TOP开关电源芯片工作原理及应用电路(荐)
TOP244Y单片开关电源原理及维修技巧
TOP244Y单片开关电源原理及维修技巧作者:刘宜新来源:《电子技术与软件工程》2016年第13期摘要本文首先概述了TOP244Y单片开关电源的基本工作原理,接着根据本人多年的维修实践经验,详细介绍了针对此电路的维修技巧,最后通过以TOP244Y单片开关电源维修实例进行剖析,进一步说明TOP244Y开关电源的具体维修技巧及故障的处理。
【关键词】开关电源 TOP244Y单片开关电源原理故障维修技巧开关电源又被称为高效节能电源,它不仅效率高,可达到80﹪-90﹪,而且去掉了笨重的工频变压器,它是利用体积很小的高频变压器来实现电压变换及电网隔离,这样为家用电器的小型化、轻型化奠定了坚实的基础。
采用TOP244Y单片开关电源用途非常广泛,很多民用家用电子产品都采用了此种电路方案,因此家电维修人员很有必要掌握TOP244Y单片开关电源的维修方法。
1 TOP244Y开关电源工作原理分析该开关电源芯片内含脉宽调制器、功率场效应管、自动偏置电路、保护电路。
再配合外部的一次整流滤波电路、、取样比较反馈电路、二次整流滤波电路等部分就组成了一个完整的单片开关电源。
其电路原理如附图所示,以下分别进行分析:1.1 TOP244Y芯片各引脚功能TOP244Y是一款集成式开关电源芯片,它将脉冲宽度调制(PWM)控制系统的全部功能集成到芯片中,其功能引脚如图1所示,各脚功能如下:1.1.1 漏极(D)引脚高压功率MOSFET的漏极输出,通过内部开关高压电流源提供启动偏置电流。
1.1.2 控制(C)引脚误差放大器及反馈电流的输入脚,用于占空比控制。
当控制引脚电压VC接近5.8 V时,控制电路被激活并开始软启动。
当出现开环或短路等故障而使外部电流无法流入控制引脚时,控制引脚上的电容开始放电,达到4.8 V时激活自动重启动电路而关断MOSFET开关管的输出,使控制电路进入低电流的待机模式。
同时该脚也是脉宽调制器电流反馈的控制脚,其占空比与流入控制脚超过芯片内部消耗所需要的电流成反比,实现脉宽调制。
电源开关芯片
电源开关芯片电源开关芯片,又称为电源管理芯片,是一种用于管理和控制电源供电的集成电路。
它主要负责控制开关电源的开关过程,提供电源稳压、过流保护、过压保护等功能,以保证电子设备的正常工作和安全。
电源开关芯片的主要特点是工作精确可靠,稳定性好,能够满足各种复杂的功率管理需求。
它的工作原理是通过控制晶体管的导通和截止来实现电源的开关,从而实现对电源的控制。
电源开关芯片的工作原理可以简单分为三个步骤:1. 检测电源输入电压:电源开关芯片会通过内部电压检测电路来检测输入电源的电压,以确保电源工作在合适的电压范围。
如果检测到输入电压过高或过低,芯片会自动切断电源供应,以保护设备电路免受损害。
2. 控制开关电源:当输入电压正常时,电源开关芯片会控制开关电源的开关过程。
当需要断开电源时,芯片会控制晶体管进入截止状态,阻止电流通过。
当需要接通电源时,芯片会控制晶体管进入导通状态,允许电流通过。
3. 提供附加功能:电源开关芯片还具备一些附加功能,如过流保护、过压保护、短路保护等。
这些功能通过监测电源输出电流和电压,并与设定的阈值进行比较来实现。
一旦检测到输出电流或电压超过设定的阈值,芯片会自动切断电源供应,以保护设备电路。
电源开关芯片广泛应用于各种电子设备和系统中。
例如,手机、电脑、电视、家用电器等消费电子产品中都会使用电源开关芯片来管理电源供应和保护电路。
此外,工业控制系统、通信设备、医疗设备等专业领域的设备中也会使用电源开关芯片来实现电源管理和保护。
总之,电源开关芯片是一种非常重要的电子元件,它能够有效管理和保护电源供应,保证设备的正常工作和安全。
随着电子设备的不断发展和需求的增长,电源开关芯片的功能和性能也在不断提高。
相信在未来,电源开关芯片将越来越智能化和高效化,为电子设备的使用提供更好的服务。
基于TOPSwitch-GX系列TOP247Y芯片的低功率开关电源设计
由TOP247Y构成的多路开关电源原理图见图2,其中输出三路200mA、15V的直流电,一路400mA、15V的直流电,以及1A、5V的直流电。多路电源用高频变压器获得多组电压输出,经快速恢复二极管、电容滤波后得到多路直流电源。
