2020—2021年最新鲁教版五四制六年级下册数学《基本平面图形》单元测试题及答案.docx
2022年最新强化训练鲁教版(五四制)六年级数学下册第五章基本平面图形专项测试试卷(含答案详解)
六年级数学下册第五章基本平面图形专项测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、上午10:00,钟面上时针与分针所成角的度数是( )A .30°B .45°C .60°D .75°2、如图,某同学从A 处出发,去位于B 处的同学家交流学习,其最近的路线是( )A .A C DB →→→B .AC F B →→→ C .A C E F B →→→→D .A C M B →→→3、如图,∠BOC =90°,∠COD =45°,则图中互为补角的角共有( )A .一对B .二对C .三对D .四对4、平面上有三个点A ,B ,C ,如果8AB =,5AC =,3BC =,则( )A .点C 在线段AB 的延长线上B .点C 在线段AB 上 C .点C 在直线AB 外D .不能确定5、经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,这一实际问题应用的数学知识是( )A .两点确定一条直线B .两点之间直线最短C .两点之间线段最短D .直线有两个端点6、校园中常常看到“在草坪上斜踩出一条小路”,请用数学知识解释图中这一不文明现象,其原因为( )A .直线外一点与直线上点之间的连线段有无数条B .过一点有无数条直线C .两点确定一条直线D .两点之间线段最短7、为了让一队学生站成一条直线,先让两名学生站好不动,其他学生依次往后站,要求目视前方只能看到各自前面的那名学生,这种做法运用的数学知识是( )A .两点确定一条直线B .两点之间,线段最短C .射线只有一个端点D .过一点有无数条直线8、如图,D 、E 顺次为线段AB 上的两点,20AB =,C 为AD 的中点,则下列选项正确的是( )A .若0BE DE -=,则7AE CD -=B .若2BE DE -=,则7AE CD -=C .若4BE DE -=,则7AE CD -= D .若6BE DE -=,则7AE CD -=9、如图所示,由A 到B 有①、②、③三条路线,最短的路线选①的理由是( )A .两点确定一条直线B .经过一点有无数条直线C .两点之间,线段最短D .一条线段等于已知线段10、下列两个生活、生产中现象:①用两个钉子就可以把木条固定在墙;②植树时,只要定出两棵树的位置就能确定同一行树所在直线;③从A 地到B 地架设电线,总是尽可能沿着直线架设;④把弯曲的公路修直就能缩短路程.其中可以用“两点之间线段最短”来解释现象为( )A .①②B .①③C .②④D .③④第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点C 是线段AB 上任意一点(不与端点重合),点M 是AB 中点,点P 是AC 中点,点Q 是BC 中点,则下列说法:①PQ MB =;②1()2PM AM MC =-;③1()2PQ AQ AP =+;④1()2MQ MB MC =+.其中正确的是_______.2、一个角为2440︒',则它的余角度数为 _____.3、把一个直径是10厘米的圆分成若干等份,然后把它剪开,照如图的样子拼起来,拼成的图形的周长比原来圆的周长增加_______厘米.4、4236'︒=______°.5、如图,从O 点引出6条射线OA OB OC OD OE OF 、、、、、,且85AOB ∠=︒,155EOF ∠=︒,OE OF 、分别是AOD BOC ∠∠、的平分线.则COD ∠的度数为___________度.三、解答题(5小题,每小题10分,共计50分)1、按要求作答:如图,已知四点A 、B 、C 、D ,请仅用直尺和圆规作图,保留画图痕迹.(1)①画直线AB ;②画射线BC ;③连接AD 并延长到点E ,在射线AE 上截取AF ,使AF =AB +BC ;(2)在直线BD 上确定一点P ,使PA +PC 的值最小,并写出画图的依据 .2、如图,点C 为线段AD 上一点,点B 为CD 的中点,且8cm,3cm AC BD ==.求线段AD 的长.3、如图,线段AB =12,点C 是线段AB 的中点,点D 是线段BC 的中点.(1)求线段AD 的长;(2)若在线段AB 上有一点E ,13CE BC =,求AE 的长.4、如图,点O 为直线AB 上一点,过点O 作射线OC ,使110BOC ∠=°.将一直角三角板的直角顶点放在点O 处()30OMN ∠=︒,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图1中的三角板绕点O 逆时针旋转至图2,使一边OM 在BOC ∠的内部,且恰好平分BOC ∠.求BON ∠的度数.(2)将图1中的三角板绕点O 以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直线ON 恰好平分锐角AOC ∠,则t 的值为多少?(直接写结果,不写步骤)5、如图,已知平面上三点A ,B ,C ,请按要求完成下列问题:(1)画射线AC ,线段BC ;(2)连接AB ,并用圆规在线段AB 的延长线上截取BD =BC ,连接CD (保留画图痕迹);(3)利用刻度尺取线段CD的中点E,连接BE;(4)通过测量猜测线段BE和AB之间的数量关系.-参考答案-一、单选题1、C【解析】【分析】钟面一周为360°,共分12大格,每格为360÷12=30°,10时整,时针在10,分针在12,相差2格,组成的角的度数就是30°×2=60°,【详解】10时整,时针与分针组成的角的度数是30°×2=60°.故选:C.【点睛】本题要在了解钟面结构的基础上进行解答.2、B【解析】【分析】根据两点之间线段最短,对四个选项中的路线作比较即可.【详解】解:四个选项均为从A→C然后去B由两点之间线段最短可知,由C到B的连线是最短的由于F在CB线上,故可知A→C→F→B是最近的路线故选B.【点睛】本题考查了两点之间线段最短的应用.解题的关键在于正确理解两点之间线段最短.3、C【解析】【分析】根据∠BOC=90°,∠COD=45°求出∠AOC=90°,∠BOD=45°,∠AOD=135°,进而得出答案.【详解】解:∵∠BOC=90°,∠COD=45°,∴∠AOC=90°,∠BOD=45°,∠AOD=135°,∴∠AOC+∠BOC=180°,∠AOD+∠COD=180°,∠AOD+∠BOD=180°,∴图中互为补角的角共有3对,故选:C.【点睛】本题考查了补角的定义,理解互为补角的两角之和为180°是解题的关键.4、B【解析】【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系,再根据正确画出的图形解题.【详解】解:如图:∵AB=8,AC=5,BC=3,从图中我们可以发现AC+BC=AB,所以点C在线段AB上.故选:B.【点睛】本题考查了直线、射线、线段,在此类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维.5、A【解析】【分析】根据直线公理“两点确定一条直线”来解答即可.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,此操作的依据是两点确定一条直线.故选:A.【点睛】本题主要考查直线的性质,掌握直线的性质:两点确定一条直线是解题的关键.6、D【解析】【分析】根据题意可知,原因为两点之间线段最短,据此分析即可【详解】解:校园中常常看到“在草坪上斜踩出一条小路”,其原因为两点之间线段最短故选D【点睛】本题考查了线段的性质,掌握两点之间线段最短是解题的关键.7、A【解析】【分析】两个学生看成点,根据两点确定一条直线的知识解释即可.【详解】∵两点确定一条直线,∴选A.【点睛】本题考查了两点确定一条直线的原理,正确理解原理是解题的关键.8、D【解析】【分析】AE CD CE再逐一分析即可得到答案. 先利用中点的含义及线段的和差关系证明,【详解】解:C为AD的中点,1,AC CD AD20BE DE -=,则1,2BE DE BD 110,2AE CD AC CD DE CDAC DE CD DE CE AB 故A 不符合题意;2BE DE -=,则2,BE DE2220,CD DE DE9,CD DE CE同理:9,AE CD CE 故B 不符合题意;4BE DE -=,则4,BE DE2420,CD DE DE8,CD DE CE同理:8,AE CD CE 故C 不符合题意;6BE DE -=,则6,BE DE2620,CD DE DE7,CD DE CE同理:7,AE CD CE 故D 符合题意;故选D【点睛】本题考查的是线段的和差关系,线段的中点的含义,掌握“线段的和差关系即中点的含义证明AE CD CE ”是解本题的关键9、C【解析】【分析】根据线段的性质进行解答即可.【详解】解:最短的路线选①的理由是两点之间,线段最短,故选:C.【点睛】本题主要考查了线段的性质,解题的关键是掌握两点之间,线段最短.10、D【解析】【分析】分别利用直线的性质以及线段的性质分析得出答案.【详解】解:①用两个钉子就可以把木条固定在墙上,是两点确定一条直线,故此选项错误;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线,是两点确定一条直线,故此选项错误;③从A地到B地架设电线,总是尽可能沿着直线架设,是两点之间,线段最短,故此选项正确;④把弯曲的公路改直,就能缩短路程,是两点之间,线段最短,故此选项正确;故选:D.【点睛】此题主要考查了直线的性质以及线段的性质,正确把握直线与线段的性质是解题关键.二、填空题1、①②④【解析】【分析】根据线段中点的定义得到12AM BM AB ==,12==AP CP AC ,12==CQ BQ BC ,然后根据线段之间的和差倍分关系逐个求解即可.【详解】解:∵M 是AB 中点, ∴12AM BM AB ==,∵P 是AC 中点, ∴12==AP CP AC , ∵点Q 是BC 中点, ∴12==CQ BQ BC ,对于①:11()=22=+=+=PQ PC CQ AC BC AB BM ,故①正确; 对于②:11()22=-=-=PM AM AP AB AC BC , 11()22=-=-=PM AM AP AB AC BC ,故②正确; 对于③:11+=(+)22==PQ PC CQ AC BC AB , 而[]111111()=()()()222222+++=+=+=+>AQ AP AP PQ AP AP PQ AC PQ AC BM AB , 故③错误; 对于④:111()()222+=+=MB MC MA MC AC , 11111()()22222=+=-+=--+=-=MQ MC CQ AC AM BC AB BC AB BC AB BC AC ,故④正确;故答案为:①②④.【点睛】此题考查线段之间的和差倍分问题,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性,同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.2、6520︒'【解析】【分析】根据余角的定义计算即可.【详解】解:90°-2440︒',=6520︒',故答案为:6520︒'.【点睛】本题考查了余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.3、10【解析】【分析】由圆的面积推导过程可知:将圆拼成近似的长方形后,长方形的长就等于圆的周长的一半,宽就等于圆的半径,从而可知,这个长方形的周长比原来圆的周长多出了两个半径的长度,据此即可求解.【详解】解:因为将圆拼成近似的长方形后,长方形的长就等于圆的周长的一半,宽就等于圆的半径, 所以这个长方形的周长比原来圆的周长多出了两个半径的长度,即多出了一个直径的长度,也就是10厘米.故答案为:10.【点睛】本题考查认识平面图形,理解图形周长的意义和拼图前后之间的关系是解决问题的关键. 4、42.6【解析】【分析】根据角度进制的转化求解即可,601'=︒.【详解】 解:36360.660'==︒ ∴4236'︒=42.6︒故答案为:42.6【点睛】本题考查了角度进制的转化,掌握角度进制是解题的关键.5、35【解析】【分析】根据OE OF 、分别是AOD BOC ∠∠、的平分线.得出∠AOE =∠DOE ,∠BOF =∠COF ,可得∠AOE +∠BOF =∠DOE +∠COF =∠EOF -∠COD =155°-∠COD ,根据周角∠AOB +∠AOE +∠BOF +∠EOF =360°,得出85°+155°-∠COD +155°=360°,解方程即可.【详解】解:∵OE OF 、分别是AOD BOC ∠∠、的平分线.∴∠AOE =∠DOE ,∠BOF =∠COF ,∴∠AOE +∠BOF =∠DOE +∠COF =∠EOF -∠COD =155°-∠COD ,∵∠AOB+∠AOE+∠BOF+∠EOF=360°,∴85°+155°-∠COD+155°=360°,解得∠COD=35°.故答案为35.【点睛】本题考查角平分线有关的计算,角的和差,周角性质,一元一次方程,掌握角平分线有关的计算,角的和差,周角性质,一元一次方程是解题关键.三、解答题1、(1)①见解析,②见解析,③见解析(2)图见解析,两点之间,线段最短【解析】【分析】(1)①连接AB作直线即可;②连接BC并延长即为射线BC;③连接AD并延长到点E,以点A为圆心,AB为半径画弧交AE于点G,以点G为圆心,BC长为半径画弧交AE于点F,AF即为所求;(2)画直线BD,连接AC交BD于点P,根据两点之间,线段最短,点P即为所求,即可得出依据.(1)①如图所示:连接AB作直线即可;②连接BC并延长即为射线BC;③连接AD并延长到点E,以点A为圆心,AB为半径画弧交AE于点G,以点G为圆心,BC长为半径画弧交AE于点F,AF即为所求;(2)画直线BD ,连接AC 交BD 于点P ,根据两点之间,线段最短,点P 即为所求,故答案为:两点之间,线段最短.【点睛】题目主要考查直线、射线、线段的作法,两点之间线段最短等,理解题意,结合图形熟练运用基础知识点是解题关键.2、14cm【解析】【分析】根据点B 为CD 的中点和3cm BD =可求得CD 的长,根据图中线段的关系即可求解.【详解】解:∵点B 是CD 的中点,3cm BD =,∴2236CD BD ==⨯=,又∵8cm AC ,∴8614cm AD AC CD =+=+=.【点睛】本题考查了线段的相关知识,解题的关键是根据线段中点的定义正确求解.3、 (1)9AD =;(2)AE的长为4或8【解析】【分析】(1)根据AD=AC+CD,只要求出AC、CD即可解决问题;(2)先求出CE,再根据点E的位置分两种情况讨论即可解决问题.(1)解:∵AB=12,C是AB的中点,∴AC=BC=6,∵D是BC的中点,∴CD=12BC=3,∴AD=AC+CD=9;(2)解:∵BC=6,CE=13 BC,∴CE=13×6=2,当E在C的左边时,AE=AC﹣CE=6﹣2=4;当E在C的右边时,AE=AC+CE=6+2=8.∴AE的长为4或8.【点睛】本题考查的是线段中点的含义,线段的和差运算,掌握“线段的中点与线段的和差关系”是解本题的关键.4、 (1)35︒(2)直线ON 恰好平分锐角AOC ∠,则t 的值为11s 或67s.【解析】【分析】(1)先利用角平分线的定义求解155,2BOM BOC 再利用90,MON ∠=︒ 从而可得答案; (2)分两种情况讨论:如图,当直线ON 恰好平分锐角AOC ∠,记P 为ON 上的点,求解线段ON 旋转的角度9055,N ON BON 如图,当ON 平分AOC ∠时,求解ON 旋转的角度为:90+9011035235,BOC CON 从而可得答案. (1)解:OM 平分,110,BOC BOC 155,2BOM BOC 90,MON 9035.BON BOM(2)解:如图,当直线ON 恰好平分锐角AOC ∠,记P 为ON 上的点, 111803522AOP COP AOC BOC35,BON AOP9055,N ON BON 55115t ,∠时,如图,当ON平分AOCAON CON35,BOC CON此时ON转的角度为:90+9011035235,235t67,5∠,则t的值为11s或67s.综上:直线ON恰好平分锐角AOC【点睛】本题考查的是角平分线的定义,角的和差运算,角的动态定义的理解,清晰的分类讨论是解本题的关键.5、 (1)见解析(2)见解析(3)见解析(4)3cm =1.5cm AB BE =,,猜测2AB BE =【解析】【分析】(1)根据题意画射线AC ,线段BC ;(2)根据题意,连接AB ,并用圆规在线段AB 的延长线上截取BD =BC ,连接CD ;(3)根据题意,利用刻度尺取线段CD 的中点E ,连接BE ;(4)测量线段BE 和AB 的长度,进而求得猜测BE 和AB 之间的数量关系.(1)如图所示,射线AC ,线段BC 即为所求;(2)如图所示,连接AB ,在线段AB 的延长线上截取BD =BC ,连接CD ;(3)如图所示,取线段CD 的中点E ,连接BE ;(4)通过测量3cm =1.5cm AB BE =,,猜测2AB BE =【点睛】本题考查了直线、射线、线段以及线段的中点,正确区分直线、线段、射线是解题关键.。
2022年鲁教版(五四制)六年级数学下册第五章基本平面图形专项测试试卷(含答案详解)
六年级数学下册第五章基本平面图形专项测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知点C 为线段AB 的中点,D 为CB 上一点,下列关系表示错误的是( )A .CD =AC ﹣DBB .BD +AC =2BC ﹣CD C .2CD =2AD ﹣ABD .AB ﹣CD =AC ﹣BD2、下列说法正确的是( )A .锐角的补角不一定是钝角B .一个角的补角一定大于这个角C .直角和它的的补角相等D .锐角和钝角互补 3、如图所示,若90AOB ∠=︒,则射线OB 表示的方向为( ).A .北偏东35°B .东偏北35°C .北偏东55°D .北偏西55°4、如图,点C ,D 为线段AB 上两点,12AC BD +=,且65AD BC AB +=,设CD t =,则关于x 的方程37(1)2(3)x x t x --=-+的解是( )A .2x =B .3x =C .4x =D .5x =5、如图,射线OA 所表示的方向是( )A .西偏南30°B .西偏南60°C .南偏西30°D .南偏西60°6、如图,线段8AB =,延长AB 到点C ,使2BC AB =,若点M 是线段AC 的中点,则线段BM 的长为( )A .3B .4C .5D .127、下列说法错误的是( )A .两点之间,线段最短B .经过两点有一条直线,并且只有一条直线C .延长线段AB 和延长线段BA 的含义是相同的D .射线AB 和射线BA 不是同一条射线8、已知α与β互为余角,若20α=︒,则β的补角的大小为( )A .70︒B .110︒C .140︒D .160︒9、已知∠α=125°19′,则∠α的补角等于( )A .144°41′B .144°81′C .54°41′D .54°81′10、如图,B 岛在A 岛南偏西55°方向,B 岛在C 岛北偏西60°方向, C 岛在A 岛南偏东30°方向.从B 岛看A ,C 两岛的视角∠ABC 度数为( )A .50°B .55°C .60°D .65°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、过某个多边形的一个顶点的所有对角线,将这个多边形分成6个三角形,这个多边形是___边形.2、已知3728A '∠=︒,则它的余角是______.3、如图,直线AB 与直线CD 相交于点O ,OE AB ⊥,已知30BOD ∠=︒,则COE ∠=______________.4、若一个角度数是115°6′,则这个角的补角是___________.5、将一副三角板如图所示摆放,使其中一个三角板60°角的顶点与另一个三角板的直角顶点重合,若已知25828'∠=︒,则1∠的度数是__________;三、解答题(5小题,每小题10分,共计50分)1、如图,已知A ,B ,C ,D 四点,按下列要求画图形:(1)画射线CD ;(2)画直线AB ;(3)连接DA ,并延长至E ,使得AE =DA .2、如图,∠AOB 是平角,80AOC ∠=︒,30BOD ∠=︒,OM 、ON 外别是∠AOC 、∠BOD 的平分线,求∠MON 的度数.3、如图,射线OA 表示的方向是北偏东44︒,射线OB 表示的方向是北偏东76︒,已知图中122BOC ∠=︒.(1)求∠AOB的度数;(2)写出射线OC的方向.4、如图,在直线上顺次取A、B、C三点,使得AB=40cm,BC=280cm.点P、点Q分别由A点、B点同时出发向点C运动,运用时间为t(单位:s),点P的速度为3cm/s,点Q的速度为1cm/s(1)请求出线段AC的长;(2)若点D是线段AC的中点,请求出线段BD的长;(3)请求出点P出发多少秒后追上点Q?(4)请计算出点P出发多少秒后,与点Q的距离是20cm?5、已知线段a,b,点A,P位置如图所示.(1)画射线AP,请用圆规在射线AP上截取AB=a,BC=b;(保留作图痕迹,不写作法)(2)在(1)所作图形中,若M,N分别为AB,BC的中点,在图形中标出点M,N的位置,再求出当a=4,b=2时,线段MN的长.-参考答案-一、单选题1、D【解析】【分析】根据图形可以明确线段之间的关系,对线段CD、BD、AD进行和、差转化,即可发现错误选项.【详解】解:∵C是线段AB的中点,∴AC=BC,AB=2BC=2AC,AB﹣BD=AC﹣BD;∴CD=BC﹣BD=12∵BD+AC=AB﹣CD=2BC﹣CD;∵CD=AD﹣AC,∴2CD=2AD﹣2AC=2AD﹣AB;∴选项A、B、C均正确.而答案D中,AB﹣CD=AC+BD;∴答案D错误符合题意.故选:D.【点睛】本题考查线段的和差,是基础考点,掌握相关知识是解题关键.2、C【解析】【分析】根据余角和补角的概念判断即可.【详解】解:A 、因为锐角的补角与锐角之和为180°,所以锐角的补角一定是钝角,所以本说法不符合题意;B 、当这个角为120°时,120°的补角是60°,所以本说法不符合题意;C 、根据直角的补角是直角.所以本说法符合题意;D 、锐角和钝角的度数不确定,不能确定锐角和钝角是否互补,所以本说法不符合题意; 故选:C .【点睛】本题考查的是余角和补角的概,如果两个角的和等于90°,就说这两个角互为余角;如果两个角的和等于180°,就说这两个角互为补角.3、A【解析】【分析】根据同角的余角相等90BOD AOD AOD AOC ∠+∠=∠+∠=︒即可得,35BOD AOC ∠=∠=︒,根据方位角的表示方法即可求解.【详解】如图,90,35AOB AOC ∠=︒∠=︒90BOD AOD AOD AOC ∠+∠=∠+∠=︒35BOD AOC ∴∠=∠=︒即射线OB 表示的方向为北偏东35°故选A【点睛】本题考查了方位角的计算,同角的余角相等,掌握方位角的表示方法是解题的关键.4、D【解析】【分析】先根据线段的和差运算求出t 的值,再代入,解一元一次方程即可得.【详解】解:12,AC BD CD t +==,12122,AD BC AC CD BD CD t AB t ∴=+=+++=++,65AD BC AB +=, 6122(12)5t t ∴+=+, 解得3t =,则关于x 的方程37(1)2(3)x x t x --=-+为37(1)32(3)x x x --=-+,解得5x =,故选:D .【点睛】本题考查了线段的和差、一元一次方程的应用,熟练掌握方程的解法是解题关键.5、D【解析】【详解】解:903060︒-︒=︒,根据方位角的概念,射线OA 表示的方向是南偏西60度.故选:D .【点睛】本题主要考查了方向角.解题的关键是弄清楚描述方向角时,一般先叙述北或南,再叙述偏东或偏西.6、B【解析】【分析】先求出24AC =,再根据中点求出12AM =,即可求出BM 的长.【详解】解:∵8AB =,∴216BC AB ==,16824AC BC AB =+=+=,∵点M 是线段AC 的中点, ∴1122AM AC ==,4BM AM AB =-=, 故选:B .【点睛】本题考查了线段中点有关的计算,解题关键是准确识图,理清题目中线段的关系.7、C【解析】【分析】根据两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义依次分析判断.【详解】解:A. 两点之间,线段最短,故该项不符合题意;B. 经过两点有一条直线,并且只有一条直线,故该项不符合题意;C. 延长线段AB 和延长线段BA 的含义是不同的,故该项符合题意;D. 射线AB 和射线BA 不是同一条射线,故该项不符合题意;故选:C .【点睛】此题考查了两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义,综合掌握各知识点是解题的关键.8、B【解析】【分析】根据90βα=︒-求得β,根据180β︒-求得β的补角【详解】解:∵α与β互为余角,若20α=︒,∴9070βα=︒-=︒∴180β︒-110=︒故选B【点睛】本题考查了求一个角的余角、补角,解题的关键是理解互为余角的两角之和为90︒,互为补角的两角之和为180︒.9、C【解析】【分析】两个角的和为180,︒则这两个角互为补角,根据互为补角的含义列式计算即可.【详解】解:∠α=125°19′,∴∠α的补角等于180125195441故选C【点睛】本题考查的是互补的含义,掌握“两个角的和为180,︒则这两个角互为补角”是解本题的关键.10、D【解析】【分析】根据B岛在A与C的方位角得出∠ABD=55°,∠CBE=60°,再根据平角性质求出∠ABC即可.【详解】解:过点B作南北方向线DE,∵B岛在A岛南偏西55°方向,∴∠ABD=55°,∵B岛在C岛北偏西60°方向,∴∠CBE=60°,∴∠ABC=180°-∠ABD-∠CBE=180°-55°-60°=65°.故选D.【点睛】本题考查方位角,平角,角的和差,掌握方位角,平角,角的和差是解题关键.二、填空题1、八【解析】【分析】根据n边形从一个顶点出发可引出(n-3)条对角线,可组成(n-2)个三角形,依此可得n的值,即得出答案.【详解】解:由题意得,n-2=6,解得:n=8,故答案为:八.【点睛】本题考查了多边形的对角线,解题的关键是熟知一个n边形从一个顶点出发,可将n边形分割成(n-2)个三角形.2、'5232【解析】根据余角的定义求即可.【详解】解:∵3728A '∠=︒,∴它的余角是90°-3728'︒='5232︒,故答案为:'5232︒.【点睛】本题考查了余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.3、120°##120度【解析】【分析】根据垂直定义求出∠AOE ,根据对顶角求出∠AOC ,相加即可.【详解】解:∵OE ⊥AB ,∴∠AOE =90°,∵∠AOC =∠BOD =30°,∴∠COE =∠AOE +∠AOC =90°+30°=120°.故答案是:120°.【点睛】本题考查了垂直,对顶角的应用,主要考查学生的计算能力.4、64°54'【解析】根据补角的定义(若两个角之和为180︒,则这两个角互为补角)进行求解即可得.【详解】解:180********''︒-︒=︒,故答案为:6454'︒.【点睛】题目主要考查补角的定义,理解补角的定义是解题关键.5、28°28′【解析】【分析】根据∠DAE =90°,25828'∠=︒,求出∠EAC 的度数,再根据∠1=∠BAC −∠EAC 即可得出答案.【详解】解:∵∠DAE =90°,25828'∠=︒,∴∠EAC =31°32′,∵∠BAC =60°,∴∠1=∠BAC −∠EAC =60°-31°32′=28°28′,故答案为:28°28′.【点睛】本题主要考查了余角的概念和度分秒的换算,关键是求出∠EAC 的度数,是一道基础题.三、解答题1、 (1)见解析(2)见解析【解析】【分析】(1)画射线CD 即可;(2)画直线AB 即可;(3)连接DA ,并延长至E ,使得AE =DA 即可.(1)解:如图所示,射线CD 即为所求作的图形;(2)解:如图所示,直线AB 即为所求作的图形;(3)解:如图所示,连接DA ,并延长至E ,使得AE =DA .【点睛】本题考查了作图-复杂作图、直线、射线、线段,解决本题的关键是根据语句准确画图. 2、125︒【解析】【分析】根据角平分线的定义求出,AOM BON ∠∠,再用平角减去+AOM BON ∠∠即可得到结果.解:∵∠AOB 是平角,∴180AOB ∠=︒∵OM 、ON 外别是∠AOC 、∠BOD 的平分线,且∠AOC =80°,∠BOD =30°, ∴1402AOM AOC ∠=∠=︒,1152BON BOD ∠=∠=︒, ∴∠MON =∠AOB -∠AOM -∠BON =180°-40°-15°=125°.【点睛】本题主要考查了角的平分线的有关计算,性质、角的和差等知识点.解决本题亦可利用:∠MON =∠COD +∠COM +∠DON .3、 (1)32︒(2)北偏西46︒【解析】【分析】(1)根据方向角的定义,结合图形中角的和差关系得出答案;(2)根据角的和差关系求出NOC ∠即可.(1)解:如图,射线OA表示的方向是北偏东44︒,即44∠=︒,NOA射线OB表示的方向是北偏东76︒,即76∠=︒,NOB∴∠=∠-∠=︒-︒=︒,AOB NOB NOA764432即32∠=︒;AOB(2)解:122∠=︒,NOBBOC∠=︒,76∴∠=∠-∠,NOC BOC NOB=︒-︒,12276=︒,46∴射线OC的方向为北偏西46︒.【点睛】本题考查方向角,解题的关键是理解方向角的定义以及角的和差关系.4、 (1)320cm(2)120cm(3)20秒(4)10或30秒【解析】【分析】(1)根据AB+BC=AC,已知AB=40cm,BC=280cm,代入数据,即可解得线段AC的长;(2)根据线段的中点定理可得11602AD AC cm==,而BD=AD﹣AB,即可求出线段BD的长;(3)这属于追击问题,设点P出发t秒后追上点Q,即当追上时有AP AB BQ=+,可方程3t=t+40,即可得本题之解;(4)设点P出发t秒,点Q的距离是20cm;分两种情况,①是当P在Q的左侧时,3t=40+t+20;②是当P在Q的右侧时,3t=40+t+20,分别解这两个方程,即可得出本题答案.(1)解:∵AB+BC=AC,∴AC=320cm;(2)解:∵D是线段AC的中点,∴11602AD AC cm==,∴BD=AD﹣AB=120cm;(3)解:设点P出发t秒后追上点Q,依题意有:3t=t+40,解得t=20.答:点P出发20秒后追上点Q.(4)解:当P在Q的左侧时,此时3t +20=40+t ,解得:t =10;当P 在Q 的右侧时,此时3t =40+t +20,解得:t =30.答:点P 出发10或30秒后,与点Q 的距离是20cm .【点睛】本题主要考查了线段的有关计算,一元一次方程的应用等知识.5、 (1)见解析(2)3或1【解析】【分析】先根据射线的定义,画出射线AP ,然后分两种情况:当点C 位于点B 右侧时,当点C 位于点B 左侧时,即可求解;(2)根据M ,N 分别为AB ,BC 的中点,可得2,1BM BN == ,即可求解.(1)解:根据题意画出图形,当点C 位于点B 右侧时,如下图:射线AP 、线段AB 、线段BC 即为所求;当点C 位于点B 左侧时,如下图:(2)解: ∵M ,N 分别为AB ,BC 的中点, ∴11,22BM AB BN BC == , ∵a =4,b =2,∴2,1BM BN == ,当点C 位于点B 右侧时,MN =BM +BN =3;当点C 位于点B 左侧时,MN =BM -BN =1;综上所述,线段MN 的长为3或1.【点睛】本题主要考查了射线的定义,尺规作图——作一条线段等于已知线段,有关中点的计算,熟练掌握射线是只有一个端点,它从一个端点向另一边无限延长不可测量长度的线;作一条线段等于已知线段的作法是解题的关键.。
精品试题鲁教版(五四制)六年级数学下册第五章基本平面图形专题攻克试卷(含答案解析)
六年级数学下册第五章基本平面图形专题攻克考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、图中共有线段( )A .3条B .4条C .5条D .6条2、如图,数轴上的A ,B ,C 三点所表示的数分别为a ,b ,c ,其中AB BC =,如果||||||a c b >>,那么下列结论正确的是( )A .0a b c <<<B .0a b c <<<C .0a b c <<<D .0a b c <<<3、如图,BOC ∠在AOD ∠的内部,且20BOC ∠=︒,若AOD ∠的度数是一个正整数,则图中所有角...的度数之和可能是( )A .340°B .350°C .360°D .370°4、如图,∠BOC =90°,∠COD =45°,则图中互为补角的角共有( )A .一对B .二对C .三对D .四对5、如图,点O 在CD 上,OC 平分∠AOB ,若∠BOD =153°,则∠DOE 的度数是( )A .27°B .33°C .28°D .63°6、如果线段10cm AB =,13cm MA MB +=,那么下面说法中正确的是( )A .M 点在线段AB 上B .M 点在直线AB 上C .M 点在直线AB 外D .M 点可能在直线AB 上,也可能在直线AB 外7、如图,C 为线段AB 上一点,点D 为BC 的中点,且30cm AB =,4AC CD =.则AC 的长为( )cm .A .18B .18.5C .20D .20.58、木匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是( )A .两点之间线段最短B .过一点有无数条直线C .两点确定一条直线D .两点之间线段的长度叫做这两点之间的距离9、如图,已知O 为直线AB 上一点,将直角三角板MON 的直角顶点放在点O 处,若OC 是MOB ∠的平分线,则下列结论正确的是( )A .3AOM NOC ∠=∠B .2AOM NOC ∠=∠C .23AOM NOC ∠=∠D .35AOM NOC ∠=∠10、若一个角为45°,则它的补角的度数为( )A .55°B .45°C .135°D .125°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知∠α与∠β互余,且∠α=35°30′,则∠β=______度.2、西北方向:_________;西南方向:__________;东南方向:__________;东北方向:__________3、当时钟指向下午2:40时,时针与分针的夹角是_________度.4、计算:6018︒'________°.5、在日常生活和生产中有很多现象可以用数学知识进行解释.如图,要把一根挂衣帽的挂钩架水平固定在墙上,至少需要钉______个钉子.用你所学数学知识说明其中的道理______.三、解答题(5小题,每小题10分,共计50分)1、如图1,在数轴上点A 表示数a ,点B 表示数b ,O 为原点,AB 表示点A 和点B 之间的距离,且a ,b 满足()2520a b a +++=.(1)若T 为线段AB 上靠近点B 的三等分点,求线段OT 的长度;(2)如图2,若Q 为线段AB 上一点,C 、D 两点分别从Q 、B 出发以54个单位/s ,52个单位/s 的速度沿直线BA 向左运动(C 在线段AQ 上,D 在线段BQ 上),运动的时间为t s .若C 、D 运动到任意时刻时,总有2QD AC =,请求出AQ 的长;(3)如图3,E 、F 为线段OB 上的两点,且满足2BF EF =,4OE =,动点M 从A 点、动点N 从F 点同时出发,分别以3个单位/s ,1个单位/s 的速度沿直线AB 向右运动,是否存在某个时刻使得EM BN AE +=成立?若存在,求此时MN 的长度;若不存在,说明理由.2、如图,已知A,B,C,D四点,按下列要求画图形:(1)画射线CD;(2)画直线AB;(3)连接DA,并延长至E,使得AE=DA.3、课上,老师提出问题:如图,点O是线段上一点,C,D分别是线段AO,BO的中点,当AB=10时,求线段CD的长度.(1)下面是小明根据老师的要求进行的分析及解答过程,请你补全解答过程;未知线段已知线段……因为C,D分别是线段AO,BO的中点,所以CO=12AO,DO=12.因为AB=10,所以CD=CO+DO=12AO+12=12=.(2)小明进行题后反思,提出新的问题:如果点O运动到线段AB的延长线上,CD的长度是否会发生变化?请你帮助小明作出判断并说明理由.4、如图,已知线段AB=12cm,CD=2cm,线段CD在线段AB上运动,E、F分别是AC、BD的中点.(1)若AC=4cm,EF=___cm;(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变,请求出EF的长度,如果变化,请说明理由.5、数轴上不重合两点A,B.(1)若点A表示的数为﹣3,点B表示的数为1,点M为线段AB的中点,则点M表示的数为;(2)若点A表示的数为﹣3,线段AB中点N表示的数为1,则点B表示的数为;(3)点O为数轴原点,点D表示的数分别是﹣1,点A从﹣5出发,以每秒1个单位长度的速度向正半轴方向移动,点C从﹣3同时出发,以每秒3个单位长度的速度向正半轴方向移动,点B为线段CD 上一点.设移动的时间为t(t>0)秒,①用含t的式子填空:点A表示的数为;点C表示的数为;②当点O是线段AB的中点时,直接写出t的取值范围.-参考答案-一、单选题1、D【解析】【分析】分别以,,,A B C D 为端点数线段,从而可得答案.【详解】解:图中线段有:AB,AC,AD,BC,BD,CD,共6条,故选D【点睛】本题考查的是线段的含义以及数线段的数量,掌握“数线段的方法,做到不重复不遗漏”是解本题的关键.2、C【解析】【分析】根据||||||a c b >>得到三点与原点的距离大小,利用AB BC =得到原点的位置即可判断三个数的大小.【详解】 解:a c b >>,∴点A 到原点的距离最大,点C 其次,点B 最小,又AB BC =,∴原点O 的位置是在点B 、C 之间且靠近点B 的地方,0a b c ∴<<<,故选:C .【点睛】此题考查了利用数轴比较数的大小,理解绝对值的几何意义, 确定出原点的位置是解题的关键.3、B【解析】【分析】根据角的运算和题意可知,所有角的度数之和是∠AOB +∠BO C +∠COD +∠AOC +∠BOD +∠AOD ,然后根据20BOC ∠=︒,AOD ∠的度数是一个正整数,可以解答本题.【详解】解:由题意可得,图中所有角的度数之和是∠AOB +∠BOC +∠COD +∠AOC +∠BOD +∠AOD=3∠AOD+∠BOC∵20BOC ∠=︒,AOD ∠的度数是一个正整数,∴A、当3∠AOD+∠BOC =340°时,则AOD ∠=3203︒ ,不符合题意; B 、当3∠AOD+∠BOC =3×110°+20°=350°时,则AOD ∠=110°,符合题意;C 、当3∠AOD+∠BOC =360°时,则AOD ∠=3403︒,不符合题意; D 、当3∠AOD+∠BOC =370°时,则AOD ∠=3503︒,不符合题意. 