北京科技大学 钢铁冶金学(炼铁部分)知识点复习

合集下载

钢铁冶金概论复习资料

钢铁冶金概论复习资料

钢铁冶金概论期末复习(炼铁部分)1比较说明不同钢铁生产工艺流程铁矿石→去脉石、杂质和氧→铁铁→精炼(脱S、P、Si等)→钢还原熔化过程氧化精炼过程(炼铁)(炼钢)1.绘制高炉本体内型结构说明各部分名称(画白色部分即可:炉喉、炉身、炉腰、炉腹、炉缸、风口、渣口、铁口)高炉五大附属系统名称及作用(1)原料供应系统:保证及时、准确、稳定地将合格原料从贮矿槽送上高炉的炉顶;(2)送风系统:保证连续可靠地供给高炉冶炼所需数量和保证足够温度的热风;(3)渣铁处理系统:及时处理高炉排放出的渣铁,保证高炉生产正常运行,获得合格的生铁和炉渣产品;(4)煤气清洗系统:保证回收高炉煤气,使其含尘量降到15mg/m3左右,以便利用;(5)燃料喷吹系统:保证喷入高炉所需燃料,以代替部分焦炭消耗。

高炉内按物料变化五个区域的划分,并简单了解各部分的变化过程(1)块状区主要特征:焦与炭呈交替分布层状,皆为固体状态主要反应:矿石间接还原,碳酸盐分解(2)软熔区主要特征:矿石呈软熔状,对煤气阻力大主要反应:矿石的直接还原,渗碳和焦炭的气化反应(3)滴落区主要特征:焦炭下降,其间夹杂渣铁液滴主要反应:非铁元素还原,脱碳、渗碳、焦炭的气化反应(4)焦炭回旋区主要特征:焦炭作回旋运动主要反应:鼓风中的氧和蒸汽与焦炭及喷入的辅助燃料发生燃烧反应(5)炉缸区主要特征:渣铁相对静止,并暂存于此主要反应:最终的渣铁反应熟练掌握高炉冶炼主要技术经济指标的表达方式1有效容积利用系数ημ定义:每立方米高炉有效容积每昼夜生产的合格铁量(t/m3·d)我国ημ=1.6~2.4(t/m3·d)日本ημ=1.8~2.8(t/m3·d)2焦比定义:冶炼每吨生铁所消耗的焦炭的千克数(kg/t)我国焦比为250~650(kg/t)3煤比定义:冶炼每吨生铁所消耗的煤粉的千克数(kg/t)我国煤比为50~220(kg/t)4燃料比(焦比+煤比)定义:冶炼每吨生铁所消耗的固体燃料的总和(kg/t)我国燃料比为450~700(kg/t)5综合焦比(焦比+煤比×煤焦置换比)6煤焦置换比定义:喷吹1kg煤粉所能替代的焦炭的千克数,一般为0.8左右7焦炭冶炼强度定义:每立方米高炉有效容积每昼夜燃烧的焦炭吨数(t/m3·d)8综合冶炼强度定义:每立方米高炉有效容积每昼夜燃烧的综合焦炭的吨数(t/m3·d),一般为0.9~1.15t/m3·d利用系数、焦比及冶炼强度三者关系纯焦冶炼时:利用系数=焦炭冶炼强度/焦比喷吹燃料时:利用系数=综合冶炼强度/综合焦比(5)休风率定义:指高炉休风时间占规定作业时间的百分比(6)焦炭负荷指每批炉料中铁矿石的重量与焦炭重量之比,用以评估燃料利用水平和调节配料四种天然铁矿石的名称和分子式及特点(1)磁铁矿:主要含铁矿物为Fe3O4 特点:理论含铁量72.4%,红条痕,较软,易还原。

钢铁冶金学(炼铁)课件第3章A

钢铁冶金学(炼铁)课件第3章A

本科生主干课《钢铁冶金学-炼铁部分》授课资料
北京科技大学冶金学院 吴胜利 杨世山64
本科生主干课《钢铁冶金学-炼铁部分》授课资料
北京科技大学冶金学院 吴胜利 杨世山65
3.1.3 碳酸盐分解
炉料中碳酸盐来源: 生熔剂(石灰石、 白云石)、天然块矿 碳酸盐分解反应: FeCO3 ====== FeO + CO2 MnCO3 ====== MnO + CO2 MgCO3 ====== MgO + CO2 CaCO3 ====== CaO + CO2 碳酸盐分解条件 开始分解: Pco2 (分解压) ≥ Pco2 (炉内CO2分压) ⇐⇒ 化学沸腾: Pco2 (分解压) ≥ P总 (炉内总压) ⇐⇒ T沸 T开
当气相中CO2分压为101 kPa时 FeCO3 : T开 = 380-400℃ MnCO3 :T开 = 525℃ MgCO3 :T开 = 640-668℃ CaCO3 :T开 = 900-920 ℃ 在高炉上部低温区分解 仅消耗高炉上部多余热量 对高炉冶炼过程影响也不大 因分解温度高、耗热大, 对高炉过程影响大
(1) 在高炉冶炼过程中还原反应能否进行 ⎯⎯ (2) 反应进行的程度,即还原的数量 (3) 反应所消耗的能量 ⎯⎯ ⎯⎯ ΔG K ΔH
1. 还原的顺序性 < 570℃ > 570℃ 570℃ Fe2O3 → Fe3O4 → Fe Fe2O3 → Fe3O4 → FexO → Fe FexO → Fe3O4 + α−Fe

