二次根式的性质 公开课教案

合集下载

二次根式教案(优秀8篇)

二次根式教案(优秀8篇)
(二)、探索新知:
本环节通过1个引题,2个例题的活动达到让学生学会从实际问题中抽象出中心对称的基本性质,并会用二次根式的加减法则解决有关实际问题。既培养了学生的观察能力,又培养了学生的有理有据的作图能力。
(三)、巩固练习:
在此环节中,利用课后的练习和选取的课外习题来巩固二次根式的加减,来达到突出重点的目的。
(三)教学手段
采用多媒体教学,通过直观演示图象,更好地教会学生“二次根式的加减的研究方法,同时通过多媒体辅助手段展示教学内容,扩大课堂容量,提高教学效率。
六、说教学过程的设计:
本课共分为五个环节:
(一)、复习引入新课:
利用"同类二次根式的"引入,激发学生好奇心和求知欲,创设情景,旨在引出新课题。既达到了复习的目的,又引出了新课。
(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)
三、课后作业(课后作业见附件2)
教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。
四、板书设计
课题:二次根式(1)
二次根式概念例题例题
二次根式性质
反思:
次根式教案篇六
第十六章二次根式
代数式用运算符号把数和表示数的字母连接起来的式子叫代数式①式子中不能出现“=,≠,≥,≤,”;②单个的数字或单个的字母也是代数式
2、会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。
教学重点
最简二次根式的定义。
教学难点
一个二次根式化成最简二次根式的方法。
教学过程
一、复习引入
1、把下列各根式化简,并说出化简的根据:
2、引导学生观察考虑:
化简前后的根式,被开方数有什么不同?
化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。

八年级数学上册《二次根式及其性质》教案、教学设计

八年级数学上册《二次根式及其性质》教案、教学设计
(1)导入:通过实际生活中的问题,如面积、速度等,引导学生感受二次根式的实际意义;
(2)新课:以学生已有的知识为基础,引导学生自主探究二次根式的性质,适时进行总结;
(3)巩固:设计不同层次的练习题,让学生在练习中巩固所学知识,提高解题能力;
(4)拓展:将二次根式应用于解决实际问题,提高学生的数学应用意识;
在教学过程中,教师应关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。同时,注重启发式教学,激发学生的学习兴趣和主动性,使学生在轻松愉快的氛围中掌握二次根式及其性质。通过本章节的学习,为学生后续学习一元二次方程、二次函数等知识打下坚实基础。
二、学情分析
八年级学生已经具备了一定的数学基础,掌握了实数的概念、运算法则,以及简单的代数式求值。在此基础上,学习二次根式及其性质,对学生来说既是挑战,也是提升。学生在学习过程中可能存在以下问题:对二次根式的概念理解不够深入,容易混淆平方根与算术平方根;对二次根式的性质掌握不牢固,运算过程中容易出现错误。因此,在教学过程中,教师应关注以下几点:
(2)运用探究式教学法,引导学生自主发现二次根式的性质,培养学生的探究能力;
(3)采用问题驱动的教学方法,设置不同难度的问题,引导学生逐步深入理解二次根式的性质;
(4)设计多样化的练习题,巩固所学知识,提高学生的运算速度和准确性;
(5)结合小组合作学习,培养学生的团队协作能力和沟通能力。
2.教学过程:
(4)各小组讨论解决方法,并进行汇报。
(四)课堂练习,500字
1.教学内容:二次根式的化简、运算与应用。
2.教学过程:
(1)教师出示练习题,要求学生在规定时间内完成;
(2)学生独立完成练习题,教师巡回指导,解答学生疑问;

二次根式教案(实用7篇)

二次根式教案(实用7篇)

二次根式教案(实用7篇)二次根式教案第1篇一、教学目标1.理解分母有理化与除法的关系.2.掌握二次根式的分母有理化.3.通过二次根式的分母有理化,培养学生的运算能力.4.通过学习分母有理化与除法的关系,向学生渗透转化的数学思想二、教学设计小结、归纳、提高三、重点、难点解决办法1.教学重点:分母有理化.2.教学难点:分母有理化的技巧.四、课时安排1课时五、教具学具准备投影仪、胶片、多媒体六、师生互动活动设计复习小结,归纳整理,应用提高,以学生活动为主七、教学过程【复习提问】二次根式混合运算的步骤、运算顺序、互为有理化因式.例1 说出下列算式的运算步骤和顺序:(1)(先乘除,后加减).(2)(有括号,先去括号;不宜先进行括号内的运算).(3)辨别有理化因式:有理化因式:与,与,与…不是有理化因式:与,与…化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依据分式的基本性质).例如:等式子的化简,如果分母是两个二次根式的和,应该怎样化简?引入新课题.【引入新课】化简式子,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以的有理化因式,而这个式子就是,从而可将式子化简.例2 把下列各式的分母有理化:(1);(2);(3)解:略.注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.二次根式教案第2篇1.教学目标(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;(2)会用公式化简二次根式.2.目标解析(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;(2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式.教学问题诊断分析本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难.运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气.,培养学生良好的运算习惯.在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:(1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);(2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简.本节课的教学难点为:二次根式的性质及乘法法则的正确应用和二次根式的化简.教学过程设计1.复习引入,探究新知我们前面已经学习了二次根式的概念和性质,本节课开始我们要学习二次根式的乘除.本节课先学习二次根式的乘法.问题1 什么叫二次根式?二次根式有哪些性质?师生活动学生回答。

二次根式的性质 教案

二次根式的性质 教案

.1 二次根式的性质 教案教学目标:1、经历二次根式的性质:()()02≥=a a a (0)-(0)a a a a a ≥⎧==⎨<⎩的发现过程,体验归纳、猜测的思想方法。

2、了解二次根式的上述两个性质。

3、会运用上述两个性质进展有关计算。

重点与难点:本节教学重点:是理解二次根式的上述两个性质;教学难点:是灵活运用上述两个性质进展有关计算。

教学设想:在教学中首先是进一步梳理和稳固已生成的知识,引入二次根式的性质1与平方根的关系。

并从学生熟悉的知识出发先练习、再观察发现总结规律得出性质一。

先练习、再观察发现总结规律得出性质二。

再通过梳理知识使条理清楚,并及时练习稳固,运用二次根式的两个性质解决根底的运算问题。

其间还要求标准书写知道运算程序、强调性质运用的条件,二次根式运算顺序。

教学过程:1、动动脑筋:〔利用教材中的例子〕。

你能把一张三边分别为5、5、10的三角形纸片放入4×4方格内,使它的三个顶点都在方格的顶点上吗2、利用教材中的填空:①图1中正方形的边长是_________。

〔a 〕②参考图2,完成以下填空:2=______;2=_________;2⎛ ⎝=_________。

〔将教材中的直观图形[正方形]作适当拓展,启发诱导数形结合思想,目的是从熟悉的知识出发先练习、再观察发现总结规律得出性质一。

〕你发现什么规律?归纳二次根式性质1:3、稳固新学知识,抢答:2___=;2____=;2(3)(____=;2(4)(____-=。

4、合作学习:____=;3____=____=;5__-=__=;0__=。

?=此处的“合作学习〞包含着两个过程:一是比拟左右两边的式子a 。

二是比拟右边的式子,得到绝对值的解答结果。

你发现什么规律?对于学生不能答复回思路不明时,那么如下点拨:a 有何关系?当a ≥0_____;和a ﹤0=_____。

归纳二次根式性质2:5、看谁的正确率高?2(1)(1)____-=;22(2)()____5=;21(3)(2)____3-=;2(4)(3)_____-=; (5)数a 在数轴上的位置如图,那么2_____a =。

