的任一质点的振动相位总是比波源的相位超前。

[ ] 【分析与解答】A 错:周期是一个完整波形通过波线上一点的完整波形的数目。

显然,也就是该点完成一次全振动的时间,所以波动周期等于振动周期。

B 错:波速是波形在介质中的移动速度。

波速取决于介质的性质。

C 、D :机械振动的波源(即振源)的相位总是超前于波形上的其它质点(质点与波源的相位差不大于π)。

正确答案是C3. 一横波沿绳子传播时的波动方程为))(104cos(05.0SI t x y ππ-=,则____. (A )波长为0.5m ; (B )波长为0.05m ;(C )波速为25m/s ; (D )波速为5m/s. [ ] 【分析与解答】0.05cos(410)=0.05cos -1052x y x t t πππ⎡⎤⎛⎫⎢⎥ ⎪=--⎢⎥⎪⎝⎭⎣⎦ ∴ 5||=10 u = 2.52220.2||102.50.20.5m mss T suT m m ωπππωπλ=∴===∴==⨯=正确答案是A4. 沿波的传播方向(X 轴)上,有A,B 两点相距1/3m(m31>λ),B 点的振动比A 点滞后1/24秒,相位比A 点落后6/π,此波的频率ν为______.(A )2HZ (B )4HZ (C )6HZ (D )8HZ [ ] 【分析与解答】124t s∆=依题意得:6πϕ∆=64124t sπϕωπ∆∴===∆∴22142T ππωπ===1=2zH T ν∴=正确答案是A5. 一平面简谐波沿X 轴正向传播,已知x=L(λ<L )处质点的振动方程为t A y ωcos =,波速为u ,那么x=0处质点的振动方程为______.(A )]/[cos u L t A y +=ω (B )]/[cos u L t A y -=ω(C)]cos[u L t A y +=ω (D))cos[u L t A y -=ω [ ] 【分析与解答】依题意得:0α=c o s c o s x L y A t A t u u ωαω⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 正确答案是A6. 一平面简谐波沿X 轴正向传播,已知m x 5-=处质点的振动方程为t A y πcos =,波速为s m u /4=,则波动方程为______.(A )].4)5([cos --=x t A y π (B )].4)5([cos +-=x t A y π (C )].4)5([cos ++=x t A y π (D )].4)5([cos -+=x t A y π [ ]【分析与解答】 依题意得:=0α0(5)5cos cos cos 44x x x x y A t A t A t u ωππ⎡⎤---+⎡⎤⎡⎤=-=-=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦图12-7 正确答案是B7. 横波以波速u 沿X 轴正向传播,t 时刻波形曲线如图示,则该时刻____。

(A )A 点速度小于零(B )B 点静止不动 (C )C 点向上运动(D )D 点速度大于零[ ]【分析与解答】在波形图上,沿波传播方向,根据“上坡下,下坡上”分析可得:A 点速度向上,速度大于零。

B 点向上运动。

C 点向下运动。

D 点向上运动,速度大于零。

正确答案是D8. 在简谐波传播过程中,沿传播方向相距2λ(λ为波长)的两点的振动速度必定______。

(A )大小相同,而方向相反 (B )大小和方向均相同 (C )大小不同,方向相同(D )大小不同,而方向相反 [ ] 【分析与解答】分析简谐波的传播曲线---正、余弦曲线可得:在波传播方向相距2λ的两点的振动速度必定大小相同,方向相反。

正确答案是A9. 一平面简谐波在弹性介质中传播,在某一瞬时,介质中某质元正处于平衡位置,此时它的能量是______.(A )动能为零,势能最大。

(B )动能为零,势能为零。

(C )动能最大,势能最大。

(D )动能最大,势能为零 。

[ ] 【分析与解答】简谐波在弹性媒质中传播时媒质质元的能量不守恒,波的能量p kW W W =+又p kW W =,平衡位置时动能及势能均为最大,最大位移处动能及势能均为零。

正确答案是C10.一平面简谐波在弹性介质中传播,在介质质元从最大位移处回到平衡位置的过程中: (A )它的势能转换为动能。

(B )它的动能转换为势能。

(C )它从相邻一段介质元获得能量,其能量逐渐增加。

(D )它把自己的能量传能相邻的一段介质元,其能量逐渐减少。

[ C ] 【分析与解答】简谐波在弹性媒质中传播时媒质质元的能量不守恒,波的能量p kW W W =+又p kW W =,平衡位置时动能及势能均为最大,最大位移处动能及势能均为零。

