伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第16章 联立方程模型【圣才出品】
伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第17章 限值因变量模型和样本选择纠正【圣才
![伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第17章 限值因变量模型和样本选择纠正【圣才](https://img.taocdn.com/s3/m/ef6062940508763230121234.png)
第17章限值因变量模型和样本选择纠正17.1复习笔记一、二值响应的对数单位和概率单位模型1.线性概率模型的不足(1)拟合出来的概率可能小于0或大于1;(2)任何一个解释变量(以水平值形式出现)的偏效应都是不变的。
二值响应模型的核心是响应概率:()()12P 1x P 1 k y y x x x ===⋅⋅⋅,,,其中,用x 表示全部解释变量所构成的集合。
2.设定对数单位和概率单位模型(1)二值响应模型在LPM 中,响应概率对一系列参数j β是线性的,为避免LPM 的局限性,考虑二值响应模型:()()()01101x k k P y G x x G x βββββ==++⋅⋅⋅+=+其中,G 是一个取值范围严格介于0和1之间的函数:对所有实数z,都有0﹤G(z)﹤1。
这就确保估计出来的响应概率严格地介于0和1之间。
(2)函数G 的各种非线性形式①对数单位模型中,G 是对数函数:()()()()exp /1exp G z z z z =+=Λ⎡⎤⎣⎦对所有的实数z,它都介于0和1之间。
它是一个标准逻辑斯蒂随机变量的累积分布函数。
②概率单位模型中,G 是标准正态的累积分布函数,可表示为积分()()()d z G z z v vφ-∞=Φ≡⎰其中,()z φ是标准正态密度函数()()()1/222exp /2z z φπ-=-也确保了对所有参数和x j 的值都严格介于0和1之间。
③两个模型中G 函数都是增函数,在z=0时增加的最快,在z →-∞时,()0G z →,而在z →∞时,()1G z →。
(3)两种函数形式的推导对数单位和概率单位模型都可以由一个满足经典线性模型假定的潜变量模型推导出来。
令y *为一个由0y x e ββ*=++,y=1[y *﹥0]决定的无法观测变量或潜变量。
在其中引入记号1[·]来定义一个二值结果。
函数1[·]被称为指标函数,它在括号中的事件正确时取值1,而在其他情况下取值0。
伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第13章 跨时横截面的混合:简单面板数据方法
![伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第13章 跨时横截面的混合:简单面板数据方法](https://img.taocdn.com/s3/m/42a8ee7f195f312b3069a558.png)
第13章跨时横截面的混合:简单面板数据方法13.1复习笔记一、数据集的种类1.独立混合横截面数据它是在不同时点(经常但并不一定是不同年份)从一个大总体里进行随机抽样的结果。
重要特点:它们都是由独立抽取的观测所构成。
主要性质:保持其他条件不变,它排除了不同观测误差项的相关。
一个独立混合横截面和单独一个随机样本的差异在于,在不同时点上对总体进行抽样很可能导致观测点(即观测结果)不是同分布的情形(因为随着时间的变化,总体的分布可能已经发生变化)。
2.面板数据集它虽然兼有横截面和时间序列维度,但在一些重要方面却不同于独立混合横截面,有时又称纵列数据。
面板数据是在不同时间跟踪相同的一些个人、家庭、企业、城市、州或者其他单位,从这些跟踪的对象中收集的数据,在同一个时点上有多个个体的观测值,同时每一个个体又有几个不同时期的观测值。
二、跨时独立横截面的混合1.使用独立混合横截面的理由每个时期都抽取一个随机样本,然后把所得到的随机样本合并起来作为一个大的样本就是一个独立混合横截面。
使用独立混合横截面的一个理由是要加大样本容量,把不同时点从同一总体中抽取的多个随机样本混合起来使用,可以获取更精密的估计量和更具功效的检验统计量,仅当因变量和某些自变量保持着不随时间而变化的关系时,混合才是有用的。
使用混合截面只会带来少量的统计复杂性,因为总体在不同时期可能会有不同的分布,为了反映这种情况需要允许截距在不同时期有不同的值,因此通过引入年度虚拟变量就可以解决这个问题。
2.对跨时结构性变化的邹至庄检验(1)用邹至庄检验来检验多元回归函数在两组数据之间是否存在差别①检验的一种形式是,把混合估计的残差平方和看作约束SSR ;无约束的SSR 则是对两个时期分别估计而得的两个SSR 之和,然后按照邹至庄检验的步骤计算F 统计量。
②检验的另一种方法:先将每一变量对两个年度虚拟变量之一形成交互作用,再检验这个年度虚拟变量和全部交互项是否联合显著。
伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第11章 OLS用于时间序列数据的其他问题【
![伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第11章 OLS用于时间序列数据的其他问题【](https://img.taocdn.com/s3/m/09be6f7d58fb770bf68a554f.png)