数学二次根式教案【优秀8篇】

数学二次根式教案【优秀8篇】

数学二次根式教案【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!数学二次根式教案【优秀8篇】作为一名为他人授业解惑的教育工作者,就有可能用到教案,教案是备课向课堂教学转化的关节点。

公开课教案集《二次根式的性质》精品教学设计(5)

公开课教案集《二次根式的性质》精品教学设计(5)

本课在整个单元中,属于比较重要的环节。

除了起到承接上个课时、转接下课时的作用之外,还有一些重点的计算知识和转化相应的课时。

本单元在学科核心素养中,具体体现出非常重要的一环,就是在高效课堂的设计和转化过程中,注意学生主体意识的培养和学生学习兴趣的提高。

学习兴趣之于学生,是非常重要而且更加有意义的教学活动。

对于不同层次的学生来讲,环节上的应用更加大了不同学生之间互相弥合的意义。

1.2二次根式的性质(第一课时) 课 题 §1.2二次根式的性质(第一课时)课 时教 学目 标1、经历二次根式的性质的发现过程,体验归纳、猜想的思想方法。

2、了解二次根式的上述两个性质。

3、会运用上述两个性质进行有关计算。

教 学 设 想教学重点:是理解二次根式的上述两个性质;教学难点:是灵活运用上述两个性质进行有关计算。

教 学 程 序 与 策 略一、 回顾与引入1、 平方根的概念:一个数的平方等a (a ≥0),则这个数叫做a 的平方根,记做a ±,则()a a=±2 2、()a a =23、大家抢答填空()=22 ()=213 =⎪⎪⎭⎫ ⎝⎛271二、新课讲解从熟悉的知识出发先练习、再观察发现总结规律得出性质一4、性质一:()()02≥=a a a5、能用几何图形作出直观解释吗?用正方形的面积启发诱导数形结合思想6、填空 课本6页7、比较 2a 和a 有何关系?当a ≥0时,2a = 和a ﹤0,2a = 先练习、再观察发现总结规律得出性质二8、性质二:9、课内练习()()()()()()()()()()()2222322211_____,2______,33_____,5141_____,54____,62____.3⎛⎫-==-= ⎪⎝⎭⎛⎫=-=--= ⎪ ⎪⎝⎭梳理知识使条理清楚,及时练习巩固教 学 程 序 与 策 略10、例1 计算(1)()()221317-- (2)()323332+•⎥⎦⎤⎢⎣⎡--规范书写,知道运算程序、强调性质运用的条件,二次根式运算顺序11、课本7页课内练习第2题(领悟方法,会正迁移)12、计算:217375212-+⎪⎭⎫ ⎝⎛- 要求比较先算括号里与直接利用二次根式性质的优劣;强调先判断2a 中a 的符号三、引申与提高例4 化简:(1)(2) (3) (a <0,b >0) (4) (a >1 )四、分享与体会你能说出这节课你的收获和体验与大家分享吗?五、作业1.课本作业题2.作业本(2)教后反思录[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。

二次根式教案

二次根式教案
4.综合运用,巩固提高
练习1 完成教科书第3页的练习.
练习2 当x 是什么实数时,下列各式有意义.
(1) ;(2) ;(3) ;(4) .
辨析二次根式的概念,确定二次根式有意义的条件.
设计有一定综合性的题目,考查学生的敏捷运用的实力,开阔学生的视野,训练学生的思维.
5.总结反思
老师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.
二次根式的概念.
2.内容解析
本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念. 它不仅是对前面所学学问的综合应用,也为后面学习二次根式的性质和四则运算打基础.
教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义. 再通过例1探讨了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解.
二次根式教案 篇3
一、复习引入
学生活动:请同学们完成下列各题:
1.计算
(1)(2x+y)·zx(2)(2x2y+3xy2)÷xy
二、探究新知
假如把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢? 仍成立.
整式运算中的x、y、z是一种字母,它的意义非常广泛,可以代表全部一切, 当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.
本节课的教学难点为:理解二次根式的双重非负性.
四、教学过程设计
1.创设情境,提出问题
问题1你能用带有根号的的式子填空吗?
(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.

16.1二次根式性质(教案)

16.1二次根式性质(教案)
4.培养学生的数学建模能力:通过解决实际生活中的问题,让学生学会运用二次根式建立数学模型,提高解决实际问题的能力。
5.增强学生的数学应用意识:将二次根式知识与实际应用相结合,使学生体会数学在生活中的广泛应用和价值。
本节课将围绕这些核心素养目标展开教学,帮助学生全面提升数学素养。
三、教学难点与重点
1.教学重点
-针对乘除法则的难点,设计对比练习题,让学生区分√a * √b和√(a * b)的区别,以及何时使用除法法则。
-对于化简复杂二次根式,举例说明如何将√(75)化简为5√3,强调寻找平方因子的方法。
-在实际问题中,如计算正方形的对角线长度,指导学生如何将问题转化为二次根式的计算,突破建模难点。
四、教学流程
本节课的教学重点主要包括以下几点:
(1)理解二次根式的定义:学生需掌握二次根式的概念,即形如√a(a≥0)的数。
(2)掌握二次根式的性质:包括非负性、平方等于被开方数、乘法法则和除法法则。
(3)熟练运用二次根式的化简与运算:学生需要学会将二次根式进行化简,并进行加减乘除运算。
(4)实际应用:学生需要学会将二次根式应用于解决实际问题。
16.1二次根式性质(教案)
一、教学内容
本节课选自教材第十六章第一节,主要围绕“16.1二次根式性质”展开。内容包括:
1.二次根式的定义:形如√a(a≥0)的数称为二次根式。
2.二次根式的性质:
(1)二次根式具有非负性,即√a≥0。
(2)二次根式的平方等于被开方数,即(√a)^2 = a。
(3)二次根式的乘法法则:√a * √b = √(a * b)。
举例:
-重点强调二次根式乘法法则:√a * √b = √(a * b),通过具体例子解释说明。