当电源输入交流85~265V时,交流电压U依次经过电磁干扰(EMI)滤波器(C1,L1)、输入整流滤波器(KBL406G,C2)获得直流高压UI。UI经过R1接L端,能使极限电流随UI升高而降低。它使用C3,VD型漏极钳位二极管P6KE200A和阻断二极管D1,以替代价格较高的TVS(瞬态电压抑制器),用于吸收在TOP247Y关断时由高频变压器漏感产生的尖峰电压,对漏极起到保护作用。次级电压经过整流、滤波后获得多路输出。其中15V电源输出所用的是快速恢复二极管,其他输出用的二极管是肖特基二极管,其目的是减少整流管的损耗。
由TOP247Y构成的多路开关电源原理图
该电源采用3枚芯片,包括TOP247Y(U1)、光耦合器LTV817A,以及可调式精密并联稳压管LM431。为减小高频变压器体积和增强磁场耦合程度,次级绕组采用了堆叠式绕法。其稳压原理为,U=UR4+UZ+ULM431。当U发生变化时,如U增加时,流过光耦的电流增大,光耦输出的电流随着增大,流经TOP247Y控制端的电流增加,而占空比则减小,从而U下降,这样达到稳压的目的,反之U减小时也有相同的原理。
基于TOPSwitch-GX系列TOP247Y芯片的低功率开关电源设计
本文介绍了一种基于TOP247Y的多路开关稳压电源,其结构简单、成本低廉、制作调试方便,基本上能达到所要求的条件。
TOPSwitch-GX系列芯片工作原理
图1给出了TOP247Y芯片内部结构图,共有6个引出端,它们分别是控制端C、线路检测端L、极限电流设定端X、源极S、开关频率选择端F和漏极D。利用线路检测端(L)可实现4种功能:过压(OV)保护;欠压(UV)保护;电压前馈(当电网电压过低时用来降低最大占空比);远程通/断(ON/OFF)和同步。而利用极限电流设定端,可从外部设定芯片的极限电流。在每个开关周期内都要检测功率MOSFET漏源极导通电阻Ros(on)上的漏极峰值电流ID(PK),当ID(PK)>ILIMIT时,过电流比较器就输出高电平,依次经过触发器、主控门和驱动级,将MOSFET关断,起到过电流保护作用。
基于TOP227Y芯片的单端反激式开关电源制作
基于TOP227Y芯片的单端反激式开关电源前言虽然身边到处充斥着电子设备,所有空间几乎都被各种电磁波覆盖,但是从来没有真正留意过什么。
后来,因为偶尔需要找朋友维修一些电子设备,加之有培养孩子学一些电子电路知识的想法,于是就在不经意间走近了“近在咫尺却又远在天边”的电子世界。
开始是基于简单的需要,利用工频变压器和LM317自己设计制作了带呼吸灯的直流稳压电源比较粗糙。
后来因为要改造车载点烟器的手机充电接口,又基于34063自制车载手机充电板,使用中发现34063做的充电板虽然基本满足使用要求。
但是一直存在芯片明显发热的问题,偶尔还有电感噪声。
于是基于LM2596再做车载手机充电板。
从制作中了解到LM2596系列是3A电流输出降压开关型集成稳压芯片,它内含固定频率振荡器(150KHZ)和基准稳压器(1.23v),并具有完善的保护电路、电流限制、热关断电路等。
利用该器件只需很少的外围器件便可构成高效稳压电路。
这时才第一次听说“开关电源”(开始还以为就是带机械开关的电源呢,呵呵)。
上网查阅资料,学习,尝试,自己终于制成了一款真正的开关电源。
知识超市1、单激式变压器开关电源变压器开关电源的最大优点是,变压器可以同时输出多组不同数值的电压,改变输出电压和输出电流很容易,只需改变变压器的匝数比和漆包线截面积的大小即可;另外,变压器初、次级互相隔离,不需共用同一个地。
因此,变压器开关电源也有人把它称为离线式开关电源。
这里的离线并不是不需要输入电源,而是输入电源与输出电源之间没有导线连接,完全是通过磁场偶合传输能量。
变压器开关电源采用变压器把输入输出进行电器隔离的最大好处是,提高设备的绝缘强度,降低安全风险,同时还可以减轻EMI 干扰,并且还容易进行功率匹配。
变压器开关电源有单激式变压器开关电源和双激式变压器开关电源之分,单激式变压器开关电源普遍应用于小功率电子设备之中,因此,单激式变压器开关电源应用非常广泛。
而双激式变压器开关电源一般用于功率较大的电子设备之中,并且电路一般也要复杂一些。
TOP开关电源芯片工作原理及应用电路资料
TOP开关电源芯片工作原理及应用电路1.什么叫TOP开关电源芯片TOP开关电源的芯片组是三端离线式脉宽调制单片开关集成电路TOP(ThreeterminalofflinePWM)的简称,TOP将PWM控制器与功率开关MOSFET合二为一封装在一起,。
采用TOP开关集成电路设计开关电源,可使电路大为简化,体积进一步缩小,成本也明显降低。
2.TOP开关结构及工作原理2.1 结构TOP开关集各种控制功能、保护功能及耐压700V的功率开关MOSFET 于一体,采用TO220或8脚DIP封装。
少数采用8脚封装的TOP开关,除D、C两引脚外,其余6脚实际连在一起,作为S端,故仍系三端器件。