T or V or渣量
本科生主干课《钢铁冶金学-炼铁部分》授课资料
北京科技大学冶金学院 吴胜利 杨世山67
本科生主干课《钢铁冶金学-炼铁部分》授课资料

钢铁冶金原理(炼铁部分)期末考试总结

钢铁冶金原理(炼铁部分)期末考试总结

名词解释脉石:铁矿石中除有含Fe的有用矿物外,还含有其它化合物,统称为脉石。

焦比:冶炼每吨生铁消耗干焦或综合焦炭的千克数。

熔剂:由于高炉造渣的需要,入炉料中常配有一定数量助熔剂,简称熔剂。

有效容积利用系数:在规定的工作时间内,每立方米有效容积平均每昼夜生产的合格铁水的吨数。

等于[t/(m3*d)]=合格生铁折合产量/有效容积×规定工作日休风率:高炉休风时间(不包括计划中的大中及小修)占规定工作时间的百分数。

冶炼强度:冶炼过程强化的程度,干焦耗用量/有效容积×实际工作日直接还原:铁矿石还原剂为固态炭,产物为CO的反应。

耦合反应:某个渣中的离子得到或失去电子成为铁液中不带电的中性原子与另一个铁中原子失去或得到电子而成为渣中离子的氧化还原反应成为耦合反应。

熔化温度:理论上就是相图上液相线温度,或炉渣在受热升温过程中固相完全消失的最低温度。

熔化性温度:炉渣可自由流动的最低温度粘度曲线与45切线的切点温度。

长渣和短渣:温度降到一定值后,粘度急剧上的称为短渣;随温度下降粘度上升缓慢称为长渣。

液泛现象:反应生成的气体穿过渣层,生成气泡,气泡稳定存在于渣层内,炉渣在焦块空隙之间产生类似沸腾现象的上下浮动。

热交换的空区或热储备区:炉身中下部区间内,煤气与炉料的温差很小,大约只有50℃左右,是热交换及其缓慢的区域,成为热交换的空区或热储备区。

水当量:表示单位时间内炉料和炉气流温度变化1℃是所吸收或放出的热量。

上部调节:利用装料制度的变化一调节炉况称为上部调节。

下部调节:调节风速,鼓风动能及喷吹量等送风制度方面参数一调节炉况称为下部调节。

简答题1、高炉冶炼的过程主要目的是什么?答:用铁矿石经济而高效率的得到温度和成分合乎要求的业态生铁。

2、高炉冶炼过程的特点是什么?答:在炉料与煤气逆流运动的过程中完成了多种错综复杂的交织在一起的化学反应和物理变化,且由于高炉是密封的容器,除去投入及产出外,操作人员无法直接观察到反应过程的状况,只能凭借仪器仪表间接观察。

钢铁冶金学炼钢部分总结(知识点)

钢铁冶金学炼钢部分总结(知识点)

1、钢和生铁的区别?答:C<2.11%的Fe-C合金为钢;C>1.2%的钢很少实用;还含Si、Mn等合金元素及杂质。

生铁硬而脆,冷热加工性能差,必须经再次冶炼才能得到良好的金属特性;钢的韧性、塑性均优于生铁,硬度小于生铁长流程:以铁矿石为原料,煤炭为能源-高炉-铁水预处理-转炉炼钢-炉外精炼-连铸-轧钢短流程:以废钢为原料,电为能源-电炉炼钢-炉外精炼-连铸-轧钢2、炼钢的基本任务?答:钢铁冶金的任务是由生产过程碳、氧位变化决定的。

炼钢的基本任务分为脱碳,脱磷,脱硫,脱氧,脱氮、氢等,去除非金属夹杂物,合金化,升温(1200°C→1700°C),凝固成型,废钢、炉渣返回利用,回收煤气、蒸汽等。

高炉——分离脉石,还原铁矿石铁水预处理——脱S,Si,P转炉——脱碳,升温炉外精炼——去杂质,合金化3、钢中合金元素的作用?答:C:控制钢材强度、硬度的重要元素,每1%[C]可增加抗拉强度约980MPa;Si:增大强度、硬度的元素,每1%[Si]可增加抗拉强度约98MPa;Mn:增加淬透性,提高韧性,降低S的危害等;Al:细化钢材组织,控制冷轧钢板退火织构;Nb:细化钢材组织,增加强度、韧性等;V:细化钢材组织,增加强度、韧性等;Cr:增加强度、硬度、耐腐蚀性能。

4、钢中非金属夹杂物来源?答:5、主要炼钢工艺流程?答:炒钢→坩埚熔炼等→平炉炼钢→电弧炉炼钢→氧气顶吹转炉炼钢→氧气底吹转炉和顶底复吹炼钢。

主要生产工艺为转炉炼钢工艺和电炉炼钢工艺。

与电炉相比,氧气顶吹转炉炼钢生产率高,对铁水成分适应性强,废钢使用量高,可生产低S、低P、低N的杂质钢,可生产几乎所有主要钢品种。

顶底复吹工艺过氧化程度低,熔池搅拌好,金属-渣反应快,控制灵活,成渣快。

现代炼钢流程:炼铁,炼钢(铁水预处理、炼钢、炉外精炼),连铸,轧钢,主要产品。

6、铁的氧化和熔池的基本传氧方式?答:火点区:氧流穿入熔池某一深度并构成火焰状作用区(火点区)。

钢铁冶金学炼铁部分第三版

钢铁冶金学炼铁部分第三版

钢铁冶金学炼铁部分第三版摘要:一、钢铁冶金概述二、炼铁原理与工艺1.高炉炼铁2.直接还原炼铁3.熔融还原炼铁三、炼铁原料与配料四、高炉操作与管理1.炉料准备2.炉内过程控制3.炉况判断与调整4.休风与焖炉五、炼铁环境保护与节能六、炼铁新技术与发展趋势正文:一、钢铁冶金概述钢铁冶金是指通过熔融、氧化还原、凝固等过程,将铁矿石等原料转化为钢铁的过程。

钢铁冶金主要包括炼铁、炼钢和轧制等环节。

其中,炼铁是钢铁冶金的基础,其目的是将铁矿石中的铁氧化物还原成金属铁。

二、炼铁原理与工艺1.高炉炼铁高炉炼铁是将铁矿石、焦炭、熔剂等原料经过高温加热,使铁矿石中的铁氧化物被焦炭还原成金属铁的过程。

高炉炼铁具有生产能力大、成本低、金属回收率高等优点。

2.直接还原炼铁直接还原炼铁是将铁矿石等原料在高温下直接还原成金属铁的过程。

与高炉炼铁相比,直接还原炼铁具有能耗低、投资省、占地面积小等优点。

3.熔融还原炼铁熔融还原炼铁是将铁矿石等原料在高温下熔融,然后通过还原剂将铁氧化物还原成金属铁的过程。

熔融还原炼铁具有生产效率高、产品质量好等优点。

三、炼铁原料与配料炼铁原料主要包括铁矿石、焦炭、熔剂等。

铁矿石是炼铁的主要原料,其质量直接影响到炼铁过程和产品质量。

焦炭作为还原剂,在炼铁过程中起到关键作用。

熔剂主要用于调节炉内气氛和矿石的熔化。

四、高炉操作与管理1.炉料准备炉料准备包括铁矿石、焦炭、熔剂等原料的采购、储存、破碎、筛分等环节。

合理的炉料准备有利于保证高炉炼铁的稳定运行。

2.炉内过程控制炉内过程控制是高炉炼铁的关键,主要包括煤气流量、温度、压力等参数的调节。

通过炉内过程控制,可以使高炉达到最佳状态,提高金属回收率。

3.炉况判断与调整炉况判断与调整是根据高炉运行参数,判断高炉内发生的问题,并采取相应措施进行调整。

合理的炉况判断与调整有助于提高高炉炼铁的生产效率。

4.休风与焖炉休风是指高炉在短时间内停止煤气供应,以清理炉内积料和调整炉内气氛。

钢铁冶金学炼铁部分第三版

钢铁冶金学炼铁部分第三版

钢铁冶金学炼铁部分第三版摘要:一、钢铁冶金学炼铁部分的概述二、炼铁的原理和过程三、炼铁的设备和操作四、炼铁的环保和节能五、炼铁的发展趋势正文:一、钢铁冶金学炼铁部分的概述《钢铁冶金学炼铁部分第三版》是一本关于钢铁冶金学的专业书籍,主要介绍了炼铁的基本原理、过程、设备和操作。