二次根式市公开课获奖教案省名师优质课赛课一等奖教案逐字稿

二次根式市公开课获奖教案省名师优质课赛课一等奖教案逐字稿

二次根式教案逐字稿一、教学目标1. 理解和掌握二次根式的概念;2. 能够正确运用二次根式的运算法则进行计算;3. 能够解答有关二次根式的基本练习题。

二、教学重点1. 二次根式的定义和性质;2. 二次根式的运算法则。

三、教学难点1. 二次根式的运算规律;2. 解决复杂二次根式的计算问题。

四、教学准备1. 教材《高中数学教程》第三册;2. 教具:白板、黑板、彩色粉笔等;3. 笔记本电脑、投影仪。

五、教学过程第一步:导入新知识(5分钟)为了引起学生的兴趣,导入阶段,可以通过一个生动的案例加深学生对二次根式的理解。

例如:小明家的车库墙上有一个镜子,它的形状是一个正方形。

车库门边缘的长度为12米,我们想要知道镜子面积的大小。

请同学们思考一下,如何计算这个正方形镜子的面积?第二步:引入概念和性质(10分钟)为了引出二次根式的概念和性质,教师可以使用PPT展示的方式,结合实际案例,引导学生发现二次根式的特点。

然后,教师解释二次根式的定义和性质,比如根式的符号、根式的系数、根式的指数等,以及根式与分式之间的关系。

第三步:举例说明运算法则(15分钟)在教授了二次根式的概念和性质后,教师可以通过具体的例子,逐一讲解二次根式的运算法则。

教师应尽量采用多种多样的实例,让学生能够全面掌握运算法则。

同时,教师可以请学生上黑板进行实际操作,巩固所学的知识。

第四步:练习与巩固(15分钟)在完成了运算法则的讲解后,学生可以进行一些练习题,以检验他们对所学内容的理解和掌握程度。

教师可以分发一些练习册,或者在黑板上出示一些习题,要求学生在规定的时间内完成。

教师应及时纠正学生答题中的错误,以加强学生对二次根式运算法则的应用能力。

第五步:拓展与应用(15分钟)为了拓展学生对二次根式的认识,教师可以引导学生进行一些拓展性的讨论,如二次根式的图像特征、二次根式与实际问题的联系等。

同时,教师还可以给学生一些实际的应用题目,让他们将所学知识应用到实践中,提高解决问题的能力。

二次根式的性质 公开课获奖教案

二次根式的性质  公开课获奖教案

第2课时 二次根式的性质1.经历二次根式的性质的发现过程,体验归纳、猜想的思想方法;(重点) 2.了解并掌握二次根式的性质,会运用其进行有关计算.(重点,难点) 一、情境导入 a 2等于什么?我们不妨取a 的一些值,如2,-2,3,-3,…分别计算出对应的a 2的值,看看有什么规律.22=4=2;(-2)2=4=2; 32=9=3;(-3)2=9=3;…你能概括一下a 2的值吗?二、合作探究探究点一:二次根式的性质【类型一】行计算化简: (1)(5)2;(2)52;(3)(-5)2;(4)(-5)2.解析:根据二次根式的性质进行计算即可.解:(1)(5)2=5;(2)52=5;(3)(-5)2=5;(4)(-5)2=5.方法总结:利用a 2=|a |进行计算与化简,幂的运算法则仍然适用,同时要注意二次根式的被开方数要为非负数.【类型二】 在实数范围内分解因式.(1)a 2-13;(2)4a 2-5;(3)x 4-4x 2+4. 解析:由于任意一个非负数都可以写成一个数的平方的形式,利用这个即可将以上几个式子在实数范围内分解因式. 解:(1)a 2-13=a 2-(13)2=(a +13)(a -13);(2)4a 2-5=(2a )2-(5)2=(2a +5)(2a-5);(3)x 4-4x 2+4=(x 2-2)2=[(x +2)(x-2)]2=(x +2)2(x -2)2. 方法总结:一些式子在有理数的范围内无法分解因式,可是在实数范围内就可以继续分解因式.这就需要把一个非负数表示成平方的形式. 探究点二:二次根式性质的综合应用【类型一】结合数轴利用二次根式的性质求值或化简已知实数a ,b 在数轴上的位置如图所示,化简:(a +1)2+2(b -1)2-|a -b |.解析:根据数轴确定a 和b 的取值范围,进而确定a +1、b -1和a -b 的取值范围,再根据二次根式的性质和绝对值的意义化简求解.解:从数轴上a ,b 的位置关系可知-2<a <-1,1<b <2,且b >a ,故a +1<0,b -1>0,a -b <0.原式=|a +1|+2|b -1|-|a -b |=-(a +1)+2(b -1)+(a -b )=b -3.方法总结:结合数轴利用二次根式的性质求值或化简,解题的关键是根据数轴判断字母的取值范围和熟练运用二次根式的性质.【类型二】 二次根式的化简与三角形三边关系的综合已知a 、b 、c 是△ABC 的三边长,化简(a +b +c )2-(b +c -a )2+(c -b -a )2. 解析:根据三角形的三边关系得出b +c >a ,b +a >c .根据二次根式的性质得出含有绝对值的式子,最后去绝对值符号合并即可.解:∵a 、b 、c 是△ABC 的三边长,∴b +c >a ,b +a >c ,∴原式=|a +b +c |-|b +c -a |+|c -b -a |=a +b +c -(b +c -a )+(b +a -c )=a +b +c -b -c +a +b +a -c =3a +b -c .方法总结:解答本题的关键是根据三角形的三边关系得出不等关系,再进行变换后,结合二次根式的性质进行化简.【类型三】利用分类讨论的思想对二次根式进行化简已知x为实数时,化简x2-2x+1+x2.解析:根据a2=|a|,结合绝对值的性质,将x的取值范围分段进行讨论解答.解:x2-2x+1+x2=(x-1)2+x2=|x-1|+|x|.当x≤0时,x-1<0,原式=1-x+(-x)=1-2x;当0<x≤1时,x-1≤0,原式=1-x+x=1;当x>1时,x-1>0,原式=x-1+x=2x-1.方法总结:利用二次根式的性质进行化简时,要结合具体问题,先确定出被开方数的正负,对于式子a2=|a|,当a的符号无法判断时,就需要分类讨论,分类时要做到不重不漏.【类型四】二次根式的规律探究性问题细心观察,认真分析下列各式,然后解答问题.(1)2+1=2,S1=12,(2)2+1=3,S2=22,(3)2+1=4,S3=32.(1)请用含n(n是正整数)的等式表示上述变化规律;(2)推算出OA10的长;(3)求出S21+S22+S23+…+S210的值.解析:利用直角三角形的面积公式,观察上述结论,会发现第n个三角形的一直角边长就是n,另一条直角边长为1,然后利用面积公式可得.解:(1)(n)2+1=n+1,S n=n2(n是正整数);(2)∵OA1=1,OA2=2,OA3=3,…∴OA10=10;(3)S21+S22+S23+…+S210=⎝⎛⎭⎫122+⎝⎛⎭⎫222+⎝⎛⎭⎫322+…+⎝⎛⎭⎫1022=14(1+2+3+ (10)=554.方法总结:解题时通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想.探究点三:代数式的定义及简单应用按照下列程序计算,表格内应输出的代数式是____________.n→立方→+n→÷n→-n→答案解析:根据程序所给的运算,用代数式表示即可,根据程序所给的运算可得输出的代数式为n3+nn-n.故答案为n3+nn-n.方法总结:根据实际问题列代数式的一般步骤:(1)认真审题,对语言或图形中所代表的意思进行仔细辨析;(2)分清语言和图形表述中各种数量的关系;(3)根据各数量间的运算关系及运算顺序写出代数式.三、板书设计1.二次根式的性质1:(a)2=a(a≥0);2.