正确答案是C11. 在驻波中,两个相邻波节间各质点的振动______.(A )振幅相同,相位相同。

(B )振幅不同,相位相同。

(C )振幅相同,相位不同。

(D )振幅不同,相位不同。

[ ] 【分析与解答】驻波是由在同一直线上沿相反反向传播的两列振幅相同的相干波叠加而成。

驻波的波动方程为:12(2cos 2)cos 2xy y y A tππνλ=+=。

由此可以看出,在驻波两个相邻波节间(即:(21)4x k λ≠+)各质点的振动振幅不同,相位相同。

正确答案是B12. 一平面简谐波在t=0时的波形图如图(1)所示,若此时A 点处介质质元的动能在增大,则______.(A )A 点处质元的弹性势能在减小(B )B 点处质元的弹性势能在减小(C )C 点处质元的弹性势能在减小 (D )波沿X 轴负向传播[ D ]【分析与解答】简谐波在弹性媒质中传播时媒质质元的能量不守恒,波的能量p kW W W =+又p kW W =,平衡位置时动能及势能均为最大,最大位移处动能及势能均为零。

由题意知,A 点正向平衡位置运动。

在波形图上,沿波传播方向,根据“上坡下,下坡上”分析可得:波沿X 轴负向传播。

正确答案是D(二)、填空题1.一平面简谐机械波在媒质中传播时,若一媒质质元在t 时刻的总机械能是22J ,则在)2(T t +(T 为波的周期)时刻该媒质质元的振动动能是 (SI),总机械能为SI)。

【分析与解答】简谐波在弹性媒质中传播时媒质质元的能量不守恒,波的能量p kW W W =+,又p kW W =,图12-12x波动能量周期为波动方程周期的一半. 振动动能是11(SI),总机械能为22(SI)。

2. 两列相干平面简谐波振幅都是4cm ,两波源相距30cm ,相位差为π,在波源连线的中垂线上任意一点P ,两列波叠加后的合振幅为 。

【分析与解答】在P 点:光程差为零,初相位为π21212r -r =--πϕααπλ∆=()符合干涉减弱条件故振幅为:21-0A =A A =3. 在波长为λ的驻波中两个相邻波节之间的距离为。

【分析与解答】 在波节处:x (21)4k λ=+∴ 驻波相邻波节之间的距离为2λ三 计算题1.一平面简谐波沿X 轴正向传播,t=0时的波形图如题图示,波速120-=ms u ,求波动方程和P 处介质质点的振动方程。

【分析与解答】解:A=0.2m λ=10m 所以 T=10=s u 20λ()=0.5s2240.5T ππωπ===旋转矢量法:(如图)图12-13∴ 波动方程为:0.2cos[(4()]20x y t π=-P 点的方程为:0.2cos(4)3y t ππ=+2 .图示为一沿x 轴正向传播的平面简谐波在t = 0 时刻的波形图,波速u = 0.4 m/s, 求 (1) 该波的波动方程.(2)t =0时刻P 处质点的振动速度.【分析与解答】解:(1) O 处质点,t = 0 时 0cos 0==φA y ,0sin 0>-=φωA v所以π-=21φ(用旋转矢量法求解初相,由参考圆图示,正确的同样得2分)==u T /λ (0.20/ 0. 4) s= 0.5 sO 处质点的振动方程为:]25.0t 2cos[02.0y Oππ-⨯=)2t 4cos(02.0ππ-= (SI) 1分(2) 故波动表达式为:]2)2.0x 5.0t (2cos[02.0y ππ--=(SI)图12-13(m) -(3)P 处质点的振动方程为]2)4.02.05.0t (2cos[02.0y P ππ--=)t cos(.234020ππ-=(SI)(4)p 点的振动速度为)t sin(.ty v p p πππ234080--=∂∂=当t=0时,vp=-π080.m/s3. 一警车以vs=25m ·s-1的速度在静止的空气中追赶一辆速度vR=15m ·s-1的客车,若警车警笛声的频率为800HZ ,空气中声速1330-⋅=s m u ,则客车上人听到的警笛声波的频率是多少? 【分析与解答】解:依题意得:'0330-15800826.23--330-25R Zs s u V u V u V u V ννν++===⨯=H。

相关文档
最新文档