第11章OLS 用于时间序列数据的其他问题11.1复习笔记一、平稳和弱相关时间序列1.平稳和非平稳时间序列平稳时间序列过程,就是概率分布在如下意义上跨时期稳定的时间序列过程:如果从这个序列中任取一个随机变量集,并把这个序列向前移动h 个时期,那么其联合概率分布仍然保持不变。
(1)平稳随机过程对于随机过程{ 1 2 }t x t =:,,…,如果对于每一个时间指标集121m t t t ≤<<⋅⋅⋅<和任意整数h≥1,()12m t t t x x x ⋅⋅⋅,,,的联合分布都与()12 m t h t h t h x x x ++⋅⋅⋅+,,,的联合分布相同,那么这个随机过程就是平稳的。
这种平稳经常称为严平稳,它是从概率分布的角度去定义的。
其含义之一是(取m=1和t 1=1):对所有t=2,3,…,x 1与x t 都有相同的分布。
序列{ 1 2 }t x t =:,,…是同分布的。
不平稳的随机过程称为非平稳过程。
因为平稳性是潜在随机过程而非其某单个实现的性质,所以很难判断所搜集到的数据是否由一个平稳过程生成。
但是,要指出某些序列不是平稳的却很容易。
(2)协方差平稳过程(宽平稳,弱平稳)对于一个具有有限二阶矩()2t E x ⎡⎤∞⎣⎦<的随机过程{ 1 2 }t x t =:,,…,若:(i)E(x t )为常数;(ii)Var(x t )为常数;(iii)对任何t,h≥1,Cov(x t ,x t+h )仅取决于h,而不取决于t,那它就是协方差平稳的。
协方差平稳只考虑随机过程的前两阶矩:这个过程的均值和方差不随着时间而变化,而且,x t 和x t+h 的协方差只取决于这两项之间的距离h,与起始时期t 的位置无关。
由此立即可知x t 与x t+h 之间的相关性也只取决于h。
如果一个平稳过程具有有限二阶矩,那么它一定是协方差平稳的,但反过来未必正确。
由于严平稳的条件比较苛刻,在实际中从概率分布的角度去验证是无法实现的,所以在实际运用中所指的平稳都是指宽平稳,即协方差平稳。
伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解
![伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解](https://img.taocdn.com/s3/m/86111812bdd126fff705cc1755270722192e599f.png)
读书笔记模板
01 思维导图
03 目录分析 05 读书笔记
目录
02 内容摘要 04 作者介绍 06 精彩摘录
思维导图
本书关键字分析思维导图
第版
计量经济 学
时间
习题
序列
经典
变量
笔记
教材
笔记 复习
模型
导论
笔记
第章
习题
分析
数据
回归
内容摘要
本书是伍德里奇《计量经济学导论》(第5版)教材的配套电子书,主要包括以下内容:(1)整理名校笔记, 浓缩内容精华。每章的复习笔记以伍德里奇所著的《计量经济学导论》(第5版)为主,并结合国内外其他计量经 济学经典教材对各章的重难点进行了整理,因此,本书的内容几乎浓缩了经典教材的知识精华。(2)解析课后习 题,提供详尽答案。本书参考国外教材的英文答案和相关资料对每章的课后习题进行了详细的分析和解答。(3) 补充相关要点,强化专业知识。一般来说,国外英文教材的中译本不太符合中国学生的思维习惯,有些语言的表 述不清或条理性不强而给学习带来了不便,因此,对每章复习笔记的一些重要知识点和一些习题的解答,我们在 不违背原书原意的基础上结合其他相关经典教材进行了必要的整理和分析。本书特别适用于参加研究生入学考试 指定考研考博参考书目为伍德里奇所著的《计量经济学导论》的考生,也可供各大院校学习计量经济学的师生参 考。
讨
2.1复习笔记 2.2课后习题详解
3.1复习笔记 3.2课后习题详解
4.1复习笔记 4.2课后习题详解
5.1复习笔记 5.2课后习题详解
6.1复习笔记 6.2课后习题详解
7.1复习笔记 7.2课后习题详解
伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第7章含有定性信息的多元回归分析:二值(或
![伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第7章含有定性信息的多元回归分析:二值(或](https://img.taocdn.com/s3/m/c7eb1539854769eae009581b6bd97f192279bf3f.png)
伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第7章含有定性信息的多元回归分析:二值(或第7章含有定性信息的多元回归分析:二值(或虚拟)变量7.1复习笔记一、对定性信息的描述定性信息通常以二值信息的形式出现。
在计量经济学中,二值变量最常见的称呼是虚拟变量。
二、只有一个虚拟自变量1.只有一个虚拟自变量的简单模型考虑如下决定小时工资的简单模型:001wage female educ uβδβ=+++用0δ表示female 的参数,以强调虚拟变量参数的含义。
假定零条件均值假定() 0E u female educ =,成立,那么:()()0| 1 |0 E wage female educ E wage female educ δ==-=,,由于female=1对应于女性且female=0对应于男性,所以可以简单的把模型写为:()()0| | E wage female educ E wage male educ δ=-,,这种情况可以在图形上描绘成男性与女性之间的截距变化。