三个引出端分别是漏极端D、源极端S和控制端C。
其中,D是内装MOSFET的漏极,也是内部电流的检测点,起动操作时,漏极端由一个内部电流源提供内部偏置电流。
控制端C控制输出占空比,是误差放大器和反馈电流的输入端。
在正常操作时,内部的旁路调整端提供内部偏置电流,且能在输入异常时,自动锁定保护。
源极端S是MOSFET的源极,同时是TOP开关及开关电源初级电路的公共接地点及基准点。
图1 为TOP开关电源芯片的内部结构电路图图1TOP开关内部工作原理框图2.2工作原理TOP包括10部分,其中Zc为控制端的动态阻抗,RE是误差电压检测电阻。
RA与CA构成截止频率为7kHz的低通滤波器。
主要特点是:(1)前沿消隐设计,延迟了次级整流二级管反向恢复产生的尖峰电流冲击;(2)自动重起动功能,以典型值为5%的自动重起动占空比接通和关断;(3)低电磁干扰性(EMI),TOP系列器件采用了与外壳的源极相连,使金属底座及散热器的dv/dt=0,从而降低了电压型控制方式与逐周期峰值电流限制;(4)电压型控制方式与逐周期峰值电流限制。
下面简要叙述一下:(1)控制电压源控制电压Uc能向并联调整器和门驱动极提供偏置电压,而控制端电流IC则能调节占空比。
控制端的总电容用Ct表示,由它决定自动重起动的定时,同时控制环路的补偿,Uc有两种工作模式,一种是滞后调节,用于起动和过载两种情况,具有延迟控制作用;另一种是并联调节,用于分离误差信号与控制电路的高压电流源。
top开关电源设计及电路2
TOPSwitch-FX系列单片机开关电源的应用摘要:介绍TOPSwitch-FX系列产品在通用高效开关电源、机顶盒开关电源、PC 待机电源中的典型应用。
TOPSwitch-FX系列单片机电源集成电路,可广泛应用于各种通用及专用开关电源、待机电源、开关电源模块中。
一、能进行外部限流的12V、30W开关电源由TOP234Y构成12V、30W高效开关电源的电路如图1所示。
其交流输入电压范围是AC85~265V,满载时电源效率可达80%。
交流电压u依次经过电磁干扰(EMI)滤波器(C10,L1)、输入整流滤波器(BR,C1)获得直流高压UI。
UI经过R1和R2分压后接M端,能使极限电流随UI升高而降低。
R1可提供电压前馈信号,当UI偏高时能自动降低最大占空比,以减小输出纹波。
R2为电流极限设定电阻,所设定的Ilimit≈0.7Ilimit=0.7×1.5A=1.05A,略高于低压输入时的峰值电流Ip值。
这里将系数取0.7是考虑到TOP234Y在宽范围输入时,最大连续输出功率Pom=45W,而实际输出功率P'om=30M,即P'om/Pom=30/45=0.67≈0.7。
采用这种设计方法允许高频变压器选用尺寸较小的磁芯,通过增加初级电感量Lp来降低TOP234Y的功耗,并防止出现磁饱和现象。
此外,由于采用了降低Dmax的电压前馈技术即使输入电压UI和初级感应电压UOR较高,开关电源也能正常工作。
它允许使用成本的R,C,VD型漏极钳位电路(R3,C7,VD1),以替代价格较高的TVS(瞬态电压抑制器)、VD型钳位电路,用于吸收在TOP234Y关断时由高频变压器漏感产生的尖峰电压,对漏极起到保护作用。
次级电压经过VD2,C2,C3,L2和C4整流滤波后,获得+12V、2.5A的稳压输出。
为减小整流管的损耗,VD2采用MBR1060型10A/60V肖特基二极管。
C9和R7并联在VD2两端,能防止VD2在高频开关状态下产生自激振荡(振铃)。
开关电源电路图工作原理及维修详解析
开关电源电路图工作原理及维修详解析一、开关电源的工作原理开关电源就是采用功率半导体器件作为开关元件,通过周期性通断开关,控制开关元件的占空比来调整输出电压。
开关元件以一定的时间间隔重复地接通和断开,在开关无件接通时输入电源Vi通过开关S和滤波电路向负载RL提供能量,当开关S断开时,电路中的储能装置(L1、C2、二极管D组成的电路)向负载RL释放在开关接通时所储存的能量,使负载得到连续而稳定的能量.开关电源原理图VO=TON/T*Vi,VO 为负载两端的电压平均值,TON 为开关每次接通的时间,T 为开关通断的工作周期;由式可知,改变开关接通时间和工作周期的比例,VO间电压平均值也随之改变,因此,随着负载及输入电源电压的变化自动调整TON和T的比例便使输出电压VO维持不变。
改变接通时间TON和工作周期比例亦即改变脉冲的占空比,这种方法称为“时间比率控制”(TimeRationControl,缩写为TRC)。