故选:B .【点睛】本题考查角度的运算,解题的关键是明确题意,找出所求问题需要的条件.4、C【解析】【分析】根据∠BOC =90°,∠COD =45°求出∠AOC =90°,∠BOD =45°,∠AOD =135°,进而得出答案.【详解】解:∵∠BOC=90°,∠COD=45°,∴∠AOC=90°,∠BOD=45°,∠AOD=135°,∴∠AOC+∠BOC=180°,∠AOD+∠COD=180°,∠AOD+∠BOD=180°,∴图中互为补角的角共有3对,故选:C.【点睛】本题考查了补角的定义,理解互为补角的两角之和为180°是解题的关键.5、D【解析】【分析】先根据补角的定义求出∠BOC的度数,再利用角平分线定义即可求解.【详解】解:∵∠BOD=153°,∴∠BOC=180°-153°=27°,∵CD为∠AOB的角平分线,∴∠AOC=∠BOC=27°,∵∠AOE=90°,∴∠DOE=90°-∠AOC=63°故选:D.【点睛】本题考查了平角的定义,余角和补角,角平分线定义,求出∠BOC的度数是解题的关键.6、D【解析】【分析】AB=,MA+MB=13cm,得点M的位置不能在线段AB上,由此得到答案.根据10cm【详解】AB=,MA+MB=13cm,解:∵10cm∴M点可能在直线AB上,也可能在直线AB外,故选:D.【点睛】此题考查了线段的和差关系,点与直线的位置关系,理解题意是解题的关键.7、C【解析】【分析】根据线段中点的性质,可用CD表示BC,根据线段的和差,可得关于CD的方程,根据解方程,可得CD的长,AC的长.【详解】解:由点D为BC的中点,得BC=2CD=2BD,由线段的和差,得AB=AC+BC,即4CD+2CD=30,解得CD=5,AC=4CD=4×5=20cm,故选:C;【点睛】本题考查了两点间的距离,利用了线段中点的性质,线段的和差.8、C【解析】【分析】结合题意,根据直线的性质:两点确定一条直线进行分析,即可得到答案.【详解】结合题意,匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是:两点确定一条直线故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线的性质,从而完成求解.9、B【解析】【分析】BON AOM利用角平分线的定义再求解先求解21802,AOM BOC BON CON从而可得答案.180218022,【详解】MON解:90,AOM BON90,21802,BON AOMBOMOC平分,1,MOC BOC MOB2AOM BOC BON CON180218022,18018022,AOM AOM CONAOM CON2.故选B【点睛】本题考查的是角的和差运算,角平分线的定义,熟练的运用角的和差关系探究角与角之间的关系是解本题的关键.10、C【解析】【分析】根据补角的性质,即可求解.【详解】解:∵一个角为45°,∴它的补角的度数为18045135︒-︒=︒.故选:C【点睛】本题主要考查了补角的性质,熟练掌握互补的两个角的和为180°是解题的关键.二、填空题1、54.5【解析】【分析】∠的值.根据90°-∠α即可求得β【详解】解:∵∠α与∠β互余,且∠α=35°30′,∴∠β903530'=︒-︒896035305430'''=︒-︒=︒ 30300.560'==︒ 54.5β∴∠=︒故答案为:54.5【点睛】本题考查了求一个角的余角,角度进制的转化,正确的计算是解题的关键.2、 射线OE 射线OF 射线OG 射线OH【解析】略3、160【解析】【分析】如图,钟面被等分成12份,每一份对应的角为30,︒先求解,AOC ∠ 根据时针每分钟转0.5︒,再求解,BOC ∠ 从而可得答案.【详解】解:如图,时钟指向下午2:40时,钟面被等分成12份,每一份对应的角为30,︒∴305150,AOC时针每分钟转360=0.5,126030400.510,BOC15010160,AOB故答案为:160【点睛】本题考查的是钟面角的计算,角的和差关系,掌握“钟面被等分成12份,每一份对应的角为30,︒时针每分钟转0.5︒”是解本题的关键.4、60.3【解析】【分析】根据1'=(160)°先把18'化成0.3°即可.【详解】∵1 1()60 =︒'∴18'=18⨯1()60︒=0.3°∴60︒18'=60.3︒故:答案为60.3.【点睛】本题考查了度分秒的换算,单位度、分、秒之间是60进制,解题的关键是将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.在进行度、分、秒的运算时还应注意借位和进位的方法.5、 2 两点确定一条直线【解析】【分析】根据两点确定一条直线解答.【详解】解:至少需要钉2个钉子,所学的数学知识为:两点确定一条直线,故答案为:2,两点确定一条直线.【点睛】此题考查了线段的性质:两点确定一条直线,熟记性质是解题的关键.三、解答题1、 (1)5(2)5(3)存在,9或0【解析】(1)根据绝对值的非负性及偶次方的非负性求出a =-5,b =10,得到AB =10-(-5)=15,由T 为线段AB 上靠近点B 的三等分点,得到BT =5,根据OT=OB-BT 求出结果;(2)由运动速度得到BD =2QC ,由C 、D 运动到任意时刻时,总有2QD AC =,得到BQ =2AQ ,即可求出AQ ;(3)先求出BF=4,EF =2,AE =9.当03m ≤≤时,得到9-3m +4-m =9,当34m <≤时,得到3m-9+4-m =9;当m >4时,得到3m-9+m-4=9,解方程即可.(1) 解:∵()2520a b a +++=,∴a +5=0,b +2a =0,∴a =-5,b =10,∴点A 表示数-5,点B 表示数10,∴AB =10-(-5)=15,∵T 为线段AB 上靠近点B 的三等分点,∴BT =5,∴OT=OB-BT =5;(2)解:∵C 、D 两点分别从Q 、B 出发以54个单位/s ,52个单位/s 的速度沿直线BA 向左运动(C 在线段AQ 上,D 在线段BQ 上),∴BD =2QC ,∵C 、D 运动到任意时刻时,总有2QD AC =,∴BQ =2AQ ,∵BQ +AQ =15,(3)解:∵2BF EF =,4OE =,∴BF=4,EF =2,AE =9,设点M 运动ms ,当03m ≤≤时,如图,∵EM=9-3m ,BN =4-m ,EM BN AE +=,∴9-3m +4-m =9,解得m =1,∴MN =9-3m +2+m =9;当34m <≤时,如图,∵EM=3m-9,BN =4-m ,EM BN AE +=,∴3m-9+4-m =9,解得m =7(舍去);当m >4时,如图,∵EM=3m-9,BN =m-4,EM BN AE +=,∴3m-9+m-4=9,解得m=112;∴MN=15-3m+m-4=0;综上,存在,此时MN的长度为9或0.【点睛】此题考查数轴上两点之间的距离,绝对值的非负性及偶次方的非负性,数轴上动点问题,一元一次方程,正确掌握数轴上两点间的距离公式是解题的关键.2、 (1)见解析(2)见解析(3)见解析【解析】【分析】(1)画射线CD即可;(2)画直线AB即可;(3)连接DA,并延长至E,使得AE=DA即可.(1)解:如图所示,射线CD即为所求作的图形;(2)解:如图所示,直线AB即为所求作的图形;(3)解:如图所示,连接DA,并延长至E,使得AE=DA.【点睛】本题考查了作图-复杂作图、直线、射线、线段,解决本题的关键是根据语句准确画图.3、 (1)BO,BO,AB,5(2)不变,见解析【解析】【分析】(1)根据已知条件及解答过程中的每步推理即可完成;(2)由线段中点的定义及线段的差即可完成.(1)因为C,D分别是线段AO,BO的中点,所以CO=12AO,DO=12BO.因为AB=10,所以CD=CO+DO=12AO+12BO=12AB =5.故答案为:BO,BO,AB,5(2)不会发生变化:理由如下:如图因为C,D分别是线段AO,BO的中点,所以12CO AO=,12DO BO=.因为10AB=,所以1115222CD CO DO AO BO AB =-=-==.【点睛】本题考查了线段中点的定义,线段的和、差等知识,掌握这些知识是关键.4、 (1)7(2)不改变,EF=7cm.【解析】【分析】(1)先求出线段BD,然后再利用线段中点的性质求出AE,BF即可;(2)利用线段中点的性质证明EF的长度不会发生改变.(1)解:∵AB=12cm,CD=2cm,AC=4cm,∴BD=AB-CD-AC=6(cm),∵E、F分别是AC、BD的中点,∴CE =12AC =2(cm ),DF =12BD =3(cm ),∴EF =CE +CD +DF =7(cm );故答案为:7;(2)不改变,理由:∵AB =12cm ,CD =2cm ,∴AC +BD =AB -CD =10(cm ),∵E 、F 分别是AC 、BD 的中点,∴CE =12AC ,DF =12BD ,∴CE +DF =12AC +12BD =5(cm ),∴EF =CE +CD +DF =7(cm ) .【点睛】本题考查了两点间距离,熟练掌握线段上两点间距离的求法,灵活应用中点的性质解题是关键.5、 (1)1-(2)5(3)①5t -,33t -;②26t ≤≤且5t ≠【解析】【分析】(1)先根据两点距离公式求出AB =1-(-3)=1+3=4,根据点M 为AB 中点,求出AM ,然后利用点A 表示的数与AM 长求出点M 表示的数即可;(2)根据点A 表示的数为﹣3,线段AB 中点N 表示的数为1,求出AN =1-(-3)=1+3=4,根据点N 为AB 中点,可求AB =2AN =2×4=8,然后利用点A 表示的数与AB 的长求出点B 表示的数即可;(3)①用点A 运动的速度×运动时间+起点表示数得出点A 表示的数为5t -,用点C 运动的速度×运动时间+起点表示数得出点C 表示的数为33t -;②点A 与点B 关于点O ,点A 从-5出发,点B 此时对应的数为5,当点B 与点C 相遇时满足条件,列方程-3+3t +t =5-(-3)得出点B 在CD 上t =2,当点A 与点B 相遇时点A 在点O 处,三点A 、O 、B 重合,此时没有中点,t ≠5,当点B 与点D 重合时,点A 运动到1,列方程-5+t =1解方程即可.(1)解:∵点A 表示的数为﹣3,点B 表示的数为1,∴AB =1-(-3)=1+3=4,∵点M 为AB 中点,∴AM =BM 114222AB =⨯=,∴点M 表示的数为:-3+2=-1,故答案为:-1;(2)解:∵点A 表示的数为﹣3,线段AB 中点N 表示的数为1,∴AN =1-(-3)=1+3=4,∵点N 为AB 中点,∴AB =2AN =2×4=8,∴点B 表示的数为:-3+8=5,故答案为:5;(3)①点A 表示的数为5t -,点C 表示的数为33t -,故答案为:5t -;33t -;②点A与点B关于点O对称,点A从-5出发,点B此时对应的数为5,当点B与点C相遇时满足条件,∴-3+3t+t=5-(-3),∴t=2,当点A与点B相遇时点A在点O处,三点A、O、B重合,此时没有中点,∴t≠5,当点B与点D重合时,点A运动到1,-5+t=1,∴t=6,∴当点O是线段AB的中点时, t的取值范围为2≤t≤6,且t≠5.【点睛】本题考查数轴表示数,数轴上两点距离,线段中点,动点问题,列解一元一次方程,掌握数轴表示数,数轴上两点距离,线段中点,动点问题,列解一元一次方程是解题关键.。
2020—2021年最新鲁教版五四制六年级数学下册《基本平面图形》单元测试题及答案.docx
鲁教版(五四制)六年级下册单元评价检测第五章(45分钟100分)一、选择题(每小题4分,共28分)1.下列说法:①射线AB与射线BA是同一条射线;②线段AB是直线AB的一部分;③延长线段AB到C,使AB=AC;④射线AB与射线BA的公共部分是线段AB.正确的个数是( )(A)1 (B)2 (C)3 (D)42.如图所示,长度为12 cm的线段AB的中点为M,C为线段MB上一点,且MC∶CB=1∶2,则线段AC的长度为( )(A)2 cm (B)8 cm (C)6 cm (D)4 cm3.下列说法正确的是( )(A)角的两边可以度量(B)一条直线可看成一个平角(C)角是由一点引出的两条射线组成的图形(D)一条射线可看成一个周角4.如图,∠1=20°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为( )(A)95°(B)100°(C)110°(D)120°5.如图,已知C是线段AB的中点,D是BC的中点,E是AD的中点,F是AE的中点,那么线段AF是线段AC的( )(A)18(B)14(C)38(D)3166.如图,点O在直线AB上,∠COB=∠DOE=90°,那么图中相等的角的对数是( )(A)3对(B)4对(C)5对(D)7对7.已知∠α和∠β的和是平角,且∠α∶∠β=1∶8,则∠β的度数是( )(A)20°(B)40°(C)80°(D)160°二、填空题(每小题5分,共25分)8.30.12°=________°_______′_______″,100°12′36″=_______°.9.已知线段AB,延长线段AB到C,使BC=2AB,反向延长AB到D,使AD=AB,则AC=_______AB;DC=_______AC.10.如图,圆中两条半径把圆分成面积为4∶5的两个扇形,则两个扇形的圆心角的度数为_________.11.如图,点C是∠AOB的边OA上一点,D,E是OB上两点,则图中共有_________条线段,可用字母表示的射线有_________条,_________个小于平角的角.12.直线上有2 013个点,我们进行如下操作:在每相邻两点间插入1个点.经过3次这样的操作后,直线上共有_________个点.三、解答题(共47分)13.(11分)如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若AB=18 cm,求DE的长;(2)若CE=5 cm,求BD的长.14.(11分)如图所示,∠AOB=30°,∠BOC=40°,∠COD=26°,OE平分∠AOD.求∠BOE的度数.15.(12分)如图所示,回答下列问题.(1)2条直线相交有几个交点?(2)3条直线两两相交,最多有几个交点?(3)4条直线两两相交,最多有几个交点?(4)根据(1)(2)(3)总结:n(n为大于或等于2的正整数)条直线两两相交,最多有几个交点;(5)根据上述结论,求100条直线两两相交最多有几个交点.16.(13分)(1)如图,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数;(2)如果(1)中的∠AOB=α(OC在∠AOB外),其他条件不变,求∠MON的度数;(3)如果(1)中的∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1)(2)(3)的结论中能得出什么结论?答案解析1.【解析】选B.射线的端点不同,射线就不同,所以射线AB与射线BA不是同一条射线,①错;②对;③错,因为无法使AB=AC;④对;所以选B.2.【解析】选B.因为AM=MB=12AB=6(cm),MC=6×13=2(cm),所以AC=AM+MC=6+2=8(cm),故选B.3.【解析】选C.角是由具有公共端点的两条射线组成的,可知C正确;射线不可以度量,故A错;角有顶点和两条边,故B,D错,因此选C.4.【解析】选C.因为∠BOC=90°-20°=70°,所以∠2=180°-∠BOC=180°-70°=110°.5.【解析】选C.根据题意可设CD=DB=x,则AC=CB=2DB=2x,AD=3x,AE=32x,AF=12AE=34x,所以3xAF34==AC2x8,故选C.6.【解析】选C.因为∠COB=∠DOE=90°,所以∠COE+∠COD=90°,∠COD+∠BOD=90°,所以∠COE=∠BOD;因为∠AOC=∠DOE,所以∠COE+∠COD=90°,∠AOE+∠COE=90°,所以∠AOE=∠COD;∠AOC=∠BOC.故选C.7.【解析】选D.可设∠α=x,∠β=8x,则x+8x=180°,x=20°,所以∠β=8x=160°,故选D.8.【解析】0.12°=0.12×60'=7.2',0.2'=0.2×60″=12″,所以30.12°=30°7'12″,36″=36×(160)'=0.6',12.6'=12.6×(160)°=0.21°,所以100°12'36″=100.21°.答案:30 7 12 100.219.【解析】如图所示,AC=3AB,DC=4AB,所以DC=43AC.答案:3 4310.【解析】两个扇形圆心角的度数分别为360°×49=160°和360°×59=200°.答案:160°,200°11.【解析】图中有线段OD,OE,OB,DE,DB,EB,OC,OA,CA,DC,EC,共11条,射线OA,CA,OB,DB,EB,共5条,小于平角的角有∠O,∠ODC,∠CDE,∠CED,∠CEB,∠ACE,∠ECD,∠DCO,∠ACD,∠OCE,共10个.答案:11 5 1012.【解析】2 013+2 012=4 025,4 025+4 024=8 049,8 049+8 048=16 097. 答案:16 09713.【解析】(1)因为C 是AB 的中点,所以AC=BC=12AB=9 cm.因为D 是AC 的中点,所以AD=DC=12AC=92cm.因为E 是BC 的中点,所以CE=BE=12BC=92cm.又因为DE=DC+CE,所以DE=92+92=9(cm). (2)由(1)知AD=DC=CE=BE,所以CE=13BD. 因为CE=5 cm,所以BD=15 cm.14.【解析】因为∠AOB=30°,∠BOC=40°,∠COD=26°,所以∠AOD=∠AOB+∠BOC+∠COD=30°+40°+26°=96°, 又因为OE 平分∠AOD,所以∠AOE=12∠AOD=12×96°=48°, 所以∠BOE=∠AOE-∠AOB=48°-30°=18°. 15.【解析】(1)由图可知,2条直线相交有1个交点. (2)3条直线两两相交,最多有2+1=3个交点. (3)4条直线两两相交,最多有3+2+1=6个交点. (4)依此类推,n 条直线两两相交最多有n-1+…+3+2+1=n(n 1)2-个交点. (5)根据上述结论,当n=100时, n(n 1)2-=100992⨯=4 950个交点.16.【解析】(1)因为ON 是∠BOC 的平分线, 所以∠CON=∠BON=12∠BOC=12×30°=15°. 因为OM 是∠AOC 的平分线,所以∠COM=∠AOM=12∠AOC=12(∠AOB+∠BOC)=12(90°+30°)=60°,所以∠MON=∠COM-∠CON=60°-15°=45°. (2)当∠AOB=α,其他条件不变时,由(1)得∠CON=15°.因为OM是∠AOC的平分线,所以∠COM=∠AOM=12∠AOC=12(∠AOB+∠BOC)=12(α+30°)=12α+15°,所以∠MON=∠COM-∠CON=12α+15°-15°=12α.(3)当∠BOC=β,其他条件不变时,因为ON是∠BOC的平分线,所以∠CON=∠BON=1 2∠BOC=12β,因为OM是∠AOC的平分线,所以∠COM=∠AOM=12∠AOC=12(∠AOB+∠BOC)=12(90°+β)=45°+12β,所以∠MON=∠COM-∠CON=45°+12β-12β=45°.(4)∠MON的度数总等于∠AOB的一半,而与锐角∠BOC的度数没有关系.。
2022年精品解析鲁教版(五四制)六年级数学下册第五章基本平面图形专题训练练习题(含详解)
六年级数学下册第五章基本平面图形专题训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是()①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上.A.①②B.①④C.②③D.③④2、如图,小红同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.两点之间,线段最短B.两点确定一条直线C.过一点,有无数条直线D.连接两点之间的线段叫做两点间的距离3、下列说法正确的是()A .正数与负数互为相反数B .如果x 2=y 2,那么x =yC .过两点有且只有一条直线D .射线比直线小一半4、下列说法错误的是( )A .两点之间,线段最短B .经过两点有一条直线,并且只有一条直线C .延长线段AB 和延长线段BA 的含义是相同的D .射线AB 和射线BA 不是同一条射线5、如图,某同学从A 处出发,去位于B 处的同学家交流学习,其最近的路线是( )A .A C DB →→→B .AC F B →→→ C .A C E F B →→→→D .A C M B →→→6、上午8:30时,时针和分针所夹锐角的度数是( )A .75°B .80°C .70°D .67.5°7、如图,BOC ∠在AOD ∠的内部,且20BOC ∠=︒,若AOD ∠的度数是一个正整数,则图中所有角...的度数之和可能是( )A .340°B .350°C .360°D .370°8、如图,线段21cm AD =,点B 在线段AD 上,C 为BD 的中点,且13AB CD =,则BC 的长度( )A .6cmB .7cmC .8cmD .9cm 9、如图,点D 是线段AB 的中点,点E 是AC 的中点,若6cm AB =,14cm AC =,则线段DE 的长度是( )A .3cmB .4cmC .5cmD .6cm10、如图,C 为线段AB 上一点,点D 为BC 的中点,且30cm AB =,4AC CD =.则AC 的长为( )cm .A .18B .18.5C .20D .20.5第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将一副直角三角板按如图放置,使两直角重合,则∠1的度数为______.2、一个角为2440︒',则它的余角度数为 _____.3、如图,线段13cm AB =,点C 是线段AB 上一点,点M 、N 分别是AC 、BC 的中点,则MN 的长为__________cm .4、把一个直径是10厘米的圆分成若干等份,然后把它剪开,照如图的样子拼起来,拼成的图形的周长比原来圆的周长增加_______厘米.5、如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =3∠DOE ,∠COE =α,则∠BOE =_____.(用含α的式子表示)三、解答题(5小题,每小题10分,共计50分)1、如图,OD 平分BOC ∠,OE 平分AOC ∠.若35BOD ∠=︒,50AOC ∠=︒.(1)求出AOB ∠的度数;(2)求出DOE ∠的度数,并判断DOE ∠与AOB ∠的数量关系是互补还是互余.2、点M ,N 是数轴上的两点(点M 在点N 的左侧),当数轴上的点P 满足PM =2PN 时,称点P 为线段MN 的“和谐点”.已知,点O ,A ,B 在数轴上表示的数分别为0,a ,b ,回答下面的问题:(1)当a =﹣1,b =5时,求线段AB 的“和谐点”所表示的数;(2)当b =a +6且a <0时,如果O ,A ,B 三个点中恰有一个点为其余两个点组成的线段的“和谐点”,直接写出此时a 的值.3、如图,在直线上顺次取A 、B 、C 三点,使得AB =40cm ,BC =280cm .点P 、点Q 分别由A 点、B 点同时出发向点C 运动,运用时间为t (单位:s ),点P 的速度为3cm/s ,点Q 的速度为1cm/s(1)请求出线段AC 的长;(2)若点D 是线段AC 的中点,请求出线段BD 的长;(3)请求出点P 出发多少秒后追上点Q ?(4)请计算出点P 出发多少秒后,与点Q 的距离是20cm ?4、如图,已知点A ,B ,C ,请按要求画出图形.(1)画直线AB 和射线CB ;(2)连结AC ,并在直线AB 上用尺规作线段AE ,使2AE AC =;(要求保留作图痕迹)5、如图,已知线段a ,b .(尺规作图,保留作图痕迹,不写作法)求作:线段2AB a b =-.-参考答案-一、单选题1、B【解析】【分析】直接利用直线的性质以及线段的性质分析求解即可.【详解】①用两颗钉子就可以把木条固定在墙上,可以用基本事实“两点确定一条直线”来解释;②把笔尖看成一个点,当这个点运动时便得到一条线,可以用基本事实“无数个点组成线”来解释;③把弯曲的公路改直,就能缩短路程,可以用基本事实“两点之间线段最短”来解释;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上,可以用基本事实“两点确定一条直线”来解释;综上可得:①④可以用“两点确定一条直线”来解释,故选:B.【点睛】此题主要考查了直线的性质以及线段的性质,正确把握相关性质是解题关键.2、A【解析】【分析】根据两点之间线段最短的性质解答.【详解】解:∵用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选:A .【点睛】此题考查了实际生活中两点之间线段最短的应用,正确理解图形的特点与线段的性质结合是解题的关键.3、C【解析】【分析】A 中互为相反数的两个数为一正一负;B 中两个数的平方相等,这两个数可以相等也可以互为相反数;C 中过两点有且只有一条直线;D 中射线与直线无法比较长度.【详解】解:A 中正数负数分别为12-,,()1210+-=-≠,错误,不符合要求; B 中22x y =,可得x y =或x y =-,错误,不符合要求;C 中过两点有且只有一条直线 ,正确,符合要求;D 中射线与直线都可以无限延伸,无法比较长度,错误,不符合要求;故选C .【点睛】本题考查了相反数,直线与射线.解题的关键在于熟练掌握相反数,直线与射线等的定义.4、C【解析】【分析】根据两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义依次分析判断.【详解】解:A. 两点之间,线段最短,故该项不符合题意;B. 经过两点有一条直线,并且只有一条直线,故该项不符合题意;C. 延长线段AB和延长线段BA的含义是不同的,故该项符合题意;D. 射线AB和射线BA不是同一条射线,故该项不符合题意;故选:C.【点睛】此题考查了两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义,综合掌握各知识点是解题的关键.5、B【解析】【分析】根据两点之间线段最短,对四个选项中的路线作比较即可.【详解】解:四个选项均为从A→C然后去B由两点之间线段最短可知,由C到B的连线是最短的由于F在CB线上,故可知A→C→F→B是最近的路线故选B.【点睛】本题考查了两点之间线段最短的应用.解题的关键在于正确理解两点之间线段最短.6、A【解析】【分析】根据钟面平均分成12份,可得每份的度数;根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:钟面平均分成12份,钟面每份是30°,上午8:30时时针与分针相距2.5份,此时时钟的时针与分针所夹的角(小于平角)的度数是30°×2.5=75°.故选:A .【点睛】本题考查了钟面角,时针与分针相距的份数乘以每份的度数是解题关键.7、B【解析】【分析】根据角的运算和题意可知,所有角的度数之和是∠AOB +∠BO C +∠COD +∠AOC +∠BOD +∠AOD ,然后根据20BOC ∠=︒,AOD ∠的度数是一个正整数,可以解答本题.【详解】解:由题意可得,图中所有角的度数之和是∠AOB +∠BOC +∠COD +∠AOC +∠BOD +∠AOD=3∠AOD+∠BOC∵20BOC ∠=︒,AOD ∠的度数是一个正整数,∴A、当3∠AOD+∠BOC =340°时,则AOD ∠=3203︒ ,不符合题意; B 、当3∠AOD+∠BOC =3×110°+20°=350°时,则AOD ∠=110°,符合题意;C 、当3∠AOD+∠BOC =360°时,则AOD ∠=3403︒,不符合题意; D 、当3∠AOD+∠BOC =370°时,则AOD ∠=3503︒,不符合题意. 故选:B .【点睛】本题考查角度的运算,解题的关键是明确题意,找出所求问题需要的条件.8、D【解析】【分析】设AB x =cm ,则3BC CD x ==cm ,根据题意列出方程求解即可.【详解】解:设AB x =,则3CD x =,∵C 为BD 的中点,∴3BC CD x ==,∴3321x x x ++=,解得3x =,339BC =⨯=cm ,故选:D .【点睛】本题考查了线段的和差和线段的中点,解一元一次方程,解题关键是明确相关定义,设未知数列出方程求解.9、B【解析】【分析】根据中点的定义求出AE和AD,相减即可得到DE.【详解】解:∵D是线段AB的中点,AB=6cm,∴AD=BD=3cm,∵E是线段AC的中点,AC=14cm,∴AE=CE=7cm,∴DE=AE-AD=7-3=4cm,故选B.【点睛】本题考查了中点的定义及两点之间的距离的求法,准确识图是解题的关键.10、C【解析】【分析】根据线段中点的性质,可用CD表示BC,根据线段的和差,可得关于CD的方程,根据解方程,可得CD的长,AC的长.【详解】解:由点D为BC的中点,得BC=2CD=2BD,由线段的和差,得AB=AC+BC,即4CD+2CD=30,解得CD=5,AC=4CD=4×5=20cm,故选:C;【点睛】本题考查了两点间的距离,利用了线段中点的性质,线段的和差.二、填空题1、165°【解析】【分析】由三角板得∠C=30°,得到∠BAC的度数,利用邻补角关系得到∠1的度数.【详解】解:如图,∵∠C=30°,∴∠BAC=45°-30°=15°,∴∠1=180°-∠BAC=165°,故答案为:165°.【点睛】此题考查了三角板有关的计算,正确掌握三角板各角的度数及邻补角的定义是解题的关键.【解析】【分析】根据余角的定义计算即可.【详解】解:90°-2440︒',=6520︒',故答案为:6520︒'.【点睛】本题考查了余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.3、6.5【解析】【分析】根据中点的性质得出MN =12AB 即可.【详解】∵点M 、N 分别是AC 、BC 的中点∴MC =12AC ;CN =12BC ,∴MN =MC +CN =12AC +12BC =12AB =1132⨯故答案为6.5.【点睛】本题考查了线段中点的定义和性质,解题的关键是熟练应用中点的性质进行计算.4、10【解析】【分析】由圆的面积推导过程可知:将圆拼成近似的长方形后,长方形的长就等于圆的周长的一半,宽就等于圆的半径,从而可知,这个长方形的周长比原来圆的周长多出了两个半径的长度,据此即可求解.【详解】解:因为将圆拼成近似的长方形后,长方形的长就等于圆的周长的一半,宽就等于圆的半径,所以这个长方形的周长比原来圆的周长多出了两个半径的长度,即多出了一个直径的长度,也就是10厘米.故答案为:10.【点睛】本题考查认识平面图形,理解图形周长的意义和拼图前后之间的关系是解决问题的关键.5、360°-4α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=3∠DOE,可得∠BOD=3x,由平角∠AOB=180°列出关于x的一次方程式,求解即可.【详解】解:设∠DOE=x,∵OC 平分∠AOD ,∠BOD =3∠DOE ,∠COE =α,∴∠AOC =∠COD =α-x ,∠BOD =3x ,由∠BOD +∠AOD =180°,∴3x +2(α-x )=180°解得x =180°-2α,∴∠BOE =∠BOD -∠DOE =3x -x =2x=2(180°-2α)=360°-4α,故答案为:360°-4α.【点睛】本题考查了角平分线的定义,平角的定义,一元一次方程的应用,掌握角平分线的定义是解题的关键.三、解答题1、 (1)120︒(2)60︒,互补【解析】【分析】(1)先根据角平分线的定义求出∠BOC 的度数,然后可求AOB ∠的度数;(2)先根据角平分线的定义求出∠COD、∠COE 的度数,然后可求DOE ∠的度数,进而可判断DOE ∠与AOB ∠的数量关系.(1)解:∵OD 平分BOC ∠,35BOD ∠=︒,∴270BOC BOD ∠=∠=︒,又∵50AOC ∠=︒,∴7050120AOB BOC AOC ∠=∠+∠=︒+︒=︒;(2)解:∵OD 平分BOC ∠,OE 平分AOC ∠,50AOC ∠=︒,∴35COD BOD ∠=∠=︒,1252COE AOC ∠=∠=︒,∴352560DOE COD COE ∠=∠+∠=︒+︒=︒,∴60120180DOE AOB ∠+∠=︒+︒=︒,∴DOE ∠与AOB ∠的数量关系是互补.【点睛】本题主要考查角平分线的定义和补角的定义,关键是根据补角的定义解答.如果两个角的和等于90°,那么这两个角互为余角,其中一个角叫做另一个角的余角;如果两个角的和等于180°,那么这两个角互为补角,其中一个角叫做另一个角的补角.2、 (1)3或11;(2)a 的值为-12,-9,-4,-3.【解析】【分析】(1):设线段AB 的“和谐点”表示的数为x ,根据a =﹣1,b =5,分三种情况,①当1x <-时, 列出方程12(5)x x --=-.②当15x -≤<时,列出方程12(5)x x +=-.③当5x ≥时,列出方程12(5)x x +=-解方程即可. (2):点O 为AB 的“和谐点”OA =2OB ,列方程()020a b -=-或()020a b -=-,根据b =a +6且a <0,可得()0206a a -=--或()0260a a -=+-解方程,当A 为OB 的“和谐点”当b <0时,AB =2AO ,即6=-a ,不合题意,当b >0时,AO =2AB ,a =12>0,不合题意,当点B 为AO 的“和谐点”BA =2BO ,点B 在点O 的左边,6=2(-a -6),点B 在点O 的右边,6=2(a +6),解方程即可.(1)解:设线段AB 的“和谐点”表示的数为x ,①当1x <-时,列出方程12(5)x x --=-.解得11x =.(舍去)②当15x -≤<时,列出方程12(5)x x +=-.解得3x =.③当5x ≥时,列出方程12(5)x x +=-解得11x =.综上所述,线段AB 的“和谐点”表示的数为3或11.(2)解:点O 为AB 的“和谐点”OA =2OB ,()020a b -=-或()020a b -=-,∵b =a +6且a <0,()0206a a -=--,解得12a =-,()0260a a -=+-,解得4a =-,当A 为OB 的“和谐点”,当b <0时,a <-6,AB =2AO ,即6=-a ,解得a =-6,不合题意,当b >0时,AO =2AB ,即a =2×(b -a ),∵b=a+6,解得a=12>0,不合题意,当点B为AO的“和谐点”BA=2BO,点B在点O的左边,6=2(-a-6),解得:a=-9,点B在点O的右边,6=2(a+6),解得:a=-3,综合a的值为-12,-9,-4,-3.【点睛】本题考查新定义线段的和谐点,数轴上两点距离,一元一次方程,线段的倍分关系,掌握新定义线段的和谐点,数轴上两点距离求法,解一元一次方程,线段的倍分关系是解题关键.3、 (1)320cm(2)120cm(3)20秒(4)10或30秒【解析】【分析】(1)根据AB+BC=AC,已知AB=40cm,BC=280cm,代入数据,即可解得线段AC的长;(2)根据线段的中点定理可得11602AD AC cm==,而BD=AD﹣AB,即可求出线段BD的长;(3)这属于追击问题,设点P出发t秒后追上点Q,即当追上时有AP AB BQ=+,可方程3t=t+40,即可得本题之解;(4)设点P出发t秒,点Q的距离是20cm;分两种情况,①是当P在Q的左侧时,3t=40+t+20;②是当P在Q的右侧时,3t=40+t+20,分别解这两个方程,即可得出本题答案.(1)解:∵AB+BC=AC,∴AC=320cm;(2)解:∵D是线段AC的中点,∴11602AD AC cm==,∴BD=AD﹣AB=120cm;(3)解:设点P出发t秒后追上点Q,依题意有:3t=t+40,解得t=20.答:点P出发20秒后追上点Q.(4)解:当P在Q的左侧时,此时3t+20=40+t,解得:t=10;当P在Q的右侧时,此时3t=40+t+20,解得:t=30.答:点P出发10或30秒后,与点Q的距离是20cm.【点睛】本题主要考查了线段的有关计算,一元一次方程的应用等知识.4、 (1)见解析(2)见解析【解析】【分析】(1)根据直线和射线的定义画图即可;(2)先连结AC,然后以点A圆心,以AC为半径,在直线AB上顺次截取2次即可;(1)如图所示;(2)如图所示,或【点睛】本题主要考查了作图知识及把几何语言转化为几何图形的能力,比较简单,直线向两方无限延伸,射线向一方无限延伸,而线段不延伸.也考查了作一条线段等于已知线段的尺规作图.5、见解析【解析】【分析】作射线AM,在射线AM,上顺次截取AC=a,CD=a,再反向截取DB=b,进而可得线段AB.【详解】.解:如图,线段AB即为所求作的线段2a b【点睛】本题考查尺规作图—线段的和差,是基础考点,掌握相关知识是解题关键.。
2020—2021学年鲁教版(五四制)六年级数学下册《第五章基本平面图形》单元综合培优训练(附答案)