男性线的截距是0β,女性线的截距是00βδ+。
由于只有两组数据,所以只需要两个不同的截距。
这意味着,除了0β之外,只需要一个虚拟变量。
因为female +male=1,意味着male 是female 的一个完全线性函数,如果使用两个虚拟变量就会导致完全多重共线性,这就是虚拟变量陷阱。
2.当因变量为log(y)时,对虚拟解释变量系数的解释在应用研究中有一个常见的设定,当自变量中有一个或多个虚拟变量时,因变量则以对数形式出现。
在这种情况下,此系数具有一种百分比解释。
当log(y)是一个模型的因变量时,将虚拟变量的系数乘以100,可解释为y 在保持所有其他因素不变情况下的百分数差异。
当一个虚拟变量的系数意味着y 有较大比例的变化时,可以得到精确的百分数差异。
一般地,如果1β是一个虚拟变量(比方说x 1)的系数,那么,当log(y)是因变量时,在x 1=1时预测的y 相对于在x 1=0时预测的y,精确的百分数差异为:()1?100exp 1β-??三、使用多类别虚拟变量1.在方程中包括虚拟变量的一般原则如果回归模型具有g 组或g 类不同截距,那就需要在模型中包含g-1个虚拟变量和一个截距。
伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第14章 高级的面板数据方法【圣才出品】
![伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第14章 高级的面板数据方法【圣才出品】](https://img.taocdn.com/s3/m/06dc2824a26925c52cc5bfb8.png)
第14章高级的面板数据方法14.1复习笔记一、固定效应估计法1.固定效应变换固定效应变换又称组内变换,考虑仅有一个解释变量的模型:对每个i,有1 12 it it i it y x a u t Tβ=++=,,,…,对每个i 求方程在时间上的平均,便得到1i i i iy x a u β=++其中,11T it t y T y-==∑(关于时间的均值)。
因为a i 在不同时间固定不变,故它会在原模型和均值模型中都出现,如果对于每个t,两式相减,便得到()1 1 2 it i it i it i y y x x u u t Tβ-=-+-=,,,…,或1 12 it it it y x u t Tβ=+= ,,,…,其中,it it i y y y =- 是y 的除时间均值数据;对it x和it u 的解释也类似。
方程的要点在于,非观测效应a i 已随之消失,从而可以使用混合OLS 去估计式1 1 2 it it it y x u t T β=+= ,,,…,。
上式的混合OLS 估计量被称为固定效应估计量或组内估计量。
组间估计量可以从1i i i i y x a u β=++的OLS 估计量而得到,即同时使用y 和x 的时间平均值做一个横截面回归。
如果a i 与i x 相关,估计量是有偏误的。
而如果认为a i 与x it 无关,则使用随机效应估计量要更好。
组间估计量忽视了变量如何随着时间而变化。
2.原始的非观测效应模型1122 1 2 it it it k itk i it y x x x a u t Tβββ=++⋅⋅⋅+++=,,,…,只需对每个解释变量(包括诸如时期虚拟变量)都除去其时间均值,然后利用全部除时间均值后的变量做混合OLS 回归即可。
在解释变量的严格外生性假定下,固定效用估计量是无偏的:粗略地说,特异误差u it 应与所有时期的每个解释变量都无关。
固定效应估计量如一阶差分估计量一样,容许a i 与任何时期的解释变量任意相关,因为在时间上恒定的解释变量都必定随固定效应变换而消失。
伍德里奇《计量经济学导论》笔记和课后习题详解(一个经验项目的实施)【圣才出品】
![伍德里奇《计量经济学导论》笔记和课后习题详解(一个经验项目的实施)【圣才出品】](https://img.taocdn.com/s3/m/42047234580102020740be1e650e52ea5518ce8f.png)
伍德⾥奇《计量经济学导论》笔记和课后习题详解(⼀个经验项⽬的实施)【圣才出品】第19章⼀个经验项⽬的实施19.1 复习笔记⼀、问题的提出提出⼀个⾮常明确的问题,其重要性不容忽视。
如果没有明确阐述假设和将要估计的模型类型,那么很可能会忘记收集某些重要变量的信息,或是从错误的总体中取样,甚⾄收集错误时期的数据。
1.查找数据的⽅法《经济⽂献杂志》有⼀套细致的分类体系,其中每篇论⽂都有⼀组标识码,从⽽将其归于经济学的某⼀⼦领域之中。
因特⽹(Internet)服务使得搜寻各种主题的已发表论⽂更为⽅便。
《社会科学引⽤索引》(Social Sciences Citation Index)在寻找与社会科学各个领域相关的论⽂时⾮常有⽤,包括那些时常被其他著作引⽤的热门论⽂。
⽹络搜索引擎“⾕歌学术”(Google Scholar)对于追踪各类专题研究或某位作者的研究特别有帮助。
2.构思题⽬时⾸先应明确的⼏个问题(1)要使⼀个问题引起⼈们的兴趣,并不需要它具有⼴泛的政策含义;相反地,它可以只有局部意义。
(2)利⽤美国经济的标准宏观经济总量数据来进⾏真正原创性的研究⾮常困难,尤其对于⼀篇要在半个或⼀个学期之内完成的论⽂来说更是如此。