本书在继承前两版的基础上,对炼铁技术进行了全面更新,以适应现代钢铁工业的发展。

书中还强调了炼铁的环保和节能,以及炼铁技术的发展趋势,为我国钢铁工业的持续发展提供了重要的理论支撑。

二、炼铁的原理和过程炼铁的原理是通过高温下的还原反应,将铁矿石中的铁氧化物还原成金属铁。

炼铁的过程主要包括原料准备、烧结、焦化、炼铁炉炼铁等环节。

在原料准备阶段,将铁矿石、焦炭、石灰石等原料进行混合和粉碎。

烧结是将混合好的原料进行高温烧结,形成烧结矿。

焦化是利用焦炭对铁矿石进行还原,生成一氧化碳和金属铁。

炼铁炉炼铁是将焦炭和烧结矿放入高炉,在高温下进行还原反应,生成金属铁。

三、炼铁的设备和操作炼铁的主要设备包括烧结炉、焦炉、高炉等。

烧结炉用于将原料进行烧结,形成烧结矿。

焦炉用于焦化,生成焦炭。

高炉用于炼铁,将铁矿石通过还原反应生成金属铁。

炼铁的操作主要包括原料配比、烧结矿破碎、烧结、焦化、高炉炼铁等环节。

四、炼铁的环保和节能炼铁过程中会产生大量的烟尘、二氧化硫等污染物,需要采取相应的环保措施进行治理。

目前,我国炼铁企业普遍采用除尘、脱硫等技术,有效降低了污染物排放。

此外,炼铁企业还通过提高资源利用率、降低能耗等措施,实现了炼铁过程的节能减排。

五、炼铁的发展趋势随着我国钢铁工业的转型升级,炼铁技术也在不断发展。

未来,炼铁技术将朝着绿色、高效、智能化的方向发展。

具体表现在:提高炼铁矿利用率,降低能耗;推广绿色炼铁技术,降低污染物排放;应用智能化技术,提高炼铁生产效率。

钢铁冶金学知识点总结

钢铁冶金学知识点总结

钢铁冶金学知识点总结一、钢铁冶金学概述钢铁是一种重要的金属材料,广泛用于建筑、机械、汽车、电子、航空航天等行业,对于国民经济的发展起着至关重要的作用。

钢铁冶金学是研究如何通过冶炼和加工原料来生产各种类型钢铁的学科。

本文将系统地介绍钢铁冶金学的相关知识,涉及原料、冶炼工艺、合金设计、热处理等内容。

二、原料1. 铁矿石铁矿石是钢铁冶金的原料,常见的有褐铁矿、赤铁矿、磁铁矿等,其中以赤铁矿和磁铁矿为主要产状。

从原料稀缺角度来看,赤铁矿资源相对较丰富,但使用赤铁矿需要高温还原,而且其资源储量日益减少。

而磁铁矿则容易熔化,且熔点低,深受炼铁企业的喜爱。

2. 焦炭和燃料焦炭是冶金煤炭经高温干馏后得到的一种多孔性炭质燃料,是高炉炼铁的原料之一。

燃料也是冶金中常用的燃烧材料,其中包括煤、焦炭、天然气等。

3. 废金属资源钢铁冶金中还需要利用废钢、废铁等废弃金属资源进行熔炼,以提高资源利用率,降低能源消耗。

三、冶炼工艺1. 高炉冶炼高炉是一种用于生产铁水、生铁或合金铁的设备。

高炉内的冶炼过程较为复杂,主要包括炉料下料→还原→熔融→炉渣→收得铁水等步骤。

2. 炼钢炉冶炼炼钢炉冶炼采用的设备主要有转炉炼钢炉、电弧炉、氧气顶吹炼钢炉和底吹熔融锅炉等,是将生铁或铸铁通过熔化、脱碳、脱磷、分别半湿废气、装料等工艺,生产出合格钢的过程。

4. 电炉冶炼电炉冶炼是利用电能将废钢、废铁、生铁等熔化成合格的熔铁或合金。

其主要特点是能耗低、操作简便、保护环境等。

四、合金设计1. 合金元素合金元素是各种金属或非金属元素的混合物。

在钢材中,合金元素可以显著改变钢的组织和性能。

主要的合金元素有碳(C)、锰(Mn)、钒(V)、铬(Cr)、钼(Mo)、镍(Ni)、铜(Cu)、钛(Ti)等。

2. 合金设计合金设计即根据钢材的使用要求和生产条件,选取合适的合金元素和比例,调整钢的成分和组织结构,以获得理想的性能和工艺性。

3. 合金设计的原则合金设计应根据具体用途确定设计要求。

完整版北京科技大学钢铁冶金学炼铁部分知识点复习

完整版北京科技大学钢铁冶金学炼铁部分知识点复习

完整版北京科技大学钢铁冶金学炼铁部分知识点复习第一章概论1、试述3种钢铁生产工艺的特点。

答:钢铁冶金的任务:把铁矿石炼成合格的钢。

工艺流程:①还原熔化过程(炼铁):铁矿石去脉石、杂质和氧铁;②氧化精炼过程(炼钢):铁精炼(脱C、Si、P 等)钢。

高炉炼铁工艺流程:对原料要求高,面临能源和环保等挑战,但产量高,目前来说仍占有优势,在钢铁联合企业中发挥这重大作用。

直接还原和熔融还原炼铁工艺流程:适应性大,但生产规模小、产量低,而且很多技术冋题还有待解决和完善。

2、简述高炉冶炼过程的特点及三大主要过程。

答:特点:①在逆流(炉料下降及煤气上升)过程中,完成复杂的物理化学反应;②在投入(装料)及产出(铁、渣、煤气)之外,无法直接观察炉内反应过程,只能凭借仪器仪表简介观察;③维持高炉顺行(保证煤气流合理分布及炉料均匀下降)是冶炼过程的关键。

三大过程:①还原过程:实现矿石中金属元素(主要是铁)和氧元素的化学分离;②造渣过程:实现已还原的金属与脉石的熔融态机械分离;③传热及渣铁反应过程:实现成分与温度均合格的液态铁水。