按TRC控制原理,有三种方式:1、脉冲宽度调制(PulseWithModulation,缩写为PWM)开关周期恒定,通过改变脉冲宽度来改变占空比的方式。
2、脉冲频率调制(PulseFrequencyModulation,缩写为PFM)导通脉冲宽度恒定,通过改变开关工作频率来改变占空比的方式。
3、混合调制导通脉冲宽度和开关工作频率均不固定,彼此都能改变的方式,它是以上二种方式的混合。
二、开关电源的维修技巧和常见故障1、维修技巧开关电源的维修可分为两步进行:断电情况下,“看、闻、问、量” 看:打开电源的外壳,检查保险丝是否熔断,再观察电源的内部情况,如果发现电源的PCB板上有烧焦处或元件破裂,则应重点检查此处元件及相关电路元件.闻:闻一下电源内部是否有糊味,检查是否有烧焦的元器件.问:问一下电源损坏的经过,是否对电源进行违规操作.量:没通电前,用万用表量一下高压电容两端的电压先.如果是开关电源不起振或开关管开路引起的故障,则大多数情况下,高压滤波电容两端的电压未泄放悼,此电压有300多伏,需小心.用万用表测量AC电源线两端的正反向电阻及电容器充电情况,电阻值不应过低,否则电源内部可能存在短路。
采用TOP249Y开发变频器实现多路输出开关电源的应用方案
采用TOP249Y开发变频器实现多路输出开关电源的应用方案随着PWM技术的不断发展和完善,开关电源得到了广泛的应用,以往开关电源的设计通常采用控制电路与功率管相分离的拓扑结构,但这种方案存在成本高、系统可靠性低等问题。
美国功率集成公司?POWERIntegrationInc 开发的TOPSwitch系列新型智能高频开关电源集成芯片解决了这些问题,该系列芯片将自启动电路、功率开关管、PWM控制电路及保护电路等集成在一起,从而提高了电源的效率,简化了开关电源的设计和新产品的开发,使开关电源发展到一个新的时代。
文中介绍了一种用TOPSwitch的第三代产品TOP249Y开发变频器用多路输出开关电源的设计方法。
2TOP249Y引脚功能和内部结构2.1TOP249Y的管脚功能TOP249Y采用TO-220-7C封装形式,其外形如图1所示。
它有六个管脚,依次为控制端C、线路检测端L、极限电源设定端X、源极S、开关频率选择端F和漏极D.各管脚的具体功能如下:控制端C:误差放大电路和反馈电流的输入端。
在正常工作时,利用控制电流IC的大小可调节占空比,并可由内部并联调整器提供内部偏流。
系统关闭时,利用该端可激发输入电流,同时该端也是旁路、自动重启和补偿电容的连接点。
线路检测端L:输入电压的欠压与过压检测端,同时具有远程遥控功能.TOP249Y的欠压电流IUV为50μA,过压电流Iav为225μA.若L端与输入端接入的电阻R1为1MΩ,则欠压保护值为50VDC,过压保护值为225VDC.极限电流设定端X:外部电流设定调整端。
若在X端与源极之间接入不同的电阻,则开关电流可限定在不同的数值,随着接入电阻阻值的增大,开关允许流过的电流将变小。
源极S:连接内部MOSFET的源极,是初级电路的公共点和电源回流基准点。
开关频率选择端F:当F端接到源极时,其开关频率为132kHz,而当F 端接到控制端时,其开关频率变为原频率的一半,即66kHz.漏极D:连接内部MOSFET的漏极,在启动时可通过内部高压开关电流提供内部偏置电流。
开关电源工作原理及电路图
关于外形现在LED日光灯电源,做灯的厂家普遍要求放在灯管内,如放T8灯管内.很少一部分外置.不知道为什么都要这样.其实内置电源又难做,性能也不好.但不知为什么还有这么多人这样要求.可能都是随风倒吧.外置电源应该说是更科学,更方便才对.但我也不得不随风倒,客户要什么,我就做什么.但做内置电源,有相当难度哦.因为外置的电源,形状基本没有要求,想做多大做多大,想做成什么形状也没关系.内置电源,只能做成两种,一种是用的最多的,就是说放在灯板下面,上面放灯板。
下面是电源,这样就要求电源做的很薄,不然装不进.而且这样只能把元件倒下,电源上的线路也只有加长.我认为这样不是个好办法.不过大家普遍喜欢这样搞.我就搞.还有就是用的少一些,放两端的,即放在灯管两头,这样好做些,成本也低些.我也有做过,基本就是这两种内置形状了。