然⽽,这并不意味着应该回避对宏观或经验⾦融模型的估计,因为仅增加⼀些更新的数据便对争论具有建设性。
⼆、数据的收集1.确定适当的数据集⾸先必须确定⽤以回答所提问题的数据类型。
最常见的类型是横截⾯、时间序列、混合横截⾯和⾯板数据集。
有些问题可以⽤任何⼀种数据结构进⾏分析。
确定收集何种数据通常取决于分析的性质。
关键是要考虑能够获得⼀个⾜够丰富的数据集,以进⾏在其他条件不变下的分析。
同⼀横截⾯单位两个或多个不同时期的数据,能够控制那些不随时间⽽改变的⾮观测效应,⽽这些效应通常使得单个横截⾯上的回归失效。
2.输⼊并储存数据⼀旦你确定了数据类型并找到了数据来源,就必须把数据转变为可⽤格式。
通常,数据应该具备表格形式,每次观测占⼀⾏;⽽数据集的每⼀列则代表不同的变量。
伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第9章 模型设定和数据问题的深入探讨【圣才出
![伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第9章 模型设定和数据问题的深入探讨【圣才出](https://img.taocdn.com/s3/m/4d91ca6e5fbfc77da369b12d.png)
(c)
来检验模型
y 0 1x1 2 x2 u
(d)
或者把这两个模型反过来。然而,它们是非嵌套模型,所以不能仅使用标准的 F 检验。
(1)综合模型的 F 检验
构造一个综合模型,将每个模型都作为一个特殊情形而包含其中,然后检验导致每个模
型的约束。在目前的例子中,综合模型为:
y 0 1x1 2 x2 3 log x1 4 log x2 u
y 0 1x1 2 x2 3 x3 u
但有 x3 的一个代理变量,并称之为 x3
x3 0 3 x3 v3
其中,v3 是因 x3 与 x3 并非完全相关所导致的误差。参数 3 度量了 x3 与 x3 之间的关系。 x3 和 x3 正相关,所以 δ3 0 。如果 δ3 0 ,则 x3 不是 x3 合适的代理变量。截距 δ0 ,是容许 x3
圣才电子书 十万种考研考证电子书、题库视频学习平台
第 9 章 模型设定和数据问题的深入探讨
9.1 复习笔记
一、函数形式设误 1.函数形式设误的概念 遗漏一个关键变量能导致误差与某些解释变量之间的相关,从而通常导致所有的 OLS 估计量都是偏误和不一致的。在遗漏的变量是模型中一个解释变量的函数的特殊情形下,模 型就存在函数形式误设的问题。遗漏自变量的函数并不是模型出现函数形式误设的唯一方 式。
②用戴维森—麦金农检验拒绝了式(d),这并不意味着式(c)就是正确的模型。模型 (d)可能会因多种误设的函数形式而被拒绝。
③在比较因变量不同那么就不能得到上面的综合嵌套模型。
二、对无法观测解释变量使用代理变量 1.代理变量 代理变量就是某种与我们在分析中试图控制而又无法观测的变量相关的东西。例如,人 的能力无法观测,可以使用 IQ 得分作为能力的一个代理变量。 (1)遗漏变量问题的植入解 假设在有 3 个自变量的模型中,其中有两个自变量是可以观测的,解释变量 x3 观测不 到:
伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解-第三篇(第16~19章)【圣才出品】
![伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解-第三篇(第16~19章)【圣才出品】](https://img.taocdn.com/s3/m/7bb9112d02d276a201292e33.png)
第16章联立方程模型16.1 复习笔记考点一:联立方程模型的性质★★当一个或多个解释变量与因变量联合被决定时,模型就会出现内生性问题。
联立方程模型是指从经济理论中推导出来的若干的相关的方程,联立起来就是一个模型,如凯恩斯的国民收入模型等。
联立方程的重要特征:(1)给定多个方程中的外生变量和误差项,所有的方程就决定了剩余的内生变量,因此任一方程的因变量和方程中的内生变量都是SEM的内生变量。
(2)模型中的外生变量的关键假设是与所有的误差项都不相关。
由于这些误差出现在结构方程中,所以它们是结构误差。
(3)SEM中的每个方程自身都应该有一个行为上的其他条件不变解释。
考点二:OLS中的联立性偏误★★★★1.约简型方程考虑两个方程的结构模型:y1=α1y2+β1z1+u1y2=α2y1+β2z2+u2专门估计第一个方程。
变量z1和z2都是外生的,所以每个都与u1和u2无关。
如果将式y1=α1y2+β1z1+u1的右边作为y1代入式y2=α2y1+β2z2+u2中,得到(1-α2α1)y2=α2β1z1+β2z2+α2u1+u2为了解出y2,需对参数做一个假定:α2α1≠1这个假定是否具有限制性则取决于应用。
如果上式的条件成立,y2可写成y2=π21z1+π22z2+v2其中,π21=α2β1/(1-α2α1)、π22=β2/(1-α2α1)和v2=(α2u1+u2)/(1-α2α),用外生变量和误差项表示y2的方程y2=π21z1+π22z2+v2是y2的约简型。
参数π21和π1被称为约简型参数,它们是结构方程中出现的结构型参数的非线性函数。
22约简型误差v2是结构型误差u1和u2的线性函数。
因为u1和u2都与z1和z2无关,所以v2也与z1和z2无关。
因此,可用OLS一致地估计π21和π22。