二次根式的性质2:a2=a(a≥0).3.代数式的定义用基本运算符号(基本运算符号包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来的式子叫做代数式.新的教学理念要求教师在课堂教学中注意引导学生进行探究学习,在课堂教学中,对学生探索求知作出了引导,并且鼓励学生自由发言,但在师生互动方面做得还不够,小组间的合作不够融洽,今后的教学中应多培养学生合作交流的意识,这样有助于他们今后的学习和生活.17.1勾股定理第1课时勾股定理1.经历探索及验证勾股定理的过程,体会数形结合的思想;(重点)2.掌握勾股定理,并运用它解决简单的计算题;(重点)3.了解利用拼图验证勾股定理的方法.(难点)一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究探究点一:勾股定理【类型一】直接运用勾股定理如图,在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,CD⊥AB于D,求:(1)AC的长;(2)S△ABC;(3)CD的长.解析:(1)由于在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出S△ABC;(3)根据面积公式得到CD·AB=BC·AC即可求出CD.解:(1)∵在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,∴AC=AB2-BC2=12cm;(2)S△ABC=12CB·AC=12×5×12=30(cm2);(3)∵S△ABC=12AC·BC=12CD·AB,∴CD=AC·BCAB=6013cm.方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.【类型二】分类讨论思想在勾股定理中的应用在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC的周长.解析:本题应分△ABC为锐角三角形和钝角三角形两种情况进行讨论.解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,如图①所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=5+9=14,∴△ABC的周长为15+13+14=42;(2)当△ABC为钝角三角形时,如图②所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=9-5=4,∴△ABC的周长为15+13+4=32.∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC 的周长为32.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.【类型三】勾股定理的证明探索与研究:方法1:如图:对任意的符合条件的直角三角形ABC绕其顶点A旋转90°得直角三角形AED,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE的面积相等,而四边形ABFE的面积等于Rt△BAE和Rt△BFE的面积之和.根据图示写出证明勾股定理的过程;方法2:如图:该图形是由任意的符合条件的两个全等的Rt△BEA和Rt△ACD拼成的,你能根据图示再写出一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和进行解答;方法2:根据△ABC和Rt△ACD的面积之和等于Rt△ABD和△BCD的面积之和解答.解:方法1:S正方形ACFD=S四边形ABFE=S△BAE+S△BFE,即b2=12c2+12(b+a)(b-a),整理得2b2=c2+b2-a2,∴a2+b2=c2;方法2:此图也可以看成Rt△BEA绕其直角顶点E顺时针旋转90°,再向下平移得到.∵S四边形ABCD=S△ABC+S△ACD,S四边形ABCD=S△ABD+S△BCD,∴S△ABC+S△ACD=S△ABD+S△BCD,即12b2+12ab=12c2+12a(b-a),整理得b2+ab=c2+a(b-a),b2+ab=c2+ab-a2,∴a2+b2=c2.方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.探究点二:勾股定理与图形的面积如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是________.解析:根据勾股定理的几何意义,可得正方形A、B的面积和为S1,正方形C、D的面积和为S2,S1+S2=S3,即S3=2+5+1+2=10.故答案为10.方法总结:能够发现正方形A、B、C、D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A、B、C、D的面积和即是最大正方形的面积.三、板书设计1.勾股定理如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.2.勾股定理的证明“赵爽弦图”、“刘徽青朱出入图”、“詹姆斯·加菲尔德拼图”、“毕达哥拉斯图”.3.勾股定理与图形的面积课堂教学中,要注意调动学生的积极性.让学生满怀激情地投入到学习中,提高课堂效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.。

人教版数学八年级下册16.1.2二次根式的性质(教案)

人教版数学八年级下册16.1.2二次根式的性质(教案)
3.重点难点解析:在讲授过程中,我会特别强调二次根式的乘法、除法、平方和开方性质这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解,如\( \sqrt{a} \times \sqrt{b} = \sqrt{ab} \)和\( \sqrt{a^2} = |a| \)的运用。
(三)实践活动(用时10分钟)
-复杂化简:对于\( \sqrt{\frac{24}{3}} \)的化简,学生可能会直接得到\( \sqrt{8} \),而忽视\( \frac{\sqrt{24}}{\sqrt{3}} = \sqrt{\frac{24}{3}} = \sqrt{8} \)中的正确步骤。
四、教学流程
(一)导入新课(用时5分钟)
3.培养学生的数学建模能力:引导学生将实际问题转化为二次根式的数学模型,培养学生运用数学知识解决实际问题的能力。
4.培养学生的数学抽象素养:通过对二次根式性质的探究,使学生理解数学概念的本质,提高数学抽象思维。
三、教学难点与重点
1.教学重点
-二次根式的性质:理解并掌握二次根式的乘法、除法、平方和开方性质,能熟练应用于解题。
其次,我发现有些学生对乘法性质和除法性质容易混淆,尤其是在应用时。为了帮助学生更好地掌握这两个性质,我计划在下一节课中增加一些对比练习,让学生通过实际操作,感受两者之间的区别和联系。
此外,关于二次根式的化简,我觉得在讲解过程中需要更加注重步骤的详细解释。有些学生对于多层嵌套的二次根式化简感到困惑,我将在以后的课堂中多举例,并引导学生逐步分解和化简,以提高他们的解题能力。
-二次根式的化简:掌握运用性质对二次根式进行化简的方法,提高解题效率。
-实际问题的建模:学会将实际问题转化为二次根式的数学模型,培养数学应用能力。