关于此种电源的要求和电路结构的问题我的看法是,因为电源要内置在灯里,而发热是LED光衰最大的杀手,所以发热一定要小,就是效率一定得高.当然得有高效率的电源.对于T8一米二长的那种灯,最好是不要用一支电源,而是用二支,两端各一只,将热量分散.从而不使热量集中在一个地方.电源的效率主要取决于电路的结构和所用的器件.先说电路结构,有些人还说要隔离电源,我想绝对是没必要的,因为这种东西本来就是置于灯体内部,人根本摸不到.没必要隔离,因为隔离电源的效率比不隔离效率要低,第二是,最好输出要高电压小电流,这样的电源才能把效率做高.现在普遍用到的是,BUCK电路,即降压式电路.最好是把输出电压做到一百伏以上,电流定在100MA上那样,如驱动一百二十只,最好是三串,每串四十只,电压就是一百三十伏,电流60MA.这种电源用的很多,本人只是认为有一点不好,如果开关管失控通咱,LED会玩完.现在LED这么贵.我比较看好升压式电路,此种电路的好处,我反复的说过,一是效率较降压式的高些,二是电源坏了,LED灯不会坏.这样能确保万无一失,如果烧坏一个电源,只是损失几块钱,烧一个LED日光灯,就会赔掉上百元的成本.所以我一直首推还是升压式的电源.还有就是,升压式电路,很容易把PF值作高,降压式的就麻烦一些.我绝对升压式电路用于LED日光灯的好处还是有压倒性的强于降压式的.只是有一年缺点,就是在220V市电输入情况下,负载范围比较窄,一般只能适用于1 00至140个一串或两串LED,对于少于此数的,或是夹在中间的,却用起来不方便.不过现在做LED日光灯的,一般60CM长那种都是用100至140,一米二的那种,一般就是用二百到二百六那样,使用起来还是可以的.所以现在LED日光灯一般使用的是不隔离降压电路,还有不隔离升压电路,此种电路用于LED日光灯,应该可以算是本人首创。
超详细开关电源芯片内部电路解析
超详细开关电源芯片内部电路解析作为一名电源研发工程师,自然经常与各种芯片打交道,可能有的工程师对芯片的内部并不是很了解,不少同学在应用新的芯片时直接翻到Datasheet的应用页面,按照推荐设计搭建外围。
如此一来即使应用没有问题,却也忽略了更多的技术细节,对于自身的技术成长并没有积累到更好的经验。
今天以一颗DC/DC降压电源芯片LM2675为例,尽量详细讲解下一颗芯片的内部设计原理和结构。
LM2675-5.0的典型应用电路打开LM2675的DataSheet,首先看看框图这个图包含了电源芯片的内部全部单元模块,BUCK结构我们已经很理解了,这个芯片的主要功能是实现对MOS管的驱动,并通过FB脚检测输出状态来形成环路控制PWM驱动功率MOS管,实现稳压或者恒流输出。
这是一个非同步模式电源,即续流器件为外部二极管,而不是内部MOS管。
下面咱们一起来分析各个功能是怎么实现的类似于板级电路设计的基准电源,芯片内部基准电压为芯片其他电路提供稳定的参考电压。
这个基准电压要求高精度、稳定性好、温漂小。
芯片内部的参考电压又被称为带隙基准电压,因为这个电压值和硅的带隙电压相近,因此被称为带隙基准。
这个值为1.2V左右,如下图的一种结构:这里要回到课本讲公式,PN结的电流和电压公式:可以看出是指数关系,Is是反向饱和漏电流(即PN结因为少子漂移造成的漏电流)。
这个电流和PN结的面积成正比!即Is->S。
如此就可以推导出Vbe=VT*ln(Ic/Is) !回到上图,由运放分析VX=VY,那么就是I1*R1+Vbe1=Vbe2,这样可得:I1=△Vbe/R1,而且因为M3和M4的栅极电压相同,因此电流I1=I2,所以推导出公式:I1=I2=VT*ln(N/R1) N是Q1 Q2的PN结面积之比!回到上图,由运放分析VX=VY,那么就是I1*R1+Vbe1=Vbe2,这样可得:I1=△Vbe/R1,而且因为M3和M4的栅极电压相同,因此电流I1=I2,所以推导出公式:I1=I2=VT*ln(N/R1) N是Q1 Q2的PN结面积之比!这样我们最后得到基准Vref=I2*R2+Vbe2,关键点:I1是正温度系数的,而Vbe是负温度系数的,再通过N值调节一下,可是实现很好的温度补偿!得到稳定的基准电压。
TOP204-单片开关电源原理及运用
TOP204-单片开关电源原理及运用1.前语开关电源自20世纪70年代初步运用以来,呈现出很多功用齐备的集成操控电路,使开关电源电路日益简化,作业频率不断跋涉,功率大大跋涉,并为电源小型化供应了宽广的远景。
三端离线式脉宽调制单片开关集成电路TOP(Threeterminaloffline)将PWM操控器与功率开关MOSFET合二为一封装在一同,已成为变压器进行变压,然后发作所需求的一组或多组电压开关电源IC翻开的干流。
选用TOP开关集成电路方案开关电源,可使电路大为简化,体积进一步减小,本钱也显着下降。
2.TOP开关构造及作业原理2.1构造TOP开关集各种操控功用、维护功用及耐压700V的功率开关MOSFET于一体,选用TO220或8脚DIP封装。
少量选用8脚封装的TOP开关,除D、C两引脚外,别的6脚实习连在一同,作为S端,故仍系三端器材。