3、画出高炉本体图,并在其图上标明四大系统。

答:煤气系统、上料系统、渣铁系统、送风系统。

4、归纳高炉炼铁对铁矿石的质量要求。

答:①高的含铁品位。

矿石品位基本上决定了矿石的价格,即冶炼的经济性。

② 矿石中脉石的成分和分布合适。

脉石中SiO2和A12O3要少,CaO多,MgO含量合适。

③有害元素的含量要少。

S、P、As、Cu对钢铁产品性能有害,K、Na、Zn、Pb、F对炉衬和高炉顺行有害。

④有益元素要适当。

Mn、Cr、Ni、V、Ti等和稀土元素对提高钢产品性能有利。

上述元素多时,高炉冶炼会出现一定的问题,要考虑冶炼的特殊性。

⑤矿石的还原性要好。

矿石在炉内被煤气还原的难易程度称为还原性。

褐铁矿大于赤铁矿大于磁铁矿,人造富矿大于天然铁矿,疏松结构、微气孔多的矿石还原性好。

⑥冶金性能优良。

冷态、热态强度好,软化熔融温度高、区间窄。

北京科技大学钢铁冶金学(炼铁部分)知识点复习

北京科技大学钢铁冶金学(炼铁部分)知识点复习

炼铁知识点‎复习第一章概论1、试述3种钢‎铁生产工艺‎的特点。

答:钢铁冶金的‎任务:把铁矿石炼‎成合格的钢‎。

工艺流程:①还原熔化过‎程(炼铁):铁矿石去脉‎→石、杂质和氧铁‎→;②氧化精炼过‎程(炼钢):铁→精炼(脱C、Si、P等)→钢。

高炉炼铁工‎艺流程:对原料要求‎高,面临能源和‎环保等挑战‎,但产量高,目前来说仍‎占有优势,在钢铁联合‎企业中发挥‎这重大作用‎。

直接还原和‎熔融还原炼‎铁工艺流程‎:适应性大,但生产规模‎小、产量低,而且很多技术问题‎还有待解决‎和完善。

2、简述高炉冶‎炼过程的特‎点及三大主‎要过程。

答:特点:①在逆流(炉料下降及‎煤气上升)过程中,完成复杂的‎物理化学反‎应;②在投入(装料)及产出(铁、渣、煤气)之外,无法直接观‎察炉内反应‎过程,只能凭借仪‎器仪表简介‎观察;③维持高炉顺‎行(保证煤气流‎合理分布及‎炉料均匀下‎降)是冶炼过程‎的关键。

三大过程:①还原过程:实现矿石中‎金属元素(主要是铁)和氧元素的‎化学分离;②造渣过程:实现已还原‎的金属与脉‎石的熔融态‎机械分离;③传热及渣铁‎反应过程:实现成分与‎温度均合格‎的液态铁水‎。

3、画出高炉本‎体图,并在其图上‎标明四大系‎统。

答:煤气系统、上料系统、渣铁系统、送风系统。

4、归纳高炉炼‎铁对铁矿石‎的质量要求‎。

答:①高的含铁品‎位。

矿石品位基‎本上决定了‎矿石的价格‎,即冶炼的经‎济性。

②矿石中脉石‎的成分和分‎布合适。

脉石中Si‎O2和Al‎2O3要少‎,CaO多,MgO含量‎合适。

③有害元素的‎含量要少。

S、P、As、Cu对钢铁‎产品性能有‎害,K、Na、Zn、Pb、F对炉衬和‎高炉顺行有‎害。

④有益元素要‎适当。

Mn、Cr、Ni、V、Ti 等和稀‎土元素对提‎高钢产品性‎能有利。

上述元素多‎时,高炉冶炼会‎出现一定的‎问题,要考虑冶炼‎的特殊性。

⑤矿石的还原‎性要好。

矿石在炉内‎被煤气还原‎的难易程度‎称为还原性‎。

北京科技大学炼钢考试资料

北京科技大学炼钢考试资料

1、工业中常用的铁水脱硫剂有哪些?〔答错1个扣1分〕答:CaC2,Mg,CaO,Na2O2、有利于脱磷反响的工艺条件?〔答错1个扣1分〕答:有利于脱磷反响的工艺条件主要为:1)进步炉渣碱度,2)增加炉渣氧化铁含量,3)增加渣量,4) 降低冶炼温度。

3、常用的脱氧方法有哪些?答:沉淀脱氧、扩散脱氧、真空脱氧〔1×3分〕4、电炉炼钢为什么要造泡沫渣,如何造好泡沫渣?×3点=1.5分,答3个算对〕1. 采用长弧泡沫渣操作可以增加电炉输入功率,进步功率因数及热效率;2. 降低电炉冶炼电耗,缩短了冶炼时间;3. 减少了电弧热辐射对炉壁及炉盖的热损失;4. 泡沫渣有利于炉内化学反响,特别有利于脱P、C及去气〔N、H〕×3点=1.5分,答3个算对〕1)适宜〔加大〕吹氧量。

2)保证熔池有一定含碳量。

有一定的粘度、外表张力。

3) 适宜的FeO、碱度。

4) 适宜熔池温度及适宜的渣量。

5、铁水“三脱〞预处理工艺?〔1×3分〕铁水“三脱〞预处理是指铁水兑入炼钢炉之前进展的处理。

普通铁水预处理包括:铁水脱硫、铁水脱硅和铁水脱磷。

6、钢中非金属夹杂物的主要危害?答:铸坯缺陷:外表夹渣;裂纹;〔1分〕钢材缺陷:热轧钢板(夹渣、翘皮、分层、超声波检查不合等〕;冷轧钢板(裂纹、灰白线带、起皮、鼓包等〕;〔1分〕钢材性能:加工性能(冲压、拉丝、各向异性等〕;机械性能(延性、韧性、抗疲劳破坏性能等〕;耐腐蚀性能、焊接性能、抗HIC性能等。

〔1分〕7、炼钢炉渣有哪些主要作用?〔1×3分〕答:炼钢炉渣的主要作用包括:〔1〕脱除磷、硫,〔2〕向金属熔池传氧,〔3〕减少炉衬侵蚀等。

8、什么是转炉的静态模型控制?〔答3个算全对,1×3〕〔1〕静态控制是动态控制的根底,依靠物料平衡和热量平衡;〔2〕先确定出终点的目的成份和温度及出钢量,并选择适当的操作条件,进展装入量的计算;〔3〕确定物料收支和热收支的关系输入计算机;〔4〕可计算需要的氧气量,从所需的氧量可计算出所需要的冶炼时间。

冶金学钢铁部分重点(部分)

冶金学钢铁部分重点(部分)

第1章现代高炉炼铁工艺习题一、名词解释1、有效容积利用系数?每昼夜每立方米高炉生产的生铁量,P/t.d。

2、焦比?生产1吨生铁所消耗的干焦炭重量。

3、燃料比?每吨生铁耗用各种入炉燃料之总和。

K燃=(焦炭+煤粉+重油+…)。

4、综合焦比?喷吹燃料按对置换比折算为相应的干焦(K`)与实际耗用的焦炭量(焦比K)之和称为综合焦比(K综)。

5、矿石焙烧?焙烧是在适当的气氛中,使铁矿石加热到低于其熔点的温度,在固态下发生的物理化学过程。

6、主要的焙烧方法?焙烧的方法有:氧化焙烧、还原焙烧和氯化焙烧。

7、选矿?选矿是依据矿石的性质,采用适当的方法,把有用矿物和脉石机械地分开,从而使有用矿物富集的过程。

8、精选铁矿石的主要选矿方法?(1)重选;(2)磁选;(3)浮选。

9、焦炭负荷?每批炉料中铁、锰矿石的总重量与焦炭重量之比,10、高炉一代寿命(炉龄)?(1)指从高炉点火开炉到停炉大修,或高炉相邻两次大修之间的冶炼时间;(2)每m3炉容在一代炉龄期内的累计产铁量。