二次根式的性质优秀教案

二次根式的性质优秀教案

二次根式的性质【教学目标】使学生掌握积、商的算术平方根的性质,并能熟练地进行二次根式的除法运算。

【教学重难点】重点:二次根式的乘法、除法的性质与利用性质进行运算。

难点:运用积的算术平方根的性质化简二次根式。

【教学过程】(一)预习检测1.填空(可用计算器计算);,______________94________________94=⨯=⨯ ;,______________54________________54=⨯=⨯ ;,______________01.0100________________01.0100=⨯=⨯ ;,______________169________________169=÷= ;,______________23________________23=÷= 2.比较左右两边的等式,你发现了什么?你能用字母表示你发现的规律吗?(学生通过观察,从中得到二次根式的乘法、除法性质。

鼓励学生用自己的语言总结出性质。

从而引出课题,教师鼓励学生大胆表述意见,然后作适当点评,板书本课课题)。

(二)合作交流:1.积的算术平方根的性质。

积的算术平方根,等于积中各因式的算术平方根的积(各因式必须是非负数)。

即)0,0(≥≥⋅=b a b a ab2.商的算术平方根的性质。

商的算术平方根等于被除式的算术平方根除以除式的算术平方根(被除式必须是非负数,除式必须是正数)。

即b ab a=).0,0(>≥b a作用:运用以上式子可以进行简单的二次根式的除法运算。

(三)练习巩固:1.化简:;);();();()(72495374222512112⨯⨯注意:一般地,二次根式化简的结果应使根号内的数是一个自然数,且在该自然数的因数中,不含有1以外的自然数的平方数。

按教师提问,学生回答,教师板书解题过程交替进行的方式教学。

2.先化简,再求出下面算式的近似值。

(精确到0.01) ()()。

二次根式教案

二次根式教案

二次根式教案二次根式教案(精选12篇)作为一名教职工,就不得不需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。

我们应该怎么写教案呢?以下是本店铺为大家整理的二次根式教案,欢迎阅读,希望大家能够喜欢。

二次根式教案 1教学目的1.使学生掌握最简二次根式的定义,并会应用此定义判断一个根式是否为最简二次根式;2.会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。

教学重点最简二次根式的定义。

教学难点一个二次根式化成最简二次根式的方法。

教学过程一、复习引入1.把下列各根式化简,并说出化简的根据:2.引导学生观察考虑:化简前后的根式,被开方数有什么不同?化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。

3.启发学生回答:二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?二、讲解新课1.总结学生回答的.内容后,给出最简二次根式定义:满足下列两个条件的二次根式叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽的因数或因式。

最简二次根式定义中第(1)条说明被开方数不含有分母;分母是1的例外。

第(2)条说明被开方数中每个因式的指数小于2;特别注意被开方数应化为因式连乘积的形式。

2.练习:下列各根式是否为最简二次根式,不是最简二次根式的说明原因:3.例题:例1把下列各式化成最简二次根式:例2把下列各式化成最简二次根式:4.总结把二次根式化成最简二次根式的根据是什么?应用了什么方法?当被开方数为整数或整式时,把被开方数进行因数或因式分解,根据积的算术平方根的性质,把开得尽方的因数或因式用它的算术平方根代替移到根号外面去。

当被开方数是分数或分式时,根据分式的基本性质和商的算术平方根的性质化去分母。

此方法是先根据分式的基本性质把被开方数的分母化成能开得尽方的因式,然后分子、分母再分别化简。

二次根式数学教案9篇

二次根式数学教案9篇

二次根式数学教案9篇二次根式数学教案1一、内容和内容解析1.内容二次根式的性质。

2.内容解析本节教材是在学生学习二次根式概念的基础上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和思考得到二次根式的两个基本性质.对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过“探究”栏目中给出四个具体问题,让学生学生根据算术平方根的意义,就具体数字进行分析得出结果,再分析这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析,确定本节课的教学重点为:理解二次根式的性质.二、目标和目标解析1.教学目标(1)经历探索二次根式的性质的过程,并理解其意义;(2)会运用二次根式的性质进行二次根式的化简;(3)了解代数式的概念.2.目标解析(1)学生能根据具体数字分析和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;(2)学生能灵活运用二次根式的性质进行二次根式的化简;(3)学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.三、教学问题诊断分析二次根式的性质是二次根式化简和运算的重要基础.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵活运用二次根式的性质进行二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的灵活运用存在一定的困难,突破这一难点需要教师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵活运用的能力.本节课的教学难点为:二次根式性质的灵活运用.四、教学过程设计1.探究性质1问题1 你能解释下列式子的含义吗?师生活动:教师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.问题2 根据算术平方根的意义填空,并说出得到结论的依据.师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.问题3 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师生活动:引导学生归纳得出二次根式的性质:(≥0).【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力.例2 计算(1);(2) .师生活动:学生独立完成,集体订正.【设计意图】巩固二次根式的性质1,学会灵活运用.2.探究性质2问题4 你能解释下列式子的含义吗?师生活动:教师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.问题5 根据算术平方根的意义填空,并说出得到结论的依据.师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.问题6 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师生活动:引导学生归纳得出二次根式的性质:(≥0)【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力.例3 计算(1);(2) .师生活动:学生独立完成,集体订正.【设计意图】巩固二次根式的性质2,学会灵活运用.3.归纳代数式的概念问题7 回顾我们学过的式子,如,(≥0),这些式子有哪些共同特征?师生活动:学生概括式子的共同特征,得出代数式的概念.【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力.4.综合运用(1)算一算:【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,第(2)、(3)、(4)小题要特别注意结果的符号.(2)想一想:中,的取值范围是什么?当≥0时,等于多少?当时,又等于多少?【设计意图】通过此问题的设计,加深学生对的理解,开阔学生的视野,训练学生的思维.(3)谈一谈你对与的认识.【设计意图】加深学生对二次根式性质的理解.5.总结反思(1)你知道了二次根式的哪些性质?(2)运用二次根式性质进行化简需要注意什么?(3)请谈谈发现二次根式性质的思考过程?(4)想一想,到现在为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.6.布置作业:教科书习题16.1第2,4题.五、目标检测设计1.;; .【设计意图】考查对二次根式性质的理解.2.下列运算正确的是()A. B. C. D.【设计意图】考查学生运用二次根式的性质进行化简的能力.3.若,则的取值范围是.【设计意图】考查学生对一个数非负数的算术平方根的理解.4.计算: .【设计意图】考查二次根式性质的灵活运用.二次根式数学教案2教学设计思想新教材打破了旧教材从定义出发,由理论到理论,按部就班的旧格局,创造出从实践到理论再回到实践,由浅入深,符合认知结构的新模式。