鲁教版2021年度六年级数学下册《第五章基本平面图形》单元综合培优训练(附答案)1.如图,在直线l上有A、B、C三点,则图中线段共有()A.1条B.2条C.3条D.4条2.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直3.点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12cm,则线段BD的长为()A.10cm B.8cm C.10cm或8cm D.2cm或4cm4.如图(一),为一条拉直的细线,A、B两点在上,且:=1:3,:=3:5.若先固定B点,将折向,使得重叠在上,如图(二),再从图(二)的A 点及与A点重叠处一起剪开,使得细线分成三段,则此三段细线由小到大的长度比为何?()A.1:1:1B.1:1:2C.1:2:2D.1:2:55.如图,钟表上10点整时,时针与分针所成的角是()A.30°B.60°C.90°D.120°6.如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A.在南偏东75°方向处B.在5km处C.在南偏东15°方向5km处D.在南偏东75°方向5km处7.1°等于()A.10′B.12′C.60′D.100′8.如图,AM为∠BAC的平分线,下列等式错误的是()A.∠BAC=∠BAM B.∠BAM=∠CAMC.∠BAM=2∠CAM D.2∠CAM=∠BAC9.直线上有2020个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有个点.10.在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是.11.数轴上O,A两点的距离为4,一动点P从点A出发,按以下规律跳动:第1次跳动到AO的中点A1处,第2次从A1点跳动到A1O的中点A2处,第3次从A2点跳动到A2O 的中点A3处,按照这样的规律继续跳动到点A4,A5,A6,…,A n.(n≥3,n是整数)处,那么线段A n A的长度为(n≥3,n是整数).12.如图,线段的长度大约是厘米(精确到0.1厘米).13.在锐角∠AOB内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;…照此规律,画10条不同射线,可得锐角个.14.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….(1)“17”在射线上;(2)请任意写出三条射线上数字的排列规律;(3)“2007”在哪条射线上?15.在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.16.先阅读下面的材料,然后解答问题:在一条直线上有依次排列的n(n>1)台机床工作,我们要设置一个零件供应站P,使这n台机床到供应站P的距离总和最小,要解决这个问题先“退”到比较简单的情形.如图(1),如果直线上有2台机床时,很明显设在A1和A2之间的任何地方都行,因为甲和乙所走的距离之和等于A1到A2的距离.如图(2),如果直线上有3台机床时,不难判断,供应站设在中间一台机床,A2处最合适,因为如果P不放在A2处,甲和丙所走的距离之和恰好是A1到A3的距离,可是乙还得走从A2到P的这一段,这是多出来的,因此P放在A2处最佳选择.不难知道,如果直线上有4台机床,P应设在第二台与第3台之间的任何地方,有5台机床,P应设在第3台位置.问题:(1)有n台机床时,P应设在何处?(2)根据(1)的结论,求|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣617|的最小值.17.考点办公室设在校园中心O点,带队老师休息室A位于O点的北偏东45°,某考室B 位于O点南偏东60°,请在图中画出射线OA,OB,并计算∠AOB的度数.18.用两种方法证明“三角形的外角和等于360°”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.求证∠BAE+∠CBF+∠ACD=360°.证法1:∵,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.请把证法1补充完整,并用不同的方法完成证法2.参考答案1.解:图中线段有AB、AC、BC这3条,故选:C.2.解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.3.解:∵C是线段AB的中点,AB=12cm,∴AC=BC=AB=×12=6(cm),点D是线段AC的三等分点,①当AD=AC时,如图,BD=BC+CD=BC+AC=6+4=10(cm);②当AD=AC时,如图,BD=BC+CD′=BC+AC=6+2=8(cm).所以线段BD的长为10cm或8cm,故选:C.4.解:设OP的长度为8a,∵OA:AP=1:3,OB:BP=3:5,∴OA=2a,AP=6a,OB=3a,BP=5a,又∵先固定B点,将OB折向BP,使得OB重迭在BP上,如图(二),再从图(二)的A点及与A点重迭处一起剪开,使得细线分成三段,∴这三段从小到大的长度分别是:2a、2a、4a,∴此三段细线由小到大的长度比为:2a:2a:4a=1:1:2,故选:B.5.解:∵钟面分成12个大格,每格的度数为30°,∴钟表上10点整时,时针与分针所成的角是60°.故选:B.6.解:由图可得,目标A在南偏东75°方向5km处,故选:D.7.解:1°等于60′.故选:C.8.解:∵AM为∠BAC的平分线,∴∠BAC=∠BAM,∠BAM=∠CAM,∠BAM=∠CAM,2∠CAM=∠BAC.故选:C.9.解:第一次:2020+(2020﹣1)=2×2020﹣1,第二次:2×2020﹣1+2×2020﹣1﹣1=4×2020﹣3,第三次:4×2020﹣3+4×2020﹣3﹣1=8×2020﹣7.∴经过3次这样的操作后,直线上共有8×2020﹣7=16153个点.故答案为:16153.10.解:在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是:两点之间线段最短.故答案为:两点之间线段最短.11.解:由于OA=4,所有第一次跳动到OA的中点A1处时,OA1=OA=×4=2,同理第二次从A1点跳动到A2处,离原点的()2×4处,同理跳动n次后,离原点的长度为()n×4=,故线段A n A的长度为4﹣(n≥3,n是整数).故答案为:4﹣.12.解:线段的长度大约是2.3(或2.4)厘米,故答案为:2.3(或2.4).13.解:∵在锐角∠AOB内部,画1条射线,可得1+2=3个锐角;在锐角∠AOB内部,画2条射线,可得1+2+3=6个锐角;在锐角∠AOB内部,画3条射线,可得1+2+3+4=10个锐角;…∴从一个角的内部引出n条射线所得到的锐角的个数是1+2+3+…+(n+1)=×(n+1)×(n+2),∴画10条不同射线,可得锐角×(10+1)×(10+2)=66.故答案为:66.14.解:(1)18正好转3圈,3×6;17则3×6﹣1;“17”在射线OE上;(2)射线OA上数字的排列规律:6n﹣5射线OB上数字的排列规律:6n﹣4射线OC上数字的排列规律:6n﹣3射线OD上数字的排列规律:6n﹣2射线OE上数字的排列规律:6n﹣1射线OF上数字的排列规律:6n(3)2007÷6=334…3.故“2007”在射线OC上.15.解:(1)若以B为原点,则C表示1,A表示﹣2,∴p=1+0﹣2=﹣1;若以C为原点,则A表示﹣3,B表示﹣1,∴p=﹣3﹣1+0=﹣4;(2)若原点O在图中数轴上点C的右边,且CO=28,则C表示﹣28,B表示﹣29,A 表示﹣31,∴p=﹣31﹣29﹣28=﹣88.16.解:(1)当n为偶数时,P应设在第台和(+1)台之间的任何地方,当n为奇数时,P应设在第台的位置.(2)根据绝对值的几何意义,求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣617|的最小值就是在数轴上找出表示x的点,使它到表示1,617各点的距离之和最小,根据问题1的结论,当x=309时,原式的值最小,最小值是308+307+…+1+1+2+…+308=95172.17.解:∵∠1=45°,∠2=60°,∴∠AOB=180°﹣(45°+60°)=75°.18.证明:证法1:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.证法2:∵∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,∴∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=360°.故答案为:平角等于180°,∠1+∠2+∠3=180°。
2021-2022学年基础强化鲁教版(五四制)六年级数学下册第五章基本平面图形重点解析试题(无超纲)
六年级数学下册第五章基本平面图形重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若一个角为45°,则它的补角的度数为()A.55°B.45°C.135°D.125°∠三种方法表示同一个角的是()2、下列图形中,能用AOB∠,1∠,OA.B.C.D.3、木匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是()A.两点之间线段最短B.过一点有无数条直线C.两点确定一条直线D.两点之间线段的长度叫做这两点之间的距离4、如图所示,点E 、F 分别是线段AC 、AB 的中点,若EF =2,则BC 的长为( )A .3B .4C .6D .85、若5318A '∠=︒,则A ∠的补角的度数为( )A .3642'︒B .3682'︒C .12642'︒D .12682'︒6、在数轴上,点M 、N 分别表示数m ,n .则点M 、N 之间的距离为||m n -.已知点A ,B ,C ,D 在数轴上分别表示的数为a ,b ,c ,d .且2||||2,||1()5a cbcd a a b -=-=-=≠,则线段BD 的长度为( )A .4.5B .1.5C .6.5或1.5D .4.5或1.5 7、钟表上1时30分时,时针与分针所成的角是( )A .150︒B .120︒C .135︒D .以上答案都不对8、在一幅七巧板中,有我们学过的( )A .8个锐角,6个直角,2个钝角B .12个锐角,9个直角,2个钝角C .8个锐角,10个直角,2个钝角D .6个锐角,8个直角,2个钝角9、如图所示,下列表示角的方法错误的是( )A .∠1与∠AOB 表示同一个角B .图中共有三个角:∠AOB ,∠AOC ,∠BOCC .∠β+∠AOB =∠AOCD .∠AOC 也可用∠O 来表示10、如图,小红同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.两点之间,线段最短B.两点确定一条直线C.过一点,有无数条直线D.连接两点之间的线段叫做两点间的距离第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)∠=∠,依据是______.1、如图,直线CD经过点O,若OC平分∠AOB,则AOD BOD2、4635'︒的余角等于__________.3、在墙壁上用两枚钉子就能固定一根横放的木条,根据是_____________.4、转化0.15°为单位秒是______.5、如图,在平面内有A,B,C三点.请画直线AC,线段BC,射线AB,数数看,此时图中共有个钝角.三、解答题(5小题,每小题10分,共计50分)AB BC CD=,M为AD的中点.1、如图,B、C两点把线段AD分成三部分,::2:5:3(1)判断线段AB与CM的大小关系,说明理由.CM=,求AD的长.(2)若102、已知:如图,直线AB、CD相交于点O,∠EOC=90°,OF平分∠AOE.(1)若∠BOC=40°,求∠AOF的大小.(2)若∠COF=x°,求∠BOC的大小.3、如图1将线段AB,CD放置在直线l上,点B与点C重合,AB=10cm,CD=15cm,点M是线段AC的中点,点N是线段BD的中点.解答下列问题:(1)MN=(2)将图1中的线段AB沿DC延长线方向移动xcm至图2的位置.①当x=7cm时,求MN的长.②在移动的过程中,请直接写出MN,AB,CD之间的数量关系式.4、如图,已知点A,B,C,请按要求画出图形.(1)画直线AB 和射线CB ;(2)连结AC ,并在直线AB 上用尺规作线段AE ,使2AE AC ;(要求保留作图痕迹)5、已知∠AOB ,射线OC 在∠AOB 的内部,射线OM 是∠AOC 靠近OA 的三等分线,射线ON 是∠BOC 靠近OB 的三等分线.(1)如图,若∠AOB =120°,OC 平分∠AOB ,①补全图形;②填空:∠MON 的度数为 .(2)探求∠MON 和∠AOB 的等量关系.-参考答案-一、单选题1、C【解析】【分析】根据补角的性质,即可求解.【详解】解:∵一个角为45°,∴它的补角的度数为18045135︒-︒=︒ .故选:C【点睛】本题主要考查了补角的性质,熟练掌握互补的两个角的和为180°是解题的关键.2、A【解析】【分析】根据角的表示的性质,对各个选项逐个分析,即可得到答案.【详解】A 选项中,可用AOB ∠,1∠,O ∠三种方法表示同一个角;B 选项中,AOB ∠能用1∠表示,不能用O ∠表示;C 选项中,点A 、O 、B 在一条直线上,∴1∠能用O ∠表示,不能用AOB ∠表示;D 选项中,AOB ∠能用1∠表示,不能用O ∠表示;故选:A .【点睛】本题考查了角的知识;解题的关键是熟练掌握角的表示的性质,从而完成求解.3、C【解析】【分析】结合题意,根据直线的性质:两点确定一条直线进行分析,即可得到答案.结合题意,匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是:两点确定一条直线故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线的性质,从而完成求解.4、B【解析】【分析】根据线段的中点,可得AE与AC的关系,AF与AB的关系,根据线段的和差,可得答案.【详解】解:E、F分别是线段AC、AB的中点,AC=2AE=2CE,AB=2AF=2BF,EF=AE﹣AF=22AE﹣2AF=AC﹣AB=2EF=4,BC=AC﹣AB=4,故选:B.【点睛】本题考查了两点间的距离,根据中点的性质求出线段AC-AB=4是解题关键.5、C【解析】【分析】根据补角的性质,即可求解.解:∵5318A '∠=︒,∴A ∠的补角的度数为180180531812642A ''︒-∠=︒-︒=︒.故选:C【点睛】本题主要考查了补角的性质,熟练掌握互为补角的两个角的和等于180°是解题的关键.6、C【解析】【分析】根据题意可知,A B 与C 的距离相等,分D 在A 的左侧和右侧两种情况讨论即可【详解】解:①如图,当D 在A 点的右侧时,2||||2,||1()5a cbcd a a b -=-=-=≠ 224AB AC a c ∴==-=, 2.5AD =∴4 2.5 1.5BD AB AD =-=-=②如图,当D 在A 点的左侧时,2||||2,||1()5a cbcd a a b -=-=-=≠224AB AC a c ∴==-=, 2.5AD =∴4 2.5 6.5BD AB AD =+=+=综上所述,线段BD 的长度为6.5或1.5故选C【点睛】本题考查了数轴上两点的距离,数形结合分类讨论是解题的关键.7、C【解析】【分析】钟表上12个大格把一个周角12等分,每个大格30°,1点30分时针与分针之间共4.5个大格,故时针与分针所成的角是4.5×30°=135°.【详解】解:∵1点30分,时针指向1和2的中间,分针指向6,中间相差4格半,钟表12个数字,每相邻两个数字之间的夹角为30°,∴1点30分分针与时针的夹角是4.5×30°=135°.故选:C .【点睛】本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动(112)°,并且利用起点时间时针和分针的位置关系建立角的图形. 8、B【解析】【分析】根据一副七巧板图形,查出锐角,直角和钝角的个数即可.【详解】5个等腰直角三角形,5个直角,10个锐角,1个正方形,4个直角,1个平行四边形,2个钝角,2个锐角,在一幅七巧板中根据12个锐角,9个直角,2个钝角.故选择B.【点睛】本题考查角的分类,平面图形,掌握角的分类,平面图形是解题关键.9、D【解析】【分析】根据角的表示方法表示各个角,再判断即可.【详解】解:A、∠1与∠AOB表示同一个角,正确,故本选项不符合题意;B、图中共有三个角:∠AOB,∠AOC,∠BOC,正确,故本选不符合题意;C、∠β表示的是∠BOC,∠β+∠AOB=∠AOC,正确,故本选项不符合题意;D、∠AOC不能用∠O表示,错误,故本选项符合题意;故选:D.【点睛】本题考查了对角的表示方法的应用,主要检查学生能否正确表示角.10、A【解析】【分析】根据两点之间线段最短的性质解答.【详解】解:∵用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选:A.【点睛】此题考查了实际生活中两点之间线段最短的应用,正确理解图形的特点与线段的性质结合是解题的关键.二、填空题1、等角的补角相等【解析】【分析】根据角平分线的定义和等角的补角相等解答即可.【详解】解:∵OC平分∠AOB,∴∠AOC=∠BOC,∵∠AOC+∠AOD=180°,∠BOC+∠BOD=180°,∴∠AOD=∠BOD(等角的补角相等),故答案为:等角的补角相等.【点睛】本题考查角平分线的定义、补角,熟知等角的补角相等是解答的关键.︒2、4325'【解析】【分析】根据和为90°的两个角互为余角解答即可.【详解】︒,解:4635'︒的余角等于90°-4635'︒=4325'︒.故答案为:4325'【点睛】本题考查求一个角的余角,会进行度分秒的运算,熟知余角定义是解答的关键.3、两点确定一条直线【解析】【分析】根据两点确定一条直线,即可求解.【详解】解:在墙壁上用两枚钉子就能固定一根横放的木条,根据是两点确定一条直线.故答案为:两点确定一条直线本题主要考查了直线的基本事实,熟练掌握两点确定一条直线是解题的关键.4、540秒【解析】【分析】先把度化为分,再把分化为秒即可.【详解】0.150.156********''''''︒=⨯==⨯=故答案为:540秒【点睛】本题考查了度、分、秒之间的互化,注意它们相邻两个单位间的进率都是六十,且高级单位的量化为低级单位的量要乘以进率.5、见详解,3【解析】【分析】直接根据直线、线段、射线的概念画出图形,再由角的概念解答即可.【详解】解:作图如下:由图可得,图中共有3个钝角,故答案为:3.此题考查的是角的概念、直线、射线和线段,掌握有公共端点是两条射线组成的图形叫做角是解决此题关键.三、解答题=,见解析1、 (1)AB CM(2)50【解析】【分析】AD=5x,表示出CM,(1)设AB=2x,BC=5x,CD=3x,则AD=10x,根据M为AD的中点,可得AM=DM=12即可求解;(2)由CM=10cm,CM=2x,得到关于x的方程,解方程即可求解.(1)AB CM=.理由如下:设AB=2 x,BC=5 x,CD=3 x,则AD=10 x,∵M为AD的中点,AD=5x,∴AM=DM=12∴CM=DM-CD=5x-3x=2x,∴AB=CM;(2)∵CM=10cm,CM=2x,∴2x=10,解得x=5,∴AD =10x =50cm .【点睛】本题考查了两点间的距离,一元一次方程的应用,利用线段的和差,线段中点的性质是解题关键.2、(1)25︒;(2)2702x ︒-︒【解析】【分析】(1)结合题意,根据平角和角度和差的性质计算得AOE ∠,再根据角平分线的性质计算,即可得到答案;(2)根据角度和差性质,计算得EOF ∠;根据角平分线的性质计算,即可得到答案.【详解】(1)∵∠EOC =90°,∠BOC =40°∴18050AOE BOC EOC ∠=︒-∠-∠=︒∵OF 平分∠AOE ∴252AOE AOF ∠∠==︒ ; (2)∵∠COF =x °,∠EOC =90°∴90EOF COF EOF x ∠=∠-∠=︒-︒∵OF 平分∠AOE∴22180AOE EOF x ∠=∠=︒-︒∴()1801802180902702BOC AOE EOC x x ∠=︒-∠-∠=︒-︒-︒-︒=︒-︒.【点睛】本题考查了角的知识;解题的关键是熟练掌握角平分线、角度和差的性质,从而完成求解.3、 (1)12.5cm(2)①12.5cm;②MN =12(AB+CD)【解析】【分析】(1)利用线段的中点的性质解决问题即可;(2)①分别求出CM,CN,可得结论;②利用x表示出MC,CN,可得结论.(1)解:如图1中,∵点M是线段AC的中点,点N是线段BD的中点,∴BM=12AB=5(cm),BN=12CD=7.5(cm),∴MN=BM+BN=12.5(cm),故答案为:12.5cm;(2)①∵BC=7cm,AB=10cm,CD=15cm,∴AC=17(cm),BD=22(cm),∵点M是线段AC的中点,点N是线段BD的中点,∴CM=12AC=8.5(cm),BN=12BD=11(cm),∴CN=BN-BC=11-7=4(cm),∴MN=MC+CN=12.5(cm);②∵BC=x,∴AC=AB+x,BD=x+CD,∵点M是线段AC的中点,点N是线段BD的中点,∴CM=12AC=12(AB+x),BN=12BD=12(x+CD),∴MN=MC+BN-BC=12(AB+x)+12(x+CD)-x=12(AB+CD).【点睛】本题考查线段的中点等知识,解题的关键是掌握线段的中点的性质,属于中考常考题型.4、 (1)见解析(2)见解析【解析】【分析】(1)根据直线和射线的定义画图即可;(2)先连结AC,然后以点A圆心,以AC为半径,在直线AB上顺次截取2次即可;(1)如图所示;(2)如图所示,或【点睛】本题主要考查了作图知识及把几何语言转化为几何图形的能力,比较简单,直线向两方无限延伸,射线向一方无限延伸,而线段不延伸.也考查了作一条线段等于已知线段的尺规作图.5、 (1)①见解析;②80︒ (2)23MON AOB ∠=∠,见解析 【解析】【分析】(1)①根据∠AOB =120°,OC 平分∠AOB ,先求出∠BOC =∠AOC =60︒, 在根据OM 是∠AOC 靠近OA 的三等分线,求出∠AOM =20︒,根据ON 是∠BOC 靠近OB 的三等分线,∠BON =20︒,然后在∠AOB 内部,先画∠AOC =60°,在∠AOC 内部,画∠AOM =20°,在∠BOC 内部,画∠BON 即可;②根据∠AOM =20︒,∠BON =20︒,∠AOB =120°,可求∠MON =∠AOB -∠AOM -∠BON =120°-20°-20°=80°即可;(2)根据OM 是∠AOC 靠近OA 的三等分线, ON 是∠BOC 靠近OB 的三等分线.可求∠AOM =13AOC ∠,∠BON=13BOC ∠,可得()MON AOB AOM BON ∠=∠-∠+∠ 23AOB =∠. (1)①∵∠AOB =120°,OC 平分∠AOB ,∴∠BOC =∠AOC =6201AOB ∠=︒, ∵OM 是∠AOC 靠近OA 的三等分线,∴∠AOM =11602033AOC ∠=⨯︒=︒,∵ON 是∠BOC 靠近OB 的三等分线,∴∠BON =11602033BOC ∠=⨯︒=︒, 在∠AOB 内部,先画∠AOC =60°,在∠AOC 内部,画∠AOM =20°,在∠BOC 内部,画∠BON , 补全图形;②∵∠AOM =20︒,∠BON =20︒,∠AOB =120°,∴∠MON =∠AOB -∠AOM -∠BON =120°-20°-20°=80°,∴∠MON 的度数是80°,故答案为:80°(2)∠MON =23∠AOB .∵OM 是∠AOC 靠近OA 的三等分线, ON 是∠BOC 靠近OB 的三等分线.∴∠AOM =13AOC ∠,∠BON=13BOC ∠, ∴()MON AOB AOM BON ∠=∠-∠+∠ ,1()3AOB AOC BOC =∠-∠+∠, 13AOB AOB =∠-∠, 23AOB =∠.【点睛】本题考查画图,角平分线定义,等分角,掌握角平分线定义,等分角,根据角的度数画角是解题关键.。
2020-2021学年鲁教版(五四制)六年级下册数学 基本的平面图形 单元评价检测
鲁教版六年级下册数学《基本的平面图形》单元评价检测(45分钟 100分)一、选择题(每小题4分,共28分) 1.如图所示,以O 点为端点的射线有 ( )A.3条B.4条C.5条D.6条2.如图,从A 到B 最短的路线是( )A.A-G-E-BB.A-C-E-BC.A-D-G-E-BD.A-F-E-B3.下面四个等式:①CE=DE ②DE=12CD ③CD=2CE ④CE=DE=12DC,其中能表示点E 是线段CD 的中点的有( ) A.1个B.2个C.3个D.4个4.平面内有两两相交的4条直线,如果最多有m 个交点,最少有n 个交点,那么m-n= ( ) A.3B.4C.5D.65.观察图形,下列说法正确的个数是( ) (1)直线BA 和直线AB 是同一条直线 (2)射线AC 和射线AD 是同一条射线 (3)AB+BD>AD(4)三条直线两两相交时,一定有三个交点.A.1个B.2个C.3个D.4个6.下列说法中正确的是 ( )A.8时45分,时针与分针的夹角是30°B.6时30分,时针与分针重合C.3时30分,时针与分针的夹角是90°D.3时整,时针与分针的夹角是90°7.把圆的半径缩小到原来的14,那么圆的面积缩小到原来的( )A.12B.14C.18D.116二、填空题(每小题5分,共25分)8.55.66°=__ __度____分__ _秒;43°32′24″=__ __度.9.如图,OM平分∠AOB,ON平分∠COD.若∠MON=50°,∠BOC=10°,则∠AOD=__ __度.10.如图,线段AB=BC=CD=DE=1 cm,那么图中所有线段的长度之和等于____cm.11.如图,两条相等线段AB与CD有13重合,M,N分别为AB,CD的中点,且MN=12,则AB的长为__ __.12.如图,点O是直线AD上一点,射线OC,OE分别是∠AOB,∠BOD的平分线,若∠AOC=28°,则∠COD=____,∠BOE=____.三、解答题(共47分)13.(10分)按要求作图:如图,在同一平面内有四个点A,B,C,D.①画射线CD;②画直线AD;③连结AB;④直线BD与直线AC相交于点O.14.(12分)小红从生日蛋糕上切下来的“楔形”蛋糕,扇形圆心角为120°,数据如图所示.(1)计算扇形OAD的面积.(2)求这块“楔形”蛋糕的体积.15.(12分)如图,已知点C为AB上一点,AC=18 cm,CB=2AC,D,E分别为AC,AB的3中点,求DE的长.16.(13分)已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小.(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?鲁教版六年级下册数学《基本的平面图形》单元评价检测(解析版)(45分钟 100分)一、选择题(每小题4分,共28分)1.如图所示,以O 点为端点的射线有 ( B )A.3条B.4条C.5条D.6条2.如图,从A 到B 最短的路线是( D )A.A-G-E-BB.A-C-E-BC.A-D-G-E-BD.A-F-E-B3.下面四个等式:①CE=DE ②DE=12CD ③CD=2CE ④CE=DE=12DC,其中能表示点E 是线段CD 的中点的有( A ) A.1个B.2个C.3个D.4个4.平面内有两两相交的4条直线,如果最多有m 个交点,最少有n 个交点,那么m-n= ( C ) A.3B.4C.5D.65.观察图形,下列说法正确的个数是( C ) (1)直线BA 和直线AB 是同一条直线 (2)射线AC 和射线AD 是同一条射线 (3)AB+BD>AD(4)三条直线两两相交时,一定有三个交点.A.1个B.2个C.3个D.4个6.下列说法中正确的是 ( D)A.8时45分,时针与分针的夹角是30°B.6时30分,时针与分针重合C.3时30分,时针与分针的夹角是90°D.3时整,时针与分针的夹角是90°7.把圆的半径缩小到原来的14,那么圆的面积缩小到原来的( D)A.12B.14C.18D.116二、填空题(每小题5分,共25分)8.55.66°=__55__度__39__分__36__秒;43°32′24″=__43.54__度.9.如图,OM平分∠AOB,ON平分∠COD.若∠MON=50°,∠BOC=10°,则∠AOD= __90__度.10.如图,线段AB=BC=CD=DE=1 cm,那么图中所有线段的长度之和等于__20__cm.11.如图,两条相等线段AB与CD有1重合,M,N分别为AB,CD的中点,且MN=12,则3AB的长为__18__.12.如图,点O是直线AD上一点,射线OC,OE分别是∠AOB,∠BOD的平分线,若∠AOC=28°,则∠COD=__152°__,∠BOE=__62°__.三、解答题(共47分)13.(10分)按要求作图:如图,在同一平面内有四个点A,B,C,D.①画射线CD;②画直线AD;③连结AB;④直线BD与直线AC相交于点O.解:作图如图所示.14.(12分)小红从生日蛋糕上切下来的“楔形”蛋糕,扇形圆心角为120°,数据如图所示.(1)计算扇形OAD的面积.(2)求这块“楔形”蛋糕的体积.解:(1)S=120π×122360=48π(cm 2).(2)因为扇形圆心角为120°, 所以V 楔形=13V 圆柱=13×πr 2h =13×144×10π=480π(cm 3).15.(12分)如图,已知点C 为AB 上一点,AC=18 cm,CB=23AC,D,E 分别为AC,AB 的中点,求DE 的长.解:由AC=18 cm,CB=23AC,得BC=23×18=12(cm).由线段的和差,得AB=AC+BC=30 cm. 由D,E 分别为AC,AB 的中点, 得AD=12AC=9 cm,AE=12AB=15 cm. 由线段的和差,得DE=AE-AD=15-9=6(cm), 即DE 的长是6 cm.16.(13分)已知:如图,∠AOB 是直角,∠AOC=40°,ON 是∠AOC 的平分线,OM 是 ∠BOC 的平分线. (1)求∠MON 的大小.(2)当锐角∠AOC 的大小发生改变时,∠MON 的大小是否发生改变?为什么?解:(1)∵∠AOB 是直角,∠AOC=40°, ∴∠BOC=∠AOB+∠AOC=90°+40°=130°, ∵OM 是∠BOC 的平分线,ON 是∠AOC 的平分线, ∴∠MOC=12∠BOC=65°, ∠NOC=12∠AOC=20°.∴∠MON=∠MOC-∠NOC=65°-20°=45°,(2)当锐角∠AOC 的大小发生改变时,∠MON 的大小不发生改变. ∵∠MON=∠MOC-∠NOC =12∠BOC-12∠AOC=12∠AOB, 又∠AOB 是直角,不改变, ∴∠MON=12∠AOB=45°.。
鲁教版(五四制)六年级数学下册第五章基本平面图形单元测试题
鲁教版六年级数学下册第五章基本平面图形单元测试题一、选择题1.已知如图,则下列叙述不正确的是()A. 点O不在直线AC上B. 射线AB与射线BC是指同一条射线C. 图中共有5条线段D. 直线AB与直线CA是指同一条直线2.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,这一实际问题应用的数学知识是()A. 两点确定一条直线B. 两点之间线段最短C. 垂线段最短D. 在同一平面内,过一点有且只有一条直线与已知直线垂直3.已知线段AB=10cm,点C在直线AB上,且AC=2cm,则线段BC的长为()A. 12cmB. 8 cmC. 12 cm或8 cmD. 以上均不对4.如图,点A、B、C顺次在直线上,点M是线段AC的中点,点N是线段BC的中点,已知AB=16cm,MN=()A. 6cmB. 8cmC. 9cmD. 10cm5.如图,C,D是线段AB上两点,M,N分别是线段AD,BC的中点,下列结论: ①若AD=BM,则AB=3BD; ②若AC=BD,则AM=BN; ③AC−BD=2(MC−DN); ④2MN=AB−CD.其中正确的结论是()A. ① ② ③B. ③ ④C. ① ② ④D. ① ② ③ ④6.下列说法正确的个数是()(1)连接两点之间的线段叫两点间的距离;(2)两点之间,线段最短;(3)若AB=2CB,则点C是AB的中点;(4)角的大小与角的两边的长短有关.A. 1个B. 2个C. 3个D. 4个7.下列四个图形中,能用∠1,∠AOB,∠O三种方法表示同一个角的是()A. B.C. D.8.如图所示,射线OB,OC将∠AOD分成三部分,下列判断中错误的是().A. 如果∠AOB=∠COD,那么∠AOC=∠BODB. 如果∠AOB>∠COD,那么∠AOC>∠BODC. 如果∠AOB<∠COD,那么∠AOC<∠BODD. 如果∠AOB=∠BOC,那么∠AOC=∠BOD9.如图,若∠BOD=2∠AOB,OC是∠AOD的平分线,则①∠BOC=13∠AOB ;②∠DOC=2∠BOC;③∠COB=12∠AOB;④∠COD=3∠BOC.正确的是()A. ①②B. ③④C. ②③D. ①④10.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是()A. 67°64′B. 57°64′C. 67°24′D. 68°24′11.从八边形的一个顶点出发,可以画出m条对角线,它们将八边形分成n个三角形,则m,n的值分别为()A. 6,5B. 5,6C. 6,6D. 5,512.已知一个多边形的对角线条数正好等于它的边数的2倍,则这个多边形的边数是()A. 6B. 7C. 8D. 10二、填空题13.小刚同学要在墙上钉牢一根木条至少需要______ 根铁钉,其数学道理是______ .第1页,共9页14.已知点A、B、C在同一直线上,AB=12cm,BC=13AC.若点P为AB的中点,点Q为BC的中点,则PQ=______ cm.15.如图,两根木条的长度分别为6cm和10cm,在它们的中点处各打一个小孔M、N(小孔大小忽略不计).将这两根木条的一端重合并放置在同一条直线上,则两小孔间的距离MN=______cm.16.如图,OC为∠AOB内部的一条射线,若∠AOB=100°,∠1=26°48′,则∠2=______.17.如图,∠AOB=150°,∠COD=40°,OE平分∠AOC,则2∠BOE−∠BOD= ______ °.18.过某多边形的一个顶点的所有对角线将这个多边形分成6个三角形,这个多边形是______ 边形.三、解答题19.计算:(1)48°39′+67°31′−21°17′×5;(2)90°−51°37′11″.20.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中有多少个小于平角的角;(2)求出∠BOD的度数;(3)请通过计算说明OE是否平分∠BOC.21.已知:如图,OC是∠AOB的角平分线.(1)当∠AOB=60°时,求∠AOC的度数;(2)在(1)的条件下,过点O作OE⊥OC,求∠AOE的度数;(3)当∠AOB=α时,过点O作OE⊥OC,直接写出∠AOE的度数.(用含α的式子表示)22.(1)如图(1)所示是四边形,小明作出它对角线为2条,算法为4×(4−3)2=2.(2)如图(2)是五边形,小明作出它的对角线有5条,算法为5×(5−3)2=5.(3)如图(3)是六边形,可以作出它的对角线有______ 条,算法为______ .(4)猜想边数为n的多边形对角线条数的算法及条数.23.如图,线段AB=20,BC=15,点M是AC的中点.(1)求线段AM的长度;(2)在CB上取一点N,使得CN:NB=2:3.求MN的长.第3页,共9页答案和解析1.【答案】B【解析】【分析】此题主要考查了直线、射线、线段,以及点与直线的位置关系,关键是掌握三线的表示方法.根据直线、射线、线段的表示方法,以及线段的概念分别判断各选项即可.【解答】解:A.点O不在直线AC上,故A说法正确,不符合题意;B.射线AB与射线BC,端点不同,不是指同一条射线,故B错误,符合题意;C.图中有线段AB、AC、BC、OB、OC,共5条,故C说法正确,不符合题意;D.直线AB与直线CA是指同一条直线,故D正确,不符合题意.故选B.2.【答案】A【解析】【分析】本题考查了直线的性质,解题关键是zw掌握直线的性质:两点确定一条直线.解题时,由题意“经过刨平的木板上的两个点,能且只能弹出一条笔直的墨线”可知这一实际问题应用的数学知识是:两点确定一条直线.【解答】解:由题意“经过刨平的木板上的两个点,能且只能弹出一条笔直的墨线”可知这一实际问题应用的数学知识是:两点确定一条直线.故选A.3.【答案】C【解析】【分析】此题主要考查了两点间的距离的含义和求法,要熟练掌握,注意分两种情况讨论.根据题意,分两种情况讨论:(1)点C在A、B中间时;(2)点C在点A的左边时;求出线段BC的长为多少即可.【解答】解:(1)点C在A、B中间时,BC=AB−AC=10−2=8(cm).(2)点C在点A的左边时,BC=AB+AC=10+2=12(cm).∴线段BC的长为12cm或8cm.故选:C.4.【答案】B【解析】【试题解析】【分析】本题主要考查了线段的中点、线段的和差等知识点,注意理解线段的中点的概念,利用线段中点的定义转化线段之间的倍分关系是解题的关键.根据点M是线段AC的中点,点N是线段BC的中点,得出MC=12AC,NC=12BC,利用MN=MC−NC=12AB,继而可得出答案.【解答】解:∵点M是线段AC的中点,点N是线段BC的中点,∴MC=12AC,NC=12BC,∴MN=MC−NC=12AC−12BC=12(AC−BC)=12AB,∵AB=16cm,∴MN=8cm.故选B.5.【答案】D【解析】【分析】本题主要考查了两点间的距离的求法,解题时利用了线段的和差,线段中点的性质,解决此类问题的关键是找出各个线段间的关系.根据中点的概念与线段之间的和差关系判断即可.【解答】解: ①若AD=BM,则AM=BD.由M是AD的中点,得AM=MD,则AM=MD=BD,故AB=3BD; ②若AC=BD,则AD=BC.由M,N分别是AD,BC的中点,可得AM=12AD,BN=12BC,故A M=BN; ③因为AC=AM+MC=DM+MC,BD=BN+DN=CN+DN,所以AC−BD=DM−CN+MC−DN.又因为DM−CN=MC−DN,故AC−BD=2(MC−DN); ④因为MN=MD+CN−CD=12AD+12BC−CD=12(AD+BC)−CD=12(AB+CD)−CD=12(AB−CD),故2MN=AB−CD.故选D.6.【答案】A【解析】解:(1)连接两点之间线段的长度叫做两点间的距离,因此(1)不符合题意;(2)两点之间,线段最短是正确的,因此(2)符合题意;(3)若AB=2CB,当点C在AB上时,点C是AB的中点,当点C在AB的延长线上时,点C就不是AB的中点,因此(3)不符合题意;(4)角的大小与角的两边的长短无关,只与两边叉开的程度有关,因此(4)不符合题意;因此正确的是(2),故选:A.根据两点间的距离,线段性质,线段中点以及角的大小逐项进行判断即可.本题考查两点间的距离,线段性质,线段中点以及角的大小等知识,理解各个概念的内涵是正确判断的前提.7.【答案】C 【解析】解:能用∠1、∠AOB、∠O三种方法表示同一个角的图形是C选项中的图,A,B,D选项中的图都不能同时用∠1、∠AOB、∠O三种方法表示同一个角,故选:C.根据角的三种表示方法,可得正确答案.本题考查了角的概念,熟记角的表示方法是解题关键.在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角.8.【答案】D【解析】【分析】本题主要考查了角的大小比较,解题的关键是正确找出各角的关系式.利用图中角与角的关系,即可判断各选项.【解答】解:A、如果∠AOB=∠COD,那么∠AOC=∠BOD,本选项正确;B、如果∠AOB>∠COD,那么∠AOC>∠BOD,本选项正确;C、如果∠AOB<∠COD,那么∠AOC<∠BOD,本选项正确;D、如果∠AOB=∠BOC,那么∠AOC和∠BOD不一定相等,本选项错误.故选D.9.【答案】B【解析】解:设∠AOB=α,∵∠BOD=2∠AOB,OC是∠AOD的平分线,∴∠BOD=2α,∠AOC=∠COD=32α,∴∠COB=∠AOC−∠AOB=12∠AOB,故③正确,①错误;∴∠COD=3∠BOC,故④正确,②错误.故选B.设∠AOB=α,由∠BOD=2∠AOB,OC是∠AOD的平分线,可得∠BOD=2α,∠AOC=∠COD=32α,故能判断出选项中各角大小关系.本题主要考查角的比较与运算这一知识点,比较简单.第5页,共9页10.【答案】C【解析】解:∵OC平分∠DOB,∴∠DOC=∠BOC=22°36′.∵∠AOC=∠AOB+∠BOC=90°,∴∠AOB=∠AOC−∠BOC=90°−22°36′=67°24′.故选:C.先利用角平分线的性质求出∠DOC的度数,再利用角的和差及互余关系求出∠BOA度数.本题考查了角平分线的性质、两角互余等知识点,掌握角的和差关系是解决本题的关键.11.【答案】B【解析】【分析】本题考查多边形的对角线及分割成三角形个数的问题,解答此类题目可以直接记忆:一个n边形一个顶点出发,可以连的对角线的条数是n−3,分成的三角形数是n−2.