三个引出端别离是漏极点D、源极点S 和操控端C。
其间,D是内装MOSFET的漏极,也是内部电流的查亮点,起动操作时,漏极点由一个内部电流源供应内部偏置电流。
操控端C操控输出占空比,是过错拓宽器和反响电流的输入端。
在正常操作时,内部的旁路调整端供应内部偏置电流,且能在输入反常时,主动断定维护。
源极点S是MOSFET的源极,一同是TOP开关及开关电源初级电路的公共接地址及基准点。
2.2作业原理TOP包含十有些,其间Zc为操控端的动态阻抗,RE是过错电压查看电阻。
RA与CA构成截止频率为7kHz的低通滤波器。
首要特征是:(1)前沿消隐方案,推延了次级整流二级管反向康复发作的尖峰电流冲击;(2)主动重起动功用,以典型值为5%的主动重起动占空比接通和关断;(3)低电磁烦扰性(EMI),TOP系列器材选用了与外壳的源极相连,使金属底座及散热器的dv/dt=0,然后下降了电压型操控办法与逐周期峰值电流绑缚;(4)电压型操控办法与逐周期峰值电流绑缚。
下面简明叙说一下:(1)操控电压源操控电压Uc能向并联调整器和门驱动极供应偏置电压,而操控端电流IC则能调度占空比。
用TOP222P芯片的小开关电源模块
用TOP222P芯片的小开关电源模块文章来源:转载电子制作网文章作者:徐海发布时间:2006-10-10 字体:[大中小]作者徐海采用TOP222P芯片的小开关电源模块,交流输入电压为100~245V,双路直流输出(注1),最大直流输出分别为10v800mA(15v600mA)、5v800mA,长时间工作最大12W,峰值工作最大15W,电源效率70%~80%。
(注1:此电源模块的输出5v组带有稳压功能,另一组输出电压可设置:与“+”连接时为15v、与“0”连接时为10v)电压准确度4%(5v组+/-0.2V)电压调整率0.7%5V负载调整率1%10V负载调整率8%或15V负载调整率10%小电源模块尺寸:长46mm,宽28mm,高20mm小电源模块安置时可参照小电源模块安置图.gif注意事项:1.如果外置保险丝则必须等于300mA,否则内部的33/1W电阻将起到保险丝作用。
2.如有电磁兼容性要求,则需外接电源干扰抑制器。
点此处看清晰电路图点此处看清晰电路图小电源模块器件清单名称数量TOP222P芯片 1 EE19变压器 1 UF4007二极管 1PC817光耦 1 3.3UH磁珠 2 3.6稳压二极管 1471压敏电阻 1 10UF/400V电解 1102/1KV瓷片 1 470UF/25V电解 1470UF/25V电解 147UF/25V电解 1名称数量100UF/25V电解 1UF4004二极管 2IN4148二极管 1(可用UF40 04二极管代换)1N4007二极管 433/1W电阻 156K/0.25W电阻 110/0.25W电阻 1100/0.25W电阻 11K/0.25W电阻 13mmLED 1电路板 1如果您有不同的需要(如:电源稳压值或输出电流值等等),请与我们联系:你在使用我们的产品过程中有什么问题或建议,请与我们联系:xuhai777@ /dedec/html/edzk/2006/1010/395.htm电子实用技术BAS16封装形式: SOT-23类别:二极管- 小信号二极管类型: 单电流, If 平均: 200mA电压, Vrrm: 85V正向电压Vf 最大: 1V时间, trr 最大: 4ns电流, Ifs 最大: 4.5A工作温度度范围: -65°C ~ +150°C封装形式: SOT-23针脚数: 3SMD标号: A6s反向电流, Ir 最大值: 1μA封装类型: SOT-23应用代码: 高速总功率, Ptot: 370mW最大正向电流, If: 250mA正向电压, 于If: 1V电压Vbr: 75V电压Vr @ Ir测量: 75V电压, Vr 最高: 75V电流, If @ Vf: 50mA电流, Ifsm: 4.5A结温, Tj 最高: 150°C表面安装器件: 表面安装BAT54 bat54肖基特二极管300ma 30V 耐压值二极管类型:肖特基电流, If 平均:0.2A电压, Vrrm:30V正向电压Vf 最大:320mV时间, trr 最大:5ns电流, Ifs 最大:0.6A工作温度范围:-65°C to +150°C封装形式:SOT-23针脚数:3SMD标号:L4*封装类型:SOT-23正向电压, 于If:0.8V 电流, Ifsm:600mA结温, Tj 最高:125°C 表面安装器件:表面安装针脚配置:1A,2NC,3K封装:TO-252。
TOP246-TOP249系列单片开关电源应用