二次根式的性质教学设计

二次根式的性质教学设计

二次根式的性质教学设计教学设计:二次根式的性质一、教学目标:1.了解二次根式的定义和性质;2.掌握二次根式化简与运算;3.能够应用二次根式的性质解决相关问题。

二、教学内容:1.二次根式的定义;2.二次根式的性质;3.二次根式的化简与运算;4.应用二次根式的性质解决相关问题。

三、教学过程:1.导入新课:通过提问调查学生对二次根式的了解程度,引发学生对二次根式的兴趣,并激发他们思考的欲望。

2.了解二次根式的定义:-结合具体例子,向学生解释二次根式的含义:二次根式是一个形如√a(a≥0)的数,其中a被称为被开方数。

可以是整数、小数或分数。

-让学生通过举例找出二次根式的特点:被开方数可以是一个完全平方数或一个不是完全平方数的数。

-引导学生总结出二次根式的符号表示形式,即√a。

3.二次根式的性质:-通过多组示例,引导学生探究二次根式的性质。

-性质1:√a×√b=√(a×b)(a≥0,b≥0)-性质2:√a÷√b=√(a÷b)(a≥0,b>0)-性质3:√(a×b×c)=√a×√b×√c(a≥0,b≥0,c≥0)4.二次根式的化简与运算:-通过多组示例,引导学生掌握二次根式的化简与运算的方法。

-化简:对于一些二次根式,如果能找到一个数,使得被开方数等于这个数的平方,则可以化简为这个数。

-运算:对于二次根式的加减法,只有当被开方数相同才能进行加减运算;对于二次根式的乘法,可以使用二次根式的性质1进行运算;对于二次根式的除法,可以使用二次根式的性质2进行运算。

5.应用二次根式的性质解决相关问题:-提供一些实际问题,使学生能够运用所学知识解决问题,提高他们的应用能力。

-例题:有一块广场,长度和宽度分别为3√3米和2√6米,求广场的面积。

-解题思路:广场的面积等于长度与宽度的乘积,即面积=3√3×2√6=6×√(3×6)=6×√18、然后,进一步化简√18=√(9×2)=√9×√2=3√2、最终,面积=6×3√2=18√2(单位:平方米)。

二次根式性质教案

二次根式性质教案

二次根式性质教案教案标题:二次根式性质教案课时数:1课时教学目标:1. 理解二次根式的定义和性质;2. 学会化简二次根式;3. 掌握二次根式乘法的计算规则;4. 能够应用二次根式的性质解决相关问题。

教学重点:1. 理解二次根式的定义和性质;2. 学会化简二次根式。

教学难点:1. 掌握二次根式乘法的计算规则;2. 能够应用二次根式的性质解决相关问题。

教学准备:1. 教师准备:教学用书、黑板、彩色粉笔、准备好相关练习题与答案;2. 学生准备:课本、练习本、笔。

教学过程:Step 1: 导入新知 (5分钟)1. 教师通过问题引入:二次根式是什么?它有什么性质?2. 学生回答问题,教师引导学生对二次根式的定义和性质进行讨论,并做出总结。

Step 2: 学习新知 (15分钟)1. 教师通过黑板上的例子,详细介绍如何化简二次根式,包括合并同类项、提取公因式等步骤。

2. 学生跟随教师的示范,积极参与化简二次根式的练习。

Step 3: 拓展练习 (15分钟)1. 教师出示一些练习题,要求学生课堂上解答。

题目可以包括化简二次根式、计算二次根式的乘法等。

2. 学生独立完成题目,然后与同桌讨论答案。

Step 4: 总结与归纳 (10分钟)1. 教师根据学生的回答,总结二次根式的性质和化简方法。

2. 教师与学生一起完成归纳总结的笔记。

Step 5: 作业布置 (5分钟)1. 教师布置相关作业,包括练习题和问题解答。

2. 鼓励学生独立完成作业,发现问题及时解决。

教学反思:本堂课主要围绕二次根式的定义和性质展开教学,通过示范和练习让学生熟练掌握化简二次根式的方法。

通过布置作业,提高学生的自主学习能力,并鼓励学生解决问题的能力。

在教学过程中,要注意引导学生分析问题、归纳总结,并及时给予肯定和鼓励,激发学生学习的积极性。

二次根式公开课教案

二次根式公开课教案

4.1.1二次根式教学目标知识与技能:1、了解二次根式的定义,会判断一个二次根式在实数范围内是否有意义及有意义的条件。

2、会根据公式2)(a=a(a≥0) 及2a=∣a∣进行计算。

过程与方法:经历观察、比较、总结二次根式的定义,发展学生的归纳能力。

情感、态度与价值观:经历观察、比较、总结和应用等教学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用意识。

教学重难点1.重点:会判断一个二次根式在实数范围内是否有意义及有意义的条件。

2.难点:会根据公式2)(a=a(a≥0) 及2a=∣a∣进行计算。

教学过程一、复习引入(学生活动)请同学们独立完成下列问题:1、4的平方根是?4的算术平方根是?2、0的平方根是?0的算术平方根是?3、2的平方根是?2的算术平方根是?4、-7有没有平方根?-7有没有算术平方根?对于每一个正实数a有且只有个平方根,记作,其中一个正的平方根叫做a的记作,另一个平方根是。

0的平方根记作,即。

二、探索新知一般地,我们把形如a(a≥0)•的式子叫做二次根式,“”称为二次根号,简称根号,根号下的数叫做被开方的数。

由于二次根式的被开方数只能取非负值,因此二次根式要有意义就必须被开方数大于等于0。

从形式上看,二次根式必须具备以下两个条件:( 1 ) 必须有二次根号;( 2 ) 被开方数不能小于0 。

例1、下列式子,哪些是二次根式,哪些不是二次根式:(1)32; (2)6; (3)12- ;(4)m -(m ≤0); (5)xy (x y 异号)(6)12+a ; (7)38解:二次根式有:(1)32; (2)m -(m ≤0); (3)12+a ; 例2当x 是多少时,二次根式1-x 在实数范围内有意义? 解:由x-1≥0,得:x ≥1当x ≥1时,1-x 在实数范围内有意义.例3计算:讨论:如果将上题中的数字换成字母,你发现2)(a 与2a 有何异同呢?三、巩固练习:见学案四、课堂小结:1、二次根式的概念;2、二次根式的性质。