根据从一个n边形一个顶点出发,可以连的对角线的条数是n−3,分成的三角形数是n−2解答即可.【解答】解:对角线的数量m=8−3=5条;分成的三角形的数量为n=8−2=6个.故选:B.12.【答案】B【解析】【分析】本题主要考查了多边形的对角线的条数与多边形的边数之间的关系.n边形的对角线有12n⋅(n−3)条,根据对角线条数是它边数的2倍列方程即可求得多边形的边数.【解答】解:设这个多边形的边数是n⋅根据题意得:12n⋅(n−3)=2n,解得:n=7.则多边形的边数是7.故选B.13.【答案】2 两点确定一条直线【解析】解:根据直线的公理;故应填2,两点确定一条直线.根据直线的确定方法,易得答案.本题考查直线的确定:两点确定一条直线.14.【答案】4.5或9【解析】解:(1)点C在线段AB上,如图1:∵AB=AC+BC,BC=13AC,∴AB=3BC+BC=4BC又∵AB=12cm,∴BC=3cm,∵点P是线段AB的中点,点Q是线段BC的中点,∴PB=12AB=6cm,QB=12CB=1.5cm,∴PQ=BP−BQ=6−1.5=4.5cm;(2)点C在线段AB的延长线上,如:∵AB=AC−BC,BC=13AC,∴AB=3BC−BC=2BC又∵AB=12cm,∴BC=6cm,∵点P是线段AB的中点,点Q是线段BC的中点,∴PB=12AB=6cm,QB=12CB=3cm,∴PQ=BP+BQ=6+3=9cm;故答案为:4.5或9.分类讨论点C在AB上,点C在AB的延长线上,根据线段的中点的性质,可得BP、BQ的长,根据线段的和差,可得答案.本题考查了两点间的距离,线段中点的性质,线段的和差,分类讨论是解题关键.15.【答案】8或2【解析】解:有两种情形:(1)当A、C(或B、D)重合,且剩余两端点在重合点同侧时,MN=CN−AM=12CD−12AB=5−3=2(厘米);(2)当B、C(或A、C)重合,且剩余两端点在重合点两侧时,MN=CN+BM=12CD+12AB=5+3=8(厘米);故两根木条的小圆孔之间的距离MN是2cm或8cm,故答案为:2或8.本题没有给出图形,在画图时,应考虑到A、B、M、N四点之间的位置关系的多种可能,再根据题意正确地画出图形解题.此题考查两点之间的距离问题,在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.16.【答案】73°12′【解析】解:∵∠AOB=100°,∠1=26°48′,∴∠2=100°−26°48′=73°12′.故答案为:73°12′根据角的计算解答即可.此题考查角的计算,关键是根据度分秒的计算解答.17.【答案】110 【解析】解:设∠EOD=x°,∠BOC=y°,则∠EOC=∠EOD+∠COD=x°+40°.∵OE平分∠AOC,∴∠AOE=∠EOC=x°+40°.∵∠AOB=150°,∴∠AOE+∠COE+∠BOC=150°.即2(x°+40°)+y°=150°.∴2x°+y°=70°.∵2∠BOE−∠BOD=2(x°+40°+y°)−(y°+40°)=2x°+80°+2y°−y°−40°=2x°+y°+40°,∴2∠BOE−∠BOD=70°+40°=110°.故答案为110.设∠EOD=x°,∠BOC=y°,用x,y表示2∠BOE−∠BOD,利用已知条件得出x,y的关系式,然后整体代入可得结论.本题主要考查了角平分线的定义的应用以及角的计算,本题的关键在于借助中间量,利用整体代入进行计算.18.【答案】八【解析】【分析】本题考查了多边形对角线,n边形过一个顶点的所有对角线公式是(n−2)条.根据n边形对角线公式,可得答案.【解答】解:设多边形是n边形,由对角线公式,得n−2=6.解得n=8,故答案为八.19.【答案】解:(1)原式=48°39′+67°31′−106°25′=9°45′;(2)原式=89°59′60″−51°37′11″=38°22′49″.【解析】(1)首先计算乘法,然后计算加减即可;(2)首先把90°化为89°59′60″,然后再利用度减度、分减分、秒减秒进行计算即可.第7页,共9页此题主要考查了度分秒的换算,关键是掌握1°=60′,1′=60″.20.【答案】解:(1)题图中小于平角的角有∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB,共9个;(2)∵∠AOC=50°,OD平分∠AOC,∴∠AOD=12∠AOC=25∘,∴∠BOD=180°−∠AOD=155°;(3)∵∠DOE=90°,∠DOC=12∠AOC=25∘,∴∠COE=∠DOE−∠DOC=90°−25°=65°.又∵∠BOE=∠BOD−∠DOE=155°−90°=65°,∴∠COE=∠BOE,即OE平分∠BOC.【解析】本题考查了有关角的概念,角的平分线,角的计算.正确的理解角的定义,角的平分线的定义是解决问题的关键.(1)数角的方法(" id="MathJax-Element-3441-Frame" role="presentation" style="box-sizing: content-box; - webkit-tap-highlight-color: rgba(0, 0, 0, 0); margin: 0 px; padding: 5 px 2px; display: inline-block; ; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0 px; min-height: 0 px; border: 0 px; position: relative;" tabindex="0">((从一边数,再按一个方向数)" id="MathJax-Element-3442-Frame"role="presentation" style="box-sizing: content-box; -webkit-tap-highlight-color: rgba(0, 0, 0, 0); margin: 0 px; padding: 5 px 2px; display: inline-block; ; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0 px;min-height: 0 px; border: 0 px; position: relative;" tabindex="0">)),这样才能做到不重不漏;(2)先求出∠AOD的度数,因为∠AOB是平角,∠BOD=∠AOB−∠AOD;(3)分别求出∠COE和∠EOB的度数即可.21.【答案】解:(1)∵OC是∠AOB的平分线(已知),∴∠AOC=12∠AOB,∵∠AOB=60°,∴∠AOC=30°.(2)∵OE⊥OC,∴∠EOC=90°,如图1,∠AOE=∠COE+∠COA=90°+30°=120°.如图2,∠AOE=∠COE−∠COA=90°−30°=60°.(3)∠AOE=90°+12α或∠AOE=90°−12α.【解析】(1)直接由角平分线的意义得出答案即可;(2)分两种情况:OE在OC的上面,OE在OC的下面,利用角的和与差求得答案即可;(3)类比(2)中的答案得出结论即可.此题考查了角的计算,以及角平分线定义,分类考虑,类比推理是解决问题的关键.22.【答案】9;6×(6−3)2第9页,共9页【解析】解:(3)六边形,可以作出它的对角线有9条,算法:6×(6−3)2=9;故答案为:9;6×(6−3)2=9;(4)n 的多边形对角线条数的算法及条数n(n−3)2.根据(1)(2)所给算法计算即可.此题主要考查了对角线,关键是掌握对角线的计算方法. 23.【答案】解:(1)线段AB =20,BC =15, ∴AC =AB -BC =20-15=5. 又∵点M 是AC 的中点.∴AM =12AC =12×5=52,即线段AM 的长度是52.(2)∵BC =15,CN :NB =2:3, ∴CN =25BC =25×15=6.又∵点M 是AC 的中点,AC =5, ∴MC =12AC =52,∴MN =MC +NC =172,即MN 的长度是172.【解析】【试题解析】(1)根据题意知AM =12AC ,AC =AB -BC ;(2)根据已知条件求得CN =6,然后根据图示知MN =MC +NC .本题考查了两点间的距离,利用了线段的和差,线段中点的性质.。
2022年精品解析鲁教版(五四制)六年级数学下册第五章基本平面图形章节训练试题(含答案解析)
六年级数学下册第五章基本平面图形章节训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知点C 、D 在线段AB 上,且AC :CD :DB =2:3:4,如果AB =18,那么线段AD 的长是( )A .4B .5C .10D .142、在一幅七巧板中,有我们学过的( )A .8个锐角,6个直角,2个钝角B .12个锐角,9个直角,2个钝角C .8个锐角,10个直角,2个钝角D .6个锐角,8个直角,2个钝角3、钟表上1时30分时,时针与分针所成的角是( )A .150︒B .120︒C .135︒D .以上答案都不对4、钟表10点30分时,时针与分针所成的角是( )A .120︒B .135︒C .150︒D .225︒5、如图所示,B 、C 是线段AB 上任意两点,M 是AB 的中点,N 是CD 的中点,若12MN =,4BC =,则线段AD 的长是( )A.15 B.17 C.19 D.206、①直线AB和直线BA是同一条直线;②平角等于180°;③一个角是70°39',它的补角是19°21';④两点之间线段最短;以上说法正确的有()A.②③④B.①②④C.③④D.①7、如图,O是直线AB上一点,则图中互为补角的角共有()A.1对B.2对C.3对D.4对8、如图所示,由A到B有①、②、③三条路线,最短的路线选①的理由是()A.两点确定一条直线B.经过一点有无数条直线C.两点之间,线段最短D.一条线段等于已知线段9、如图,线段21cmAD=,点B在线段AD上,C为BD的中点,且13AB CD=,则BC的长度()A.6cm B.7cm C.8cm D.9cm10、如图,点C是线段AB的中点,点D是线段AC的中点,若AB=8,则CD的长为()A.2 B.4 C.6 D.8第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、钟面上4时30分,时针与分针的夹角是______度,15分钟后时针与分针的夹角是_____度.2、如图,已知点O 在直线AB 上,OC ⊥OD ,∠BOD :∠AOC =3:2,那么∠BOD =___度.3、如图,将一块直角三角板的直角顶点放在直尺的一边上,如果26448'∠=︒,那么1∠=______.4、已知点C 是线段AB 的三等分点,点D 是线段AC 的中点.若线段2AD =,则AB =______.5、如图,在灯塔O 处观测到轮船A 位于北偏西53°的方向,同时轮船B 在南偏东17°的方向,那么AOB ∠=______°.三、解答题(5小题,每小题10分,共计50分)1、数轴上不重合两点A,B.(1)若点A表示的数为﹣3,点B表示的数为1,点M为线段AB的中点,则点M表示的数为;(2)若点A表示的数为﹣3,线段AB中点N表示的数为1,则点B表示的数为;(3)点O为数轴原点,点D表示的数分别是﹣1,点A从﹣5出发,以每秒1个单位长度的速度向正半轴方向移动,点C从﹣3同时出发,以每秒3个单位长度的速度向正半轴方向移动,点B为线段CD 上一点.设移动的时间为t(t>0)秒,①用含t的式子填空:点A表示的数为;点C表示的数为;②当点O是线段AB的中点时,直接写出t的取值范围.2、已知线段a、b(如图),用直尺和圆规在方框内按以下步骤作图:(保留作图痕迹,不要求写出作法和结论)①画射线OP;②在射线OP上顺次截取OA=a,AB=a;③在线段OB上截取BC=b;④作出线段OC的中点D.(1)根据以上作图可知线段OC=;(用含有a、b的式子表示)(2)如果OD=2厘米,CD=2AC,那么线段BC=厘米.∠.3、如图,O是直线AB上一点,COD∠是直角,OE平分BOC(1)若30BOD ∠=︒,则COE ∠=__________;(2)若AOC α∠=,求DOE ∠=__________(用含α的式子表示);(3)在AOC ∠的内部有一条射线OF ,满足1()23AOC AOF AOF BOE ∠-∠=∠+∠,试确定AOF ∠与DOE ∠的度数之间的关系,并说明理由. 4、如图①.直线DE 上有一点O , 过点O 在直线DE 上方作射线OC , 将一直角三角板AOB (其中45OAB ∠=)的直角顶点放在点O 处, 一条直角边OB 在射线 OE 上, 另一边OA 在直线DE 的上方,将直角三角形绕着点O 按每秒15的速度顺时针旋转一周,设旋转时间为t 秒.(1)当直角三角板旋转到图②的伩置时, 射线OB 恰好平分COE ∠, 此时, AOC ∠与AOD ∠ 之间的数量关系为____________.(2)若射线OC 的位置保持不变, 且120COD ∠=,①在旋转过程中,是否存在某个时刻,使得射线OB , 射线OC , 射线OE 中的某一条射线是另外两条射线所夹锐角的角平分线? 若存在,请求出t 的值; 若不存在, 请说明理由;②在旋转过程中, 当边AB 与射线OD 相交时, 如图③, 请直接写出BOC AOD ∠∠-的值____________.5、已知∠AOB 是直角,∠AOC 是锐角,OC 在∠AOB 的内部,OD 平分∠AOC ,OE 平分∠BOC .(1)根据题意画出图形;(2)求出∠DOE的度数;(3)若将条件“∠AOB是直角”改为“∠AOB为锐角,且∠AOB=n°”,其它条件不变,请直接写出∠DOE的度数.-参考答案-一、单选题1、C【解析】【分析】设AC=2x,CD=3x,DB=4x,根据题意列方程即可得到结论.【详解】∵AC:CD:DB=2:3:4,∴设AC=2x,CD=3x,DB=4x,∴AB=9x,∵AB=18,∴x=2,∴AD=2x+3x=5x=10,故选:C.【点睛】本题考查了两点间的距离,线段的中点的定义,正确的理解题意是解题的关键.2、B【分析】根据一副七巧板图形,查出锐角,直角和钝角的个数即可.【详解】5个等腰直角三角形,5个直角,10个锐角,1个正方形,4个直角,1个平行四边形,2个钝角,2个锐角,在一幅七巧板中根据12个锐角,9个直角,2个钝角.故选择B.【点睛】本题考查角的分类,平面图形,掌握角的分类,平面图形是解题关键.3、C【解析】【分析】钟表上12个大格把一个周角12等分,每个大格30°,1点30分时针与分针之间共4.5个大格,故时针与分针所成的角是4.5×30°=135°.【详解】解:∵1点30分,时针指向1和2的中间,分针指向6,中间相差4格半,钟表12个数字,每相邻两个数字之间的夹角为30°,∴1点30分分针与时针的夹角是4.5×30°=135°.故选:C.本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动(112)°,并且利用起点时间时针和分针的位置关系建立角的图形.4、B【解析】【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:10点30分时的时针和分针相距的份数是4.5,10点30分时的时针和分针所成的角的度数为30°×4.5=135°,故选:B.【点睛】本题考查的知识点是钟面角,解题关键是求出时针和分针之间的格子数,再根据每个格子对应的圆心角的度数,列式解答.5、D【解析】【分析】由M是AB的中点,N是CD的中点,可得11412,22AB CD先求解,AB CD从而可得答案.【详解】解:M是AB的中点,N是CD的中点,11,,22BM AB CN CD12,4,MN BM BC CN BC11AB CD412,22AB CD16,AD AB BC CD16420,故选D【点睛】本题考查的是线段的中点的含义,线段的和差运算,熟练的利用线段的和差关系建立简单方程是解本题的关键.6、B【解析】【分析】根据直线的表示方法,平角,补角,线段的性质逐个判断即可.【详解】①直线AB和直线BA是同一条直线,正确②平角等于180°,正确︒-︒=︒,所以错误③一个角是70°39',它的补角应为:1807039'10921'④两点之间线段最短,正确故选B【点睛】本题考查直线的表示方法,平角,补角,线段的性质等知识点,熟练掌握以上知识点是解题的关键.7、B【解析】【分析】根据补角定义解答.【详解】解:互为补角的角有:∠AOC 与∠BOC ,∠AOD 与∠BO D ,共2对,故选:B .【点睛】此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键.8、C【解析】【分析】根据线段的性质进行解答即可.【详解】解:最短的路线选①的理由是两点之间,线段最短,故选:C .【点睛】本题主要考查了线段的性质,解题的关键是掌握两点之间,线段最短.9、D【解析】【分析】设AB x =cm ,则3BC CD x ==cm ,根据题意列出方程求解即可.【详解】解:设AB x =,则3CD x =,∵C 为BD 的中点,∴3BC CD x ==,∴3321x x x ++=,解得3x =,339BC =⨯=cm ,故选:D .【点睛】本题考查了线段的和差和线段的中点,解一元一次方程,解题关键是明确相关定义,设未知数列出方程求解.10、A【解析】【分析】根据线段中点的定义计算即可.【详解】解:∵点C 是线段AB 的中点,∴AC =118422AB , 又∵点D 是线段AC 的中点,∴CD =114222AC =⨯=, 故选:A .【点睛】本题考查了线段中点的定义,掌握线段中点的定义是关键.二、填空题1、 45° 127.5°【分析】根据时钟上一大格是30°,时针每分钟转0.5°进行计算即可.【详解】解:根据题意:钟面上4时30分,时针与分针的夹角是3030304560︒+⨯︒=︒ ; 15分钟后时针与分针的夹角是()53030150.515022.5127.5⨯︒-+⨯︒=︒-︒=︒ .故答案为:45°,127.5°【点睛】本题考查了钟面角,熟练掌握时钟上一大格是30°,时针每分钟转0.5°是解题的关键. 2、54【解析】【分析】根据平角等于180°得到等式为:∠AOC +∠COD +∠DOB =180°,再由∠COD =90°,∠BOD :∠AOC =3:2即可求解.【详解】解:∵OC ⊥OD ,∴∠COD =90°,设∠BOD =3x ,则∠AOC =2x ,由题意知:2x +90°+3x =180°,解得:x =18°,∴∠BOD =3x =54°,故答案为:54°.本题考查了平角的定义,属于基础题,计算过程中细心即可.3、2512'︒##25.2°【解析】【分析】160'︒=,由1902∠=︒-∠可以求出1∠的值.【详解】解:1902∠=︒-∠1906448896064482512''''∴∠=︒-︒=︒-︒=︒12251225()25.260'︒=︒+︒=︒ 故答案为:2512'︒(或25.2).【点睛】本题考察了角度的转化.解题的关键在于明确160'︒=.4、12或6##6或12【解析】【分析】根据点C 是线段AB 上的三等分点,分两种情况画图进行计算即可.【详解】解:如图,∵点C 是线段AB 上的三等分点,∵D是线段AC的中点,∴AC=2AD=4,∴AB=3×4=12;如图,∵D是线段AC的中点,∴AC=2AD=4,∵点C是线段AB上的三等分点,AC=2,AB=3BC,∴BC=12∴AB=3AC=6,则AB的长为12或6.故答案为:12或6.【点睛】本题考查了两点间的距离,解决本题的关键是分两种情况画图计算.5、144【解析】【分析】先根据题意可得∠AOD=90°-53°=37°,再根据题意可得∠EOB=17°,然后再根据角的和差关系可得答案.【详解】解:如图,∵在灯塔O 处观测到轮船A 位于北偏西53°的方向,∴∠AOC =53°,∴∠AOD =90°-53°=37°,∵轮船B 在南偏东17°的方向,∴∠EOB =17°,∴∠AOB =37°+90°+17°=144°,故答案为:144.【点睛】此题主要考查了方向角,关键是掌握方位角以正南或正北方向作方位角的始边,另一边则表示对象所处的方向的射线.三、解答题1、 (1)1-(2)5(3)①5t -,33t -;②26t ≤≤且5t ≠【解析】【分析】(1)先根据两点距离公式求出AB=1-(-3)=1+3=4,根据点M为AB中点,求出AM,然后利用点A表示的数与AM长求出点M表示的数即可;(2)根据点A表示的数为﹣3,线段AB中点N表示的数为1,求出AN=1-(-3)=1+3=4,根据点N为AB中点,可求AB=2AN=2×4=8,然后利用点A表示的数与AB的长求出点B表示的数即可;(3)①用点A运动的速度×运动时间+起点表示数得出点A表示的数为5t-,用点C运动的速度×运动时间+起点表示数得出点C表示的数为33t-;②点A与点B关于点O,点A从-5出发,点B此时对应的数为5,当点B与点C相遇时满足条件,列方程-3+3t+t=5-(-3)得出点B在CD上t=2,当点A与点B相遇时点A在点O处,三点A、O、B重合,此时没有中点,t≠5,当点B与点D重合时,点A运动到1,列方程-5+t=1解方程即可.(1)解:∵点A表示的数为﹣3,点B表示的数为1,∴AB=1-(-3)=1+3=4,∵点M为AB中点,∴AM=BM 1142 22AB=⨯=,∴点M表示的数为:-3+2=-1,故答案为:-1;(2)解:∵点A表示的数为﹣3,线段AB中点N表示的数为1,∴AN=1-(-3)=1+3=4,∵点N为AB中点,∴AB=2AN=2×4=8,∴点B表示的数为:-3+8=5,故答案为:5;(3)①点A 表示的数为5t -,点C 表示的数为33t -,故答案为:5t -;33t -;②点A 与点B 关于点O 对称,点A 从-5出发,点B 此时对应的数为5,当点B 与点C 相遇时满足条件,∴-3+3t +t =5-(-3),∴t =2,当点A 与点B 相遇时点A 在点O 处,三点A 、O 、B 重合,此时没有中点,∴t≠5,当点B 与点D 重合时,点A 运动到1,-5+t =1,∴t =6,∴当点O 是线段AB 的中点时, t 的取值范围为2≤t ≤6,且t ≠5.【点睛】本题考查数轴表示数,数轴上两点距离,线段中点,动点问题,列解一元一次方程,掌握数轴表示数,数轴上两点距离,线段中点,动点问题,列解一元一次方程是解题关键.2、 (1)作图见解答,2a b -(2)6【解析】【分析】利用基本作图画出对应的几何图形,(1)根据线段的和差得到OC OA AB BC =+-;(2)先利用D 点为OC 的中点得到2DC OD ==厘米,则1CA =厘米,然后利用BC CA AB CA OC CA =+=++进行计算.(1)解:如图,2OC OA AB BC a a b a b=+-=+-=-;故答案为:2a b-;(2)解:D点为OC的中点,2DC OD∴==厘米,2CD CA=,1CA∴=厘米,1416BC CA AB CA OA CA OC CA∴=+=+=++=++=(厘米);故答案为:6.【点睛】本题考查了作图-复杂作图,两点间的距离,解题的关键是掌握复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.3、(1)30°(2)1 2α(3)5∠DOE-7∠AOF=270°【解析】【分析】(1)先根据∠DOB 与∠BOC 的互余关系得出∠BOC ,再根据角平分线的性质即可得出∠COE ;(2)先根据∠AOC 与∠BOC 的互余关系得出∠BOC ,再根据角平分线的性质即可得出∠COE ,再根据∠DOE 与∠COE 的互余关系即可得出答案;(3)结合(2)把所给等式整理为只含所求角的关系式即可.(1)解:∵∠COD 是直角,∠BOD =30°,∴∠BOC =90°-∠BOD =60°,∵OE 平分∠BOC ,∴∠COE 12BOC =∠=30°, (2)∵AOC α∠=,∴180BOC α∠=-,∵OE 平分∠BOC ,∴∠COE =∠BOE 119022BOC α=∠=-,∵∠COD 是直角,∴∠DOE =90°-∠COE =12α,(3)∵()123AOC AOF AOF BOE ∠-∠=∠+∠ ∴6∠AOF +3∠BOE =∠AOC -∠AOF ,∴7∠AOF+3∠BOE=∠AOC,∵∠COD是直角,OE平分∠BOC,∴∠BOE=90°-∠DOE,由(2)可知,∠AOC=2∠DOE∴7∠AOF+3(90°-∠DOE)=2∠DOE∴7∠AOF+270°=5∠DOE,∴5∠DOE-7∠AOF=270°.【点睛】本题考查角的计算;根据所求角的组成进行分析是解决本题的关键;应用相应的桥梁进行求解是常用的解题方法;注意应用题中已求得的条件.4、 (1)AOC AOD∠=∠(2)①2t=;②30︒【解析】【分析】(1)根据OB平分∠COE,得出∠COB=∠EOB,根据∠AOB=90°,得出∠BOC+∠AOC=90°,∠BOE+∠AOD=90°,利用等角的余角性质得出∠AOC=∠AOD即可;(2)①存在,根据120COD∠=,得出∠COE=180°-∠COD=180°-120°=60°,当OB平分∠COE时,直角边OB在射线OE上,∠EOB=∠BOC=11603022COE∠=⨯︒=︒,列方程15°t=30°,解得t=2;当OC平分∠EOB时,∠BOC=∠EOC=60°,∠EOB=2∠EOC=120°>90°,∠EOB不是锐角舍去,当OE平分∠BOC时,∠EOB=∠EOC=60°,∠BOC=2∠EOC=120°>90°∠BOC不是锐角舍去即可;②如图根据∠COD=120°,可得AB与OD相交时,∠BOC=∠COD-∠BOD=120°-∠BOD,∠AOD=∠AOB-∠BOD=90°-∠BOD,代入计算即可.(1)解:∵OB平分∠COE,∴∠COB=∠EOB,∵∠AOB=90°,∴∠BOC+∠AOC=90°,∠BOE+∠AOD=90°,∴∠AOC=∠AOD,故答案为:∠AOC=∠AOD;(2)解:①存在,∵120COD∠=,∴∠COE=180°-∠COD=180°-120°=60°,当OB平分∠COE时,直角边OB在射线OE上,∠EOB=∠BOC=11603022COE∠=⨯︒=︒,则15°t=30°,∴t=2;当OC平分∠EOB时,∠BOC=∠EOC=60°,∴∠EOB=2∠EOC=120°>90°,∴当OC平分∠EOB时,∠EOB不是锐角舍去,当OE 平分∠BOC 时,∠EOB =∠EOC =60°,∴∠BOC =2∠EOC =120°>90°,当OE 平分∠BOC 时,∠BOC 不是锐角舍去,综上,所有满足题意的t 的取值为2,②如图∵∠COD =120°,当AB 与OD 相交时,∵∠BOC=∠COD -∠BOD=120°-∠BOD,∠AOD=∠AOB -∠BOD=90°-∠BOD,∴()1209030BOC AOD BOD BOD ∠∠-=︒-∠-︒-∠=︒,故答案为:30°.【点睛】本题考查角平分线定义,三角板中角度计算,图形旋转,角的和差计算,熟练掌握角平分线的性质,分类讨论的思想运用是解答的关键.5、 (1)见解析(2)45°(3)12n°【解析】【分析】(1)根据要求画出图形即可;(2)利用角平分线的定义计算即可;(3)利用(2)中,结论解决问题即可.(1)解:图形如图所示.,(2)解:∵OD平分∠AOC,OE平分∠BOC,∴∠DOC=12∠AOC,∠EOC=12∠BOC,∴∠DOE=12(∠AOC+∠BOC)=12∠AOB,∵∠AOB=90°,∴∠DOE=45°;(3)解:当∠AOB为锐角,且∠AOB=n°时,由(2)可知∠DOE=12 n°.【点睛】本题考查作图-复杂作图,角平分线的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.。
鲁教版五四制六年级下册数学 第五章 基本平面图形 综合复习题(含答案解析)
参考答案与试题解析一.选择题1.下列说法正确的是()A.画一条长3cm的射线B.射线、线段、直线中直线最长C.射线是直线的一部分D.延长直线AB到C解:A.画一条长3cm的射线,说法错误,射线可以向一个方向无限延伸;B.射线、线段、直线中直线最长说法错误,射线可以向一个方向无限延伸,直线可以向两个方向无限延伸;C.射线是直线的一部分,正确;D.延长直线AB到C说法错误,直线可以向两个方向无限延伸.故选:C.2.在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是()①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上.A.①③B.②④C.①④D.②③解:①用两颗钉子就可以把木条固定在墙上,可以用基本事实“两点确定一条直线”来解释;②把笔尖看成一个点,当这个点运动时便得到一条线,可以用基本事实“无数个点组成线”来解释;③把弯曲的公路改直,就能缩短路程,可以用基本事实“两点之间线段最短”来解释;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上,可以用基本事实“两点确定一条直线”来解释.故选:C.3.直线AB,线段CD,射线EF的位置如图所示,下图中不可能相交的是()A.B.C.D.解:A选项中,直线AB与线段CD无交点,符合题意;B选项中,直线AB与射线EF有交点,不合题意;C选项中,线段CD与射线EF有交点,不合题意;D选项中,直线AB与射线EF有交点,不合题意;故选:A.4.如图,下列说法中正确的是()A.直线AC在线段BC上B.射线DE与直线AC没有公共点C.直线AC与线段BD相交于点AD.点D在直线AC上解:A.直线AC上的点C在线段BC上,故本选项错误;B.射线DE与直线AC有公共点,故本选项错误;C.直线AC与线段BD相交于点A,故本选项正确;D.点D在直线AC外,故本选项错误;故选:C.5.下列叙述中正确的是()①线段AB可表示为线段BA②射线AB可表示为射线BA③直线AB可表示为直线BA④射线AB和射线BA是同一条射线A.①②③④B.②③C.①③D.①②③解:①线段AB可表示为线段BA,正确;②射线AB不可表示为射线BA,错误;③直线AB可表示为直线BA,正确;④射线AB和射线BA不是同一条射线,错误;故选:C.6.如图所示,某同学的家在A处,书店在B处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B解:根据两点之间的线段最短,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B.故选:B.7.如图,延长线段AB到点C,使BC=2AB,D是AC的中点,若AB=5,则BD的长为()A.2B.2.5C.3D.3.5解:∵AB=5,BC=2AB,∴BC=10,∴AC=AB+BC=15,∵D为AC的中点,∴AD=AC=7.5,∴BD=AD﹣AB=7.5﹣5=2.5,故选:B.8.点C在线段AB上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AC+BC=AB C.AB=2AC D.BC=AB 解:A、AC=BC,则点C是线段AB中点;B、AC+BC=AB,则C可以是线段AB上任意一点;C、AB=2AC,则点C是线段AB中点;D、BC=AB,则点C是线段AB中点.故选:B.9.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定解:由图可知,A′B′<AB;故选:C.10.线段AB=9,点C在线段AB上,且有AC=AB,M是AB的中点,则MC等于()A.3B.C.D.解:∵AB=9,∴AC=AB=3,∵M是AB的中点,∴AM=AB=∴MC=AM﹣AC=﹣3=故选:B.11.如图,∠1=20°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为()A.95°B.100°C.110°D.120°解:∵∠1=20°,∠AOC=90°,∴∠BOC=∠AOC﹣∠1=90°﹣20°=70°,∴∠2=180°﹣∠BOC=180°﹣70°=110°,故选:C.12.如图所示,OB是∠AOC平分线,∠COD=∠BOD,∠COD=17°,则∠AOD的度数是()A.70°B.83°C.68°D.85°解:∵∠COD=∠BOD,∠COD=17°,∴∠BOC=2∠COD=2×17°=34°,∵OB是∠AOC平分线,∴∠AOC=2∠BOC=2×34°=68°,∴∠AOD=∠AOC+∠COD=68°+17°=85°,故选:D.13.下列角度不能用一副三角板画出来的是()A.75°B.65°C.45°D.15°解:A、用45°+30°角画出,故能画出;B、没有两个角的和或差是65°,故不能画出;C、直接用三角板就可画出,故能画出;D、用60°﹣45°就可以画出,故能画出.故选:B.14.如图:如果∠1=∠3,那么()A.∠1=∠2B.∠2=∠3C.∠AOC=∠BOD D.∠1=∠BOD 解:根据题意,∠1=∠3,有∠1+∠2=∠3+∠2,即∠AOC=∠BOD;故选:C.15.如图,小明顺着大半圆从A地到B地,小红顺着两个小半圆从A地到B地,设小明、小红走过的路程分别为a、b,则a与b的大小关系是()A.a=b B.a<b C.a>b D.不能确定解:设小明走的半圆的半径是R.则小明所走的路程是:πR.设小红所走的两个半圆的半径分别是:r1与r2,则r1+r2=R.小红所走的路程是:πr1+πr2=π(r1+r2)=πR.因而a=b.故选:A.二.填空题16.如图,OB平分∠AOC,∠AOD=78°,∠BOC=20°,则∠COD的度数为38°.解:∵OB平分∠AOC,∠BOC=20°,∴∠COD=40°,∵∠AOD=78°,∴∠COD=38°.故答案为38.三.解答题17.如图,平面内有A、B、C、D四点.按下列语句画图.(1)画直线AB,射线BD,线段BC;(2)连接AC,交射线BD于点E.解:(1)如图所示,直线AB,射线BD,线段BC即为所求;(2)连接AC,点E即为所求.18.如图,OE平分∠AOC,OF平分∠BOC,且∠BOC=60°,若∠AOC+∠EOF=156°,求∠EOF的度数.解:∵OF平分∠BOC,∠BOC=60°,∴∠COF=30°,∴∠EOF=∠COE﹣∠COF=∠COE﹣30°,∵OE平分∠AOC,∴∠AOC=2∠COE,又∵∠AOC+∠EOF=156°,∴2∠COE+∠COE﹣30°=156°,解得∠COE=62°,∴∠EOF=62°﹣30°=32°.。
2020-2021学年六年级数学鲁教版下册第5章基本平面图形章末易错题型优生辅导(附答案)