2.联立性偏误及其方向在约简型方程中,除非在特殊的假定之下,否则对方程y1=α1y2+β1z1+u1的OLS估计,将导致α1和β1的估计量有偏误和不一致。
伍德里奇《计量经济学导论》笔记和课后习题详解(联立方程模型)【圣才出品】
![伍德里奇《计量经济学导论》笔记和课后习题详解(联立方程模型)【圣才出品】](https://img.taocdn.com/s3/m/42afe5762b160b4e777fcf29.png)
第16章联立方程模型16.1 复习笔记解释变量另一种重要的内生性形式是联立性。
当一个或多个解释变量与因变量联合被决定时,就出现了这个问题。
估计联立方程模型的主要方法是工具变量法。
一、联立方程模型的性质联立方程组中的每个方程都具有其他条件不变的因果性解释。
因为只观察到均衡结果,所以在构造联立方程模型中的方程时,使用违反现存事实的逻辑。
SEM的经典例子是某个商品或要素投入的供给和需求方程:h i=α1w i+β1z i1+u i1h i=α2w i+β2z i2+u i2联立方程模型的重要特征:首先,给定z i1、z i2、u i1和u i2,这两个方程就决定了h i和w i。
h i和w i是这个SEM中的内生变量。
z i1和z i2由于在模型外决定,是外生变量。
其次,从统计观点来看,关于z i1和z i2的关键假定是,它们都与u i1和u i2无关。
由于这些误差出现在结构方程中,所以它们是结构误差的例子。
最后,SEM中的每个方程自身都应该有一个行为上的其他条件不变解释。
二、OLS中的联立性偏误在一个简单模型中,与因变量同时决定的解释变量一般都与误差项相关,这就导致OLS中存在偏误和不一致性。
1.约简型方程考虑两个方程的结构模型:y1=α1y2+β1z1+u1y2=α2y1+β2z2+u2并专门估计第一个方程。
变量z1和z2都是外生的,所以每个都与u1和u2无关。
如果将式y1=α1y2+β1z1+u1的右边作为y1代入式y2=α2y1+β2z2+u2中,得到(1-α2α1)y2=α2β1z1+β2z2+α2u1+u2为了解出y2,需对参数做一个假定:α2α1≠1。
这个假定是否具有限制性则取决于应用。
y2可写成y2=π21z1+π22z2+v2其中,π21=α2β1/(1-α2α1)、π22=β2/(1-α2α1)和v2=(α2u1+u2)/(1-α2α1)。
用外生变量和误差项表示y2的方程(16.14)是y2的约简型方程。
伍德里奇《计量经济学导论》笔记和课后习题详解(简单回归模型)【圣才出品】
![伍德里奇《计量经济学导论》笔记和课后习题详解(简单回归模型)【圣才出品】](https://img.taocdn.com/s3/m/9f8073b384868762cbaed530.png)
β1 就是斜率参数。
②给定零条件均值假定 E(u|x)=0,把斱程中的 y 看成两个部分是比较有用的。一
部分是表示 E(y|x)的 β0+β1一个
部分是被称为非系统部分的 u,即丌能由 x 觋释的那一部分。
二、普通最小二乘法的推导
1.最小二乘估计值
表 2-1 简单回归的术语
3.零条件均值假定 (1)零条件均值 u 的平均值不 x 值无关。可以把它写作:E(u|x)=E(u)。当斱程成立时,就说 u 的均值独立亍 x。 (2)零条件均值假定的意义 ①零条件均值假定给出 β1 的另一种非常有用的觋释。以 x 为条件叏期望值,幵利用 E
1 / 33
圣才电子书 十万种考研考证电子书、题库视频学习平台
第 2 章 简单回归模型
2.1 复习笔记
一、简单回归模型的定义 1.双发量线性回归模型 一个简单的斱程是:y=β0+β1x+u。 假定斱程在所关注的总体中成立,它便定义了一个简单线性回归模型。因为它把两个发 量 x 和 y 联系起来,所以又把它称为两发量戒者双发量线性回归模型。 2.回归术语
E x y β0 β1x 0
得到
1 n
n i1
yi βˆ0 βˆ1xi
0
和
2 / 33
圣才电子书 十万种考研考证电子书、题库视频学习平台
1
n
n i 1
xi
yi βˆ0 βˆ1xi
0
这两个斱程可用来觋出 βˆ0 和 βˆ1 , y βˆ0 βˆ1x ,则 βˆ0 y βˆ1x 。
量了 yi 的样本发异,SSR 度量了 ui 的样本发异。y 的总发异总能表示成觋释了的发异和未
觋释的发异 SSR 乊和。因此,SST=SSE+SSR。
(完整版)计量经济学(伍德里奇第五版中文版)答案
![(完整版)计量经济学(伍德里奇第五版中文版)答案](https://img.taocdn.com/s3/m/76cccadcf71fb7360b4c2e3f5727a5e9856a2764.png)
(完整版)计量经济学(伍德里奇第五版中文版)答案第1章解决问题的办法1.1(一)理想的情况下,我们可以随机分配学生到不同尺寸的类。
也就是说,每个学生被分配一个不同的类的大小,而不考虑任何学生的特点,能力和家庭背景。
对于原因,我们将看到在第2章中,我们想的巨大变化,班级规模(主题,当然,伦理方面的考虑和资源约束)。
(二)呈负相关关系意味着,较大的一类大小是与较低的性能。
因为班级规模较大的性能实际上伤害,我们可能会发现呈负相关。
然而,随着观测数据,还有其他的原因,我们可能会发现负相关关系。
例如,来自较富裕家庭的儿童可能更有可能参加班级规模较小的学校,和富裕的孩子一般在标准化考试中成绩更好。
另一种可能性是,在学校,校长可能分配更好的学生,以小班授课。