TOP246-TOP249系列单片开关电源应用1.高效率70W通用开关电源开关电源模块TOPSwitch GX适合制作低成本、高效率、小尺寸、全密封式开关电源模块或电源适配器(adapter)。
由TOP249Y构成的密封式70W(19V,3.6A)通用开关电源模块,电路。
当环境温度不超过40℃时,模块的外形尺寸可减小到10.5mm×5.5mm×2.5mm。
设计的交流输入电压范围是85V~265V,这属于全世界通用的电压范围。
该电源能同时实现输入欠压保护、过压保护、从外部设定极限电流、降低最大占空比等功能,其主要技术指标为:额定输出功率PO=70W;负载调整率SI=±4%;电源效率η≥84%(当交流输入电压U=85V时,满载效率可达85%;当U=230V时,电源效率高达90%);空载功率损耗<0.52W(U=230V时);图1高效率70W通用开关电源模块电路输出纹波电压≤120mV(峰峰值)。
该电源共使用3片集成电路:TOP249Y型6端单片开关电源(IC1);线性光耦合器PC817A(IC2);可调式精密并联稳压器TL431(IC3)。
电阻R9和R10用来从外部设定功率开关管的漏极极限电流,使之略高于满载或输入欠压时的漏极峰值电流ID(PK)。
这就允许在电源起动过程中或输出负载不稳定但未出现饱和的情况下,采用较小尺寸的高频变压器。
当输入直流电压过压时。
R9和R10还能自动降低最大占空比DMAx,对最大负载功率加以限制。
R11为欠压或过压检测电阻,并能给线路提供电压前馈,以减少开关频率的波动。
取R11=2MΩ时,仅当直流输入UI电压达到100V时,电源才能起动。
TOPSwitchGX的欠压电流IUV=50μA,过压电流IOV=225μA。
TOP开关电源芯片工作原理及应用电路资料
TOP开关电源芯片工作原理及应用电路1.什么叫TOP开关电源芯片TOP开关电源的芯片组是三端离线式脉宽调制单片开关集成电路TOP(ThreeterminalofflinePWM)的简称,TOP将PWM控制器与功率开关MOSFET合二为一封装在一起,。
采用TOP开关集成电路设计开关电源,可使电路大为简化,体积进一步缩小,成本也明显降低。
2.TOP开关结构及工作原理2.1 结构TOP开关集各种控制功能、保护功能及耐压700V的功率开关MOSFET 于一体,采用TO220或8脚DIP封装。
少数采用8脚封装的TOP开关,除D、C两引脚外,其余6脚实际连在一起,作为S端,故仍系三端器件。
三个引出端分别是漏极端D、源极端S和控制端C。
其中,D是内装MOSFET的漏极,也是内部电流的检测点,起动操作时,漏极端由一个内部电流源提供内部偏置电流。
控制端C控制输出占空比,是误差放大器和反馈电流的输入端。
在正常操作时,内部的旁路调整端提供内部偏置电流,且能在输入异常时,自动锁定保护。
源极端S是MOSFET的源极,同时是TOP开关及开关电源初级电路的公共接地点及基准点。
图1 为TOP开关电源芯片的内部结构电路图图1TOP开关内部工作原理框图2.2工作原理TOP包括10部分,其中Zc为控制端的动态阻抗,RE是误差电压检测电阻。
RA与CA构成截止频率为7kHz的低通滤波器。
主要特点是:(1)前沿消隐设计,延迟了次级整流二级管反向恢复产生的尖峰电流冲击;(2)自动重起动功能,以典型值为5%的自动重起动占空比接通和关断;(3)低电磁干扰性(EMI),TOP系列器件采用了与外壳的源极相连,使金属底座及散热器的dv/dt=0,从而降低了电压型控制方式与逐周期峰值电流限制;(4)电压型控制方式与逐周期峰值电流限制。
下面简要叙述一下:(1)控制电压源控制电压Uc能向并联调整器和门驱动极提供偏置电压,而控制端电流IC则能调节占空比。
控制端的总电容用Ct表示,由它决定自动重起动的定时,同时控制环路的补偿,Uc有两种工作模式,一种是滞后调节,用于起动和过载两种情况,具有延迟控制作用;另一种是并联调节,用于分离误差信号与控制电路的高压电流源。
开关电源芯片启动过压保护电路原理
开关电源芯片启动过压保护电路原理
开关电源芯片的过压保护电路通常是用来保护电路不受过大的
输入电压影响,以防止损坏电路元件或设备。
其原理主要包括以下
几个方面:
1. 过压检测,过压保护电路首先需要对输入电压进行检测,通
常会使用电压比较器或者其他传感器来监测输入电压是否超过设定
的阈值。
一旦检测到输入电压超过设定范围,保护电路会立即做出
响应。
2. 触发保护动作,当过压保护电路检测到输入电压超过设定范
围时,会立即触发保护动作,通常是通过控制开关电源芯片的工作
状态,使其停止工作或者减小输出功率,以减轻输入电压对电路的