2021年度鲁教版六年级数学下册第5章基本的平面图形章末易错题型优生辅导(附答案)1.下列说法正确的是()A.延长射线AB到CB.若AM=BM,则M是线段AB的中点C.两点确定一条直线D.过三点能作且只能做一条直线2.下列条件中能确定点C是线段AB的中点的是()A.AC=BC B.AB=BC C.AC=BC=AB D.AC+BC=AB 3.在时刻9:30,墙上挂钟的时针与分针之间的夹角是()A.115°B.105°C.100°D.90°4.已知线段AB=8cm,在直线AB上画线BC,使BC=,则线段AC等于()A.12cm B.4cm C.12cm或4cm D.8cm或12cm 5.若平面内有三个点A、B、C,过其中任意两点画直线,那么画出的直线条数可能是()A.0,1,2B.1,2,3C.1,3D.0,1,2,3 6.点C是线段AB上的三等分点,D是线段AC的中点,E是线段BC的中点,若CE=6,则AB的长为()A.18B.36C.16或24D.18或367.如图,已知线段AB=16cm,点C为线段AB上的一个动点,点D、E分别是AC和BC 的中点,则DE的长()A.4cm B.8cm C.10cm D.16cm8.下列四个图中,能用∠1,∠AOB,∠O三种方法表示同一个角的是()A.B.C.D.9.如果A,B,C三点同在一直线上,且线段AB=6cm,BC=3cm,A,C两点的距离为d,那么d=()A.9cm B.3cm C.9cm或3cm D.大小不定10.如图,点O在直线AE上,OC平分∠AOE,∠DOB是直角.若∠1=25°,那么∠AOB 的度数是()A.65°B.25°C.90°D.115°11.如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD的中点,若MN=7cm,BC=3cm,则AD的长为cm.12.计算:90°﹣44°14′15″=.13.钟表上的时间是8:30时,时针与分针的夹角为度.14.有两根木条,一根长60厘米,一根长100厘米.如果将它们放在同一条直线上,并且使一个端点重合,这两根木条的中点间的距离是.15.平面上有四个点,经过其中每两个点画一条直线,那么一共可以画直线条.16.如图,耀华同学从O点出发,前进10米后向右转20°,再前进10米后又向右转20°,…,这样一直走下去,他第一次回到出发点O时一共走了米.17.已知线段AB=9cm,点C是直线AB上一点,且BC=3cm,若点D是线段AB的中点,点E是线段BC的中点,则线段DE=cm.18.已知OC平分∠AOB,若∠AOB=70°,∠COD=10°,则∠AOD的度数为.19.已知∠AOB=60°,以点O为端点作射线OC,使∠BOC=20°,再作∠AOC的平分线OD,则∠AOD的度数为.20.一个多边形剪去一个角后,内角和为360°,则原多边形为几边形:.21.已知∠AOB=30°,∠BOC=24°,∠AOD=15°,则锐角∠COD的度数.22.过多边形的一个顶点能引出5条对角线,则这个多边形的边数是.23.已知:如图,在直线l上顺次有A、B、C三点,AB=4cm,AB>BC,点O是线段AC 的中点,且OB=cm,求:B、C两点之间的距离.24.已知线段MN=3cm,在线段MN上取一点P,使PM=PN;延长线段MN到点A,使AN=MN;延长线段NM到点B,使BN=3BM.(1)根据题意,画出图形;(2)求线段AB的长;(3)试说明点P是哪些线段的中点.25.已知:点C在直线AB上.(1)若AB=2,AC=3,求BC的长;(2)若点C在射线AB上,且BC=2AB,取AC的中点D,已知线段BD的长为1.5,求线段AB的长.(要求:在备用图上补全图形)26.已知:点M,N,P在同一条直线上,线段MN=6,且线段PN=2.(1)若点P在线段MN上,求MP的长;(2)若点P在射线MN上,点A是MP的中点,求线段AP的长.27.如图,点O为直线AB上一点,∠BOC=40°,OD平分∠AOC.(1)求∠AOD的度数;(2)作射线OE,使∠BOE=∠COE,求∠COE的度数;(3)在(2)的条件下,作∠FOH=90°,使射线OH在∠BOE的内部,若∠DOF=3∠BOH,求∠AOH的度数.28.如图,已知∠AOB内部有三条射线,其中OE平分角∠BOC,OF平分∠AOC.(1)如图1,若∠AOB=120°,∠AOC=30°,求∠EOF的度数?(2)如图2,若∠AOB=α,求∠EOF的度数,(用含α的式子表示)(3)若将题中的“平分”的条件改为“∠EOB=∠COB,∠COF=∠COA,且∠AOB =α,求∠EOF的度数,(用含α的式子表示)29.如图①,已知线段AB=20cm,点C为AB上的一个动点,点D,E分别是AC和BC 的中点(1)若点C恰好是AB中点,则DE的长是多少?(直接写出结果)(2)若BC=14cm,求DE的长(3)试说明不论BC取何值(不超过20cm),DE的长不变(4)知识迁移:如图②,已知∠AOB=130°,过角的内部任一点C画射线OC,若OD,OE分别平分∠AOC和∠BOC,试求出∠DOE的大小,并说明∠DOE的大小与射线OC 的位置是否有关?30.【新知理解】如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)线段的中点这条线段的“巧点”;(填“是”或“不是”).(2)若AB=12cm,点C是线段AB的巧点,则AC=cm;【解决问题】(3)如图②,已知AB=12cm.动点P从点A出发,以2cm/s的速度沿AB向点B匀速移动:点Q从点B出发,以1cm/s的速度沿BA向点A匀速移动,点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s).当t为何值时,A、P、Q三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由参考答案1.解:A、射线本身是无限延伸的,不能延长,故本选项不合题意;B、若AM=BM,此时点M在线段AB的垂直平分线上,故本选项不合题意;C、两点确定一条直线,说法正确,故本选项符合题意;D、只有三点共线时才能做一条直线,故本选项不合题意;故选:C.2.解:A.当A,B,C不在同一条直线上时,AC=BC,则C不是AB的中点;B.当AB=BC时,C不是AB的中点;C.当AC=BC=AB时,能确定点C是线段AB的中点;D.当AC+BC=AB时,点C是线段AB上的任意一点,故点C不一定是AB的中点;故选:C.3.解:∵9点30分,时针指向9和10的中间,分针指向6,中间相差3大格半,钟表12个数字,每相邻两个数字之间的夹角为30°,∴9点30分分针与时针的夹角是30°×3.5=105°,故选:B.4.解:因为AB=8cm,BC=AB,所以BC=AB=×8=4(cm),由于C点的位置不确定,故要分两种情况讨论:(1)当C点在B点右侧时,如图所示:AC=AB+BC=8+4=12(cm);(2)当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣4=4(cm);所以线段AC等于12cm或4cm.故选:C.5.解:如图,可以画3条直线或1条直线,故选:C.6.解:如图1,∵点C是线段AB上的三等分点,∴AB=3BC,∵E是线段BC的中点,CE=6,∴BC=2CE=12,∴AB=3×12=36;如图2,∵E是线段BC的中点,CE=6,∴BC=2CE=12,∴AC=6,∵点C是线段AB上的三等分点,∴AB=3AC=18,则AB的长为36或18.故选:D.7.解:∵点D、E分别是AC和BC的中点,∴DE=DC+CE=AC+BC=AB而AB=16cm,∴DE=×16=8(cm).故选:B.8.解:A、图中的∠AOB不能用∠O表示,故本选项错误;B、图中的∠AOB不能用∠O表示,故本选项错误;C、图中∠1、∠AOB、∠O表示同一个角,故本选项正确;D、图中的∠AOB不能用∠O表示,故本选项错误;故选:C.9.解:C在线段AB上,AC=6﹣3=3(cm),C在AB延长线上,AC=6+3=9(cm).故选:C.10.解:∵点O在直线AE上,OC平分∠AOE,∴∠AOC=∠COE=90°,∵∠DOB是直角,∠1=25°,∴∠BOC=∠DOB﹣∠1=90°﹣25°=65°,∵∠AOB+∠BOC=∠AOC=90°∴∠AOB=90°﹣∠BOC=90°﹣65°=25°.故选:B.11.解:∵MN=MB+BC+CN,∵MN=7cm,BC=3cm,∴MB+CN=7﹣3=4(cm),∵M是AB的中点,N是CD的中点,∴AB=2MB,CD=2CN,∴AD=AB+BC+CD=2(MB+CN)+BC=2×4+3=11(cm).所以AD的长为11cm.故答案为:11.12.解:90°﹣44°14′15″=89°59′60″﹣44°14′15″=45°45′45″.故答案是:45°45′45″.13.解:8:30时,钟表的时针与分针相距2.5份,8:30时,钟表的时针与分针所夹小于平角的角为30°×2.5=75°.故答案为:75.14.解:若两条线段的另一个端点在重合端点的同旁,则中点间的距离为50﹣30=20cm;若两条线段的另一个端点在重合端点的异侧,则中点间的距离为50+30=80cm.故答案为20cm或80cm.15.解:①当四点共线时,则经过每两个点画一条直线,那么共可以画直线1条;②当只有三点共线时,则经过每两个点画一条直线,那么共可以画直线4条;③当每三点不共线时,则经过每两个点画一条直线,那么共可以画直线6条.故答案为:1或4或6.16.解:依题意可知,耀华所走路径为正多边形,设这个正多边形的边数为n,则20n=360,解得n=18,所以他第一次回到出发点O时一共走了:10×18=180(米),故答案为:180.17.解:如图1,当点C在点B右侧时,∵点D是线段AB的中点,点E是线段BC的中点,∴DB=AB,BE=BC,∴DE=DB+BE=(AB+BC)=6;如图2,当点C在点B左侧时,∵点D是线段AB的中点,点E是线段BC的中点,∴DB=AB,BE=BC,∴DE=DB﹣BE=(AB﹣BC)=3;则线段DE的长为6或3cm.故答案为6或3.18.解:(1)若射线OD在OC的下方时,如图1所示:∵OC平分∠AOB,∴∠AOC=,又∵∠AOB=70°,∴∠AOC==35°,又∵∠AOC=∠COD+∠AOD,∠COD=10°,∴∠AOD=35°﹣10°=25°;(2)若射线OD在OC的上方时,如图2所示:同(1)可得:∠AOC=35°,又∵∠AOD=∠AOC+∠COD,∴∠AOD=35°+10°=45°;综合所述∠AOD的度数为25°或45°,故答案为25°或45°.19.解:(1)当OC在∠AOB的内部时,如图1所示:∵∠BOC=20°,∠AOB=60°,∠AOB=∠AOC+∠BOC,∴∠AOC=60°﹣20°=40°,又∵OD是∠AOC的平分线,∴∠AOD=∠COD==20°;(2)当OC在∠AOB的外部时,如图2所示:∵∠AOC=∠AOB+∠BOC,∠AOB=60°,∠BOC=20°,∴AOC=80°,又∵OD是∠AOC的平分线,∴∠AOD=∠COD==40°;综合所述∠AOD的度数有两个,故答案为20°或40°.20.解:∵剪痕不过任何一个其他顶点设新多边形是n边形,由多边形内角和公式得(n﹣2)180°=360°,∵截去一个角后边数可能增加1,不变或减少1,∴原多边形的边数为3或4或5.故答案为:3或4或521.解:由题意,∠AOB=30°,∠BOC=24°,∠AOD=15°,根据角的不同和位置的不同,有以下几种情况:(1)如图(1):∠COD=∠AOB+∠BOC+∠AOD=69°.(2)如图(2):∠COD=∠AOB﹣∠AOD+∠BOC=39°;(3)如图(3):∠COD=∠AOB﹣∠BOC+∠AOD=21°;(4)如图(4):∠COD=∠AOB﹣∠BOC﹣∠AOD=9°.故答案为69°、39°、21°、9°.22.解:∵从一个多边形的一个顶点出发可以引5条对角线,设多边形边数为n,∴n﹣3=5,故答案为:8.23.解:∵AB=4cm,OB=cm∴OA=AB﹣OB=3.5而O是线段AC的中点,∴AC=2OA=7∴BC=AC﹣AB=7﹣4=3故B、C两点之间的距离为3cm.24.解:(1)如图所示:(2)∵MN=3cm,AN=MN,∴AN=1.5cm,∵BN=3BM,∴BM=MN=1.5cm,∴AB=BM+MN+AN=6cm;(3)∵点P在线段MN上,PM=PN,∴点P是线段MN的中点,∵BM=AN=1.5cm,PM=PN=1.5cm,∴BP=AP=3cm,∴点P是线段AB的中点.25.解:(1)若C在A的左边,则BC=AB+AC=5;若C在A的右边,则BC=AC﹣AB=1.故BC的长为5或1;(2)如图所示,点C在AB延长线上:∵BC=2AB,D是AC的中点,∴AD=AB,∴BD=AB,∵线段BD的长为1.5,∴线段AB的长为3.26.解:(1)如图:因为MN=6,PN=2,所以MP=MN﹣NP=6﹣2=4;(2)分两种情况讨论:①当点P在N点左侧时,如图所示:由(1)可知,MP=4因为点A为MP的中点,所以AP=MP=2;②当点P在N点右侧时,如图所示:由图形可知:MP=MN+NP=6+2=8,因为点A为MP的中点所以AP=MP=4,综上所述,AP的长为4或2.27.解:(1)∵∠BOC=40°,∴∠AOC=180°﹣∠BOC=140°,∵OD平分∠AOC,∴∠AOD=AOC=70°;(2)①如图1,当射线OE在AB上方时,∠BOE=∠COE,∵∠BOE+∠COE=∠BOC,∴∠COE+∠COE=40°,∴∠COE=24°;②如图2,当射线OE在AB下方时,∠BOE=∠COE,∵∠COE﹣∠BOE=∠BOC,∴∠COE﹣∠COE=40°,∴∠COE=120°;综上所述:∠COE的度数为24°或120°;(3)①如图3,当射线OE在AB上方,OF在AB上方时,作∠FOH=90°,使射线OH在∠BOE的内部,∠DOF=3∠BOH,设∠BOH=x°,则∠DOF=3x°,∠FOC=∠COD﹣∠DOF=70°﹣3x°,∵∠AOH=∠AOD+∠DOF+∠FOH=70°+3x°+90°=160°+3x°,∠EOH=∠BOC﹣∠COE﹣∠BOH=40°﹣24°﹣x°=16°﹣x°,∴∠FOH=∠FOC+∠COE+∠EOH=70°﹣3x°+24°+16°﹣x°=90°,∴x°=5°,∴∠AOH=160°+3x°=175°;②如图4,当射线OE在AB上方,OF在AB下方时,∵∠AOF=∠DOF﹣∠AOD=3x°﹣70°,∠BOF=∠FOH﹣∠BOH=90°﹣x°,∠AOF+∠BOF=180°,∴3x°﹣70°+90°﹣x°=180°,解得x°=80°,∵∠COB=40°,∵80°>40°,∴x°=80°不符合题意舍去;③如图5,当射线OE在AB下方,OF在AB上方时,∵∠AOF=∠DOF+∠AOD=3x°+70°,∠BOF=∠FOH﹣∠BOH=90°﹣x°,∠AOF+∠BOF=180°,∴3x°+70°+90°﹣x°=180°,解得x°=10°,∴∠AOH=180°﹣∠BOH=180°﹣x°=170°;④如图6,当射线OE在AB下方,OF在AB下方时,∵∠AOF=∠DOF﹣∠AOD=3x°﹣70°,∠BOF=∠FOH+∠BOH=90°+x°,∠AOF+∠BOF=180°,∴3x°﹣70°+90°+x°=180°,解得x°=40°,∴∠AOH=∠AOF+∠FOH=50°+90°=140°.综上所述:∠AOH的度数为175°或170°或140°.28.解:(1)∵OF平分∠AOC,∴∠COF=∠AOC=×30°=15°,∵∠BOC=∠AOB﹣∠AOC=120°﹣30°=90°,OE平分∠BOC,∴∠EOC=∠BOC=45°,∴∠EOF=∠COF+∠EOC=60°;(2)∵OF平分∠AOC,∴∠COF=∠AOC,同理,∠EOC=∠BOC,∴∠EOF=∠COF+∠EOC=∠AOC+∠BOC=(∠AOC+∠BOC)=∠AOB=α;(3)∵∠EOB=∠COB,∴∠EOC=∠COB,∴∠EOF=∠EOC+∠COF=∠COB+∠COA=∠BOC+∠AOC=∠AOB=α.29.解:(1))∵点C恰为AB的中点,∴AC=BC=AB=10cm,∵点D、E分别是AC和BC的中点,∴DC=AC=5cm,CE=BC=5cm,∴DE=10cm.(2)∵AB=20cm,BC=14cm,∴AC=6cm,∵点D、E分别是AC和BC的中点,∴CD=3cm,CE=7cm,∴DE=CD+CE=10cm;(3)∵点D、E分别是AC和BC的中点,∴CD=AC,CE=BC,∴DE=CD+CE=(AC+BC)=AB=10cm,∴不论BC取何值(不超过20cm),DE的长不变.(4)∵OD、OE分别平分∠AOC和∠BOC,∴∠DOC=∠AOC,COE=∠COB,∴∠DOE=∠DOC+∠COE=(∠AOC+∠COB)=∠AOB,∵∠AOB=130°,∴∠DOE=65°.∴∠DOE的度数与射线OC的位置无关.30.解:(1)如图,当C是线段AB的中点,则AB=2AC,∴线段的中点是这条线段的“巧点”.故答案为:是;(2)∵AB=12cm,点C是线段AB的巧点,∴AC=12×=4cm或AC=12×=6cm或AC=12×=8cm;故答案为:4或6或8;(3)t秒后,AP=2t,AQ=12﹣t(0≤t≤6)①由题意可知A不可能为P、Q两点的巧点,此情况排除.②当P为A、Q的巧点时,Ⅰ.AP=AQ,即,解得s;Ⅱ.AP=AQ,即,解得s;Ⅲ.AP=AQ,即,解得t=3s;③当Q为A、P的巧点时,Ⅰ.AQ=AP,即,解得s(舍去);Ⅱ.AQ=AP,即,解得t=6s;Ⅲ.AQ=AP,即,解得s。
2022年鲁教版(五四制)六年级数学下册第五章基本平面图形章节测评试卷(含答案解析)
六年级数学下册第五章基本平面图形章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,王伟同学根据图形写出了四个结论:①图中共有3条直线;②图中共有7条射线;③图中共有6条线段;④图中射线BC 与射线CD 是同一条射线.其中结论正确的有( )A .1个B .2个C .3个D .4个2、若α∠的补角是130︒,则α∠的余角是( ) A .30B .40︒C .120︒D .150︒3、若一个角为45°,则它的补角的度数为( ) A .55°B .45°C .135°D .125°4、下列说法错误的是( ) A .两点之间,线段最短B .经过两点有一条直线,并且只有一条直线C .延长线段AB 和延长线段BA 的含义是相同的D .射线AB 和射线BA 不是同一条射线5、已知α∠与β∠满足23180βα∠∠+=︒,下列式子表示的角:①90β︒-∠;②3302α︒+∠;③12αβ∠+∠;④2αβ∠+∠中,其中是β∠的余角的是( )A .①②B .①③C .②④D .③④6、如图,BOC ∠在AOD ∠的内部,且20BOC ∠=︒,若AOD ∠的度数是一个正整数,则图中所有角...的度数之和可能是( )A .340°B .350°C .360°D .370°7、如图,∠AOB ,以OA 为边作∠AOC ,使∠BOC =12∠AOB ,则下列结论成立的是( )A .AOC BOC ∠=∠B .AOC AOB ∠<∠C .AOC BOC ∠=∠或2AOC BOC ∠=∠D .AOC BOC ∠=∠或3AOC BOC ∠=∠8、如图,将三个三角板直角顶点重叠在一起,公共的直角顶点为点B ,若45ABE ∠=︒,30GBH ∠=︒,那么FBC ∠的度数为( )A.10︒B.15︒C.25︒D.309、如图所示,由A到B有①、②、③三条路线,最短的路线选①的理由是()A.两点确定一条直线B.经过一点有无数条直线C.两点之间,线段最短D.一条线段等于已知线段10、如图所示,下列表示角的方法错误的是()A.∠1与∠AOB表示同一个角B.图中共有三个角:∠AOB,∠AOC,∠BOCC.∠β+∠AOB=∠AOCD.∠AOC也可用∠O来表示第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、90°-32°51′18″=______________.2、同一直线上有两条线段,AB CD (A 在B 的左边,C 在D 的左边),M ,N 分别是,AB CD 的中点,若5cm MN =,7cm BC =,则AD =_________cm .3、如图,已知点C 为AB 上一点,112cm,2AC CB AC ==,D ,E 分别为AC ,AB 的中点,则DE 的长为_________cm .4、如图,在AOB ∠的内部有3条射线OC 、OD 、OE ,若52AOC ∠︒=,14BOE BOC ∠=∠,14BOD AOB ∠=∠,则DOE ∠=__________︒.5、南偏西25°:_________北偏西70°:_________南偏东60°:_________三、解答题(5小题,每小题10分,共计50分)1、如图,直线AB 、CD 相交于点O ,AB CD ⊥,90EOF ∠=︒.(1)若30COE ∠=︒,则BOF ∠= __________.(2)从(1)的时刻开始,若将EOF ∠绕O 以每秒15的速度逆时针旋转一周,求运动多少秒时,直线AB 平分EOF ∠.(3)从(1)的时刻开始,若将EOF ∠绕O 点逆时针旋转一周,如果射线OP 是COE ∠的角平分线,请直接写出此过程中AOP ∠与BOF ∠的数量关系.(不考虑OE 与AB 、CD 重合的情况) 2、将一副三角板放在同一平面内,使直角顶点重合于点O .(1)如图①,若155AOB ∠=︒,则DOC ∠=_______︒,DOC ∠与AOB ∠的关系是_______; (2)如图②,固定三角板BOD 不动,将三角板AOC 绕点O 旋转到如图所示位置. ①(1)中你发现的DOC ∠与AOB ∠的关系是否仍然成立,请说明理由;②如图②,若70BOC ∠=︒,在BOC ∠内画射线OP ,设(050)∠=︒<<BOP x x ,探究发现随着x 的值的变化,图中以O 为顶点的角中互余角的对数也变化.请直接写出以O 为顶点的角中互余角的对数有哪几种情况?并写出每一种情况相应的x 的取值或取值范围.3、如图是燕山前进片区的学校分布示意图,请你认真观察并回答问题.(1)燕山前进二小在燕山前进中学的 方向,距离大约是 m . (2)燕化附中在燕山向阳小学的 方向.(3)小辰从燕山向阳小学出发,沿正东方向走200m ,右转进入岗南路,沿岗南路向南走150m ,左转进入迎风南路,沿迎风南路向正东方向走450m 到达燕化附中.请在图中画出小辰行走的路线,并标出岗南路和迎风南路的位置.4、如图①.直线DE 上有一点O , 过点O 在直线DE 上方作射线OC , 将一直角三角板AOB (其中45OAB ∠=)的直角顶点放在点O 处, 一条直角边OB 在射线 OE 上, 另一边OA 在直线DE 的上方,将直角三角形绕着点O 按每秒15的速度顺时针旋转一周,设旋转时间为t 秒.(1)当直角三角板旋转到图②的伩置时, 射线OB 恰好平分COE ∠, 此时, AOC ∠与AOD ∠ 之间的数量关系为____________.(2)若射线OC 的位置保持不变, 且120COD ∠=,①在旋转过程中,是否存在某个时刻,使得射线OB , 射线OC , 射线OE 中的某一条射线是另外两条射线所夹锐角的角平分线? 若存在,请求出t 的值; 若不存在, 请说明理由; ②在旋转过程中, 当边AB 与射线OD 相交时, 如图③, 请直接写出BOC AOD ∠∠-的值____________.5、如图1,在数轴上点A 表示数a ,点B 表示数b ,O 为原点,AB 表示点A 和点B 之间的距离,且a ,b 满足()2520a b a +++=.(1)若T 为线段AB 上靠近点B 的三等分点,求线段OT 的长度;(2)如图2,若Q 为线段AB 上一点,C 、D 两点分别从Q 、B 出发以54个单位/s ,52个单位/s 的速度沿直线BA 向左运动(C 在线段AQ 上,D 在线段BQ 上),运动的时间为t s .若C 、D 运动到任意时刻时,总有2QD AC =,请求出AQ 的长;(3)如图3,E 、F 为线段OB 上的两点,且满足2BF EF =,4OE =,动点M 从A 点、动点N 从F 点同时出发,分别以3个单位/s ,1个单位/s 的速度沿直线AB 向右运动,是否存在某个时刻使得EM BN AE +=成立?若存在,求此时MN 的长度;若不存在,说明理由.-参考答案-一、单选题 1、A 【解析】 【分析】根据直线、线段、射线的区别逐项分析判断即可 【详解】解:①图中只有直线BD ,1条直线,原说法错误; ②图中共有2×3+1×2=8条射线,原说法错误;③图中共有6条线段,即线段,,,,,AB AC AD BC BD CD ,原说法是正确的; ④图中射线BC 与射线CD 不是同一条射线,原说法错误. 故正确的有③,共计1个故选:A.【点睛】本题考查了直线、线段、射线的区别与联系,理解三者的区别是解题的关键.2、B【解析】【分析】直接利用一个角的余角和补角差值为90°,进而得出答案.【详解】解:∵∠α的补角等于130°,∴∠α的余角等于:130°-90°=40°.故选:B.【点睛】本题主要考查了余角和补角,正确得出余角和补角的关系是解题关键.3、C【解析】【分析】根据补角的性质,即可求解.【详解】解:∵一个角为45°,∴它的补角的度数为18045135︒-︒=︒.故选:C【点睛】本题主要考查了补角的性质,熟练掌握互补的两个角的和为180°是解题的关键. 4、C 【解析】 【分析】根据两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义依次分析判断. 【详解】解:A. 两点之间,线段最短,故该项不符合题意;B. 经过两点有一条直线,并且只有一条直线,故该项不符合题意;C. 延长线段AB 和延长线段BA 的含义是不同的,故该项符合题意;D. 射线AB 和射线BA 不是同一条射线,故该项不符合题意; 故选:C . 【点睛】此题考查了两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义,综合掌握各知识点是解题的关键. 5、B 【解析】 【分析】将每项加上β∠判断结果是否等于90°即可. 【详解】解:①∵90β︒-∠+β∠=90°,故该项是β∠的余角; ②∵23180βα∠∠+=︒, ∴2036βα∠︒-=∠,∴3302α︒+∠+β∠=90°+56α∠,故该项不是β∠的余角;③∵2036βα∠︒-=∠,∴12αβ∠+∠+β∠=90°,故该项是β∠的余角;④∵2036βα∠︒-=∠,∴2αβ∠+∠+β∠=120°+23∠α,故该项不是β∠的余角; 故选:B . 【点睛】此题考查了余角的有关计算,熟记余角定义,正确掌握角度的计算是解题的关键. 6、B 【解析】 【分析】根据角的运算和题意可知,所有角的度数之和是∠AOB +∠BO C +∠COD +∠AOC +∠BOD + ∠AOD ,然后根据20BOC ∠=︒,AOD ∠的度数是一个正整数,可以解答本题. 【详解】解:由题意可得,图中所有角的度数之和是∠AOB +∠BOC +∠COD +∠AOC +∠BOD +∠AOD=3∠AOD+∠BOC ∵20BOC ∠=︒,AOD ∠的度数是一个正整数, ∴A、当3∠AOD+∠BOC =340°时,则AOD ∠=3203︒,不符合题意; B 、当3∠AOD+∠BOC =3×110°+20°=350°时,则AOD ∠=110°,符合题意;C、当3∠AOD+∠BOC=360°时,则AOD∠=3403︒,不符合题意;D、当3∠AOD+∠BOC=370°时,则AOD∠=3503︒,不符合题意.故选:B.【点睛】本题考查角度的运算,解题的关键是明确题意,找出所求问题需要的条件.7、D【解析】【分析】分OC在∠AOB内部和OC在∠AOB外部两种情况讨论,画出图形即可得出结论.【详解】解:当OC在∠AOB内部时,∵∠BOC=12∠AOB,即∠AOB=2∠BOC,∴∠AOC=∠BOC;当OC在∠AOB外部时,∵∠BOC=12∠AOB,即∠AOB=2∠BOC,∴∠AOC=3∠BOC;综上,∠AOC=∠BOC或∠AOC=3∠BOC;故选:D.【点睛】本题考查了角平分线的定义,熟练掌握角平分线的定义,数形结合解题是关键.8、B【解析】【分析】根据∠ABE=45°,由角的和差关系求出∠CBG,再根据∠GBH=30°,由角的和差关系求出∠FBG,最后根据∠FBC=∠FBG-∠CBG进行计算即可.【详解】解:∵∠ABE=45°,∴∠CBE=45°,∴∠CBG=45°,∵∠GBH=30°,∴∠FBG=60°,∴∠FBC=∠FBG-∠CBG=60°-45°=15°.【点睛】此题考查了角的和差计算,关键是根据已知条件求出角的度数,要能根据图形找出角之间的关系.9、C【解析】【分析】根据线段的性质进行解答即可.【详解】解:最短的路线选①的理由是两点之间,线段最短,故选:C.【点睛】本题主要考查了线段的性质,解题的关键是掌握两点之间,线段最短.10、D【解析】【分析】根据角的表示方法表示各个角,再判断即可.【详解】解:A、∠1与∠AOB表示同一个角,正确,故本选项不符合题意;B、图中共有三个角:∠AOB,∠AOC,∠BOC,正确,故本选不符合题意;C、∠β表示的是∠BOC,∠β+∠AOB=∠AOC,正确,故本选项不符合题意;D、∠AOC不能用∠O表示,错误,故本选项符合题意;故选:D.本题考查了对角的表示方法的应用,主要检查学生能否正确表示角.二、填空题1、57842'''︒【解析】【分析】根据度分秒的减法,相同单位相减,不够减时向上一单位借1当60 再减,可得答案.【详解】解:90°-32°51′18″=89°60′-32°51′18″=89°59′60″-32°51′18″′=57°8′42″. 故答案为:57°8′42″.【点睛】本题考察了度分秒的换算,度分秒的减法,相同单位相减,不够减时向上一单位借1当60 再减.1°=60′,1′=60″.2、17【解析】【分析】根据A 在B 的左边,C 在D 的左边,M ,N 分别是,AB CD 的中点,得出AM =BM ,CN =DN ,当点B 在点C 的右边时满足条件,分三种情况,当点B 在NM 上,设AM =BM =x ,得出BN =MN -BM =5-x ,ND =CN =12-x ,可求AD =AM +MN +ND =x +5+12-x =17;当MN 在BC 上,设AM =BM =x ,CM =7-x , 得出ND =CN =12-x ,可求AD =AM +MN +ND =x +5+12-x =17;当点C 在MN 上,设AM =BM =x ,MC =BM -BC =x -7,得出CN =DN =MN -MC =5-(x -7)=12-x ,可求AD =AM +MN +ND =x +5+12-x =17即可.【详解】解:∵A 在B 的左边,C 在D 的左边,M ,N 分别是,AB CD 的中点,∴AM =BM ,CN =DN ,当点B在点C的右边时满足条件,分三种情况:当点B在NM上,设AM=BM=x,∴BN=MN-BM=5-x,∴CN=BC+BN=7+5-x=12-x,∴ND=CN=12-x,∴AD=AM+MN+ND=x+5+12-x=17;当MN在BC上,设AM=BM=x,∴BN=x-5,CM=7-x,∴CN=CM+MN=7-x+5=12-x,∴ND=CN=12-x,∴AD=AM+MN+ND=x+5+12-x=17;当点C在MN上,设AM=BM=x,∴MC=BM-BC=x-7,∴CN=DN=MN-MC=5-(x-7)=12-x,∴AD=AM+MN+ND=x+5+12-x=17;综合得AD=17.故答案为17.【点睛】本题考查线段中点有关的计算,线段和差,整式加减运算,分类思想的应用使问题得以全面解决是解题关键.3、3【解析】【分析】AC,得到CB=6cm,求得AB=18cm,根据D、E分别为AC、AB的中点,分别根据AC=12cm,CB=12求得AE,AD的长,利用线段的差,即可解答.【详解】AC,解:∵AC=12cm,CB=12∴CB=6cm,∴AB=AC+BC=12+6=18cm,∵D、E分别为AC、AB的中点,AB=9cm,∴AE=12AC=6cm,AD=12∴DE=AE﹣AD=3cm.故答案为3.【点睛】本题考查了线段的中点和线段的和差,熟知各线段之间的和、差及倍数关系是解答此题的关键.4、13【解析】【分析】先用含∠BOE 的代数式表示出∠AOB ,进而表示出∠BOD ,然后根据∠DOE =∠BOD -∠BOE 即可得到结论.【详解】解:∵∠BOE =14∠BOC , ∴∠BOC =4∠BOE ,∴∠AOB =∠AOC +∠BOC =52°+4∠BOE ,∴∠BOD =14∠AOB =13+∠BOE , ∴∠DOE =∠BOD -∠BOE =13,故答案为:13.【点睛】本题考查了角的和差倍分计算,正确的识别图形是解题的关键.5、 射线OA 射线OB 射线OC【解析】略三、解答题1、 (1)30°(2)11或23秒 (3)1902AOP BOF ∠=︒+∠或1902AOP BOF ∠=︒-∠ 【解析】【分析】(1)根据AB CD ⊥,30COE ∠=︒,利用余角性质得出∠EOB =90°-∠COE =90°-30°=60°,根据90EOF ∠=︒,利用余角性质得出∠BOF =90°-∠EOB =90°-60°=30°即可;(2)解分两种情形,OA 平分EOF ∠,得出1452EOA EOF ∠=∠=︒,904545FOC ∠=︒-︒=︒,设运动t秒时 根据运动转过的角度列方程15304590t =++,OB 平分EOF ∠,1452EOB EOF ∠=∠=︒,根据运动转过的角度列方程153027045t =++,解方程即可;(3)分四种情况OE 在∠COB 内,OE 在∠AOC 内,OE 在∠AOD 内,OE 在∠DOB 内,根据射线OP 是COE ∠的角平分线∠COP =∠EOP ,利用角的和差计算即可.(1)解:∵AB CD ⊥,30COE ∠=︒,∴∠EOB =90°-∠COE =90°-30°=60°,∵90EOF ∠=︒,∴∠BOF =90°-∠EOB =90°-60°=30°,故答案是:30°;(2)解分两种情形,情况一∵OA 平分EOF ∠, ∴1452EOA EOF ∠=∠=︒,∴904545FOC ∠=︒-︒=︒,设运动t 秒时,OA 平分EOF ∠,根据题意得:15304590t =++,解得:11t =;情况二∵OB平分EOF∠,∴1452EOB EOF∠=∠=︒,设运动t秒时,OB平分EOF∠,根据题意得:153027045t=++,解得:23t=;综上:运动11或23秒时,直线AB平分EOF∠;(3)解:∵射线OP是COE∠的角平分线∴∠COP=∠EOP,∠AOC=∠EOF=90°,∴∠AOP=90°+∠COP=90°+∠POE,∵∠COE=∠BOF,∴∠POE=11=22COE BOF∠∠,∴1902AOP BOF∠=︒+∠,∵∠COE=∠BOF,射线OP是COE∠的角平分线,∴∠POC=11=22COE BOF∠∠,∴∠AOP=90°-∠COP=90°-11=9022COE BOF∠︒-∠,∴1902AOP BOF∠=︒-∠,∵∠COE=90°+∠COF=∠BOF,射线OP是COE∠的角平分线,∴∠POC=11=22COE BOF∠∠,∴∠AOP=90°-∠COP=90°-11=9022COE BOF∠︒-∠,∴1902AOP BOF∠=︒-∠,∵∠COE=90°+∠BOE=∠BOF,射线OP是COE∠的角平分线,∴∠POC=11=22COE BOF∠∠,∴∠AOP=90°+∠COP=90°+11=9022COE BOF∠︒+∠,∴1902AOP BOF∠=︒+∠;综上:1902AOP BOF∠=︒+∠或1902AOP BOF∠=︒-∠.【点睛】本题考查余角定义,角平分线有关的运算,一元一次方程,分类讨论思想的应用,掌握余角定义,角平分线有关的运算,一元一次方程,分类讨论思想的应用是解题关键.2、 (1)25 ,互补(2)①成立 ,理由见解析;②共有3种情况,当x =35时,互余的角有4对;当x =20时,互余的角有6对;当0< x <50且x ≠35和20时,互余的角有3对【解析】【分析】(1)利用周角的定义可得360,AOBBOD COD AOC 再求解,COD 即可得到答案; (2)①利用180,AODCOD BOD 结合角的和差运算即可得到结论;②先利用70,BOC ∠=︒ 90,AOC BOD 求解20,70,COD AOD 再分三种情况讨论:如图,当35BOP x 时,则35,COP 如图,当20BOP x 时,则50,70,COP DOP 如图,当050x 且35,20x x 时,从而可得答案. (1)解:90,90,155,AOC BOD AOB而360,AOB BODCOD AOC 360909015525,COD 15525180,AOB COD故答案为:25, 互补(2)解:①成立,理由如下:90,AOC BOD 180,AOC BOD180,AOD COD BOD180.COD AOB②70,BOC 90,AOC BOD 907020,902070,COD AOD 如图,当35BOP x 时,则35,COP所以图中以O 为顶点互余的角有:,AOD COD ;,BOC COD ;,BOP DOP ;,COP DOP 共4对;如图,当20BOP x 时,则50,70,COP DOP所以图中以O 为顶点互余的角有:,AOD COD ;,BOC COD ;,BOP DOP ;,BOP AOD ;,DOC DOP ;,BOP BOC 共6对;如图,当050x 且35,20x x 时,所以图中以O 为顶点互余的角有:,AOD COD ;,BOC COD ;,BOP DOP 共3对.【点睛】本题考查的是几何图形中角的和差运算,互余与互补的含义,熟练的运用互余与互补的概念判断余角与补角,清晰的分类讨论是解本题的关键.3、 (1)正西,100(2)南偏东77°(3)见解析【解析】【分析】(1)根据图中位置解决问题即可.(2)根据图中位置解决问题即可.(3)根据题意画出路线即可.(1)燕山前进二小在燕山前进中学的正西方向,距离大约是100m .故答案为:正西,100.(2)燕化附中在燕山向阳小学的南偏东77︒方向故答案为:南偏东77︒.(3)小辰行走的路线如图:【点睛】本题考查作图-应用与设计,方向角等知识,解题的关键是熟练掌握基本知识.4、 (1)AOC AOD∠=∠(2)①2t=;②30︒【解析】【分析】(1)根据OB平分∠COE,得出∠COB=∠EOB,根据∠AOB=90°,得出∠BOC+∠AOC=90°,∠BOE+∠AOD=90°,利用等角的余角性质得出∠AOC=∠AOD即可;(2)①存在,根据120COD∠=,得出∠COE=180°-∠COD=180°-120°=60°,当OB平分∠COE时,直角边OB在射线OE上,∠EOB=∠BOC=11603022COE∠=⨯︒=︒,列方程15°t=30°,解得t=2;当OC平分∠EOB时,∠BOC=∠EOC=60°,∠EOB=2∠EOC=120°>90°,∠EOB不是锐角舍去,当OE平分∠BOC时,∠EOB=∠EOC=60°,∠BOC=2∠EOC=120°>90°∠BOC不是锐角舍去即可;②如图根据∠COD=120°,可得AB与OD相交时,∠BOC=∠COD-∠BOD=120°-∠BOD,∠AOD=∠AOB-∠BOD=90°-∠BOD,代入计算即可.(1)解:∵OB平分∠COE,∴∠COB=∠EOB,∵∠AOB=90°,∴∠BOC+∠AOC=90°,∠BOE+∠AOD=90°,∴∠AOC=∠AOD,故答案为:∠AOC=∠AOD;(2)解:①存在,∵120COD∠=,∴∠COE=180°-∠COD=180°-120°=60°,当OB平分∠COE时,直角边OB在射线OE上,∠EOB=∠BOC=11603022COE∠=⨯︒=︒,则15°t=30°,∴t=2;当OC平分∠EOB时,∠BOC=∠EOC=60°,∴∠EOB=2∠EOC=120°>90°,∴当OC平分∠EOB时,∠EOB不是锐角舍去,当OE 平分∠BOC 时,∠EOB =∠EOC =60°,∴∠BOC =2∠EOC =120°>90°,当OE 平分∠BOC 时,∠BOC 不是锐角舍去,综上,所有满足题意的t 的取值为2,②如图∵∠COD =120°,当AB 与OD 相交时,∵∠BOC=∠COD -∠BOD=120°-∠BOD,∠AOD=∠AOB -∠BOD=90°-∠BOD,∴()1209030BOC AOD BOD BOD ∠∠-=︒-∠-︒-∠=︒,故答案为:30°.【点睛】本题考查角平分线定义,三角板中角度计算,图形旋转,角的和差计算,熟练掌握角平分线的性质,分类讨论的思想运用是解答的关键.5、 (1)5(2)5(3)存在,9或0【解析】【分析】(1)根据绝对值的非负性及偶次方的非负性求出a =-5,b =10,得到AB =10-(-5)=15,由T 为线段AB 上靠近点B 的三等分点,得到BT =5,根据OT=OB-BT 求出结果;(2)由运动速度得到BD =2QC ,由C 、D 运动到任意时刻时,总有2QD AC =,得到BQ =2AQ ,即可求出AQ ;(3)先求出BF=4,EF =2,AE =9.当03m ≤≤时,得到9-3m +4-m =9,当34m <≤时,得到3m-9+4-m =9;当m >4时,得到3m-9+m-4=9,解方程即可.(1) 解:∵()2520a b a +++=,∴a +5=0,b +2a =0,∴a =-5,b =10,∴点A 表示数-5,点B 表示数10,∴AB =10-(-5)=15,∵T 为线段AB 上靠近点B 的三等分点,∴BT =5,∴OT=OB-BT =5;(2)解:∵C 、D 两点分别从Q 、B 出发以54个单位/s ,52个单位/s 的速度沿直线BA 向左运动(C 在线段AQ 上,D 在线段BQ 上),∴BD =2QC ,∵C 、D 运动到任意时刻时,总有2QD AC =,∴BQ =2AQ ,∵BQ +AQ =15,∴AQ =5;(3)解:∵2BF EF =,4OE =,∴BF=4,EF =2,AE =9,设点M 运动ms ,当03m ≤≤时,如图,∵EM=9-3m ,BN =4-m ,EM BN AE +=,∴9-3m +4-m =9,解得m =1,∴MN =9-3m +2+m =9;当34m <≤时,如图,∵EM=3m-9,BN=4-m,EM BN AE+=,∴3m-9+4-m=9,解得m=7(舍去);当m>4时,如图,∵EM=3m-9,BN=m-4,EM BN AE+=,∴3m-9+m-4=9,解得m=112;∴MN=15-3m+m-4=0;综上,存在,此时MN的长度为9或0.【点睛】此题考查数轴上两点之间的距离,绝对值的非负性及偶次方的非负性,数轴上动点问题,一元一次方程,正确掌握数轴上两点间的距离公式是解题的关键.。
2022年鲁教版(五四制)六年级数学下册第五章基本平面图形综合测试试题(含解析)