三、简答题1、高炉炼铁生产流程及附属系统?答:高炉炼铁生产除了高炉本体以外,还包括有原燃料系统、上料系统、送风系统、渣铁处理系统、煤气处理系统。

2、高炉内型及有效容积?答:高炉内型从下往上分为炉缸、炉腹、炉腰、炉身和炉喉五个部分,五部分容积总和为高炉的有效容积。

3、根据物料存在形态的不同,高炉分为几个区域?答:可将高炉划分为五个区域:块状带、软熔带、滴落带、风口前回旋区、渣铁聚集区。

4、生铁的种类?答:生铁可分为炼钢生铁、铸造生铁、铁合金三种。

5、天然铁矿石的分类?答:天然铁矿石按其主要矿物分为磁铁矿、赤铁矿、褐铁矿和菱铁矿。

6、褐铁矿的化学成分及含铁量?答:褐铁矿的化学成分是nFe2O3·mH2O,含铁量55~66%。

7、铁矿石的焙烧主要有几种方法?答:铁矿石的焙烧主要有氧化焙烧和还原焙烧。

8、焦炭在高炉冶炼过程中具有的作用?答:焦炭在高炉冶炼过程中具有(1)燃料,燃烧后发热,产生冶炼所需热量。

钢铁冶金学(炼铁)课件第5章A

钢铁冶金学(炼铁)课件第5章A
简易计算: 燃料比、焦比、ηCO、ηH2
2. 深入详尽地分析研究 (1) 计算法: 物料平衡计算、热平衡计算 直接还原度计算、理论焦比计算 (2) 图解法: 巴甫洛夫直接还原度图解 Rist 操作线图解 Reichardt 区域热平衡图解 操作线和区域热平衡联合图解
计算、图解分析好处与目的: c 研究高炉能量消耗分配,寻找进一步改善能量利用的途径; d 高炉采用某些新技术措施(高风温、富氧、喷吹、综合鼓风等)时, 预测冶炼效果,得出最适应的冶炼制度; 可用计算机程序自动计算,得出控制参数供操作者调节参考。 e 对新建高炉,提供本体设计、设备选型、运输和动力平衡的依据。
+ (1 − ϕ)(1 − ω)V风
H平衡方程 :
(5−19)
( ) ( ) H2 + 2CH4
22.4 V煤气 + H2O还 = 2
H料 + H喷
+
ϕ ⋅ V风
(5−20)
由于H2还原生成的H2O还量难于确定,列方程组时,通过O平衡
方程式(5−18)和H平衡方程式(5−20)消除H2O还,而得到一个无H2O还的O
≈ const = 0.9 ~ 1.1。
6 西德巴格达弟经验关系: ηH2 ⁄ ηCO = 0.88 + 0.1/ηCO (5−14)
苏联巴巴柳金经验关系: ηH2 ⁄ ηCO = 1.41 − 1.07xηCO
5.1.3 能量利用分析方法
1. 生产上直观分析
直觉观察: T顶、炉顶煤气中CO2、CO含量
R R [1 ] ( ) d = d ⋅ + O焦挥 + O熔气 O还总 − 0.5O熔气 O还总 R R [1 ] ( ) d = d ⋅ - O焦挥 + O熔气 O料气 +0.5O熔气 O料气

现代冶金学——钢铁冶金期末复习资料

现代冶金学——钢铁冶金期末复习资料

现代冶金学——钢铁冶金期末复习资料————炼铁部分1、高炉炼铁有什么经济指标?答:(1)有效容积利用系数:只高炉单位有效容积的日产铁量。

(2)焦比:生产每吨生铁所消耗的焦炭量。

(3)冶炼强度:单位体积高炉有效容积焦炭日消耗量。

(4)焦炭负荷:每批炉料中铁、锰矿石的总重量与焦炭重量之比,用以评估燃料利用水平,调节配料的重要参数。

(5)生铁合格率:指合格生铁量占高炉总产量的百分数。

(6)休风率:高炉休风时间占规定作业时间的百分数。

(7)生铁成本:生产1t生铁所需的费用。

(8)高炉一代寿命:通常指从高炉点火开炉到停炉大修,或高炉相邻两次大修之间的冶炼时间。

2、焦炭在高炉生产中起什么作用,高炉冶炼过程对焦炭质量提出哪些要求?答:(1)作用:焦炭是用焦煤在隔绝空气的高温下,进行干馏、炭化而得到的多孔块状产品。

其主要起以下几点作用:燃料、还原剂、料柱骨架、生铁渗碳的碳源。

(2)要求:含碳量高、灰分低、有害杂质少、成分稳定、强度高、焦炭均匀使高炉透气性良好、焦炭高温性能包括反应性CRI要低和反应后强度CSR要高3、球团矿与烧结矿质量比较?答:目前国内外普遍认为球团矿比烧结矿的冶金性能有以下优点:(1)粒度小而均匀:有利于高炉料柱透气性的改善和气流的分布均匀。