或者,有些家长可能会坚持他们的孩子都在较小的类,这些家长往往是更多地参与子女的教育。
(三)鉴于潜在的混杂因素- 其中一些是第(ii)上市- 寻找负相关关系不会是有力的证据,缩小班级规模,实际上带来更好的性能。
在某种方式的混杂因素的控制是必要的,这是多元回归分析的主题。
1.2(一)这里是构成问题的一种方法:如果两家公司,说A和B,相同的在各方面比B公司à用品工作培训之一小时每名工人,坚定除外,多少会坚定的输出从B公司的不同?(二)公司很可能取决于工人的特点选择在职培训。
一些观察到的特点是多年的教育,多年的劳动力,在一个特定的工作经验。
企业甚至可能歧视根据年龄,性别或种族。
也许企业选择提供培训,工人或多或少能力,其中,“能力”可能是难以量化,但其中一个经理的相对能力不同的员工有一些想法。
此外,不同种类的工人可能被吸引到企业,提供更多的就业培训,平均,这可能不是很明显,向雇主。
(iii)该金额的资金和技术工人也将影响输出。
所以,两家公司具有完全相同的各类员工一般都会有不同的输出,如果他们使用不同数额的资金或技术。
管理者的素质也有效果。
(iv)无,除非训练量是随机分配。
计量经济学导论伍德里奇课后答案中文
![计量经济学导论伍德里奇课后答案中文](https://img.taocdn.com/s3/m/0add6df880eb6294dd886cff.png)
2.10(iii) From (2.57), Var(1ˆβ) = σ2/21()n i i x x =⎛⎫- ⎪⎝⎭∑. 由提示:: 21n ii x =∑ ≥ 21()n i i x x =-∑, and so Var(1β) ≤ Var(1ˆβ). A more direct way to see this is to write(一个更直接的方式看到这是编写) 21()ni i x x =-∑ = 221()n i i x n x =-∑, which is less than21n i i x=∑unless x = 0.(iv)给定的c 2i x 但随着x 的增加, 1ˆβ的方差与Var(1β)的相关性也增加.0β小时1β的偏差也小.因此, 在均方误差的基础上不管我们选择0β还是1β要取决于0β,x ,和n 的大小 (除了 21n i i x=∑的大小).3.7We can use Table 3.2. By definition, 2β > 0, and by assumption, Corr(x 1,x 2) < 0. Therefore, there is a negative bias in 1β: E(1β) < 1β. This means that, on average across different random samples, the simpleregression estimator underestimates the effect of the training program. It is even possible that E(1β) isnegative even though 1β > 0. 我们可以使用表3.2。
根据定义,> 0,由假设,科尔(X1,X2)<0。
因此,有一个负偏压为:E ()<。
这意味着,平均在不同的随机抽样,简单的回归估计低估的培训计划的效果。
伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第15章工具变量估计与两阶段最小二乘法【圣
![伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第15章工具变量估计与两阶段最小二乘法【圣](https://img.taocdn.com/s3/m/590188a185868762caaedd3383c4bb4cf7ecb7f3.png)
伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第15章工具变量估计与两阶段最小二乘法【圣第15章工具变量估计与两阶段最小二乘法15.1复习笔记一、动机:简单回归模型中的遗漏变量1.面对可能发生的遗漏变量偏误(或无法观测异质性)的四种选择(1)忽略遗漏变量问题,承受有偏而又不一致估计量,若能把估计值与关键参数的偏误方向一同给出,则该方法便令人满意。
(2)试图为无法观测变量寻找并使用一个适宜的代理变量,该方法试图通过用代理变量取代无法观测变量来解决遗漏变量的问题,但并不是总可以找到一个好的代理。
(3)假定遗漏变量不随时间变化,运用固定效应或一阶差分方法。
(4)将无法观测变量留在误差项中,但不是用OLS 估计模型,而是运用一种承认存在遗漏变量的估计方法,工具变量法。
2.工具变量法简单回归模型01y x uββ=++其中x 与u 相关:()Cov 0,x u ≠(1)为了在x 和u 相关时得到0β和1β的一致估计量,需要有一个可观测到的变量z,z 满足两个假定:①z 与u 不相关,即Cov(z,u)=0;②z 与x 相关,即Cov(z,x)≠0。
满足这两个条件,则z 称为x 的工具变量,简称为x 的工具。
z 满足①式称为工具外生性条件,工具外生性意味着,z 应当对y 无偏效应(一旦x 和u 中的遗漏变量被控制),也不应当与其他影响y 的无法观测因素相关。
z 满足②式意味着z 必然与内生解释变量x 有着或正或负的关系。
这个条件被称为工具相关性。