六年级数学下册第五章基本平面图形综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,∠BOC =90°,∠COD =45°,则图中互为补角的角共有( )A .一对B .二对C .三对D .四对2、中国古代大建筑群平面中统率全局的轴线称为“中轴线”,北京中轴线是古代中国独特城市规划理论的产物,故宫是北京中轴线的重要组成部分.故宫中也有一条中轴线,北起神武门经乾清宫、保和殿、太和殿、南到午门,这条中轴线同时也在北京城的中轴线上.图中是故宫博物院的主要建筑分布图.其中,点A 表示养心殿所在位置,点O 表示太和殿所在位置,点B 表示文渊阁所在位置.已知养心殿位于太和殿北偏西2118'︒方向上,文渊阁位于太和殿南偏东5818︒'方向上,则∠AOB 的度数是( )︒'B.143︒C.140︒D.153︒A.79363、下列说法错误的是()A.两点之间,线段最短B.经过两点有一条直线,并且只有一条直线C.延长线段AB和延长线段BA的含义是相同的D.射线AB和射线BA不是同一条射线4、小明爸爸准备开车到园区汇金大厦,他在小区打开导航后,显示两地距离为17.8km,而导航提供的三条可选路线的长度分别为37km、28km、34km(如图),这个现象说明()A.两点之间,线段最短B.垂线段最短C .经过一点有无数条直线D .两点确定一条直线5、上午8:30时,时针和分针所夹锐角的度数是( )A .75°B .80°C .70°D .67.5°6、已知α与β互为余角,若20α=︒,则β的补角的大小为( )A .70︒B .110︒C .140︒D .160︒7、如图,将一块三角板60°角的顶点与另一块三角板的直角顶点重合,12720'∠=︒,2∠的大小是( )A .2720'︒B .5720'︒C .5840'︒D .6240'︒8、在一幅七巧板中,有我们学过的( )A .8个锐角,6个直角,2个钝角B .12个锐角,9个直角,2个钝角C .8个锐角,10个直角,2个钝角D .6个锐角,8个直角,2个钝角9、在9:30这一时刻,时钟上的时针和分针之间的夹角为( )A .105︒B .100︒C .90︒D .85︒10、已知50A ∠=,则∠A 的补角等于( )A .40B .50C .130D .140第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若一个角的补角是其余角的3倍,则这个角的度数为___.2、式子31257x x x x x ++++-+-+-的最小值是______.3、平面内不同的两点确定一条直线,不同的三点最多确定三条直线,则平面内不同的n 个点最多可确定_____条直线(用含有n 的代数式表示).4、同一直线上有两条线段,AB CD (A 在B 的左边,C 在D 的左边),M ,N 分别是,AB CD 的中点,若5cm MN =,7cm BC =,则AD =_________cm .5、4236'︒=______°.三、解答题(5小题,每小题10分,共计50分)1、已知:如图,直线AB 、CD 相交于点O ,∠EOC =90°,OF 平分∠AOE .(1)若∠BOC =40°,求∠AOF 的大小.(2)若∠COF =x °,求∠BOC 的大小.2、解答下列各题:(1)化简并求值:(a ﹣ab )+(b +2ab )﹣(a +b ),其中a =7,b =﹣17.(2)如图,OD 为∠AOB 的平分线,∠AOC =2∠BOC ,AO ⊥CO ,求∠COD 的度数.3、已知P 为线段AB 上一点,AP 与PB 的长度之比为3∶2,若6AP =cm ,求PB ,AB 的长.4、如图,已知A、B、C、D是正方形网格纸上的四个格点,根据要求在网格中画图并标注相关字母.(1)画射线BA;(2)画直线AC;(3)在直线AC上找一点P,使得PB PD最小.5、点M,N是数轴上的两点(点M在点N的左侧),当数轴上的点P满足PM=2PN时,称点P为线段MN的“和谐点”.已知,点O,A,B在数轴上表示的数分别为0,a,b,回答下面的问题:(1)当a=﹣1,b=5时,求线段AB的“和谐点”所表示的数;(2)当b=a+6且a<0时,如果O,A,B三个点中恰有一个点为其余两个点组成的线段的“和谐点”,直接写出此时a的值.-参考答案-一、单选题1、C【解析】【分析】根据∠BOC=90°,∠COD=45°求出∠AOC=90°,∠BOD=45°,∠AOD=135°,进而得出答案.【详解】解:∵∠BOC =90°,∠COD =45°,∴∠AOC =90°,∠BOD =45°,∠AOD =135°,∴∠AOC +∠BOC =180°,∠AOD +∠COD =180°,∠AOD +∠BOD =180°,∴图中互为补角的角共有3对,故选:C .【点睛】本题考查了补角的定义,理解互为补角的两角之和为180°是解题的关键.2、B【解析】【分析】由图知,∠AOB =180°−5818︒'+2118'︒,从而可求得结果.【详解】∠AOB =180°−5818︒'+2118'︒=180°-37°=143°故选:B【点睛】本题考查了方位角及角的和差运算,掌握角的和差运算是关键.3、C【解析】【分析】根据两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义依次分析判断.【详解】解:A. 两点之间,线段最短,故该项不符合题意;B. 经过两点有一条直线,并且只有一条直线,故该项不符合题意;C. 延长线段AB和延长线段BA的含义是不同的,故该项符合题意;D. 射线AB和射线BA不是同一条射线,故该项不符合题意;故选:C.【点睛】此题考查了两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义,综合掌握各知识点是解题的关键.4、A【解析】【分析】根据两点之间线段最短,即可完成解答.【详解】由题意知,17.8km是两地的直线距离,而导航提供的三条可选路线长度是两地的非直线距离,此现象说明两点之间线段最短.故选:A【点睛】本题考查了两点之间线段最短在实际生活中的应用,掌握这个结论是解答本题的关键.5、A【解析】【分析】根据钟面平均分成12份,可得每份的度数;根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:钟面平均分成12份,钟面每份是30°,上午8:30时时针与分针相距2.5份,此时时钟的时针与分针所夹的角(小于平角)的度数是30°×2.5=75°.故选:A .【点睛】本题考查了钟面角,时针与分针相距的份数乘以每份的度数是解题关键.6、B【解析】【分析】根据90βα=︒-求得β,根据180β︒-求得β的补角【详解】解:∵α与β互为余角,若20α=︒,∴9070βα=︒-=︒∴180β︒-110=︒故选B【点睛】本题考查了求一个角的余角、补角,解题的关键是理解互为余角的两角之和为90︒,互为补角的两角之和为180︒.7、B【解析】【分析】根据∠BAC=60°,∠1=27°20′,求出∠EAC的度数,再根据∠2=90°-∠EAC,即可求出∠2的度数.【详解】解:∵∠BAC=60°,∠1=27°20′,∴∠EAC=32°40′,∵∠EAD=90°,∴∠2=90°-∠EAC=90°-32°40′=57°20′;故选:B.【点睛】本题主要考查了与三角板有关的角度计算,解题的关键是能够正确求出∠EAC的度数.8、B【解析】【分析】根据一副七巧板图形,查出锐角,直角和钝角的个数即可.【详解】5个等腰直角三角形,5个直角,10个锐角,1个正方形,4个直角,1个平行四边形,2个钝角,2个锐角,在一幅七巧板中根据12个锐角,9个直角,2个钝角.故选择B.【点睛】本题考查角的分类,平面图形,掌握角的分类,平面图形是解题关键.9、A【解析】【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:9:30时针与分针相距3.5份,每份的度数是30°,在时刻9:30,时钟上时针和分针之间的夹角(小于平角的角)为3.5×30°=105°.故选:A.【点睛】本题考查了钟面角,利用时针与分针相距的份数乘以每份的度数是解题关键.10、C【解析】【分析】若两个角的和为180,︒则这两个角互为补角,根据互补的含义直接计算即可.【详解】解:50∠=,A∴∠A的补角为:18050130,故选C【点睛】本题考查的是互补的含义,掌握“利用互补的含义,求解一个角的补角”是解本题的关键.二、填空题1、45°##45度【解析】【分析】根据补角和余角的定义,利用“一个角的补角是它的余角的度数的3倍”作为相等关系列方程求解即可得出结果.【详解】解:设这个角的度数是x,则180°-x=3(90°-x),解得x=45°.答:这个角的度数是45°.故答案为:45°.【点睛】本题考查了余角和补角的知识,设出未知数是解决本题的关键,要掌握解答此类问题的方法.2、16【解析】【分析】画出数轴,根据两点间的距离公式解答.【详解】解:如图1,当点P与点C重合时,点P到A、B、C、D、E各点的距离之和为:PA+PB+PC+PD+PE=(PA+PE)+(PB+PD)+PC=AE+BD+0=AE+BD;如图2,当点P 与点C 不重合时,点P 到A 、B 、C 、D 、E 各点的距离之和为:PA +PB +PC +PD +PE=(PA +PE )+(PB +PD )+PC=AE +BD +PC ;∵AE +BD +PC > AE +BD ,∴当点P 与点C 重合时,点P 到A 、B 、C 、D 、E 各点的距离之和最小,令数轴上数x 表示的为P ,则31257x x x x x ++++-+-+-表示点P 到A 、B 、C 、D 、E 各点的距离之和,∴当x =2时,31257x x x x x ++++-+-+-取得最小值, ∴31257x x x x x ++++-+-+-的最小值 =2321225227++++-+-+-=5+3+0+3+5=16,故答案为:16.【点睛】本题考查了绝对值意义、数轴上两点间的距离,数形结合是解答本题的关键.3、(1)2n n - 【解析】【分析】平根据面内不同的两点确定一条直线,不同的三点最多确定三条直线…依此类推找出规律.【详解】解:平面内不同的2个点确定1条直线,3个点最多确定3条,即3=1+2;4个点确定最多1+2+3=6条直线;则n 个点最多确定1+2+3+……(n -1)=(1)2n n -条直线, 故答案为(1)2n n -. 【点睛】此题主要考查了两点确定一条直线,解决问题的关键是通过观察、分析、归纳、验证,然后得出一般性的结论,再代入求值.4、17【解析】【分析】根据A 在B 的左边,C 在D 的左边,M ,N 分别是,AB CD 的中点,得出AM =BM ,CN =DN ,当点B 在点C 的右边时满足条件,分三种情况,当点B 在NM 上,设AM =BM =x ,得出BN =MN -BM =5-x ,ND =CN =12-x ,可求AD =AM +MN +ND =x +5+12-x =17;当MN 在BC 上,设AM =BM =x ,CM =7-x , 得出ND =CN =12-x ,可求AD =AM +MN +ND =x +5+12-x =17;当点C 在MN 上,设AM =BM =x ,MC =BM -BC =x -7,得出CN =DN =MN -MC =5-(x -7)=12-x ,可求AD =AM +MN +ND =x +5+12-x =17即可.【详解】解:∵A 在B 的左边,C 在D 的左边,M ,N 分别是,AB CD 的中点,∴AM=BM,CN=DN,当点B在点C的右边时满足条件,分三种情况:当点B在NM上,设AM=BM=x,∴BN=MN-BM=5-x,∴CN=BC+BN=7+5-x=12-x,∴ND=CN=12-x,∴AD=AM+MN+ND=x+5+12-x=17;当MN在BC上,设AM=BM=x,∴BN=x-5,CM=7-x,∴CN=CM+MN=7-x+5=12-x,∴ND=CN=12-x,∴AD=AM+MN+ND=x+5+12-x=17;当点C在MN上,设AM=BM=x,∴MC=BM-BC=x-7,∴CN=DN=MN-MC=5-(x-7)=12-x,∴AD=AM+MN+ND=x+5+12-x=17;综合得AD=17.故答案为17.【点睛】本题考查线段中点有关的计算,线段和差,整式加减运算,分类思想的应用使问题得以全面解决是解题关键.5、42.6【解析】【分析】根据角度进制的转化求解即可,601'=︒.【详解】解:36 360.660'==︒∴4236'︒=42.6︒故答案为:42.6【点睛】本题考查了角度进制的转化,掌握角度进制是解题的关键.三、解答题1、(1)25︒;(2)2702x︒-︒【解析】【分析】(1)结合题意,根据平角和角度和差的性质计算得AOE∠,再根据角平分线的性质计算,即可得到答案;(2)根据角度和差性质,计算得EOF∠;根据角平分线的性质计算,即可得到答案.【详解】(1)∵∠EOC=90°,∠BOC=40°∴18050AOE BOC EOC∠=︒-∠-∠=︒∵OF 平分∠AOE ∴252AOE AOF ∠∠==︒ ; (2)∵∠COF =x °,∠EOC =90°∴90EOF COF EOF x ∠=∠-∠=︒-︒∵OF 平分∠AOE∴22180AOE EOF x ∠=∠=︒-︒∴()1801802180902702BOC AOE EOC x x ∠=︒-∠-∠=︒-︒-︒-︒=︒-︒.【点睛】本题考查了角的知识;解题的关键是熟练掌握角平分线、角度和差的性质,从而完成求解.2、 (1)ab ,-1(2)22.5°【解析】【分析】(1)首先化简(a -ab )+(b +2ab )-(a +b ),然后把a =7,b =17-代入化简后的算式即可.(2)根据垂直的定义得到∠AOC =90°,求得∠AOB =∠AOC +∠BOC =135°,根据角平分线的定义求出∠BOD ,再减去∠BOC 可得结果.【小题1】解:(a -ab )+(b +2ab )-(a +b )=a -ab +b +2ab -a -b=ab当a =7,b =17-时,原式=7×(17)=-1.【小题2】∵AO⊥CO,∴∠AOC=90°,∵∠AOC=2∠BOC,∴∠BOC=45°,∴∠AOB=∠AOC+∠BOC=135°,∵OD是∠AOB的平分线,∴∠BOD=12∠AOB=67.5°,∴∠COD=∠BOD-∠BOC=22.5°.【点睛】此题主要考查了整式的加减-化简求值问题,角度的计算,角平分线的定义,要熟练掌握,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.3、BP=4cm,AB=10cm【解析】【分析】设AP=3x cm,BP=2x cm,由AP=6cm,求出x=2,即可得到答案.【详解】解:∵AP与PB的长度之比为3∶2,∴设AP=3x cm,BP=2x cm,又∵AP=6cm,∴3x=6,x=2,∴BP=4cm,AB=10cm.【点睛】此题考查了线段的和差计算,根据AP与PB的长度之比为3∶2设未知数是解题的固定思路,注意此方法的积累,在角度计算,应用题中同样可以应用.4、 (1)画图见解析;(2)画图见解析;(3)画图见解析.【解析】【分析】(1)根据射线的定义连接BA并延长即可求解;(2)根据直线的定义连接AC并向两端延长即可求解;(3)连接AC和BD,根据两点之间线段最短可得AC与BD的交点即为点P.(1)解:如图所示,连接BA并延长即为要求作的射线BA,(2)解:连接AC并向两端延长即为要求作的直线AC,(3)解:如图所示,连接AC和BD,∵两点之间线段最短,∴当点P,B,D在一条直线上时,PB PD最小,∴线段AC 与BD 的交点即为要求作的点P .【点睛】本题主要是考查了几何作图能力以及两点之间线段最短和直线的概念,熟练掌握画图技巧,是解决作图题的关键.5、 (1)3或11;(2)a 的值为-12,-9,-4,-3.【解析】【分析】(1):设线段AB 的“和谐点”表示的数为x ,根据a =﹣1,b =5,分三种情况,①当1x <-时, 列出方程12(5)x x --=-.②当15x -≤<时,列出方程12(5)x x +=-.③当5x ≥时,列出方程12(5)x x +=-解方程即可.(2):点O 为AB 的“和谐点”OA =2OB ,列方程()020a b -=-或()020a b -=-,根据b =a +6且a <0,可得()0206a a -=--或()0260a a -=+-解方程,当A 为OB 的“和谐点”当b <0时,AB =2AO ,即6=-a ,不合题意,当b >0时,AO =2AB ,a =12>0,不合题意,当点B 为AO 的“和谐点”BA =2BO ,点B 在点O 的左边,6=2(-a -6),点B 在点O 的右边,6=2(a +6),解方程即可.(1)解:设线段AB 的“和谐点”表示的数为x ,①当1x <-时,列出方程12(5)x x --=-.解得11x =.(舍去)②当15x -≤<时,列出方程12(5)x x +=-.解得3x =.③当5x ≥时,列出方程12(5)x x +=-解得11x =.综上所述,线段AB 的“和谐点”表示的数为3或11.(2)解:点O 为AB 的“和谐点”OA =2OB ,()020a b -=-或()020a b -=-,∵b =a +6且a <0,()0206a a -=--,解得12a =-,()0260a a -=+-,解得4a =-,当A 为OB 的“和谐点”,当b <0时,a <-6,AB =2AO ,即6=-a ,解得a =-6,不合题意,当b >0时,AO =2AB ,即a =2×(b -a ),∵b =a +6,解得a=12>0,不合题意,当点B为AO的“和谐点”BA=2BO,点B在点O的左边,6=2(-a-6),解得:a=-9,点B在点O的右边,6=2(a+6),解得:a=-3,综合a的值为-12,-9,-4,-3.【点睛】本题考查新定义线段的和谐点,数轴上两点距离,一元一次方程,线段的倍分关系,掌握新定义线段的和谐点,数轴上两点距离求法,解一元一次方程,线段的倍分关系是解题关键.。
2022年最新精品解析鲁教版(五四制)六年级数学下册第五章基本平面图形章节测评试题(含答案解析)
六年级数学下册第五章基本平面图形章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个角的度数为54°12',则这个角的补角度数等于()A.125°48'B.125°88'C.135°48'D.136°48'2、已知,点C为线段AB的中点,点D在直线AB上,并且满足2CD=cm,则线段ABAD BD=,若6的长为()A.4cm B.36cm C.4cm或36cm D.4cm或2cm3、如图,一副三角板(直角顶点重合)摆放在桌面上,若∠BOC=20°,则∠AOD等于()A.160°B.140°C.130°D.110°4、将一副直角三角尺按如图所示的不同方式摆放,则图中∠α与∠β相等的是()A.B.C.D.5、已知线段AB、CD,AB大于CD,如果将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,这时点B的位置必定是()A.点B在线段CD上(C、D之间)B.点B与点D重合C.点B在线段CD的延长线上D.点B在线段DC的延长线上6、下列现象:①用两个钉子就可以把木条固定在墙上②从A地到B地架设电线,总是尽可能沿着线段AB架设③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线④把弯曲的公路改直,就能缩短路程其中能用“两点之间线段最短”来解释的现象有()A.①④B.①③C.②④D.③④7、图中共有线段()A.3条B.4条C.5条D.6条8、如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.105°B.125°C.135°D.145°9、下列说法错误的是()A.两点之间,线段最短B.经过两点有一条直线,并且只有一条直线C.延长线段AB和延长线段BA的含义是相同的D.射线AB和射线BA不是同一条射线10、一副三角板按如图所示的方式摆放,则∠1补角的度数为()A.45︒B.135︒C.75︒D.165︒第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、点A、B、C三点在同一条直线上,AB=10cm,BC=6cm,则AC =___ cm.2、直线上有A、B、C三点,AB=4,BC=6,则AC=___.3、在墙壁上用两枚钉子就能固定一根横放的木条,根据是_____________.4、如图,已知点O 是直线AB 上的一点,120COE ∠=︒,13AOF AOE ∠=∠.(1)当15BOE ∠=︒时,COA ∠的度数为__________;(2)当FOE ∠比∠BOE 的余角大40︒,COF ∠的度数为__________.5、一种零件的图纸如图所示,若AB =10mm ,BC =50mm ,CD =20mm ,则AD 的长为 _____mm .三、解答题(5小题,每小题10分,共计50分)1、补全解题过程.如图所示,点C 是线段AB 的中点,延长线段AB 至点D ,使BD =13AB ,若BC =3,求线段CD 的长. 解:∵点C 是线段AB 的中点,且BC =3(已知),∴AB =2× (①填线段名称)= (②填数值)∵BD =13AB (已知),∴BD = (③填数值),∴.CD = (④填线段名称)+BD = (⑤填数值).2、如图,已知线段AB =12cm ,CD =2cm ,线段CD 在线段AB 上运动,E 、F 分别是AC 、BD 的中点.(1)若AC =4cm ,EF =___cm ;(2)当线段CD 在线段AB 上运动时,试判断EF 的长度是否发生变化?如果不变,请求出EF 的长度,如果变化,请说明理由.3、若关于x ,y 的多项式()21402513m x n x y ⎛⎫-+-+-+ ⎪⎝⎭的值与字母x 取值无关. (1)求2m n -的值;(2)已知∠AOB =m °,在∠AOB 内有一条射线OP ,恰好把∠AOB 分成1:n 的两部分,求∠AOP 的度数.4、如图,,OB OE 是AOC ∠内的两条射线,OD 平分AOB ∠,12BOE EOC ∠=∠,若55DOE ∠=︒,150AOC ∠=︒,求EOC ∠的度数.5、已知∠AOB =90°,∠COD =80°,OE 是∠AOC 的角平分线.(1)如图1,若∠AOD =13∠AOB ,则∠DOE =________;(2)如图2,若OF 是∠AOD 的角平分线,求∠AOE −∠DOF 的值;(3)在(1)的条件下,若射线OP 从OE 出发绕O 点以每秒12°的速度逆时针旋转,射线OQ 从OD 出发绕O点以每秒8°的速度顺时针旋转,若射线OP、OQ同时开始旋转t秒(0<t<674)后得到∠COP=54∠AOQ,求t的值.-参考答案-一、单选题1、A【解析】【分析】由1805412'︒-︒计算求解即可.【详解】解:∵''180541217960541212548'︒-︒=︒-︒=︒′∴这个角的补角度数为'12548︒故选A.【点睛】本题考查了补角.解题的关键在于明确160︒=′.2、C【解析】【分析】分点D在点B的右侧时和点D在点B的左侧时两种情况画出图形求解.【详解】解:当点D在点B的右侧时,∵2AD BD=,∴AB=BD,∵点C为线段AB的中点,∴BC=1122AB BD=,∵6CD=,∴162BD BD+=,∴BD=4,∴AB=4cm;当点D在点B的左侧时,∵2AD BD=,∴AD=23 AB,∵点C为线段AB的中点,∴AC=BC=12 AB,∵6CD=,∴23AB-12AB=6,∴AB=36cm,故选C.【点睛】本题考查了线段的和差,以及线段中点的计算,分两种情况计算是解答本题的关键.3、A【解析】【分析】如图可以看出,∠BOC的度数正好是两直角相加减去∠AOD的度数,从而问题可解.【详解】解:∵∠AOB=∠COD=90°,∠BOC=20°,∴∠AOD=∠AOB+∠COD-∠BOC=90°+90°-20°=160°.故选:A.【点睛】此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.4、C【解析】【分析】A、由图形可得两角互余,不合题意;B、由图形得出两角的关系,即可做出判断;C、根据图形可得出两角都为45°的邻补角,可得出两角相等;D、由图形得出两角的关系,即可做出判断.【详解】解:A、由图形得:α+β=90°,不合题意;B、由图形得:β+γ=90°,α+γ=60°,可得β﹣α=30°,不合题意;C、由图形可得:α=β=180°﹣45°=135°,符合题意;D、由图形得:α+45°=90°,β+30°=90°,可得α=45°,β=60°,不合题意.故选:C.【点睛】本题考查了等角的余角相等,三角尺中角度的计算,掌握三角尺中各角的度数是解题的关键.5、C【解析】【分析】根据题意画出符合已知条件的图形,根据图形即可得到点B的位置.【详解】解:AB大于CD,将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,∴点B在线段CD的延长线上,故选:C.【点睛】本题考查了比较两线段的大小的应用,主要考查学生的观察图形的能力和理解能力.6、C【解析】【分析】直接利用直线的性质和线段的性质分别判断得出答案.【详解】解:①用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;②从A地到B地架设电线,总是尽可能沿着线段AB架设,能用“两点之间,线段最短”来解释,故此选项符合题意;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;④把弯曲的公路改直,就能缩短路程,能用“两点之间,线段最短”来解释,故此选项符合题意.故选:C.【点睛】本题考查了直线的性质和线段的性质,正确掌握相关性质是解题关键.7、D【解析】【分析】A B C D为端点数线段,从而可得答案.分别以,,,【详解】解:图中线段有:AB,AC,AD,BC,BD,CD,共6条,故选D【点睛】本题考查的是线段的含义以及数线段的数量,掌握“数线段的方法,做到不重复不遗漏”是解本题的关键.8、B【解析】【分析】由题意知()90709015BAC ∠=︒-︒+︒+︒计算求解即可.【详解】解:由题意知()90709015125BAC ∠=︒-︒+︒+︒=︒故答案为:B .【点睛】本题考查了方位角的计算.解题的关键在于正确的计算.9、C【解析】【分析】根据两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义依次分析判断.【详解】解:A. 两点之间,线段最短,故该项不符合题意;B. 经过两点有一条直线,并且只有一条直线,故该项不符合题意;C. 延长线段AB 和延长线段BA 的含义是不同的,故该项符合题意;D. 射线AB 和射线BA 不是同一条射线,故该项不符合题意;故选:C .【点睛】此题考查了两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义,综合掌握各知识点是解题的关键.10、D【解析】【分析】根据题意得出∠1=15°,再求∠1补角即可.【详解】由图形可得1453015∠=︒-︒=︒∴∠1补角的度数为18015165︒-︒=︒故选:D.【点睛】本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.二、填空题1、16或4##4或16【解析】【分析】分两种情况讨论,当C在B的右边时,当C在B的左边时,再结合线段的和差可得答案.【详解】解:如图,当C在B的右边时,AB=10cm,BC=6cm,16AC AB BC cm,如图,当C在B的左边时,AB=10cm,BC=6cm,AC AB BC cm,4故答案为:16或4【点睛】本题考查的是线段的和差关系,利用C的位置进行分类讨论是解本题的关键.2、10或2##2或10【解析】【分析】根据题目可分两种情况,C点在B点右测时,C在B左侧时,根据两种情况画图解析即可.【详解】解:①如图一所示,当C点在B点右测时:AC=AB+BC=4+6=10;②如图二所示:当C在B左侧时:AC=BC-AB=6-4=2,综上所述AC等于10或2,故答案为:10或2.【点睛】本题考查,线段的长度,点与点之间的距离,以及分类讨论思想,在解题中能够将分类讨论思想与几何图形相结合是本题的关键.3、两点确定一条直线【解析】【分析】根据两点确定一条直线,即可求解.【详解】解:在墙壁上用两枚钉子就能固定一根横放的木条,根据是两点确定一条直线.故答案为:两点确定一条直线【点睛】本题主要考查了直线的基本事实,熟练掌握两点确定一条直线是解题的关键.4、45° 20°【解析】【分析】(1)根据∠COA=∠AOE-∠COE求解即可;(2)设∠BOE=x,则∠BOE的余角为90°-x,然后求出∠COF和∠AOC,继而得到∠AOF=50°,再根据13AOF AOE∠=∠求得∠AOE和∠BOE,根据∠COF=∠COE-∠FOE即可求解.【详解】解:(1)∵∠BOE=15°,∴∠AOE=165°,∵∠COE=120°,∴∠COA=∠AOE-∠COE=45°,故答案为:45°;(2)设∠BOE=x,则∠BOE的余角为90°-x,∵∠FOE比∠B0E的余角大40°,∴∠FOE=90°-x+40°=130°-x,∵∠COE=120°,∴∠COF=∠COE-∠FOE=120°-(130°-x)=x-10°,∠AOC=180°-∠COE-∠BOE=180°-120°-x=60°-x,∴∠AOF=∠AOC+∠COF=(60°-x)+(x-10°)=50°,∵13AOF AOE ∠=∠,∴∠AOE=3∠AOF=150°,∴∠BOE=180°-∠AOE=180°-150°=30°,即x=30°,∴∠COF=∠COE-∠FOE= x-10°=30°-10°=20°故答案为:20°.【点睛】本题考查余角、补角的计算,解题的关键是熟知相关知识点.5、80【解析】【分析】根据AD=AB+BC+CD即可得答案.【详解】解:由图可知:AD=AB+BC+CD=10+50+20=80(mm).故答案为:80.【点睛】本题考查了线段的和差,掌握连接两点间的线段长叫两点间的距离是解本题的关键.三、解答题1、BC;6;2;BC;5【解析】【分析】根据线段的中点的性质以及线段的和差关系填写过程即可【详解】解:∵点C是线段AB的中点,且BC=3(已知),∴AB=2×BC(①填线段名称)=6(②填数值)∵BD=13AB(已知),∴BD=2(③填数值),∴.CD=BC(④填线段名称)+BD=5(⑤填数值).【点睛】本题考查了有关线段中点的计算,线段和差的计算,数形结合是解题的关键.2、 (1)7(2)不改变,EF=7cm.【解析】【分析】(1)先求出线段BD,然后再利用线段中点的性质求出AE,BF即可;(2)利用线段中点的性质证明EF的长度不会发生改变.(1)解:∵AB =12cm ,CD =2cm ,AC =4cm ,∴BD =AB -CD -AC =6(cm ),∵E 、F 分别是AC 、BD 的中点,∴CE =12AC =2(cm ),DF =12BD =3(cm ),∴EF =CE +CD +DF =7(cm );故答案为:7;(2)不改变,理由:∵AB =12cm ,CD =2cm ,∴AC +BD =AB -CD =10(cm ),∵E 、F 分别是AC 、BD 的中点,∴CE =12AC ,DF =12BD ,∴CE +DF =12AC +12BD =5(cm ),∴EF =CE +CD +DF =7(cm ) .【点睛】本题考查了两点间距离,熟练掌握线段上两点间距离的求法,灵活应用中点的性质解题是关键.3、 (1)116(2)40°或80°【解析】【分析】(1)不含x 的项,所以40−13m =0,−n +2=0,然后解出m 、n 即可;(2)把m 和n 代入,分∠AOP :∠BOP =1:2和∠AOP :∠BOP =2:1两种情况讨论,列式计算即可.(1)解:由题可知:40−13m =0,−n +2=0,解得:m =120,n =2,∴m −n 2=120−22=116;(2)解:由(1)得:m =120,n =2,∴∠AOB =120°,如图①,当∠AOP :∠BOP =1:2时,∠AOP =13∠AOB =40°;如图②,当∠AOP :∠BOP =2:1时,∠AOP =23∠AOB =80°;综上:∠AOP =40°或80°. .【点睛】本题考查了整式的加减,一元一次方程的解,以及角的运算,熟练掌握运算法则是解本题的关键. 4、80°【分析】设∠BOE为x°,则∠DOB=55°-x°,∠EOC=2x°,然后根据角平分线定义列方程解决求出∠BOE,可得∠EOC.【详解】解:设∠BOE=x°,则∠DOB=55°﹣x°,由∠BOE=12∠EOC可得∠EOC=2x°,由OD平分∠AOB,得∠AOB=2∠DOB,故有2x+x+2(55﹣x)=150,解方程得x=40,故∠EOC=2x=80°.【点睛】本题主要考查了角平分线的定义以及角的计算,根据角平分线的性质和已知条件列方程求解.方程思想是解决问题的基本思考方法.5、(1)25°(2)∠AOE-∠DOF=40°(3)t的值为18544秒或354秒【解析】【分析】(1)由题意得∠AOD=30°,再求出∠AOE=55°,即可得出答案;(2)先由角平分线定义得∠AOF=∠DOF=12∠AOD,∠AOE=12∠AOC,再证∠AOE-∠AOF=12∠COD,即可(3)分三种情况:①当射线OP、OQ在∠AOC内部时,②当射线OP在∠AOC内部时,射线OQ在∠AOC 外部时,③当射线OP、OQ在∠AOC外部时,由角的关系,列方程即可求解.(1)解:(1)∵∠AOB=90°,∴∠AOD=13∠AOB=30°,∵∠COD=80°,∴∠AOC=∠AOD+∠COD=30°+80°=110°,∵OE平分∠AOC,∴∠AOE=∠COE=12∠AOC=55°,∴∠DOE=∠AOE-∠AOD=55°-30°=25°;(2)解:∵OF平分∠AOD,∴∠AOF=∠DOF=12∠AOD,∵OE平分∠AOC,∴∠AOE=12∠AOC,∴∠AOE-∠AOF=12∠AOC-12∠AOD=12(∠AOC-∠AOD)=12∠COD,又∵∠COD=80°,∴∠AOE-∠DOF=12×80°=40°;(3)解:分三种情况:①当射线OP、OQ在∠AOC内部时,即0<t≤154时,由题意得:∠POE=(12t)°,∠DOQ=(8t)°,∴∠COP=∠COE-∠POE=(55-12t)°,∠AOQ=∠AOD-∠DOQ=(30-8t)°,∵∠COP=54∠AOQ,∴55-12t=54(30-8t),解得:t=354(舍去);②当射线OP在∠AOC内部时,射线OQ在∠AOC外部时,即154<t≤5512时,则∠COP=∠COE-∠POE=(55-12t)°,∠AOQ=∠DOQ-∠AOD=(8t-30)°,∴55-12t=54(8t-30),解得:t=185 44;③当射线OP、OQ在∠AOC外部时,即5512<t<674时,则∠COP=∠POE-∠COE=(12t-55)°,∠AOQ=∠DOQ-∠AOD=(8t-30)°,∴12t-55=54(8t-30),解得:t=354;综上所述,t的值为18544秒或354秒.【点睛】本题考查了角的计算、角的和差、角平分线的定义等知识,正确的识别图形是解题的关键.。
综合解析鲁教版(五四制)六年级数学下册第五章基本平面图形必考点解析试题(含答案及详细解析)
六年级数学下册第五章基本平面图形必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知,点C 为线段AB 的中点,点D 在直线AB 上,并且满足2AD BD =,若6CD =cm ,则线段AB 的长为( )A .4cmB .36cmC .4cm 或36cmD .4cm 或2cm2、如图,延长线段AB 到点C ,使2BC AB =,D 是AC 的中点,若6AB =,则BD 的长为( )A .2B .2.5C .3D .3.53、如果A 、B 、C 三点在同一直线上,且线段AB =6cm ,BC =4cm ,那么线段AC 的长为( )A .10cmB .2cmC .10或2cmD .无法确定4、如图,OM 平分AOB ∠,2MON BON ∠=∠,72AON BON ∠-∠=︒,则AOB ∠=( )A .96°B .108°C .120°D .144°5、如图,点D 是线段AB 的中点,点E 是AC 的中点,若6cm AB =,14cm AC =,则线段DE 的长度是( )A .3cmB .4cmC .5cmD .6cm6、已知50A ∠=,则∠A 的补角等于( )A .40B .50C .130D .1407、上午8:30时,时针和分针所夹锐角的度数是( )A .75°B .80°C .70°D .67.5°8、如图,∠AOB ,以OA 为边作∠AOC ,使∠BOC =12∠AOB ,则下列结论成立的是()A .AOC BOC ∠=∠B .AOC AOB ∠<∠C .AOC BOC ∠=∠或2AOC BOC ∠=∠D .AOC BOC ∠=∠或3AOC BOC ∠=∠9、延长线段AB 至点C ,分别取AC 、BC 的中点D 、E .若8cm AB =,则DE 的长度() A .等于2cm B .等于4cm C .等于8cm D .无法确定10、若α∠的补角是130︒,则α∠的余角是( )A .30B .40︒C .120︒D .150︒第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知∠α=7038︒',则∠α的余角的度数是_____.2、已知3728A '∠=︒,则它的余角是______.3、已知∠α与∠β互余,且∠α=35°30′,则∠β=______度.4、一块手表上午6点45分,此时时针分针所夹锐角的大小为__________度.5、钟表4点36分时,时针与分针所成的角为______度.三、解答题(5小题,每小题10分,共计50分)1、已知∠AOD =160°,OB 为∠AOD 内部的一条射线.(1)如图1,若OM 平分∠AOB ,ON 平分∠BOD ,求∠MON 的度数为 ;(2)如图2,∠BOC 在∠AOD 内部(∠AOC >∠AOB ),且∠BOC =20°,OF 平分∠AOC ,OG 平分∠BOD (射线OG 在射线OC 左侧),求∠FOG 的度数;(3)在(2)的条件下,∠BOC 绕点O 运动过程中,若∠BOF =8°,求∠GOC 的度数.2、如图,已知线段a ,b .(尺规作图,保留作图痕迹,不写作法)求作:线段2AB a b =-.3、如图,已知∠AOB =120°,OC 是∠AOB 内的一条射线,且∠AOC :∠BOC =1:2.(1)求∠AOC ,∠BOC 的度数;(2)作射线OM 平分∠AOC ,在∠BOC 内作射线ON ,使得∠CON :∠BON =1:3,求∠MON 的度数;(3)过点O 作射线OD ,若2∠AOD =3∠BOD ,求∠COD 的度数.4、点M ,N 是数轴上的两点(点M 在点N 的左侧),当数轴上的点P 满足PM =2PN 时,称点P 为线段MN 的“和谐点”.已知,点O ,A ,B 在数轴上表示的数分别为0,a ,b ,回答下面的问题:(1)当a =﹣1,b =5时,求线段AB 的“和谐点”所表示的数;(2)当b =a +6且a <0时,如果O ,A ,B 三个点中恰有一个点为其余两个点组成的线段的“和谐点”,直接写出此时a 的值.5、如图1,在数轴上点A 表示数a ,点B 表示数b ,O 为原点,AB 表示点A 和点B 之间的距离,且a ,b 满足()2520a b a +++=.(1)若T 为线段AB 上靠近点B 的三等分点,求线段OT 的长度;(2)如图2,若Q 为线段AB 上一点,C 、D 两点分别从Q 、B 出发以54个单位/s ,52个单位/s 的速度沿直线BA 向左运动(C 在线段AQ 上,D 在线段BQ 上),运动的时间为t s .若C 、D 运动到任意时刻时,总有2QD AC =,请求出AQ 的长;(3)如图3,E 、F 为线段OB 上的两点,且满足2BF EF =,4OE =,动点M 从A 点、动点N 从F 点同时出发,分别以3个单位/s ,1个单位/s 的速度沿直线AB 向右运动,是否存在某个时刻使得EM BN AE +=成立?若存在,求此时MN 的长度;若不存在,说明理由.-参考答案-一、单选题1、C【解析】【分析】分点D在点B的右侧时和点D在点B的左侧时两种情况画出图形求解.【详解】解:当点D在点B的右侧时,∵2AD BD=,∴AB=BD,∵点C为线段AB的中点,∴BC=1122AB BD=,∵6CD=,∴162BD BD+=,∴BD=4,∴AB=4cm;当点D在点B的左侧时,∵2AD BD =,∴AD =23AB , ∵点C 为线段AB 的中点,∴AC =BC =12AB , ∵6CD =, ∴23AB -12AB =6, ∴AB =36cm ,故选C .【点睛】本题考查了线段的和差,以及线段中点的计算,分两种情况计算是解答本题的关键.2、C【解析】【分析】由2BC AB =,6AB =,求出AC ,根据D 是AC 的中点,求出AD ,计算即可得到答案.【详解】解:∵2BC AB =,6AB =,∴BC =12,∴AC=AB+BC =18,∵D 是AC 的中点, ∴192AD AC ==, ∴BD=AD-AB=9-6=3,【点睛】此题考查了线段的和差计算,线段中点的定义,数据线段中点定义及掌握逻辑推理能力是解题的关键.3、C【解析】【分析】分AC =AB +BC 和AC =AB -BC ,两种情况求解.