(2)冷态强度(抗压和抗磨)高。

在运输、装卸和储存室产生粉末少。

(3)还原性好,有利于改善煤气化学能的利用。

(4)原料来源宽,产品种类多(5)适于处理细精矿粉。

4、降低生铁含硫量的途径答:(1)降低炉料带路的总硫量--减少炉源、燃料含硫量,是降低生铁含硫量,获得优质生铁的根本途径和有效措施。

同时,由于硫负荷减小,可减轻炉渣脱硫负担,从而减少了熔剂用量和渣量,对降低燃耗和改善顺利都很有利。

降低铁矿石含硫量的主要方法,一是选矿,二是焙烧和烧结。

(2)提高煤气带走的硫量--随煤气逸出炉外,受焦比、渣量、碱度、炉温等复杂因素影响,如高温有利于硫挥发,但炉温首先取决于铁种,而不能单为气化脱硫采取节炉温措施。

钢铁冶金学炼铁部分第三版

钢铁冶金学炼铁部分第三版

钢铁冶金学炼铁部分第三版钢铁冶金学是研究钢铁冶炼原理、工艺和技术的学科,其炼铁部分是钢铁冶金学的重要组成部分。

本文将简要介绍钢铁冶金学炼铁部分的主要内容。

炼铁是将铁矿石经过一系列工艺过程,化学变化和物理变化,最终得到铁的冶金过程。

炼铁过程主要包括矿石选矿、矿石炼烧、高炉冶炼和铁水处理等几个主要环节。

首先是矿石选矿。

矿石选矿是从原矿中选择出含有较高铁含量的矿石,以便后续的冶炼工艺。

矿石选矿一般包括矿石的破碎、矿石的磁选、重选和浮选等工序。

其中,磁选是通过磁力作用将含铁矿石从其他杂质分离出来,重选是通过重力作用将矿石进行分类,浮选则是利用矿石与气泡的不同亲附性,使矿石分离的一种工艺。

其次是矿石炼烧。

矿石炼烧是将矿石进行预处理,以提高铁矿石的还原性、耐高温性和稳定性。

矿石炼烧的方法主要有烧结、球团烧结和直接还原等。

其中,烧结是将矿石加入一定比例的烧结助剂,通过高温烧结得到具有一定强度的矿石块,球团烧结则是在矿石表面涂覆一层球团剂,通过高温烧结得到球团状的矿石块。

接下来是高炉冶炼。

高炉冶炼是将矿石块和冶炼燃料(焦炭)反应生成铁的过程。

高炉是炼铁的主要设备,一般由炉体、上、下风、煤气管道等组成。

高炉冶炼主要包括炉料装入、炉况操作、还原炉内矿石等几个主要环节。

其中,炉料装入是将经过选矿和炼烧处理的矿石和冶炼燃料按一定的比例装入高炉中,炉况操作是根据高炉内的温度、压力、气体组成等参数来调整高炉操作。

最后是铁水处理。

铁水处理是指通过一系列的工艺过程,将高炉产生的铁水精炼成合格钢铁产品。

铁水处理主要包括脱硫、脱脂、炼石和炼钢等几个环节。

脱硫是通过加入适量的脱硫剂,将铁水中的硫元素还原为低硫铁合金。

脱脂是利用渣浆的剪切作用将铁水中的夹杂物除去。

炼石是指将铁水中的脱硫剂和夹杂物等固体杂质分离出来。

炼钢是通过加入一定比例的合金元素和调整温度、压力等参数,使铁水中的碳含量和合金元素达到所需标准。

综上所述,钢铁冶金学炼铁部分主要包括矿石选矿、矿石炼烧、高炉冶炼和铁水处理等几个重要环节。

炼铁学复习资料

炼铁学复习资料

1、高炉系统包括高炉本体、原燃料系统、上料系统、送风系统、渣铁处理系统、煤气清洗处理系统。

2、高炉生产过程控制的关键性环节有送风条件,软熔区的位置、形状及尺寸,固体炉料区的工作状态3、铁矿石的分为赤铁矿、磁铁矿、褐铁矿、菱铁矿4、铁矿石评价的要点有含铁品位、脉石的成分及分布、有害元素的含量、有益元素、矿石的还原性、矿石的高温性能。

5、炼焦工艺过程中影响焦炭质量的环节大体上可分为洗煤、配煤、焦炉操作、熄焦等,其中配煤起着决定作用,配煤中最重要的是控制混合煤料的胶质层厚度。

6、洗煤的目的在于降低原煤中灰分及硫的质量分数。

7、高炉生产的产品有生铁、铁合金、高炉煤气、炉渣1、散状物料聚集时颗粒间的固结力=联结力—排斥力2、烧结过程的主反应有燃烧反应、分解反应、还原与再氧化反应、气化反应、水分蒸发和凝结。

3、烧结料固结经历固相反应、液相生成、冷凝固结过程。

4、烧结过程中固相反应能够进行的重要因素是温度。

5、液相生成是烧结成型的基础,液态物质的数量和性质是影响烧结固结好坏,乃至冶金性能的重要因素。

6、常见的烧结矿显微结有粒状结构、斑状结构、骸状结构、丹点状的共晶结构、熔蚀结构。

7、烧结矿冷凝形成的矿物组成及其结构是影响烧结矿质量的重要因素。

8、生球成型的机理是利用细磨粉料表面能大的特性。

9、铁矿粉球团过程包括生球成型和熔烧固结两个主要作业。

成球过程分为三个阶段:形成母球、母球长大、长大了的母球进一步紧密。

10、生球干燥的目的是避免焙烧时发生破裂、同时提高焙烧效率。

由表面气化和内部扩散两个过程组成。

11、球团矿在高温下焙烧,引起强度增加的原因有:晶桥联结;固相烧结固结;液相烧结固结12、现代高炉冶炼最佳炉料结构为高碱度烧结矿配加酸性球团矿。

1、FexO,方铁矿,俗称浮士体,是立方晶系氯化钠型的Fe2缺位的晶体。

2、FexO在低温下不能稳定存在,当温度低于570℃时,将分解成为Fe3O4+α-Fe。

3、铁氧化物的多级还原反应中还原顺序:>570℃Fe2O3 → Fe3O4 → Fe x O → Fe,<570℃Fe2O3 → Fe3O4 → Fe4、影响铁还原速率的因素主要有温度、压力、矿石粒度、煤气成分、矿石的种类和性质。

钢铁冶金学(炼铁)课件第4章

钢铁冶金学(炼铁)课件第4章

本科生主干课《钢铁冶金学-炼铁部分》授课资料 北京科技大学冶金学院 吴胜利 128
防止高炉发生“液泛现象”的对策分析
有人通过化工喷淋塔的实验,找出一个
流体流量比(K) 液泛因子(f)
的对应关系
1
流体流量比
K
=
L G
⎜⎜⎝⎛
ρg ρl
⎟⎟⎠⎞ 2
液泛因子
f
= ω2 g
∗ FS ε3
∗ ρg ρl
∗η 0.2
高炉炉料的特性及在炉内的分布是不同的粒度即各种炉料各不相同,且分布也不均匀
密度
在炉内局部出现气流超过临界速度的状态是可能的
局部“管道行程”
本科生主干课《钢铁冶金学-炼铁部分》授课资料 北京科技大学冶金学院 吴胜利 126
本科生主干课《钢铁冶金学-炼铁部分》授课资料 北京科技大学冶金学院 吴胜利 127
S=1-A料ε

6 d0
对 1m3散料有N个球, N=(6 1-ε)
πd
3 0
[球体积:
1 6
πd
3 0

料总体积(1-ε)]
1m3散料的表面积:
A料=N
*πd
2=(6 1-ε)
0
d0
故: S= 6 d0
即:S与d0成反比 (当炉料粒度越小
时,阻力就越大)
本科生主干课《钢铁冶金学-炼铁部分》授课资料 北京科技大学冶金学院 吴胜利 119
煤气流速快
时,
出现煤气把渣铁托住而类似粥开锅时的“液泛现象”
“液泛现象”的危害
高度弥散在渣铁间的气泡,使煤气流阻力大大升高; 被煤气流吹起的渣铁,在上部较低温度区域,有重新 冷凝的危险; 渣铁的重新冷凝,一方面将导致料柱孔隙度降低,煤 气流动受阻。另一方面,可造成炉墙结厚、结瘤,破 坏高炉顺行。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