(2)工具变量的两个要求之间的差别①Cov(z,u)是z 与无法观测误差u 的协方差,通常无法对它进行检验:在绝大多数情形中,必须借助于经济行为或反思来维持这一假定。
②给定一个来自总体的随机样本,z 与x(在总体中)相关的条件则可加以检验。
最容易的方法是估计一个x 与z 之间的简单回归。
在总体中,有01x z vππ=++从而,由于()()1Cov /ar V ,x z z π=所以式Cov(z,x)≠0中的假定当且仅当10π≠时成立。
伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解-第1章及第一篇(第2~3章)【圣才出品】
![伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解-第1章及第一篇(第2~3章)【圣才出品】](https://img.taocdn.com/s3/m/f9aa68be6edb6f1afe001f41.png)
品数(output)方面的信息。 (i)仔细陈述这个政策问题背后其他情况不变的思维试验。 (ii)一个企业培训其员工的决策看起来有可能独立于工人特征吗?工人可观测与不可
观测的特征各有哪些? (iii)除工人特征之外,再列出一个影响工人生产力的因素。 (iv)你若发现 training 和 output 之间成正相关关系,你令人信服地证明了工作培训
2.工作培训项目的理由之一是能提高工人的生产力。假设要求你评估更多的工作培训 是否使工人更有生产力。不过,你没有工人的个人数据,而是有俄亥俄州制造企业的数据。 具体而言,对每个企业,你都有人均工作培训小时数(training)和单位工时生产的合格产
4 / 91
圣才电子书 十万种考研考证电子书、题库视频学习平台
十万种考研考证电子书、题库视频学习平台
表 1-1 经济数据的结构
2.面板数据与混合横截面数据的比较(见表 1-2) 表 1-2 面板数据与混合横截面数据的比较
2 / 91
圣才电子书 十万种考研考证电子书、题库视频学习平台
考点三:因果关系和其他条件不变 ★★
1.因果关系 因果关系是指一个变量的变动将引起另一个变量的变动,这是经济分析中的重要目标之 一。计量分析虽然能发现变量之间的相关关系,但是如果想要解释因果关系,还要排除模型 本身存在因果互逆的可能,否则很难让人信服。
答:讲不通。因为找出每周学习小时数(study)和每周工作小时数(work)之间的关 系,是说每周学习小时数(study)和每周工作小时数(work)之间有关系,但没有说是因 果关系,每周学习小时数可能与其他因素有关或每周工作小时数与其他因素有关。
4.对税收有控制权的州或省份有时候会减少税收来刺激经济增长。假设你被某州政府 雇佣来估计公司税率的影响,比如说对每单位州生产总值增长的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第16章联立方程模型
16.1复习笔记
解释变量另一种重要的内生性形式是联立性。
当一个或多个解释变量与因变量联合被决定时,就出现联立性问题。
一、联立方程模型的性质
联立方程组中的每个方程都具有其他条件不变的因果性解释。
SEM(联立方程模型)的经典例子是某个商品或要素投入的供给和需求方程:
劳动供给函数与需求函数是从经济理论推导出来并具有因果性解释的事实,是结构方程。
这两个方程一起构成了一个联立方程模型。
联立方程模型的重要特征:
①给定z i1、z i2、u i1和u i2,这两个方程就决定了h i和w i。
h i和w i是这个SEM中的内生变量。
z i1和z i2由于在模型外决定,是外生变量。
②从统计观点来看,关于z i1和z i2的关键假定是,它们都与u i1和u i2无关。
由于这些误差出现在结构方程中,所以它们是结构误差。
③SEM中的每个方程自身都应该有一个行为上的其他条件不变解释。
二、OLS中的联立性偏误
在一个简单模型中,与因变量同时决定的解释变量一般都与误差项相关,这就导致OLS
中存在偏误和不一致性。
1.约简型方程
考虑两个方程的结构模型:
112111
y y z u αβ=++221222
y y z u αβ=++专门估计第一个方程。
变量z 1和z 2都是外生的,所以每个都与u 1和u 2无关。
如果将式1
12111y y z u αβ=++的右边作为y 1代入式221222y y z u αβ=++中,
得到()21221122212
1y z z u u αααββα-=+++为了解出y 2,需对参数做一个假定:
211
αα≠这个假定是否具有限制性则取决于应用。
如果上式的条件成立,y 2可写成
22112222
y z z v ππ=++其中,()212121/1παβαα=-、()22221/1πβαα=-和()()221221/1v u u ααα=+-,用外生变量和误差项表示y 2的方程22112222y z z v ππ=++是y 2的约简型。
参数21π和22π被称为约简型参数,它们是结构方程中出现的结构型参数的非线性函数。
约简型误差v 2是结构型误差u 1和u 2的线性函数。
因为u 1和u 2都与z 1和z 2无关,所以v 2也与z 1和z 2无关。
因此,可用OLS 一致地估计21π和22π。
2.联立性偏误及其方向
在约简型方程中,除非在特殊的假定之下,否则对方程
112111y y z u αβ=++的OLS 估计,将导致1α和1β的估计量有偏误和不一致。
根据假定,z 1和u 1不相关,而y 2和u 1相关等价于v 2和u 1相关。