《二次根式的性质》教案

《二次根式的性质》教案

《二次根式的性质》教案教学目标1.了解最简二次根式的意义,并能作出准确判断.2.能熟练地把二次根式化为最简二次根式.3.了解把二次根式化为最简二次根式在实际问题中的应用.4.进一步培养学生运用二次根式的性质进行二次根式化简的能力,提高运算能力. 重点难点1.教学重点:会把二次根式化简为最简二次根式.2.教学难点:准确运用化二次根式为最简二次根式的方法.教学过程一、合作学习,引出课题1、复习旧知:二次根式:(1)定义:a ≥0)”称为二次根号.(2)基本性质:2(0)a a =≥二、引入新知1、填空:当a ≥0;当a <0,并根据这一性质回答下列问题.(1)a ,则a 可以是什么数?(2)a ,则a 可以是什么数?(3a ,则a 可以是什么数?a (a ≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“( )2”中的数是正数,因为,当a ≤0时,-a ≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知│a │,而│a │要大于a ,只有什么时候才能保证呢?a <0.解:(1)a ,所以a ≥0;(2)a ,所以a ≤0;(3)因为当a ≥0a a ,即使a >a 所以a 不存在;当a <0a ,a ,即使-a >a ,a <0综上,a <0.2、合作学习:我们继续来探究二次根式的其他性质:填空(可用计算器计算) 49___49___⨯=⨯=,; 45____45_____⨯=⨯=,;9_____916_____16=÷=,; 3____32_______2=÷=,;1000.01____1000.01____⨯=⨯=,;积的算术平方根的性质积的算术平方根,等于积中各因式的算术平方根的积(各因式必须是非负数).即)0,0(≥≥⋅=b a b a ab看下面的问题:已知:=1.732,如何求出的近似值? 解法1:解法2:比较两种解法,解法1很繁,解法2较简便,比例说明,将二次根式化简,有时会带来方便.商的算术平方根的性质商的算术平方根等于被除式的算术平方根除以除式的算术平方根(被除式必须是非负数,除式必须是正数).即b ab a=).0,0(>≥b a满足下列条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.判断一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足两个条件的就是,否则就不是.三、习题巩固1、下列二次根式中哪些是最简二次根式?哪些不是?为什么?分析:判断一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足两个条件的就是,否则就不是.解:最简二次根式有,因为被开方数中含能开得尽方的因数9,所以它不是最简二次根式.说明:判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.2、判断下列各式是否是最简二次根式?分析:被开方数是多项式的要先分解因式再进行观察判断.(1)不能分解因式,显然满足最简二次根式的两个条件. (2)解:最简二次根式只有,因为.说明:被开方数比较复杂时,应先进行因式分解再观察.二次根式的化简化简二次根式的过程,一般按以下步骤:把根号下的带分数或绝对值大于1的小数化成假分数,把绝对值小于1的小数化成分数;被开方数是多项式的要因式分解;使被开放数不含分母;将被开方数中能开的尽方的因数或因式用它的算术平方根代替后移到根号外面;化去分母中的根号;约分.四、小结1.二次根式的性质: 2(0)0,0)0,0)a a a ab a b a b a a a b b b =≥=≥≥=≥>2.运用性质化简:(1)根号内不再含有分母.(2)根号内不再含有开得尽方的因式.。

二次根式的性质教案

二次根式的性质教案

二次根式的性质教案教案:二次根式的性质一、教学目标:1.知道二次根式的定义和概念;2.掌握二次根式的乘法和除法运算规则;3.了解二次根式的性质,并能运用到实际问题中。

二、教学内容:1.二次根式的定义和概念;2.二次根式的乘法和除法运算规则;3.二次根式的性质及其应用。

三、教学过程:步骤一:导入新知1.引入问题:“怎样才能将根号下面的数化为整数?”2.学生进行讨论,引导学生思考。

3.引出二次根式。

步骤二:概念讲解与运算规则1.定义二次根式:如果a和b是非负实数,且b≠0,则称形如√(a/b)的表达式为二次根式。

2.二次根式的运算规则:-乘法:√(a/b)*√(c/d)=√((a*c)/(b*d))-除法:√(a/b)/√(c/d)=√((a*d)/(b*c))步骤三:性质讲解1.定理一:若a和b是非负实数,则√(a*b)=√a*√b。