炼铁知识点复习第一章概论1、试述3种钢铁生产工艺的特点。

答:钢铁冶金的任务:把铁矿石炼成合格的钢。

工艺流程:①还原熔化过程(炼铁):铁矿石→去脉石、杂质和氧→铁;②氧化精炼过程(炼钢):铁→精炼(脱C、Si、P等)→钢。

高炉炼铁工艺流程:对原料要求高,面临能源和环保等挑战,但产量高,目前来说仍占有优势,在钢铁联合企业中发挥这重大作用。

直接还原和熔融还原炼铁工艺流程:适应性大,但生产规模小、产量低,而且很多技术问题还有待解决和完善。

2、简述高炉冶炼过程的特点及三大主要过程。

答:特点:①在逆流(炉料下降及煤气上升)过程中,完成复杂的物理化学反应;②在投入(装料)及产出(铁、渣、煤气)之外,无法直接观察炉内反应过程,只能凭借仪器仪表简介观察;③维持高炉顺行(保证煤气流合理分布及炉料均匀下降)是冶炼过程的关键。

三大过程:①还原过程:实现矿石中金属元素(主要是铁)和氧元素的化学分离;②造渣过程:实现已还原的金属与脉石的熔融态机械分离;③传热及渣铁反应过程:实现成分与温度均合格的液态铁水。

3、画出高炉本体图,并在其图上标明四大系统。

答:煤气系统、上料系统、渣铁系统、送风系统。

4、归纳高炉炼铁对铁矿石的质量要求。

答:①高的含铁品位。

矿石品位基本上决定了矿石的价格,即冶炼的经济性。

②矿石中脉石的成分和分布合适。

脉石中SiO2和Al2O3要少,CaO多,MgO含量合适。

③有害元素的含量要少。

S、P、As、Cu对钢铁产品性能有害,K、Na、Zn、Pb、F对炉衬和高炉顺行有害。

④有益元素要适当。

Mn、Cr、Ni、V、Ti 等和稀土元素对提高钢产品性能有利。

上述元素多时,高炉冶炼会出现一定的问题,要考虑冶炼的特殊性。

⑤矿石的还原性要好。

矿石在炉内被煤气还原的难易程度称为还原性。

褐铁矿大于赤铁矿大于磁铁矿,人造富矿大于天然铁矿,疏松结构、微气孔多的矿石还原性好。

⑥冶金性能优良。

冷态、热态强度好,软化熔融温度高、区间窄。

⑦粒度分布合适。

太大,对还原不利;太小,对顺行不利。

5、试述焦炭在高炉炼铁中的三大作用及其质量要求。

答:焦炭在高炉内的作用:(1)热源:在风口前燃烧,提供冶炼所需的热量;(2)还原剂:固体碳及其氧化产物CO是氧化物的还原剂;(3)骨架作用:焦炭作为软融带以下唯一的以固态存在的物料,是支撑高达数十米料柱的骨架,同时又是煤气得以自下而上畅通流动的透气通路;(4)铁水渗碳。

质量的要求:粒度适中、足够的强度、灰分少、硫含量少、挥发成分含量合适、反应性弱(C+CO2=2CO)、固定C高等。

6、试述高炉喷吹用煤粉的质量要求。

答:1、灰分含量低、固定碳量高;2、含硫量少;3、可磨性好;4、粒度细;5、爆炸性弱,以确保在制备及输送过程中的人身及设备安全;6、燃烧性和反应性好。

7、熟练掌握高炉冶炼主要技术经济指标的表达方式。

η:每M3高炉有效容积每昼夜生产的合格铁量答:1、有效容积利用系数u(T/M 3.d)。

2、焦比:冶炼每吨生铁所消耗焦炭的千克数(kg/T)。

3、煤比:冶炼每吨生铁所消耗的煤粉的千克数(kg/T)。

4、燃料比(焦比+煤比+油比):冶炼每吨生铁所消耗的固体和液体燃料的总和(kg/T)。

5、综合焦比(焦比+煤比×煤焦置换比))()()()(t kg 产量折算合格生铁干焦耗用量入炉焦比折算= )()()()(t kg 产量折算合格生铁综合干焦耗用量综合焦比折算=6、煤焦置换比:喷吹1kg 煤粉所能替代的焦炭的kg 数。

一般为0.8~1.0(不包括褐煤)。

7、焦炭冶炼强度:每M 3高炉有效容积每昼夜燃烧的焦炭吨数(t/ M 3.d)。

通常为0.8~1.0t/M 3.d 。

8、综合冶炼强度:每M 3高炉有效容积每昼夜燃烧的综合焦炭的吨数(t/M 3.d)。

一般为0.9~1.15t/M 3.d 。

9、利用系数、焦比及冶炼强度三者关系:纯焦冶炼时,利用系数=焦炭冶炼强度/焦比;喷吹燃料时:利用系数=综合冶炼强度/综合焦比。

10、燃烧强度:每M 3炉缸截面积每昼夜燃烧的焦炭的吨数(t/ M 3.d)11、工序能耗Ci =(燃料消耗+动力消耗-回收二次能源)/产品产量(吨标准煤/T),1kg 标准煤的发热量为29310 kJ(7000千卡)。

注:1、把铁矿石炼成合格的钢:①还原熔化过程(炼铁):铁矿石→去脉石、杂质和氧→铁;②氧化精炼过程(炼钢):铁→精炼(脱C 、Si 、P 等)→钢。

2、高炉原料:①铁矿石(凡是在当前的技术条件下,可经济地提取出金属铁的岩石,称为铁矿石。

地壳中Fe 元素居第四位,占4.2 %;在鉄矿石中不存在纯金属的铁,而是以氧化物、硫化物的形式存在;除含Fe 氧化物外,含有其他化合物,统称为脉石,常见的SiO 2、Al 2O3、CaO 、MgO 。

):天然富矿、人造富矿(烧结矿、球团矿);②熔剂:碱性熔剂(石灰、石灰石、白云石)、酸性熔剂(硅石)、特殊熔剂(萤石);③其他含铁代用品(要求含铁梁高、杂质少、有一定的块度):高炉和转炉炉尘、残铁、轧钢铁皮、硫酸渣。

3、铁矿石的分类:赤铁矿(Fe 2O 3),理论含Fe70%,红条痕,较软,易还原;铁矿(Fe 3O 4),理论含Fe72.4%,黑条痕,较硬,难还原;褐铁矿(xFe 2O 3.yH 2O),黄褐条痕,疏松多孔,易还原;菱铁矿(FeCO 3),理论含Fe48.2%,灰黄条 痕,焙烧后易还原。