因为v 2是u 1和u 2的一个线性函数,所以v 2和u 1一般是相关的,若假定1u 和u 2不相关,那么只要20α≠,v 2和u 1就一定相关。
即使当20α=,如果u 1和u 2相关时,v 2和u 1也相关,即y 2和u 1相关。
只有当20α=且u 1和u 2不相关时,y 2和u 1才不相关。
当y 2与u 1因联立而相关时,OLS 存在联立性偏误。
要得到系数中偏误的方向一般都很复杂,而在一些简单的模型中,可以决定偏误的方向。
假设通过去掉z 1而简化方程
112111
y y z u αβ=++并假定u 1和u 2不相关。
于是,y 2和u 1之间的协方差为
()()()()()22212122112211Cov Cov /1/1y u v u E u αααααασ==-=-⎡⎤⎡⎤⎣⎦⎣⎦
, ,其中
()211Var 0
u σ=>因此,1α的OLS 估计量中的渐近偏误(或不一致性)与()221/1ααα-具有相同的符号。
三、结构方程的识别和估计
1.两方程联立模型中的识别
当用OLS 估计一个模型时,关键的识别条件是每个解释变量都与误差项无关。
这个重要的条件对SEM 而言一般不再成立。
但如果有一些工具变量,仍能识别(或一致地估计)一个SEM 方程中的参数。
联立方程模型为:
11012111
y y z u βαβ=+++22021222
y y z u βαβ=+++其中,y 1和y 2是内生变量,而u 1和u 2是误差项。
第一个方程的截距是10β,而第二个方程的截距是20β。
变量z 1表示出现在第一个方程中的k 1个外生变量的集合:
()1
111121 k z z z z =,,…,变量z 2表示出现在第二个方程中的k 1个外生变量的集合:(
)2221222 k z z z z =,,…,在许多情况下,z 1和z 2存在重叠部分,用符号表示如下:
11
22
111111121211222121222222........k k k k z z z z z z z z ββββββββ=+++=+++作为一个简略形式,用11z β表示第一个方程中的所有外生变量分别乘以一个系数,22z β类似。
z 1和z 2一般包含不同外生变量的事实意味着,对模型施加了排除性约束。
也就是说,假定某些外生变量不会出现在第一个方程中,而另外一些则不会出现在第二个方程中。
2.识别一个结构方程的秩条件
识别(两方程)联立模型中第一个方程的充要条件是:第二个方程中至少包含第一个方程所排除的外生变量中的一个(具有非零系数)。
识别第一个方程的阶条件:这个方程至少要排除一个外生变量,即不能包含所有的外生变量。
秩条件:第二个方程中至少包含第一个方程排除的一个外生变量,并具有非零的总体系数。
这就保证至少有一个外生变量被第一个方程略去,且确实出现在y 2的约简型中,所以可以用这些变量作为y 2的工具变量。
第二个方程的识别与第一个方程的识别方法相同。
3.用2SLS 估计联立方程
联立方程模型中的方程被识别后,就可以用两阶段最小二乘法去估计它。
工具变量由其他方程中出现的外生变量构成。
四、多于两个方程的系统
联立方程模型也可以由两个以上的方程组成。
研究这些模型的一般识别很困难,并要用到矩阵代数。
一旦一个一般系统中的一个方程被证明是可识别的,那就可以用2SLS 估计它。
1.三个或更多个方程构成的系统中的识别问题
省略掉截距项,将模型写成
11221331111
y y y z u ααβ=+++22112112222332
y y z z z u αβββ=++++33223113223333443
y y z z z z u αββββ=+++++其中,y g 表示内生变量,z j 表示外生变量。
α表示内生变量的参数,β表示外生变量的参数。
2.识别的阶条件
对任何SEM 中的一个方程,如果它排除的外生变量数不少于其右端包含的内生变量数,那么它就满足识别的阶条件。
阶条件只是识别的必要条件而非充分条件。
为了得到充分条件,需要扩展两方程的系统中识别的秩条件。
在许多应用中假定,除非明显不能识别,否则一个满足阶条件的方程就是
可以识别的。
第一个方程是过度识别方程,因为只需要(y 2和y 3)两个工具变量,但方程有三个可以利用(z 2、z 3和z 4);说明在这个方程中有一个过度识别约束。
一般而言,过度识别约束个数等于系统中外生变量的总数减去这个方程中解释变量的总数。
第二个方程是一个恰好识别方程,而第三个方程是一个不能识别方程。
3.估计
估计无论一个SEM 中有多少个方程,每个可识别方程都可以用2SLS 估计。
一个特定方程的工具可由在这个系统中任何地方出现的外生变量组成。
对于任何一个由两个或两个以上方程构成的系统,只要被正确设定并符合某些附加假定,系统估计方法一般都比用2SLS 逐个地估计每一个方程更加有效。
在SEM 背景下,最常见的系统估计法是三阶段最小二乘法。
五、利用时间序列的联立方程模型
对SEM 最早的应用,是估计一个用以描述国家经济系统的大型联立方程系统。
1.总需求的一个简单凯恩斯模型的估计(不考虑进出口)
()0121
t t t t t C Y T r u βββ=+-++012
t t t I r u γγ=++t t t t
Y C I G ≡++其中,C t 表示消费,Y t 表示收入,T t 表示税收收入,r t 表示利率,I t 表示投资,G t 表示政府支出。
第一个方程是总消费函数,其中消费取决于可支配收入、利率和观测不到的结构。