影响。
3. 输出短路,有些过压保护电路还会通过输出短路的方式来保
护电路。
一旦检测到输入电压过高,保护电路会立即将开关电源芯
片的输出短路,以消耗过高的输入能量,保护电路和设备不受损害。
4. 自恢复功能,一些过压保护电路还具有自恢复功能,当输入
电压恢复正常范围后,保护电路会自动解除保护状态,使开关电源芯片恢复正常工作。
总的来说,过压保护电路的原理是通过检测输入电压、触发保护动作、输出短路等方式来保护开关电源芯片和其他电路元件,以确保整个电路系统的安全稳定运行。
利用TOP242N的开关电源电路设计
利用TOP242N的开关电源电路设计开关电源基于自身的体积小巧和转换效率高的特点已在电子产品中得到了广泛的应用,特别是美国PI公司开发的TOPSwitch系列高频开关电源集成芯片的出现,使电路设计更为标准成熟、简洁便捷。
但该TOPSwitch系列的集成芯片其典型输入电压设计为不高于275V的情况下工作,在工业现场,电网的电压往往受用电负载的变化而变动,特别是负载较大时情况尤其严重,另外现场环境的干扰尖峰也会叠加在输入电压上一起进入电源电路,致使在恶劣环境下正常供电的电源芯片或其它的元件极其容易损坏。
超宽范围输入的电源可在输入80~400V的范围内正常工作,同时也为现场任意采用220V相电压或380V线电压,还是一次高压互感器出来的100V电压,均可直接使用提供了方便。
一、利用了TOP242N设计了一个实用的三路输出的开关电源,其输出分别为5V/0.6A、5V/0.1A、15V/0.15A,电路原理图如图1所示。
要求输入电压范围为交流80~400V,输出总功率约为6W左右。
1)前端电路设计当输入电压要求为AC400V时,考虑输入时电源的波动变化为±15%,则最高输入电压将达到460V左右,此输入电压经整流滤波后,其电压可达650V左右,再考虑加上输出反馈的电压Uor和漏感形成的尖峰电压叠加后其最高电压将超过800V,而该芯片的最高电压为700V,为了保证TOP242能正常安全工作,在设计前端电路时增加了一个MOS管,让MOS管与TOP242串接,并实现与TOP管同步开关来提高整体耐压。
本设计采用的MOS管是IR公司的IRFBC20,其耐压为600V,导通关断时间为几十个ns,这可以大大减少开关损耗。
MOS管的通断由TOP242N 控制,这样可以使MOS管和TOP242N内部的开关管时序保持一致,见图1。
2)外围控制电路设计该电路将TOP242N的极限电流设置为内部最大值,将TOP242N设为全频工作方式,开关频率为132kHz,把多功能脚M与S短接。
开关电源top224芯片
绪论开关电源(Switched Mode Power Supply,SMPS)是一种由占空比控制的开关电路构成的电能变换装置,用于交流—直流或直流—直流电能的变换。
其功率从零点几瓦到数十千瓦,被广泛用于生活、生产、科研、军事等各个领域。
比如:小到彩色电视机、DVD播放机等家用电器、大到飞机、卫星、导弹、舰船中,都大量采用了开关电源。
开关电源的核心为电力电子开关电路,根据负载对电源提出的输出稳压或稳流特性的要求,利用反馈控制电路,采用占空比控制方法,对开关电路进行控制。
脉宽调制(PWM)技术的发展,导致了PWM开关电源问世(PWM开关电源的特点是用20KHz的载波进行脉冲宽度调制,电源的效率可达65%~70%),大幅度节约了能源,引起了人们的广泛关注,在电源技术发展史上被誉为20KHz革命。
高频化使开关电源装置空前的小型化,并使其进入更广泛的领域,特别是推动了高新技术产品的小型化、轻便化,在节约资源及保护环境方面具有深远的意义。
随着电子技术的高速发展,电子设备的应用领域越来越广,与人们的工作、生活的关系日益密切。
但是,任何电子设备都离不开可靠的电源,它们对电源的要求也越来越高。
并且,随着集成芯片尺寸的不断减小,处理速度越来越高,需要更加小型化、轻量化的电源(磁性元件和电容的体积、重量应随之减小);未来的绿色电源要求开关电源的效率更高,性能更好,可靠性更高等。
这一切将促进开关电源的不断发展和进步。
开关电源体积小、效率高,被誉为高效节能电源,现已成为稳压电源的主导产品。
当今开关电源正向着集成化、智能化的方向发展。
高度集成、功能强大的开关型稳压电源代表着开关电源发展的主流方向。
本论文主要围绕当前流行的集成开关电源芯片进行小功率开关型稳压电源特性的研究。
本文采用TOP224Y研制了一款单片开关电源,论文给出了外围电路各部分的详细设计方法,并进行了参数计算,通过实测结果分析,验证了理论的可行性。
具有较强的适用性。