由于地表的氧化作用,自然界中纯磁铁矿少见。

磁铁矿变成:半假象赤铁矿(Fe/FeO 在3.5-7)或假象赤铁矿(Fe/FeO>7)。

所谓假象:化学成分:Fe 3O 432e O F →,结晶构造不变,保持磁铁矿特征。

4、高炉燃料:气体燃料(焦炉煤气、高炉煤气)用于热风炉;固体燃料(焦炭、煤粉)用于高炉本体。

第二章铁矿粉造块1、试述高炉冶炼对含铁原料的要求,如何达到这些要求?答:贫矿经选矿后的精矿粉经造块(烧结或球团过程),可改善矿石的冶金性能,脱去某些杂质(S、P、K、Na等),并综合利用大量粉尘和烟尘。

2、简述固相反应的特点及对烧结反应的影响。

答:在一定温度下,某些离子克服晶格结合力,进行位置交换,并扩散到与之相邻的其它晶格内的过程,称为固相反应。

特点:反应温度远低于固相反应物的熔点或它们的低共熔点;温度高有利于固相反应的进行;固相反应受化学组成的影响,虽不能形成有效的固相连接,但为液相的生成提供了前提条件(低熔点的固相反应产物)。

3、简述烧结矿的固结机理,何种液相利于烧结矿质量的提高?答:固结机理:烧结物料中主要矿物是高熔点的,当被加热到一定温度时,各组分间有了固相反应,生成新的能与原组分形成具有低共熔点的化合物,使得它们在较低的温度下生成液相,开始熔融。

熔融的液态物质冷却时成为那些尚未溶入液相的颗粒的坚固的连接桥,从而实现固结。

粘结相由铁酸钙组成。

可使烧结矿的强度和还原性同时得到提高。

这是因为:①铁酸钙(CF)自身的强度和还原性都很好;②铁酸钙是固相反应的最初产物,熔点低,生成速度快,超过正硅酸钙的生成速度,能使烧结矿中的游离CaO和正硅酸钙减少,提高烧结矿的强度;③由于铁酸钙能在较低温度下通过固相反应生成,减少Fe2O3和Fe3O4的分解和还原,从而抑制铁橄榄石的形成;改善烧结矿的还原性。

4、改善烧结料层透气性的对策如何?5、试述烧结生产中“自动蓄热现象”扬长避短的技术对策。

答:扬长:厚料层烧结技术正是基于自动蓄热技术的,为降低固体燃料提供了可能,也为低温烧结技术创造了有利条件。

同时对改善烧结矿质量亦有好处。

避短:自动蓄热现象导致烧结料层上下热量不均匀,上部热量不足,下部过剩。

所以应该控制燃料在料层高度上的分布,以降低燃料消耗,节约能量。

6、试述低温烧结理论的要点。

答:高碱度下生成的钙的铁酸盐——铁酸钙,不仅还原性好,而且强度也高。

铁酸钙主要是由Fe2O3和CaO组成。

烧结温度超过1300℃后,Fe2O3易发生热分解,形成Fe3O4和FeO,而Fe3O4是不能与CaO结合的。

相反,FeO的出现会导致2FeO•SiO2,CaO•FeO•SiO2的生成,从而恶化还原性。

不同形态的铁酸钙组成的烧结矿,其质量是不同的;而烧结温度对铁酸钙的形态影响显著。

为了生成铁酸钙矿物,需要实现低温烧结工艺。

7、归纳影响烧结矿强度的因素。

8、简述影响烧结矿还原性的因素以及提高还原性的主攻方向。

9、简述铁精矿粉的成球机理,并讨论其影响因素。

答:铁精粉粒度小,表面能大,存在着以降低表面张力来降低表面能的倾向,易发生吸附现象。

含铁粉料多为氧化矿物,易吸附水。

其中部分水在微细空隙中产生凹液面,具有将细粒了挤向水滴而凝聚的作用。

即毛细水对成球过程的主导作用。

加水润湿的同时,机械滚动作用使靠水润湿产生的母球被挤压,毛细结构变化,挤出毛细水,过湿表面又吸附分矿使母球长大。

形成母球。

母球是造球的核心,靠加水润湿产生母球长大(机械力+润湿作用)。

滚动中压紧→毛细结构变化→挤出毛细水→过湿表面又粘附粉矿→母球长大生球压实(机械力作用)。

使矿粉颗粒以最紧密方式排列,最大限度发挥水的分子引力、毛细管力以及物料的摩擦阻力,使生球强度大大提高。

10、简述氧化球团矿的焙烧固结机理。

答:1)Fe2O3的微晶键连接:磁铁矿生球在氧化气氛中焙烧时,当加热到200~300℃就开始氧化形成Fe2O3微晶。

由于新生的Fe2O3微晶中原子迁移能力较强,在各个颗粒的接触面上长大成“连接桥”(又称Fe2O3微晶键),使颗粒互相连接起来。

在900℃以下焙烧时,这种连接形式使球团矿具有一定的强度。

但由于温度低,Fe2O3微晶长大有限,因此仅靠这种形式连接起来的球团矿强度是不够。

2)Fe2O3的再结晶:当磁铁矿生球在氧化性气氛下继续加热到1000~1300℃时,磁铁矿可全部转变成赤铁矿,而由磁铁矿氧化形成的Fe2O3微晶开始再结晶,使一个个相互隔开的微晶长大成连成一片的赤铁矿晶体,使球团矿具有很高的氧化度和强度。

3)在缺乏氧气的地方温度达到一定水平时,磁铁矿颗粒也能够通过扩散产生Fe3O4晶键连接,然后再更高温度下,发生Fe3O4的再结晶和晶粒长大,使磁铁矿颗粒结合成一个整体。

4)液相粘结:两颗矿粒被液相粘结起来,如果生产酸性球团矿,在氧化气氛中,可能产生的液相为低熔点的脉石矿物或添加剂藻土等。

在中性或弱还原性气氛中焙烧,则磁铁矿与脉石中的二氧化硅反应,产生2FeO.SiO2液相。

注:1、烧结矿—加入CaO,还原性;球团矿—加入MgO,软熔性能。

2、散粒物料聚结现象是颗粒间相互联结力与相互排斥力作用的结果,结合力=联结力-排斥力(重力)。

3、烧结过程矿层分布:烧结矿层—上冷下热,约40~50 mm为脆性层(T低、急冷),冷烧结矿层和热烧结矿层;燃烧层—即烧结层,厚度约为15~50mm,温度为1100~1400℃,主要反应为燃烧反应;预热层—厚度为20~40 mm,特点是热交换剧烈,温度快速下降,主要反应为水分蒸发、结晶水及石灰石分解、矿石氧化还原及固相反应;冷料层—即过湿层,上层带入的水分由于温度低而凝结,过多的重力水使混合料小球被破坏 影响料层透气性;垫底料层—为保护烧结机炉篦子不因燃烧带下移而烧坏。

相关文档
最新文档