【详解】∵A 、B 、C 三点在同一直线上,且线段AB =6cm ,BC =4cm ,当AC =AB +BC 时,AC =6+4=10;当AC =AB -BC 时,AC =6-4=2;∴AC 的长为10或2cm故选C .【点睛】本题考查了线段的和差计算,分AB ,BC 同向和逆向两种情形是解题的关键.4、B【解析】【分析】设BON x ∠=,利用关系式2MON BON ∠=∠,72AON BON ∠-∠=︒,以及图中角的和差关系,得到3MOB x ∠=、722AOB x ∠=︒+,再利用OM 平分AOB ∠,列方程得到18x =︒,即可求出AOB ∠的值.解:设BON x ∠=,∵2MON BON ∠=∠,∴2MON x ∠=,∴23MOB MON BON x x x ∠=∠+∠=+=.∵72AON BON ∠-∠=︒,∴72AON x ∠=︒+,∴72722AOB AON BON x x x ∠=∠+∠=︒++=︒+.∵OM 平分AOB ∠, ∴12MOB AOB ∠=∠, ∴()137222x x =︒+,解得18x =︒. 72272218108AOB x ∠=︒+=︒+⨯︒=︒.故选:B .【点睛】本题通过图形中的角的和差关系,利用方程的思想求解角的度数.其中涉及角的平分线的理解:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.5、B【解析】【分析】根据中点的定义求出AE 和AD ,相减即可得到DE .【详解】解:∵D 是线段AB 的中点,AB =6cm ,∴AD=BD=3cm,∵E是线段AC的中点,AC=14cm,∴AE=CE=7cm,∴DE=AE-AD=7-3=4cm,故选B.【点睛】本题考查了中点的定义及两点之间的距离的求法,准确识图是解题的关键.6、C【解析】【分析】若两个角的和为180,︒则这两个角互为补角,根据互补的含义直接计算即可.【详解】解:50∠=,A∴∠A的补角为:18050130,故选C【点睛】本题考查的是互补的含义,掌握“利用互补的含义,求解一个角的补角”是解本题的关键.7、A【解析】【分析】根据钟面平均分成12份,可得每份的度数;根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:钟面平均分成12份,钟面每份是30°,上午8:30时时针与分针相距2.5份,此时时钟的时针与分针所夹的角(小于平角)的度数是30°×2.5=75°.故选:A.【点睛】本题考查了钟面角,时针与分针相距的份数乘以每份的度数是解题关键.8、D【解析】【分析】分OC在∠AOB内部和OC在∠AOB外部两种情况讨论,画出图形即可得出结论.【详解】解:当OC在∠AOB内部时,∵∠BOC=12∠AOB,即∠AOB=2∠BOC,∴∠AOC=∠BOC;当OC在∠AOB外部时,∵∠BOC=12∠AOB,即∠AOB=2∠BOC,∴∠AOC=3∠BOC;综上,∠AOC=∠BOC或∠AOC=3∠BOC;故选:D.【点睛】本题考查了角平分线的定义,熟练掌握角平分线的定义,数形结合解题是关键.9、B【解析】【分析】由题意知111=()222AD AC BE BC AC AB==⨯-,,如图分两种情况讨论①DE DB BE=+②DE BE BD=-;用已知线段表示求解即可.【详解】解:由题意知111=() 222AD AC BE BC AC AB ==⨯-,①如图1∵DE DB BE=+,12 DB AB AC =-∴18==42222AC AB AB DE AB AC cm -=-+=; ②如图2∵DE BE BD =-,12BD AC AB =- ∴18()42222AC AB AB DE AC AB cm -=--===; 综上所述,4DE cm =故选B .【点睛】本题考查了线段中点.解题的关键在于正确的找出线段的数量关系.10、B【解析】【分析】直接利用一个角的余角和补角差值为90°,进而得出答案.【详解】解:∵∠α的补角等于130°,∴∠α的余角等于:130°-90°=40°.故选:B .【点睛】本题主要考查了余角和补角,正确得出余角和补角的关系是解题关键.二、填空题1、1922︒'【解析】【分析】根据90度减去7038︒'即可求解.【详解】解:∠α=7038︒',则∠α的余角的度数是907038896070381922''''︒-︒=︒-︒=︒故答案为:1922'︒【点睛】本题考查了角度的计算,求一个角的余角,掌握角度的计算是解题的关键.2、'5232︒【解析】【分析】根据余角的定义求即可.【详解】解:∵3728A '∠=︒,∴它的余角是90°-3728'︒='5232︒,故答案为:'5232︒.【点睛】本题考查了余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.3、54.5【解析】【分析】根据90°-∠α即可求得β∠的值.【详解】解:∵∠α与∠β互余,且∠α=35°30′,∴∠β903530'=︒-︒896035305430'''=︒-︒=︒ 30300.560'==︒ 54.5β∴∠=︒故答案为:54.5【点睛】本题考查了求一个角的余角,角度进制的转化,正确的计算是解题的关键.4、67.5【解析】【分析】6点45分时,分针指向9,时针在指向6与7之间,则时针45分钟转过的角度即为6时45分时,时钟的时针与分针的夹角度数,根据时针每分钟转0.5°,计算2×30°+30°-0.5°×45即可.【详解】解:∵6点45分时,分针指向9,时针在指向6与7之间,∴时针45分钟转过的角度即为6时45分时,时钟的时针与分针的夹角度数,即2×30°+30°-0.5°×45=67.5°.故答案为:67.5.【点睛】本题考查了钟面角:钟面被分成12大格,每格30°;分针每分钟转6°,时针每分钟转0.5°. 5、78【解析】【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助钟表,找出10时20分时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:因为时针在钟面上每分钟转360÷12÷60=0.5(度),分针每分钟转360÷60=6(度),所以钟表上4时36分时,时针与分针的夹角可以看成:时针转过4时0.5°×36=18°,分针转过7时6°×1=6°.因为钟表12个数字,每相邻两个数字之间的夹角为30°,所以4时36分时,分针与时针的小的夹角3×30°-18°+6°=78°.故在14时36分,时针和分针的夹角为78°.故答案为:78.【点睛】本题考查钟面角的相关计算;用到的知识点为:时针每分钟走0.5度;钟面上两个相邻数字之间相隔30°.三、解答题1、(1)80°;(2)70°(3)42°或58°.【解析】【分析】(1)根据角平分线的性质证得∠BOM=12∠AOB,∠BON=12∠BOD,即可得到答案;(2)设∠BOF=x,根据角平分线的性质求出∠AOC=2∠COF=40°+2x,得到∠COD=∠AOD-∠AOC=140°-2x,由OG平分∠BOD,求出∠BOG=12∠BOD=70°−x,即可求出∠FOG的度数;(3)分两种情况:①当OF在OB右侧时,由∠BOC=20°,∠BOF=8°,求得∠COF的度数,利用OF 平分∠AOC,得到∠AOC的度数,得到∠BOD的度数,根据OG平分∠BOD,求出∠BOG的度数,即可求出答案;②当OF在OB左侧时,同理即可求出答案.(1)解:∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12∠AOD=80°;故答案为:80°;(2)解:设∠BOF=x,∵∠BOC=20°,∴∠COF=20°+x,∵OF平分∠AOC,∴∠AOC=2∠COF=40°+2x,∴∠COD=∠AOD-∠AOC=140°-2x,∵OG平分∠BOD,∴∠BOG=12∠BOD=70°−x,∴∠FOG=∠BOG+∠BOF=70°−x+x=70°;(3)解:当OF在OB右侧时,如图,∵∠BOC=20°,∠BOF=8°,∴∠COF=28°,∵OF平分∠AOC,∴∠AOC=2∠COF=56°,∴∠COD=∠AOD-∠AOC=104°,∴∠BOD=124°,∵OG平分∠BOD,∠BOD=62°,∴∠BOG=12∴∠GOC=∠BOG−∠BOC=62°−20°=42°.当OF在OB左侧时,如图,∵∠BOC=20°,∠BOF=8°,∴∠COF=12°,∵OF平分∠AOC,∴∠AOC=2∠COF=24°,∴∠COD=∠AOD-∠AOC=136°,∴∠BOD=156°,∵OG平分∠BOD,∠BOD=78°,∴∠BOG=12∴∠GOC=∠BOG−∠BOC=78°−20°=58°.∴∠GOC的度数为42°或58°.【点睛】此题考查了几何图形中角度的计算,角平分线的有关计算,正确掌握角平分线的定义及图形中各角度之间的位置关系进行计算是解题的关键.2、见解析【解析】【分析】作射线AM,在射线AM,上顺次截取AC=a,CD=a,再反向截取DB=b,进而可得线段AB.【详解】.解:如图,线段AB即为所求作的线段2a b【点睛】本题考查尺规作图—线段的和差,是基础考点,掌握相关知识是解题关键.3、(1)∠AOC=40°,∠BOC=80°(2)40°(3)∠COD的度数为32°或176°【解析】【分析】(1)根据∠AOC:∠BOC=1:2,即可求解;(2)先求出∠COM,再求出∠CON,相加即可求解;(3)分OD在∠AOB内部和外部两种情况分类讨论即可求解.【小题1】解:∵∠AOC:∠BOC=1:2,∠AOB=120°,∴∠AOC=13∠AOB=13×120°=40°,∠BOC=23∠AOB=23×120°=80°;【小题2】∵OM平分∠AOC,∴∠COM=12∠AOC=12×40°=20°,∵∠CON:∠BON=1:3,∴∠CON=14∠BOC=14×80°=20°,∴∠MON=∠COM+∠CON=20°+20°=40°;【小题3】如图,当OD在∠AOB内部时,设∠BOD=x°,∵2∠AOD=3∠BOD,∴∠AOD=32x︒,∵∠AOB=120°,∴x+32x=120,解得:x=48,∴∠BOD=48°,∴∠COD=∠BOC-∠BOD=80°-48°=32°,如图,当OD在∠AOB外部时,设∠BOD=y°,∵2∠AOD=3∠BOD,∴∠AOD=32y︒,∵∠AOB=120°,∴32y +y +120°=360°解得:y =96°,∴∠COD =∠BOD +∠BOC=96°+80°=176°,综上所述,∠COD 的度数为32°或176°.【点睛】本题考查了角的计算及角平分线,掌握角的特点及比例的意义是解决问题的关键.4、 (1)3或11;(2)a 的值为-12,-9,-4,-3.【解析】【分析】(1):设线段AB 的“和谐点”表示的数为x ,根据a =﹣1,b =5,分三种情况,①当1x <-时, 列出方程12(5)x x --=-.②当15x -≤<时,列出方程12(5)x x +=-.③当5x ≥时,列出方程12(5)x x +=-解方程即可. (2):点O 为AB 的“和谐点”OA =2OB ,列方程()020a b -=-或()020a b -=-,根据b =a +6且a <0,可得()0206a a -=--或()0260a a -=+-解方程,当A 为OB 的“和谐点”当b <0时,AB =2AO ,即6=-a ,不合题意,当b >0时,AO =2AB ,a =12>0,不合题意,当点B 为AO 的“和谐点”BA =2BO ,点B 在点O 的左边,6=2(-a -6),点B 在点O 的右边,6=2(a +6),解方程即可.(1)解:设线段AB 的“和谐点”表示的数为x ,①当1x <-时,列出方程12(5)x x --=-.解得11x =.(舍去)②当15x -≤<时,列出方程12(5)x x +=-.解得3x =.③当5x ≥时,列出方程12(5)x x +=-解得11x =.综上所述,线段AB 的“和谐点”表示的数为3或11.(2)解:点O 为AB 的“和谐点”OA =2OB ,()020a b -=-或()020a b -=-,∵b =a +6且a <0,()0206a a -=--,解得12a =-,()0260a a -=+-,解得4a =-,当A 为OB 的“和谐点”,当b <0时,a <-6,AB =2AO ,即6=-a ,解得a =-6,不合题意,当b >0时,AO =2AB ,即a =2×(b -a ),∵b =a +6,解得a =12>0,不合题意,当点B 为AO 的“和谐点”BA =2BO ,点B 在点O 的左边,6=2(-a -6),解得:a =-9,点B 在点O 的右边,6=2(a +6),解得:a =-3,综合a 的值为-12,-9,-4,-3.【点睛】本题考查新定义线段的和谐点,数轴上两点距离,一元一次方程,线段的倍分关系,掌握新定义线段的和谐点,数轴上两点距离求法,解一元一次方程,线段的倍分关系是解题关键.5、 (1)5(2)5(3)存在,9或0【解析】【分析】(1)根据绝对值的非负性及偶次方的非负性求出a =-5,b =10,得到AB =10-(-5)=15,由T 为线段AB 上靠近点B 的三等分点,得到BT =5,根据OT=OB-BT 求出结果;(2)由运动速度得到BD =2QC ,由C 、D 运动到任意时刻时,总有2QD AC =,得到BQ =2AQ ,即可求出AQ ;(3)先求出BF=4,EF =2,AE =9.当03m ≤≤时,得到9-3m +4-m =9,当34m <≤时,得到3m-9+4-m =9;当m >4时,得到3m-9+m-4=9,解方程即可.(1) 解:∵()2520a b a +++=,∴a +5=0,b +2a =0,∴a =-5,b =10,∴点A 表示数-5,点B 表示数10,∴AB =10-(-5)=15,∵T 为线段AB 上靠近点B 的三等分点,∴BT =5,∴OT=OB-BT =5;(2)解:∵C 、D 两点分别从Q 、B 出发以54个单位/s ,52个单位/s 的速度沿直线BA 向左运动(C 在线段AQ 上,D 在线段BQ 上),∴BD =2QC ,∵C 、D 运动到任意时刻时,总有2QD AC =,∴BQ =2AQ ,∵BQ +AQ =15,∴AQ =5;(3)解:∵2BF EF =,4OE =,∴BF=4,EF =2,AE =9,设点M 运动ms ,当03m ≤≤时,如图,∵EM=9-3m ,BN =4-m ,EM BN AE +=,∴9-3m +4-m =9,解得m =1,∴MN =9-3m +2+m =9;当34m <≤时,如图,∵EM=3m-9,BN =4-m ,EM BN AE +=,∴3m-9+4-m =9,解得m =7(舍去);当m >4时,如图,∵EM=3m-9,BN =m-4,EM BN AE +=,∴3m-9+m-4=9,解得m =112; ∴MN =15-3m +m-4=0;综上,存在,此时MN 的长度为9或0.【点睛】此题考查数轴上两点之间的距离,绝对值的非负性及偶次方的非负性,数轴上动点问题,一元一次方程,正确掌握数轴上两点间的距离公式是解题的关键.。
2020年鲁教版(五四制)六年级下册数学第五章单元测试题及答案
第五章单元测试一.选择题1.下列说法中正确的个数为()(1)过两点有且只有一条直线;(2)连接两点的线段叫两点间的距离;(3)两点之间所有连线中,线段最短;(4)射线比直线小一半.A.1个B.2个C.3个D.4个2.下列说法正确的是()A.一个平角就是一条直线B.连接两点间的线段,叫做这两点的距离C.两条射线组成的图形叫做角D.经过两点有一条直线,并且只有一条直线3.下列四个生产生活现象,可以用基本事实“两点之间,线段最短”来解释的是()A.用两个钉子就可以把木条固定在墙上B.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线C.打靶的时候,眼睛要与枪上的准星、靶心在同一条直线上D.从A地到B地架设电线,总是尽可能沿着线段AB来架设4.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点.点P沿直线l 从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P最多有()A.4个B.5个C.6个D.7个5.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间D.BC之间6.如图所示四个图形中,能用∠α、∠AOB、∠O三种方法表示同一个角的图形是()A.B.C.D.7.如图,从4点钟开始,过了40分钟后,分钟与时针所夹角的度数是()A.90°B.100°C.110°D.120°8.如图,一艘轮船行驶在点O处同时测得海岛A、B的方向北分别是北偏东75°和西北方向,则∠AOB的度数是()A.l50°B.135°C.120°D.100°9.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分对角10.下列判断错误的是()A.对角线相互垂直且相等的平行四边形是正方形B.对角线相互垂直平分的四边形是菱形C.对角线相等的四边形是矩形D.对角线相互平分的四边形是平行四边形11.如图所示的图形中,属于多边形的有()个.A.3B.4C.5D.612.过某个多边形一点顶点的所有对角线,将这个多边形分成了5个三角形,则这个多边形是()A.五边形B.六边形C.七边形D.八边形二.填空题1.在一平面内有四个点,过其中任意两个点画直线,可以画条直线.2.在我们的生活中处处都能体现出数学知识的应用,当我们在植树的时候,要整齐地栽一行树,只要确定两端树坑的位置就可以了.这一方法用数学知识解释其道理为.3.如图,把原来弯曲的河道改直,A、B两地间的河道长度就发生了变化,请你用数学知识解释这一现象产生的原因.4.已知点B,C,在线段AD上,且AC=3CD,B是AC的中点,若BD=5,则AD=.5.点A,B,C在直线l上.若AB=4,AB=2AC,则BC的长度为.6.如图所示,在已知角内画射线,画1条射线,图中共有个角;画2条射线,图中共有个角;画3条射线,图中共有个角;画n条射线,图中共有个角.三.解答题1.如图,已知A、B、C、D四点,根据下列语句画图(1)画直线AB(2)连接AC、BD,相交于点O(3)画射线AD、BC,交于点P.2.探究归纳题:(1)试验分析:如图1,直线上有两点A与B,图中有线段条;(2)拓展延伸:图2直线上有A,B,C三个点,以A为端点,有线段AB,线段AC;同样以C为端点,有线段CA,线段CB;以B为端点,有线段BA,线段BC,去除重复线段,图2共有条线段;同样方法探究出图3中有条线段;(3)探索归纳:如果直线上有n(n为正整数)个点,则共有条线段.(用含n的式子表示)(4)解决问题:①中职篮(CBA)2018﹣﹣2019赛季,比赛队伍数仍然为20支,截止2018年12月14日,赛程已经过半(每两队之间都赛了一场),请你帮助计算一下目前一共进行了多少场比赛?②2018年11月30日,赤峰至京沈高铁喀左站客运专线路基工程全部完成,将正式进入轨道铺设阶段,预计2020年7月1日通车,北京至赤峰有北京星火站,顺义西站,怀柔南站,密云站,兴隆西站,安匠站,承德南站,承德县北站,平泉北站,牛河梁站,喀左站,宁城站、平庄西站、赤峰西站等共计14个车站,请你帮助计算一下,应该设计多少种高铁车票?3.如图(1),已知A、B位于直线MN的两侧,请在直线MN上找一点P,使PA+PB最小,并说明依据.如图(2),动点O在直线MN上运动,连接AO,分别画∠AOM、∠AON的角平分线OC、OD,请问∠COD的度数是否发生变化?若不变,求出∠COD的度数;若变化,说明理由.4.已知线段AB=8(点A在点B的左侧)(1)若在直线AB上取一点C,使得AC=3CB,点D是CB的中点,求AD的长;(2)若M是线段AB的中点,点P是线段AB延长线上任意一点,请说明PA+PB﹣2PM是一个定值.5.如图①,已知点M是线段AB上一点,点C在线段AM上,点D在线段BM上,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示.(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,则:AM=AB.(3)如图②,若AM AB,点N是直线AB上一点,且AN﹣BN=MN,求的值.。
2020-2021学年鲁教版(五四制)六年级数学下册《第五章基本平面图形》单元综合达标测评
鲁教版2021年度六年级数学下册《第五章基本平面图形》单元综合达标测评(附答案)1.过平面内已知点A作直线,可作直线的条数为()A.0条B.1条C.2条D.无数条2.若线段AB=12cm,点C是线段AB的中点,点D是线段AC的三等分点,则线段BD的长为()A.2cm或4cm B.8cm C.10cm D.8cm或10cm 3.用一副三角板不能画出的角是()A.75°B.105°C.110°D.135°4.如图,点A,B是直线上的两点,则图中分别以A,B为端点的射线的条数为()A.1B.2C.3D.45.下列说法正确的有()个.①把一个角分成两个角的射线叫做这个角的角平分线;②连接C、D两点的线段叫两点之间的距离;③两点之间直线最短;④射线上点的个数是直线上点的个数的一半;⑤n边形从其中一个顶点出发连接其余各顶点,可以画出(n﹣3)条对角线,这些对角线把这个n边形分成了(n﹣2)个三角形.A.3B.2C.1D.06.点E在线段CD上,下面的等式:①CE=DE;②DE=CD;③CD=2CE;④CD=DE.其中能表示E是CD中点的有()A.1个B.2个C.3个D.4个7.如图所示,∠AOB是平角,OC是射线,OD、OE分别是∠AOC、∠BOC的角平分线,若∠COE=28°,则∠AOD的度数为()A.56°B.62°C.72°D.124°8.兴泉铁路是江西省兴国县至福建省泉州市正在建设中的国家一级铁路,途中经过三明地界停靠的车站依次是:宁化﹣清流﹣明溪﹣三元区﹣永安﹣大田,那么要为三明境内站点拟制作的火车票有()A.15种B.18种C.30种D.36种9.上午10:00时,钟表的时针与分针的夹角为()A.60°B.90°C.120°D.30°10.在同一平面上,若∠BOA=60°,∠BOC=20°,则∠AOC的度数是()A.80°B.40°C.20°或40°D.80°或40°11.如图,在直角∠AOB的内部作射线OC,若∠AOC=33°24′17″,则∠BOC=.12.如图,从O点引出6条射线OA、OB、OC、OD、OE、OF,且∠AOB=80°,∠EOF =160°,OE、OF分别是∠AOD、∠BOC的平分线.则∠COD的度数为度.13.要把一根细木条固定在墙上,至少需要钉两个钉子,其中蕴含的数学道理是.14.已知点A,B,C在同一条直线上,AB=4cm,BC=5cm,则AC=.15.如图,点A,O,B在同一条直线上,射线OD和射线OE分别平分∠AOC和∠BOC,这时有∠BOC=2∠BOE=2,∠COD=∠AOD=,∠DOE=°.16.一个n边形从一个顶点出发引出的对角线可将其分割成5个三角形,则n的值为.17.如图,点B、D在线段AC上,且BD=AB=CD,E、F分别是AB、CD的中点,EF=10cm,则CD=cm.18.如图,将一个圆形的蛋糕等分成六份,则每一份中的角的度数为.19.已知A,B,C三点,过其中每两个点画直线,一共可以画条直线.20.已知∠A=41°18′36″,∠B=36°17′42″;则∠A+∠B=.21.已知:OB是∠AOC的角平分线,OC是∠AOD的角平分线,∠COD=40°.分别求∠AOD和∠BOC的度数.22.如图,已知线段AF长13cm,点B、C、D、E顺次在AF上,且AB=BC=CD,E是DF的中点,CE=5cm,求BE的长.23.已知O为直线AB上一点,过点O向直线AB上方引两条射线OC,OD,且OC平分∠AOD.(Ⅰ)请在图①中∠BOD的内部画一条射线OE,使得OE平分∠BOD,并求此时∠COE 的度数;(Ⅱ)如图②,若在∠BOD内部画的射线OE,恰好使得∠BOE=3∠DOE,且∠COE =70°,求此时∠BOE的度数.24.如图,点O为直线AB上一点,∠BOC=40°,OD平分∠AOC.(1)求∠AOD的度数;(2)作射线OE,使∠BOE=∠COE,求∠COE的度数;(3)在(2)的条件下,作∠FOH=90°,使射线OH在∠BOE的内部,若∠DOF=3∠BOH,求∠AOH的度数.25.如图,点C是线段AB上的一点,点M是线段AC的中点,点N是线段BC的中点.(1)如果AB=12cm,AM=5cm,求BC的长;(2)如果MN=8cm,求AB的长.26.已知直线l依次三点A、B、C,AB=6,BC=m,点M是AC点中点(1)如图,当m=4,求线段BM的长度(写清线段关系)(2)在直线l上一点D,CD=n<m,用m、n表示线段DM的长度.27.如图所示,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长.(2)若C为线段AB上任意一点,满足AC+CB=acm,其他条件不变,你能猜想出MN 的长度吗?并说明理由.(3)若C在线段AB的延长线上,且满足AC﹣CB=bcm,M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,写出你的结论,并说明理由.参考答案1.解:过平面内已知点A作直线,可作直线的条数为无数条,故选:D.2.解:∵C是线段AB的中点,AB=12cm,∴AC=BC=AB=×12=6(cm),点D是线段AC的三等分点,①当AD=AC时,如图,BD=BC+CD=BC+AC=6+4=10(cm);②当AD=AC时,如图,BD=BC+CD′=BC+AC=6+2=8(cm).所以线段BD的长为10cm或8cm,故选:D.3.解:75°可以用三角板的30°和45°画出,105°可以用三角板的45°和60°画出,110°用一副三角板不能画出,135°可以用三角板的45°和90°画出.故选:C.4.解:以A为端点的射线有2条,以B为端点的射线有2条,共4条,故选:D.5.解:从角的顶点出发,把一个角分成两相等的角的射线叫角的平分线,故①说法错误;连接C、D两点的线段的长度叫两点之间的距离,故②说法错误;两点之间,线段最短,故③说法错误;射线上点的个数和直线上点的个数都是无数个,故④说法错误;n边形从其中一个顶点出发连接其余各顶点,可以画出(n﹣3)条对角线,这些对角线把这个n边形分成了(n﹣2)个三角形,故⑤说法正确.所以法正确的有1个.故选:C.6.解:假设点E是线段CD的中点,则CE=DE,故①正确;当DE=CD时,则CE=CD,点E是线段CD的中点,故②正确;当CD=2CE,则DE=2CE﹣CE=CE,点E是线段CD的中点,故③正确;④CD=DE,点E不是线段CD的中点,故④不正确;综上所述:①、②、③正确,只有④是错误的.故选:C.7.解:∵OE平分∠BOC,∴∠BOC=2∠COE=56°.∴∠AOC=180°﹣∠BOC=124°.∵OD平分∠AOC,∴∠AOD=∠COD=∠AOC=62°.故选:B.8.解:设宁化﹣清流﹣明溪﹣三元区﹣永安﹣大田六站分别用A、B、C、D、E、F表示,则共有线段:AB、AC、AD、AE、AF、BC、BD、BE、BF、CD、CE、CF、DE、DF、EF共15条,所以共需要15种车票.故选:A.9.解:∵10点整,时针指向10,分针指向12,中间相差两大格,钟表12个数字,每相邻两个数字之间的夹角为30°,∴10点整分针与时针的夹角是2×30°=60°.故选:A.10.解:(1)如图所示:当OC边在∠BOA的外部时,∠AOC=∠BOA+∠BOC=60°+20°=80°;(2)如图所示:当OC边在∠BOA的内部时,∠AOC=∠BOA﹣∠BOC=60°﹣20°=40°.故选:D.11.解:∵∠AOB=90°,∠AOC=33°24′17″,∴∠BOC=∠AOB﹣∠AOC=90°﹣33°24′17″=56°35′43″,故答案为:56°35′43″.12.解:设∠AOE=α,∠BOF=β,∵∠AOB=80°,∠EOF=160°,∴∠AOE+∠BOF=360°﹣∠AOE﹣∠BOF=360°﹣80°﹣160°=120°.∵OE、OF分别是∠AOD、∠BOC的平分线.∴∠AOD=2α,∠BOC=2β.∴∠COD=360°﹣∠AOB﹣∠AOD﹣∠BOC=360°﹣80°﹣120°×2=40°.故答案为40.13.解:要把一根细木条固定在墙上,至少需要钉两个钉子,其中蕴含的数学道理是两点确定一条直线,故答案为:两点确定一条直线.14.解:当点C在线段AB的延长线上时,AC=BC+AB=5cm+4cm=9cm;当点C在线段BA的延长线上时,AC=BC﹣AB=5cm﹣4cm=1cm;故则AC=1cm或9cm.故答案为:1cm或9cm.15.解:∵射线OD和射线OE分别平分∠AOC和∠BOC,∴∠BOC=2∠BOE=2∠COE,∠COD=∠AOD=∠AOC,∴∠DOE=∠COE+∠COD=(∠BOC+∠COA)=180°=90°.故答案为:∠COE,∠AOC,90°.16.解:依题意有n﹣2=5,解得n=7.故答案为:7.17.解:由BD=AB=CD,得AB=3BD,CD=4BD.由线段的和差,得AD=AB﹣BD=2BD,AC=AD+CD=2BD+4BD=6BD.由线段AB、CD的中点E、F,得AE=AB=BD,FC=CD=BD=2BD.由线段的和差,得EF=AC﹣AE﹣FC=6BD﹣BD﹣2BD=10,解得:BD=4cm,CD=×4==16cm,故答案为:16.18.解:因为周角的度数是360°,所以每一份中的角的度数为=60°.故答案为:60°.19.解:如图,最多可以画3条直线,最少可以画1条直线,.故答案为:1或3.20.解:∵∠A=41°18′36″,∠B=36°17′42″,∴∠A+∠B=41°18′36″+36°17′42″=77°35′78″=77°36′18″,故答案为:77°36′18″.21.解:∵OC平分∠AOD,∴∠AOC=∠COD=∠AOD,又∵∠COD=40°,∴∠AOD=80°,∠AOC=40°,∵OB平分∠AOC,∴∠BOC=∠AOC=20°.22.解:设AB=BC=CD=x,则BD=2x,∴DF=13﹣3x,∵E是DF的中点,∴DE=(13﹣3x),∵CE=5,∴x+(13﹣3x)=5,∴x=3,∴BC=3,∴BE=BC+CE=8.23.解:(1)∵OC平分∠AOD,∴∠AOC=∠COD=∠AOD,∵OE平分∠BOD,∴∠BOE=∠DOE=∠BOD,又∵∠AOD+∠BOD=180°,∴2∠COD+2∠DOE)=180°,∴∠COD+∠DOE)=90°,即∠DOE=90°,答:此时∠COE的度数为90°;(2)设∠DOE=x,则∠BOE=3x,∵∠AOD+∠BOD=180°,∴∠AOD=180°﹣4x,∵OC平分∠AOD,∴∠AOC=∠COD=∠AOD=90°﹣2x,∵∠COE=70°,∴∠COD+∠DOE=70°,即:90°﹣2x+x=70°,解得,x=20°,∴∠BOE=3x=60°.24.解:(1)∵∠BOC=40°,∴∠AOC=180°﹣∠BOC=140°,∵OD平分∠AOC,∴∠AOD=AOC=70°;(2)①如图1,当射线OE在AB上方时,∠BOE=∠COE,∵∠BOE+∠COE=∠BOC,∴∠COE+∠COE=40°,∴∠COE=24°;②如图2,当射线OE在AB下方时,∠BOE=∠COE,∵∠COE﹣∠BOE=∠BOC,∴∠COE﹣∠COE=40°,∴∠COE=120°;综上所述:∠COE的度数为24°或120°;(3)①如图3,当射线OE在AB上方,OF在AB上方时,作∠FOH=90°,使射线OH在∠BOE的内部,∠DOF=3∠BOH,设∠BOH=x°,则∠DOF=3x°,∠FOC=∠COD﹣∠DOF=70°﹣3x°,∵∠AOH=∠AOD+∠DOF+∠FOH=70°+3x°+90°=160°+3x°,∠EOH=∠BOC﹣∠COE﹣∠BOH=40°﹣24°﹣x°=16°﹣x°,∴∠FOH=∠FOC+∠COE+∠EOH=70°﹣3x°+24°+16°﹣x°=90°,∴x°=5°,∴∠AOH=160°+3x°=175°;②如图4,当射线OE在AB上方,OF在AB下方时,∵∠AOF=∠DOF﹣∠AOD=3x°﹣70°,∠BOF=∠FOH﹣∠BOH=90°﹣x°,∠AOF+∠BOF=180°,∴3x°﹣70°+90°﹣x°=180°,解得x°=80°,∵∠COB=40°,∵80°>40°,∴x°=80°不符合题意舍去;③如图5,当射线OE在AB下方,OF在AB上方时,∵∠AOF=∠DOF+∠AOD=3x°+70°,∠BOF=∠FOH﹣∠BOH=90°﹣x°,∠AOF+∠BOF=180°,∴3x°+70°+90°﹣x°=180°,解得x°=10°,∴∠AOH=180°﹣∠BOH=180°﹣x°=170°;④如图6,当射线OE在AB下方,OF在AB下方时,∵∠AOF=∠DOF﹣∠AOD=3x°﹣70°,∠BOF=∠FOH+∠BOH=90°+x°,∠AOF+∠BOF=180°,∴3x°﹣70°+90°+x°=180°,解得x°=40°,∴∠AOH=∠AOF+∠FOH=50°+90°=140°.综上所述:∠AOH的度数为175°或170°或140°.25.解:(1)∵点M是线段AC的中点,∴AC=2AM,∵AM=5cm,∴AC=10cm,∵AB=12cm,∴BC=AB﹣AC=2cm;(2)∵点M是线段AC的中点,点N是线段BC的中点,∴BC=2NC,AC=2MC,∵MN=NC+MC=8cm,∴AB=BC+AC=2MN=2×8=16cm.26.解:(1)当m=4时,BC=4,又∵AB=6,∴AC=4+6=10,又M为AC中点,∴AM=MC=5,∴BM=AB﹣AM=6﹣5=1;(2)∵AB=6,BC=m,∴AC=6+m,∵M为AC中点,∴,①当D在线段BC上,M在D的左边时,CD=n,MD=MC﹣CD==;②当D在线段BC上,M在D的右边边时,CD=n,MD=DC﹣MC=n﹣=;③当D在l上且在点C的右侧时,CD=n,MD=MC+CD=+n=.27.解:(1)∵点M、N分别是AC、BC的中点,∴MC=AC=×8cm=4cm,NC=BC=×6cm=3cm,∴MN=MC+NC=4cm+3cm=7cm;(2)MN=acm.理由如下:∵点M、N分别是AC、BC的中点,∴MC=AC,NC=BC,∴MN=MC+NC=AC+BC=AB=acm;(3)解:如图,∵点M、N分别是AC、BC的中点,∴MC=AC,NC=BC,∴MN=MC﹣NC=AC﹣BC=(AC﹣BC)=bcm.。
2021-2022学年度鲁教版(五四)六年级数学下册第五章基本平面图形单元测试试题(含详细解析)