例子:√8=√(4*2)=√4*√2=2√22.定理二:若a和b是非负实数,则√(a/b)=(√a)/(√b)。

例子:√(8/2)=(√8)/(√2)=2√2/√2=23.定理三:若a是非负实数,则√a*√a=a。

步骤四:例题训练1.讲解例题,让学生进行解答和思考。

2.引导学生用性质和运算规则解答例题。

步骤五:拓展应用1.分组讨论,要求学生找到二次根式在实际问题中的应用。

2.学生展示自己的思考结果,进行讨论和交流。

四、巩固练习:1.让学生进行课后作业题的解答。

2.学生互相批改,讲解答案和解题思路。

五、课堂小结:1.总结二次根式的定义、概念、运算规则和性质;2.强调二次根式的应用价值。

六、教学反思:通过本节课的教学,学生了解了二次根式的定义和概念,掌握了二次根式的乘法和除法运算规则。

通过讲解二次根式的性质及其应用,激发了学生的兴趣,并培养了他们应用数学知识解决实际问题的能力。

然而,需要注意的是,性质的讲解要简明扼要,例题要与课堂内容贴近,能够帮助学生更好地理解概念和运算规则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时二次根式的性质1.经历二次根式的性质的发现过程,体验归纳、猜想的思想方法;(重点)2.了解并掌握二次根式的性质,会运用其进行有关计算.(重点,难点)一、情境导入a2等于什么?我们不妨取a的一些值,如2,-2,3,-3,…分别计算出对应的a2的值,看看有什么规律.22=4=2;(-2)2=4=2;32=9=3;(-3)2=9=3;…你能概括一下a2的值吗?二、合作探究探究点一:二次根式的性质【类型一】利用a2=|a|、(a)2=a进行计算化简:(1)(5)2;(2)52;(3)(-5)2;(4)(-5)2.解析:根据二次根式的性质进行计算即可.解:(1)(5)2=5;(2)52=5;(3)(-5)2=5;(4)(-5)2=5.方法总结:利用a2=|a|进行计算与化简,幂的运算法则仍然适用,同时要注意二次根式的被开方数要为非负数.【类型二】(a)2=a(a≥0)的有关应用在实数范围内分解因式.(1)a2-13;(2)4a2-5;(3)x4-4x2+4.解析:由于任意一个非负数都可以写成一个数的平方的形式,利用这个即可将以上几个式子在实数范围内分解因式.解:(1)a2-13=a2-(13)2=(a+13)(a -13);(2)4a2-5=(2a)2-(5)2=(2a+5)(2a -5);(3)x4-4x2+4=(x2-2)2=[(x+2)(x-2)]2=(x+2)2(x-2)2.方法总结:一些式子在有理数的范围内无法分解因式,可是在实数范围内就可以继续分解因式.这就需要把一个非负数表示成平方的形式.探究点二:二次根式性质的综合应用【类型一】结合数轴利用二次根式的性质求值或化简已知实数a,b在数轴上的位置如图所示,化简:(a+1)2+2(b-1)2-|a-b|.解析:根据数轴确定a和b的取值范围,进而确定a+1、b-1和a-b的取值范围,再根据二次根式的性质和绝对值的意义化简求解.解:从数轴上a,b的位置关系可知-2<a<-1,1<b<2,且b>a,故a+1<0,b-1>0,a-b<0.原式=|a+1|+2|b-1|-|a -b|=-(a+1)+2(b-1)+(a-b)=b-3.方法总结:结合数轴利用二次根式的性质求值或化简,解题的关键是根据数轴判断字母的取值范围和熟练运用二次根式的性质.【类型二】二次根式的化简与三角形三边关系的综合已知a、b、c是△ABC的三边长,化简(a+b+c)2-(b+c-a)2+(c-b-a)2.解析:根据三角形的三边关系得出b+c >a,b+a>c.根据二次根式的性质得出含有绝对值的式子,最后去绝对值符号合并即可.解:∵a、b、c是△ABC的三边长,∴b +c>a,b+a>c,∴原式=|a+b+c|-|b+c-a|+|c-b-a|=a+b+c-(b+c-a)+(b +a-c)=a+b+c-b-c+a+b+a-c=3a +b-c.方法总结:解答本题的关键是根据三角形的三边关系得出不等关系,再进行变换后,结合二次根式的性质进行化简.【类型三】利用分类讨论的思想对二次根式进行化简已知x为实数时,化简x2-2x+1+x2.解析:根据a2=|a|,结合绝对值的性质,将x的取值范围分段进行讨论解答.解:x2-2x+1+x2=(x-1)2+x2=|x-1|+|x|.当x≤0时,x-1<0,原式=1-x+(-x)=1-2x;当0<x≤1时,x-1≤0,原式=1-x+x=1;当x>1时,x-1>0,原式=x-1+x=2x-1.方法总结:利用二次根式的性质进行化简时,要结合具体问题,先确定出被开方数的正负,对于式子a2=|a|,当a的符号无法判断时,就需要分类讨论,分类时要做到不重不漏.【类型四】二次根式的规律探究性问题细心观察,认真分析下列各式,然后解答问题.(1)2+1=2,S1=1 2,(2)2+1=3,S2=2 2,(3)2+1=4,S3=3 2.(1)请用含n(n是正整数)的等式表示上述变化规律;(2)推算出OA10的长;(3)求出S21+S22+S23+…+S210的值.解析:利用直角三角形的面积公式,观察上述结论,会发现第n个三角形的一直角边长就是n,另一条直角边长为1,然后利用面积公式可得.解:(1)(n)2+1=n+1,S n=n2(n是正整数);(2)∵OA1=1,OA2=2,OA3=3,…∴OA10=10;(3)S21+S22+S23+…+S210=⎝⎛⎭⎫122+⎝⎛⎭⎫222+⎝⎛⎭⎫322+…+⎝⎛⎭⎫1022=14(1+2+3+ (10)=554.方法总结:解题时通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想.探究点三:代数式的定义及简单应用按照下列程序计算,表格内应输出的代数式是____________.n→立方→+n→÷n→-n→答案解析:根据程序所给的运算,用代数式表示即可,根据程序所给的运算可得输出的代数式为n3+nn-n.故答案为n3+nn-n.方法总结:根据实际问题列代数式的一般步骤:(1)认真审题,对语言或图形中所代表的意思进行仔细辨析;(2)分清语言和图形表述中各种数量的关系;(3)根据各数量间的运算关系及运算顺序写出代数式.三、板书设计1.二次根式的性质1:(a)2=a(a≥0);2.二次根式的性质2:a2=a(a≥0).3.代数式的定义用基本运算符号(基本运算符号包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来的式子叫做代数式.新的教学理念要求教师在课堂教学中注意引导学生进行探究学习,在课堂教学中,对学生探索求知作出了引导,并且鼓励学生自由发言,但在师生互动方面做得还不够,小组间的合作不够融洽,今后的教学中应多培养学生合作交流的意识,这样有助于他们今后的学习和生活.17.1勾股定理第1课时勾股定理1.经历探索及验证勾股定理的过程,体会数形结合的思想;(重点)2.掌握勾股定理,并运用它解决简单的计算题;(重点)3.了解利用拼图验证勾股定理的方法.(难点)一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究探究点一:勾股定理【类型一】直接运用勾股定理如图,在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,CD⊥AB于D,求:(1)AC的长;(2)S△ABC;(3)CD的长.解析:(1)由于在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出S△ABC;(3)根据面积公式得到CD·AB=BC·AC即可求出CD.解:(1)∵在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,∴AC=AB2-BC2=12cm;(2)S△ABC=12CB·AC=12×5×12=30(cm2);(3)∵S△ABC=12AC·BC=12CD·AB,∴CD =AC·BCAB=6013cm.方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.【类型二】分类讨论思想在勾股定理中的应用在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC的周长.解析:本题应分△ABC为锐角三角形和钝角三角形两种情况进行讨论.解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,如图①所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=5+9=14,∴△ABC的周长为15+13+14=42;(2)当△ABC为钝角三角形时,如图②所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=9-5=4,∴△ABC的周长为15+13+4=32.∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC 的周长为32.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.【类型三】勾股定理的证明探索与研究:方法1:如图:对任意的符合条件的直角三角形ABC 绕其顶点A旋转90°得直角三角形AED,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE的面积相等,而四边形ABFE的面积等于Rt△BAE和Rt△BFE的面积之和.根据图示写出证明勾股定理的过程;方法2:如图:该图形是由任意的符合条件的两个全等的Rt△BEA和Rt△ACD拼成的,你能根据图示再写出一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和进行解答;方法2:根据△ABC和Rt△ACD的面积之和等于Rt△ABD和△BCD的面积之和解答.解:方法1:S正方形ACFD=S四边形ABFE=S△BAE+S△BFE,即b2=12c2+12(b+a)(b-a),整理得2b2=c2+b2-a2,∴a2+b2=c2;方法2:此图也可以看成Rt△BEA绕其直角顶点E顺时针旋转90°,再向下平移得到.∵S四边形ABCD=S△ABC+S△ACD,S四边形ABCD =S△ABD+S△BCD,∴S△ABC+S△ACD=S△ABD+S△BCD,即12b2+12ab=12c2+12a(b-a),整理得b2+ab=c2+a(b-a),b2+ab=c2+ab-a2,∴a2+b2=c2.方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.探究点二:勾股定理与图形的面积如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是________.解析:根据勾股定理的几何意义,可得正方形A、B的面积和为S1,正方形C、D 的面积和为S2,S1+S2=S3,即S3=2+5+1+2=10.故答案为10.方法总结:能够发现正方形A、B、C、D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A、B、C、D的面积和即是最大正方形的面积.三、板书设计1.勾股定理如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.2.勾股定理的证明“赵爽弦图”、“刘徽青朱出入图”、“詹姆斯·加菲尔德拼图”、“毕达哥拉斯图”.3.勾股定理与图形的面积课堂教学中,要注意调动学生的积极性.让学生满怀激情地投入到学习中,提高课堂效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.六、词语点将(据意写词)。

相关文档
最新文档