六年级数学下册第五章基本平面图形单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,线段21cm AD =,点B 在线段AD 上,C 为BD 的中点,且13AB CD =,则BC 的长度( )A .6cmB .7cmC .8cmD .9cm2、若5318A '∠=︒,则A ∠的补角的度数为( ) A .3642'︒B .3682'︒C .12642'︒D .12682'︒3、如图,下列说法不正确的是( )A .直线m 与直线n 相交于点DB .点A 在直线n 上C .DA +DB <CA +CBD .直线m 上共有两点4、已知50A ∠=,则∠A 的补角等于( )A .40B .50C .130D .1405、如图,已知C 为线段AB 上一点,M 、N 分别为AB 、CB 的中点,若AC =8cm ,则MC +NB 的长为( )A .3cmB .4cmC .5cmD .6cm6、如图,点N 为线段AM 上一点,线段20MN =.第一次操作:分别取线段AM 和AN 的中点1M ,1N ;第二次操作:分别取线段1AM 和1AN 的中点2M ,2N ;第三次操作:分别取线段2AM 和2AN 的中点3M ,3N ;……连续这样操作,则第十次操作所取两个中点形成的线段1010M N 的长度为( )A .101202⨯ B .91202⨯ C .120210⨯⨯ D .12010⨯ 7、如图,一副三角板(直角顶点重合)摆放在桌面上,若150BOC ︒∠=,则AOD ∠等于( )A .30︒B .45︒C .50︒D .60︒8、如图,点O 在直线AB 上,OD 平分COB ∠,3AOE EOC ∠=∠,50EOD ∠=︒,则BOD ∠=( )A .10°B .20°C .30°D .40°9、经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,这一实际问题应用的数学知识是( ) A .两点确定一条直线 B .两点之间直线最短 C .两点之间线段最短D .直线有两个端点10、如图,点D 是线段AB 的中点,点E 是AC 的中点,若6cm AB =,14cm AC =,则线段DE 的长度是( )A .3cmB .4cmC .5cmD .6cm第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、修路时,通常把弯曲的公路改直,这样可以缩短路程,其根据的数学道理是______.2、已知点C 是线段AB 的三等分点,点D 是线段AC 的中点.若线段2AD =,则AB =______.3、如图,邮局在学校( )偏( )( )°方向上,距离学校是( )米.4、如图,在平面内有A ,B ,C 三点.请画直线AC ,线段BC ,射线AB ,数数看,此时图中共有 个钝角.5、已知3728A '∠=︒,则它的余角是______. 三、解答题(5小题,每小题10分,共计50分)1、如图,在同一直线上,有A 、B 、C 、D 四点.已知DB =23AD ,AC =54CD ,CD =4cm ,求线段AB 的长.2、如图(1),∠BOC 和∠AOB 都是锐角,射线OB 在∠AOC 内部,AOB α∠=,BOC β∠=.(本题所涉及的角都是小于180°的角)(1)如图(2),OM 平分∠BOC ,ON 平分∠AOC ,填空:①当40α=︒,70β=︒时,COM ∠=______,CON ∠=______,MON ∠=______; ②MON ∠=______(用含有α或β的代数式表示).(2)如图(3),P 为∠AOB 内任意一点,直线PQ 过点O ,点Q 在∠AOB 外部: ①当OM 平分∠POB ,ON 平分∠POA ,∠MON 的度数为______; ②当OM 平分∠QOB ,ON 平分∠QOA ,∠MON 的度数为______; (∠MON 的度数用含有α或β的代数式表示)(3)如图(4),当40α=︒,70β=︒时,射线OP 从OC 处以5°/分的速度绕点O 开始逆时针旋转一周,同时射线OQ 从OB 处以相同的速度绕点O 逆时针也旋转一周,OM 平分∠POQ ,ON 平分∠POA ,那么多少分钟时,∠MON 的度数是40°? 3、如图,已知平面内有四个点A ,B ,C ,D .根据下列语句按要求画图. (1)连接AB ;作直线AD .(2)作射线BC 与直线AD 交于点F .观察图形发现,线段AF +BF >AB ,得出这个结论的依据是: .4、如图,点O 为直线AB 上一点,过点O 作射线OC ,使110BOC ∠=°.将一直角三角板的直角顶点放在点O 处()30OMN ∠=︒,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图1中的三角板绕点O 逆时针旋转至图2,使一边OM 在BOC ∠的内部,且恰好平分BOC ∠.求BON ∠的度数.(2)将图1中的三角板绕点O 以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直线ON 恰好平分锐角AOC ∠,则t 的值为多少?(直接写结果,不写步骤)5、如图,已知线段AB =12cm ,CD =2cm ,线段CD 在线段AB 上运动,E 、F 分别是AC 、BD 的中点.(1)若AC =4cm ,EF =___cm ;(2)当线段CD 在线段AB 上运动时,试判断EF 的长度是否发生变化?如果不变,请求出EF 的长度,如果变化,请说明理由.-参考答案-一、单选题 1、D 【解析】 【分析】设AB x =cm ,则3BC CD x ==cm ,根据题意列出方程求解即可. 【详解】解:设AB x =,则3CD x =,∵C 为BD 的中点, ∴3BC CD x ==, ∴3321x x x ++=, 解得3x =,339BC =⨯=cm ,故选:D . 【点睛】本题考查了线段的和差和线段的中点,解一元一次方程,解题关键是明确相关定义,设未知数列出方程求解. 2、C 【解析】 【分析】根据补角的性质,即可求解. 【详解】解:∵5318A '∠=︒,∴A ∠的补角的度数为180180531812642A ''︒-∠=︒-︒=︒. 故选:C 【点睛】本题主要考查了补角的性质,熟练掌握互为补角的两个角的和等于180°是解题的关键. 3、D 【解析】 【分析】根据直线相交、点与直线、两点之间线段最短逐项判断即可得.解:A、直线m与直线n相交于点D,则此项说法正确,不符合题意;B、点A在直线n上,则此项说法正确,不符合题意;+=<+,则此项说法正确,不符合题意;C、由两点之间线段最短得:DA DB AB CA CBD、直线m上有无数个点,则此项说法不正确,符合题意;故选:D.【点睛】本题考查了直线相交、点与直线、两点之间线段最短,熟练掌握直线的相关知识是解题关键.4、C【解析】【分析】若两个角的和为180,︒则这两个角互为补角,根据互补的含义直接计算即可.【详解】解:50∠=,A∴∠A的补角为:18050130,故选C【点睛】本题考查的是互补的含义,掌握“利用互补的含义,求解一个角的补角”是解本题的关键.5、B【解析】【分析】设MC=xcm,则AM=(8﹣x)cm,根据M、N分别为AB、CB的中点,得到BM=(8﹣x)cm,NB=(4﹣x)cm,再求解MC+NB即可.解:设MC =xcm ,则AM =AC ﹣MC =(8﹣x )cm , ∵M 为AB 的中点, ∴AM =BM ,即BM =(8﹣x )cm , ∵N 为CB 的中点, ∴CN =NB , ∴NB ()()()118422MB MC x x x cm =-=--=-, ∴MC +NB =x +(4﹣x )=4(cm ), 故选:B . 【点睛】本题考查的是两点间的距离的计算,掌握线段中点的性质、解题的关键是灵活运用数形结合思想. 6、A 【解析】 【分析】根据线段中点定义先求出M 1N 1的长度,再由M 1N 1的长度求出M 2N 2的长度,再由M 2N 2的长度求出M 2N 2的长度,从而找到规律,即可求出MnNn 的结果. 【详解】解:∵线段MN =20,线段AM 和AN 的中点M 1,N 1, ∴M 1N 1=AM 1-AN 111111()2022222AM AN AM AN MN =-=-==⨯ ∵线段AM 1和AN 1的中点M 2,N 2;∴M 2N 2=AM 2-AN 21111111()222AM AN AM AN =-=-112112022M N ==⨯ ∵线段AM 2和AN 2的中点M 3,N 3; ∴M 3N 3=AM 3-AN 32222111()222AM AN AM AN =-=-223112022M N ==⨯ ....... ∴1202n n nM N =⨯ ∴1010101202N M =⨯ 故选:A . 【点睛】本题考查了与线段中点有关的线段的和差,根据线段中点的定义得出1202n n nM N =⨯是解题关键. 7、A 【解析】 【分析】由三角板中直角三角尺的特征计算即可. 【详解】∵COD △和AOB 为直角三角尺 ∴90COD ︒∠=,90AOB ︒∠= ∴BOC COD BOC AOB ∠-∠=∠-∠ ∴1509060AOC BOD ∠=∠=︒-︒=︒ ∴906030AOD BOA BOD ∠=∠-∠=︒-︒=︒ 故选:A .本题考查了三角板中的角度运算,直角三角板的角度分别为90°,45°,45°和90°,60°,30°.8、A【解析】【分析】设∠BOD=x,分别表示出∠COD,∠COE,根据∠EOD=50°得出方程,解之即可.【详解】解:设∠BOD=x,∵OD平分∠COB,∴∠BOD=∠COD=x,∴∠AOC=180°-2x,∵∠AOE=3∠EOC,∴∠EOC=14∠AOC=18024x︒-=902x︒-,∵∠EOD=50°,∴90502xx︒-+=︒,解得:x=10,故选A.【点睛】本题考查角平分线的意义,通过图形表示出各个角,是正确计算的前提.9、A【解析】根据直线公理“两点确定一条直线”来解答即可.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,此操作的依据是两点确定一条直线.故选:A.【点睛】本题主要考查直线的性质,掌握直线的性质:两点确定一条直线是解题的关键.10、B【解析】【分析】根据中点的定义求出AE和AD,相减即可得到DE.【详解】解:∵D是线段AB的中点,AB=6cm,∴AD=BD=3cm,∵E是线段AC的中点,AC=14cm,∴AE=CE=7cm,∴DE=AE-AD=7-3=4cm,故选B.【点睛】本题考查了中点的定义及两点之间的距离的求法,准确识图是解题的关键.二、填空题1、两点之间线段最短【分析】根据“两点之间线段最短”解答即可.【详解】解:修路时,通常把弯曲的公路改直,这样可以缩短路程,其根据的数学道理是:两点之间线段最短.故答案为:两点之间线段最短.【点睛】本题考查了线段的性质,熟练掌握熟练掌握两点之间线段最短是解答本题的关键.2、12或6##6或12【解析】【分析】根据点C是线段AB上的三等分点,分两种情况画图进行计算即可.【详解】解:如图,∵点C是线段AB上的三等分点,∴AB=3AC,∵D是线段AC的中点,∴AC=2AD=4,∴AB=3×4=12;如图,∵D是线段AC的中点,∴AC=2AD=4,∵点C是线段AB上的三等分点,AC=2,AB=3BC,∴BC=12∴AB=3AC=6,则AB的长为12或6.故答案为:12或6.【点睛】本题考查了两点间的距离,解决本题的关键是分两种情况画图计算.3、北东 45 1000【解析】【分析】图上距离1厘米表示实际距离200米,于是即可求出它们之间的实际距离,再根据它们之间的方向关系,即可进行解答.【详解】解:邮局在学校北偏东45°的方向上,距离学校 1000米.故答案为:北,东,45,1000.【点睛】此题主要考查了方位角,以及线段比例尺的意义的理解和灵活应用.4、见详解,3【解析】【分析】直接根据直线、线段、射线的概念画出图形,再由角的概念解答即可.【详解】解:作图如下:由图可得,图中共有3个钝角,故答案为:3.【点睛】此题考查的是角的概念、直线、射线和线段,掌握有公共端点是两条射线组成的图形叫做角是解决此题关键.5、'5232︒【解析】【分析】根据余角的定义求即可.【详解】解:∵3728A '∠=︒,∴它的余角是90°-3728'︒='5232︒,故答案为:'5232︒.【点睛】本题考查了余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.三、解答题1、3cm【解析】【分析】 根据23DB AD =,54AC CD =求出AD 、AC 的长度,再根据AB AD DB =-即可求解.【详解】 解:54AC CD =,4CD cm =,5AC cm ∴=, 459AD AC CD cm ∴=+=+=,263DB AD cm ∴==, 963AB AD DB cm ∴=-=-=.【点睛】本题考查两点间的距离,解题的关键是根据条件先利用线段之间的关系得出线段AD 、AC .2、 (1)135,55,20,2︒︒︒α (2)12α,11802α︒-(3)48分钟时,∠MON 的度数是40°【解析】【分析】(1)根据角平分线的定义判断即可;(2)①根据()12MON POB POA ∠=∠+∠求解即可,②根据()12MON BOQ QOA ∠=∠+∠求解即可; (3)分OP 在AOB ∠的外部和内部两种情况讨论,在外部时根据旋转的时间乘以速度等于POA AOB BOC ∠+∠+∠,在内部时可以判断35POM ∠=︒,MON POM PON ∠=∠-40=︒,则此情况不存在(1) ① OM 平分∠BOC ,ON 平分∠AOC ,当40α=︒,70β=︒时,COM ∠=113522BOC ∠=β=︒, CON ∠=()111()55222AOC AOB BOC ∠=∠+∠=α+β=︒, MON ∠=()11120222CON COM αββα∠-=+-==︒ ②MON ∠()111222CON COM =∠-=α+β-β=α 故答案为:135,55,20,2︒︒︒α (2) ①OM 平分∠POB ,ON 平分∠POA , ∴()12MON POB POA ∠=∠+∠ 1122AOB =∠=α ②OM 平分∠QOB ,ON 平分∠QOA , ∴()12MON BOQ QOA ∠=∠+∠()1136018022AOB =︒-∠=︒-α 故答案为:12α,11802α︒-(3)根据题意POQ BOC ∠=∠=βOM 平分∠POQ ,113522POM POQ ∴∠=∠=β=︒ 如图,当OP 在AOB ∠的外部时,MON 的度数是40°MON PON POM ∠=∠+5PON ∴∠=︒ON 平分∠POA ,210POA PON ∴∠=∠=︒120POC ∴∠=︒则OP 旋转了360120240︒-︒=︒240548∴÷=分即48分钟时,∠MON 的度数是40°如图,OP在AOB∠的内部时,∠=∠-∠MON POM PON即4035PON︒=︒-∠∴∠=-︒PON5此情况不存在综上所述,48分钟时,∠MON的度数是40°【点睛】本题考查了几何图形中角度的计算,角平分线的意义,掌握角平分线的意义是解题的关键.3、 (1)见解析;(2)见解析,两点之间线段最短【解析】【分析】(1)根据线段、直线的定义即可画出图形;(2)根据射线的定义,可画出射线BC,再根据两点之间线段最短解决问题.(1)如图所示,线段AB 与直线AD 即为所求;(2)如上图所示,射线BC 即为所求,根据两点之间线段最短得AF +BF >AB ,故答案为:两点之间线段最短.【点睛】本题考查了画线段、直线、射线;两点之间线段最短,掌握线段、射线、直线的特点是解题的关键.4、 (1)35︒(2)直线ON 恰好平分锐角AOC ∠,则t 的值为11s 或67s.【解析】【分析】(1)先利用角平分线的定义求解155,2BOM BOC 再利用90,MON ∠=︒ 从而可得答案; (2)分两种情况讨论:如图,当直线ON 恰好平分锐角AOC ∠,记P 为ON 上的点,求解线段ON 旋转的角度9055,N ON BON 如图,当ON 平分AOC ∠时,求解ON 旋转的角度为:90+9011035235,BOC CON 从而可得答案. (1)BOC BOC解:OM平分,110,155,BOM BOC2MON90,BON BOM9035.(2)∠,记P为ON上的点,解:如图,当直线ON恰好平分锐角AOC11AOP COP AOC BOC1803522BON AOP35,N ON BON9055,55t,115∠时,如图,当ON平分AOCAON CON35,BOC CON此时ON转的角度为:90+9011035235,235t67,5,则t的值为11s或67s.综上:直线ON恰好平分锐角AOC【点睛】本题考查的是角平分线的定义,角的和差运算,角的动态定义的理解,清晰的分类讨论是解本题的关键.5、 (1)7(2)不改变,EF=7cm.【解析】【分析】(1)先求出线段BD,然后再利用线段中点的性质求出AE,BF即可;(2)利用线段中点的性质证明EF的长度不会发生改变.(1)解:∵AB=12cm,CD=2cm,AC=4cm,∴BD=AB-CD-AC=6(cm),∵E、F分别是AC、BD的中点,∴CE=12AC=2(cm),DF=12BD=3(cm),∴EF=CE+CD+DF=7(cm);故答案为:7;(2)不改变,理由:∵AB=12cm,CD=2cm,∴AC+BD=AB-CD=10(cm),∵E、F分别是AC、BD的中点,∴CE=12AC,DF=12BD,∴CE+DF=12AC+12BD=5(cm),∴EF=CE+CD+DF=7(cm) .【点睛】本题考查了两点间距离,熟练掌握线段上两点间距离的求法,灵活应用中点的性质解题是关键.。
2020-2021学年鲁教版(五四制)六年级数学下册第五章 基本平面图形 单元测试题
鲁教版六年级数学下册第五章基本平面图形单元测试题一、选择题1.已知如图,则下列叙述不正确的是()A. 点O不在直线AC上B. 射线AB与射线BC是指同一条射线C. 图中共有5条线段D. 直线AB与直线CA是指同一条直线2.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,这一实际问题应用的数学知识是()A. 两点确定一条直线B. 两点之间线段最短C. 垂线段最短D. 在同一平面内,过一点有且只有一条直线与已知直线垂直3.已知线段AB=10cm,点C在直线AB上,且AC=2cm,则线段BC的长为()A. 12cmB. 8 cmC. 12 cm或8 cmD. 以上均不对4.如图,点A、B、C顺次在直线上,点M是线段AC的中点,点N是线段BC的中点,已知AB=16cm,MN=()A. 6cmB. 8cmC. 9cmD. 10cm5.如图,C,D是线段AB上两点,M,N分别是线段AD,BC的中点,下列结论: ①若AD=BM,则AB=3BD; ②若AC=BD,则AM=BN; ③AC−BD=2(MC−DN); ④2MN=AB−CD.其中正确的结论是()A. ① ② ③B. ③ ④C. ① ② ④D. ① ② ③ ④6.下列说法正确的个数是()(1)连接两点之间的线段叫两点间的距离;(2)两点之间,线段最短;(3)若AB=2CB,则点C是AB的中点;(4)角的大小与角的两边的长短有关.A. 1个B. 2个C. 3个D. 4个7.下列四个图形中,能用∠1,∠AOB,∠O三种方法表示同一个角的是()A. B.C. D.8.如图所示,射线OB,OC将∠AOD分成三部分,下列判断中错误的是().A. 如果∠AOB=∠COD,那么∠AOC=∠BODB. 如果∠AOB>∠COD,那么∠AOC>∠BODC. 如果∠AOB<∠COD,那么∠AOC<∠BODD. 如果∠AOB=∠BOC,那么∠AOC=∠BOD9.如图,若∠BOD=2∠AOB,OC是∠AOD的平分线,则①∠BOC=13∠AOB ;②∠DOC=2∠BOC;③∠COB=12∠AOB;④∠COD=3∠BOC.正确的是()A. ①②B. ③④C. ②③D. ①④10.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是()A. 67°64′B. 57°64′C. 67°24′D. 68°24′11.从八边形的一个顶点出发,可以画出m条对角线,它们将八边形分成n个三角形,则m,n的值分别为()A. 6,5B. 5,6C. 6,6D. 5,512.已知一个多边形的对角线条数正好等于它的边数的2倍,则这个多边形的边数是()A. 6B. 7C. 8D. 10二、填空题13.小刚同学要在墙上钉牢一根木条至少需要______ 根铁钉,其数学道理是______ .第1页,共9页14.已知点A、B、C在同一直线上,AB=12cm,BC=13AC.若点P为AB的中点,点Q为BC的中点,则PQ=______ cm.15.如图,两根木条的长度分别为6cm和10cm,在它们的中点处各打一个小孔M、N(小孔大小忽略不计).将这两根木条的一端重合并放置在同一条直线上,则两小孔间的距离MN=______cm.16.如图,OC为∠AOB内部的一条射线,若∠AOB=100°,∠1=26°48′,则∠2=______.17.如图,∠AOB=150°,∠COD=40°,OE平分∠AOC,则2∠BOE−∠BOD= ______ °.18.过某多边形的一个顶点的所有对角线将这个多边形分成6个三角形,这个多边形是______ 边形.三、解答题19.计算:(1)48°39′+67°31′−21°17′×5;(2)90°−51°37′11″.20.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中有多少个小于平角的角;(2)求出∠BOD的度数;(3)请通过计算说明OE是否平分∠BOC.21.已知:如图,OC是∠AOB的角平分线.(1)当∠AOB=60°时,求∠AOC的度数;(2)在(1)的条件下,过点O作OE⊥OC,求∠AOE的度数;(3)当∠AOB=α时,过点O作OE⊥OC,直接写出∠AOE的度数.(用含α的式子表示)22.(1)如图(1)所示是四边形,小明作出它对角线为2条,算法为4×(4−3)2=2.(2)如图(2)是五边形,小明作出它的对角线有5条,算法为5×(5−3)2=5.(3)如图(3)是六边形,可以作出它的对角线有______ 条,算法为______ .(4)猜想边数为n的多边形对角线条数的算法及条数.23.如图,线段AB=20,BC=15,点M是AC的中点.(1)求线段AM的长度;(2)在CB上取一点N,使得CN:NB=2:3.求MN的长.第3页,共9页答案和解析1.【答案】B【解析】【分析】此题主要考查了直线、射线、线段,以及点与直线的位置关系,关键是掌握三线的表示方法.根据直线、射线、线段的表示方法,以及线段的概念分别判断各选项即可.【解答】解:A.点O不在直线AC上,故A说法正确,不符合题意;B.射线AB与射线BC,端点不同,不是指同一条射线,故B错误,符合题意;C.图中有线段AB、AC、BC、OB、OC,共5条,故C说法正确,不符合题意;D.直线AB与直线CA是指同一条直线,故D正确,不符合题意.故选B.2.【答案】A【解析】【分析】本题考查了直线的性质,解题关键是zw掌握直线的性质:两点确定一条直线.解题时,由题意“经过刨平的木板上的两个点,能且只能弹出一条笔直的墨线”可知这一实际问题应用的数学知识是:两点确定一条直线.【解答】解:由题意“经过刨平的木板上的两个点,能且只能弹出一条笔直的墨线”可知这一实际问题应用的数学知识是:两点确定一条直线.故选A.3.【答案】C【解析】【分析】此题主要考查了两点间的距离的含义和求法,要熟练掌握,注意分两种情况讨论.根据题意,分两种情况讨论:(1)点C在A、B中间时;(2)点C在点A的左边时;求出线段BC的长为多少即可.【解答】解:(1)点C在A、B中间时,BC=AB−AC=10−2=8(cm).(2)点C在点A的左边时,BC=AB+AC=10+2=12(cm).∴线段BC的长为12cm或8cm.故选:C.4.【答案】B【解析】【试题解析】【分析】本题主要考查了线段的中点、线段的和差等知识点,注意理解线段的中点的概念,利用线段中点的定义转化线段之间的倍分关系是解题的关键.根据点M是线段AC的中点,点N是线段BC的中点,得出MC=12AC,NC=12BC,利用MN=MC−NC=12AB,继而可得出答案.【解答】解:∵点M是线段AC的中点,点N是线段BC的中点,∴MC=12AC,NC=12BC,∴MN=MC−NC=12AC−12BC=12(AC−BC)=12AB,∵AB=16cm,∴MN=8cm.故选B.5.【答案】D【解析】【分析】本题主要考查了两点间的距离的求法,解题时利用了线段的和差,线段中点的性质,解决此类问题的关键是找出各个线段间的关系.根据中点的概念与线段之间的和差关系判断即可.【解答】解: ①若AD=BM,则AM=BD.由M是AD的中点,得AM=MD,则AM=MD=BD,故AB=3BD; ②若AC=BD,则AD=BC.由M,N分别是AD,BC的中点,可得AM=12AD,BN=12BC,故A M=BN; ③因为AC=AM+MC=DM+MC,BD=BN+DN=CN+DN,所以AC−BD=DM−CN+MC−DN.又因为DM−CN=MC−DN,故AC−BD=2(MC−DN); ④因为MN=MD+CN−CD=12AD+12BC−CD=12(AD+BC)−CD=12(AB+CD)−CD=12(AB−CD),故2MN=AB−CD.故选D.6.【答案】A【解析】解:(1)连接两点之间线段的长度叫做两点间的距离,因此(1)不符合题意;(2)两点之间,线段最短是正确的,因此(2)符合题意;(3)若AB=2CB,当点C在AB上时,点C是AB的中点,当点C在AB的延长线上时,点C就不是AB的中点,因此(3)不符合题意;(4)角的大小与角的两边的长短无关,只与两边叉开的程度有关,因此(4)不符合题意;因此正确的是(2),故选:A.根据两点间的距离,线段性质,线段中点以及角的大小逐项进行判断即可.本题考查两点间的距离,线段性质,线段中点以及角的大小等知识,理解各个概念的内涵是正确判断的前提.7.【答案】C 【解析】解:能用∠1、∠AOB、∠O三种方法表示同一个角的图形是C选项中的图,A,B,D选项中的图都不能同时用∠1、∠AOB、∠O三种方法表示同一个角,故选:C.根据角的三种表示方法,可得正确答案.本题考查了角的概念,熟记角的表示方法是解题关键.在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角.8.【答案】D【解析】【分析】本题主要考查了角的大小比较,解题的关键是正确找出各角的关系式.利用图中角与角的关系,即可判断各选项.【解答】解:A、如果∠AOB=∠COD,那么∠AOC=∠BOD,本选项正确;B、如果∠AOB>∠COD,那么∠AOC>∠BOD,本选项正确;C、如果∠AOB<∠COD,那么∠AOC<∠BOD,本选项正确;D、如果∠AOB=∠BOC,那么∠AOC和∠BOD不一定相等,本选项错误.故选D.9.【答案】B【解析】解:设∠AOB=α,∵∠BOD=2∠AOB,OC是∠AOD的平分线,∴∠BOD=2α,∠AOC=∠COD=32α,∴∠COB=∠AOC−∠AOB=12∠AOB,故③正确,①错误;∴∠COD=3∠BOC,故④正确,②错误.故选B.设∠AOB=α,由∠BOD=2∠AOB,OC是∠AOD的平分线,可得∠BOD=2α,∠AOC=∠COD=32α,故能判断出选项中各角大小关系.本题主要考查角的比较与运算这一知识点,比较简单.第5页,共9页10.【答案】C【解析】解:∵OC平分∠DOB,∴∠DOC=∠BOC=22°36′.∵∠AOC=∠AOB+∠BOC=90°,∴∠AOB=∠AOC−∠BOC=90°−22°36′=67°24′.故选:C.先利用角平分线的性质求出∠DOC的度数,再利用角的和差及互余关系求出∠BOA度数.本题考查了角平分线的性质、两角互余等知识点,掌握角的和差关系是解决本题的关键.11.【答案】B【解析】【分析】本题考查多边形的对角线及分割成三角形个数的问题,解答此类题目可以直接记忆:一个n边形一个顶点出发,可以连的对角线的条数是n−3,分成的三角形数是n−2.根据从一个n边形一个顶点出发,可以连的对角线的条数是n−3,分成的三角形数是n−2解答即可.【解答】解:对角线的数量m=8−3=5条;分成的三角形的数量为n=8−2=6个.故选:B.12.【答案】B【解析】【分析】本题主要考查了多边形的对角线的条数与多边形的边数之间的关系.n边形的对角线有12n⋅(n−3)条,根据对角线条数是它边数的2倍列方程即可求得多边形的边数.【解答】解:设这个多边形的边数是n⋅根据题意得:12n⋅(n−3)=2n,解得:n=7.则多边形的边数是7.故选B.13.【答案】2 两点确定一条直线【解析】解:根据直线的公理;故应填2,两点确定一条直线.根据直线的确定方法,易得答案.本题考查直线的确定:两点确定一条直线.14.【答案】4.5或9【解析】解:(1)点C在线段AB上,如图1:∵AB=AC+BC,BC=13AC,∴AB=3BC+BC=4BC又∵AB=12cm,∴BC=3cm,∵点P是线段AB的中点,点Q是线段BC的中点,∴PB=12AB=6cm,QB=12CB=1.5cm,∴PQ=BP−BQ=6−1.5=4.5cm;(2)点C在线段AB的延长线上,如:∵AB=AC−BC,BC=13AC,∴AB=3BC−BC=2BC又∵AB=12cm,∴BC=6cm,∵点P是线段AB的中点,点Q是线段BC的中点,∴PB=12AB=6cm,QB=12CB=3cm,∴PQ=BP+BQ=6+3=9cm;故答案为:4.5或9.分类讨论点C在AB上,点C在AB的延长线上,根据线段的中点的性质,可得BP、BQ的长,根据线段的和差,可得答案.本题考查了两点间的距离,线段中点的性质,线段的和差,分类讨论是解题关键.15.【答案】8或2【解析】解:有两种情形:(1)当A、C(或B、D)重合,且剩余两端点在重合点同侧时,MN=CN−AM=12CD−12AB=5−3=2(厘米);(2)当B、C(或A、C)重合,且剩余两端点在重合点两侧时,MN=CN+BM=12CD+12AB=5+3=8(厘米);故两根木条的小圆孔之间的距离MN是2cm或8cm,故答案为:2或8.本题没有给出图形,在画图时,应考虑到A、B、M、N四点之间的位置关系的多种可能,再根据题意正确地画出图形解题.此题考查两点之间的距离问题,在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.16.【答案】73°12′【解析】解:∵∠AOB=100°,∠1=26°48′,∴∠2=100°−26°48′=73°12′.故答案为:73°12′根据角的计算解答即可.此题考查角的计算,关键是根据度分秒的计算解答.17.【答案】110 【解析】解:设∠EOD=x°,∠BOC=y°,则∠EOC=∠EOD+∠COD=x°+40°.∵OE平分∠AOC,∴∠AOE=∠EOC=x°+40°.∵∠AOB=150°,∴∠AOE+∠COE+∠BOC=150°.即2(x°+40°)+y°=150°.∴2x°+y°=70°.∵2∠BOE−∠BOD=2(x°+40°+y°)−(y°+40°)=2x°+80°+2y°−y°−40°=2x°+y°+40°,∴2∠BOE−∠BOD=70°+40°=110°.故答案为110.设∠EOD=x°,∠BOC=y°,用x,y表示2∠BOE−∠BOD,利用已知条件得出x,y的关系式,然后整体代入可得结论.本题主要考查了角平分线的定义的应用以及角的计算,本题的关键在于借助中间量,利用整体代入进行计算.18.【答案】八【解析】【分析】本题考查了多边形对角线,n边形过一个顶点的所有对角线公式是(n−2)条.根据n边形对角线公式,可得答案.【解答】解:设多边形是n边形,由对角线公式,得n−2=6.解得n=8,故答案为八.19.【答案】解:(1)原式=48°39′+67°31′−106°25′=9°45′;(2)原式=89°59′60″−51°37′11″=38°22′49″.【解析】(1)首先计算乘法,然后计算加减即可;(2)首先把90°化为89°59′60″,然后再利用度减度、分减分、秒减秒进行计算即可.第7页,共9页此题主要考查了度分秒的换算,关键是掌握1°=60′,1′=60″.20.【答案】解:(1)题图中小于平角的角有∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB,共9个;(2)∵∠AOC=50°,OD平分∠AOC,∴∠AOD=12∠AOC=25∘,∴∠BOD=180°−∠AOD=155°;(3)∵∠DOE=90°,∠DOC=12∠AOC=25∘,∴∠COE=∠DOE−∠DOC=90°−25°=65°.又∵∠BOE=∠BOD−∠DOE=155°−90°=65°,∴∠COE=∠BOE,即OE平分∠BOC.【解析】本题考查了有关角的概念,角的平分线,角的计算.正确的理解角的定义,角的平分线的定义是解决问题的关键.(1)数角的方法(" id="MathJax-Element-3441-Frame" role="presentation" style="box-sizing: content-box; - webkit-tap-highlight-color: rgba(0, 0, 0, 0); margin: 0 px; padding: 5 px 2px; display: inline-block; ; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0 px; min-height: 0 px; border: 0 px; position: relative;" tabindex="0">((从一边数,再按一个方向数)" id="MathJax-Element-3442-Frame"role="presentation" style="box-sizing: content-box; -webkit-tap-highlight-color: rgba(0, 0, 0, 0); margin: 0 px; padding: 5 px 2px; display: inline-block; ; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0 px;min-height: 0 px; border: 0 px; position: relative;" tabindex="0">)),这样才能做到不重不漏;(2)先求出∠AOD的度数,因为∠AOB是平角,∠BOD=∠AOB−∠AOD;(3)分别求出∠COE和∠EOB的度数即可.21.【答案】解:(1)∵OC是∠AOB的平分线(已知),∴∠AOC=12∠AOB,∵∠AOB=60°,∴∠AOC=30°.(2)∵OE⊥OC,∴∠EOC=90°,如图1,∠AOE=∠COE+∠COA=90°+30°=120°.如图2,∠AOE=∠COE−∠COA=90°−30°=60°.(3)∠AOE=90°+12α或∠AOE=90°−12α.【解析】(1)直接由角平分线的意义得出答案即可;(2)分两种情况:OE在OC的上面,OE在OC的下面,利用角的和与差求得答案即可;(3)类比(2)中的答案得出结论即可.此题考查了角的计算,以及角平分线定义,分类考虑,类比推理是解决问题的关键.22.【答案】9;6×(6−3)2第9页,共9页【解析】解:(3)六边形,可以作出它的对角线有9条,算法:6×(6−3)2=9;故答案为:9;6×(6−3)2=9;(4)n 的多边形对角线条数的算法及条数n(n−3)2.根据(1)(2)所给算法计算即可.此题主要考查了对角线,关键是掌握对角线的计算方法. 23.【答案】解:(1)线段AB =20,BC =15, ∴AC =AB -BC =20-15=5. 又∵点M 是AC 的中点.∴AM =12AC =12×5=52,即线段AM 的长度是52.(2)∵BC =15,CN :NB =2:3, ∴CN =25BC =25×15=6.又∵点M 是AC 的中点,AC =5, ∴MC =12AC =52,∴MN =MC +NC =172,即MN 的长度是172.【解析】【试题解析】(1)根据题意知AM =12AC ,AC =AB -BC ;(2)根据已知条件求得CN =6,然后根据图示知MN =MC +NC .本题考查了两点间的距离,利用了线段的和差,线段中点的性质.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鲁教版(五四制)六年级下册单元评价检测第五章(45分钟 100分)一、选择题(每小题4分,共28分)1.下列说法:①射线AB与射线BA是同一条射线;②线段AB是直线AB的一部分;③延长线段AB到C,使AB=AC;④射线AB与射线BA的公共部分是线段AB.正确的个数是( )(A)1 (B)2 (C)3 (D)42.如图所示,长度为12 cm的线段AB的中点为M,C为线段MB上一点,且MC∶CB=1∶2,则线段AC的长度为( )(A)2 cm (B)8 cm (C)6 cm (D)4 cm3.下列说法正确的是( )(A)角的两边可以度量(B)一条直线可看成一个平角(C)角是由一点引出的两条射线组成的图形(D)一条射线可看成一个周角4.如图,∠1=20°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为( )(A)95°(B)100°(C)110°(D)120°5.如图,已知C是线段AB的中点,D是BC的中点,E是AD的中点,F是AE的中点,那么线段AF是线段AC的( )(A)18(B)14(C)38(D)3166.如图,点O在直线AB上,∠COB=∠DOE=90°,那么图中相等的角的对数是( )(A)3对(B)4对(C)5对(D)7对7.已知∠α和∠β的和是平角,且∠α∶∠β=1∶8,则∠β的度数是( )(A)20°(B)40°(C)80°(D)160°二、填空题(每小题5分,共25分)8.30.12°=________°_______′_______″,100°12′36″=_______°.9.已知线段AB,延长线段AB到C,使BC=2AB,反向延长AB到D,使AD=AB,则AC=_______AB;DC=_______AC.10.如图,圆中两条半径把圆分成面积为4∶5的两个扇形,则两个扇形的圆心角的度数为_________.11.如图,点C是∠AOB的边OA上一点,D,E是OB上两点,则图中共有_________条线段,可用字母表示的射线有_________条,_________个小于平角的角.12.直线上有2 013个点,我们进行如下操作:在每相邻两点间插入1个点.经过3次这样的操作后,直线上共有_________个点.三、解答题(共47分)13.(11分)如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若AB=18 cm,求DE的长;(2)若CE=5 cm,求BD的长.14.(11分)如图所示,∠AOB=30°,∠BOC=40°,∠COD=26°,OE平分∠AOD.求∠BOE的度数.15.(12分)如图所示,回答下列问题.(1)2条直线相交有几个交点?(2)3条直线两两相交,最多有几个交点?(3)4条直线两两相交,最多有几个交点?(4)根据(1)(2)(3)总结:n(n为大于或等于2的正整数)条直线两两相交,最多有几个交点;(5)根据上述结论,求100条直线两两相交最多有几个交点.16.(13分)(1)如图,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数;(2)如果(1)中的∠AOB=α(OC在∠AOB外),其他条件不变,求∠MON的度数;(3)如果(1)中的∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1)(2)(3)的结论中能得出什么结论?答案解析1.【解析】选B.射线的端点不同,射线就不同,所以射线AB与射线BA不是同一条射线,①错;②对;③错,因为无法使AB=AC;④对;所以选B.2.【解析】选B.因为AM=MB=12AB=6(cm),MC=6×13=2(cm),所以AC=AM+MC=6+2=8(cm),故选B.3.【解析】选C.角是由具有公共端点的两条射线组成的,可知C正确;射线不可以度量,故A错;角有顶点和两条边,故B,D错,因此选C.4.【解析】选C.因为∠BOC=90°-20°=70°,所以∠2=180°-∠BOC=180°-70°=110°.5.【解析】选C.根据题意可设CD=DB=x,则AC=CB=2DB=2x,AD=3x,AE=32x,AF=12AE=34x,所以3xAF34==AC2x8,故选C.6.【解析】选C.因为∠COB=∠DOE=90°,所以∠COE+∠COD=90°,∠COD+∠BOD=90°,所以∠COE=∠BOD;因为∠AOC=∠DOE,所以∠COE+∠COD=90°,∠AOE+∠COE=90°,所以∠AOE=∠COD;∠AOC=∠BOC.故选C.7.【解析】选D.可设∠α=x,∠β=8x,则x+8x=180°,x=20°,所以∠β=8x=160°,故选D.8.【解析】0.12°=0.12×60'=7.2',0.2'=0.2×60″=12″,所以30.12°=30°7'12″,36″=36×(160)'=0.6',12.6'=12.6×(160)°=0.21°,所以100°12'36″=100.21°.答案:30 7 12 100.219.【解析】如图所示,AC=3AB,DC=4AB,所以DC=43AC.答案:3 4 310.【解析】两个扇形圆心角的度数分别为360°×49=160°和360°×59=200°.答案:160°,200°11.【解析】图中有线段OD,OE,OB,DE,DB,EB,OC,OA,CA,DC,EC,共11条,射线OA,CA,OB,DB,EB,共5条,小于平角的角有∠O,∠ODC,∠CDE,∠CED,∠CEB,∠ACE,∠ECD,∠DCO,∠ACD,∠OCE,共10个.答案:11 5 1012.【解析】2 013+2 012=4 025,4 025+4 024=8 049,8 049+8 048=16 097. 答案:16 09713.【解析】(1)因为C是AB的中点,所以AC=BC=12AB=9 cm.因为D是AC的中点,所以AD=DC=12AC=92 cm.因为E是BC的中点,所以CE=BE=12BC=92cm.又因为DE=DC+CE,所以DE=92+92=9(cm).(2)由(1)知AD=DC=CE=BE,所以CE=13BD.因为CE=5 cm,所以BD=15 cm.14.【解析】因为∠AOB=30°,∠BOC=40°,∠COD=26°,所以∠AOD=∠AOB+∠BOC+∠COD=30°+40°+26°=96°,又因为OE平分∠AOD,所以∠AOE=12∠AOD=12×96°=48°,所以∠BOE=∠AOE-∠AOB=48°-30°=18°.15.【解析】(1)由图可知,2条直线相交有1个交点.(2)3条直线两两相交,最多有2+1=3个交点.(3)4条直线两两相交,最多有3+2+1=6个交点.(4)依此类推,n条直线两两相交最多有n-1+…+3+2+1=n(n1)2-个交点.(5)根据上述结论,当n=100时, n(n1)2-=100992⨯=4 950个交点.16.【解析】(1)因为ON是∠BOC的平分线,所以∠CON=∠BON=12∠BOC=12×30°=15°.因为OM是∠AOC的平分线,所以∠COM=∠AOM=12∠AOC=12(∠AOB+∠BOC)=12(90°+30°)=60°,所以∠MON=∠COM-∠CON=60°-15°=45°. (2)当∠AOB=α,其他条件不变时,由(1)得∠CON=15°.因为OM是∠AOC的平分线,所以∠COM=∠AOM=12∠AOC=12(∠AOB+∠BOC)=12(α+30°)=12α+15°,所以∠MON=∠COM-∠CON=12α+15°-15°=12α.(3)当∠BOC=β,其他条件不变时,因为ON是∠BOC的平分线,所以∠CON=∠BON=12∠BOC=12β,因为OM是∠AOC的平分线,所以∠COM=∠AOM=12∠AOC=12(∠AOB+∠BOC)=12 (90°+β)=45°+12β,所以∠MON=∠COM-∠CON=45°+12β-12β=45°.(4)∠MON的度数总等于∠AOB的一半,而与锐角∠BOC的度数没有关系.。