混凝土材料的力学性能(部分)

合集下载

混凝土的力学性能及其影响因素

混凝土的力学性能及其影响因素

混凝土的力学性能及其影响因素一、引言混凝土是一种广泛应用于建筑工程中的材料,具有优良的性能,如承压、耐久、抗震等,是建筑结构中不可或缺的一部分。

混凝土的力学性能是决定其使用效果的关键,因此深入了解混凝土的力学性能及其影响因素对混凝土的设计、施工及维护有着重要的意义。

二、混凝土的基本力学性能1.抗压强度混凝土的抗压强度是指混凝土承受压力的能力。

一般情况下,混凝土的抗压强度与其材料的质量、配合比、水灰比、龄期等因素有关。

抗压强度的测试方法有标准试块法、小试块法、非标准试块法等。

2.抗拉强度混凝土的抗拉强度是指混凝土承受拉力的能力。

混凝土的抗拉强度较低,常常会出现裂缝。

为了提高混凝土的抗拉强度,通常采用钢筋等材料进行加固。

抗拉强度的测试方法有直接拉伸法、间接拉伸法等。

3.抗剪强度混凝土的抗剪强度是指混凝土承受剪切力的能力。

混凝土的抗剪强度与其抗压强度有一定的关系,但并不完全相同。

抗剪强度的测试方法有直接剪切法、间接剪切法等。

4.弹性模量混凝土的弹性模量是指混凝土在受力时所表现出来的弹性特性。

弹性模量越大,混凝土的刚性越大,反之则越柔软。

弹性模量的大小与混凝土的配合比、材料等因素有关。

5.泊松比混凝土的泊松比是指混凝土在受力时横向变形与纵向变形之间的比值。

泊松比的大小与混凝土的材料等因素有关。

三、混凝土的影响因素1.材料混凝土的材料包括水泥、骨料、砂子、水等。

这些材料的质量直接影响混凝土的力学性能。

一般来说,水泥的种类和品质、骨料的种类和粒径、砂子的种类和粒径以及水的质量等因素都会对混凝土的力学性能产生影响。

2.配合比混凝土的配合比是指混凝土中各材料的比例。

不同的配合比会影响混凝土的力学性能。

一般来说,配合比中水泥的比例越高,混凝土的抗压强度越大,但是若水泥的比例过高,混凝土的韧性和抗冻性会下降。

3.水灰比混凝土的水灰比是指混凝土中水和水泥的比例。

水灰比的大小对混凝土的力学性能有着重要的影响。

一般来说,水灰比越小,混凝土的抗压强度越大,但是若水灰比过小,混凝土的可加工性和耐久性会降低。

混凝土的力学性能

混凝土的力学性能
利用三向受压可使混凝土抗压强度得以提高这一特性,在实际 工程中可将受压构件做成“约束混凝土”,以提高混凝土的抗压 强度和延性,常用的做法有配置密排侧向箍筋、螺旋箍筋柱及钢 管混凝土柱等。
混凝土的力学性能
1.2 混凝土的变形
1)混凝土在一次短期荷载作用下的变形
(1)混凝土在单调短期加荷作用下
力学性能,曲线的特征是研究钢筋混凝 土构件的强度、变形、延性(承受变形 的能力)和受力全过程的依据。图2-7所 示为混凝土棱柱体试件在受压时的应力
混凝土的力学性能
图2-8 混凝土棱柱体试件加荷至σ=0.5fc时测 得的应变与时间的关系曲线
混凝土的力学性能
影响混凝土徐变的因素是多方面的,主 要可归结为以下三个方面:
(1)内在因素。 (2)环境因素。 (3)应力因素。
混凝土结构与砌体结构
混凝土的力学性能
如图2-6所示,劈裂抗拉试验在立方体或圆柱体试件上通过钢
制弧形垫块施加均匀线荷载。除垫条附近很小的范围以外,在中
间垂直截面上产生与该面垂直且均匀分布的拉应力。当拉应力达
到混凝土的抗拉强度时,试件沿中间垂直截面被劈裂为两部分而
破坏。根据弹性理论,劈裂抗拉强度 σt可按式(2-4)计算。
t

2P
ld
(2-4)
式中,P为破坏荷载;d为圆柱体试件直径或立方体试件边长;
l为圆柱体试件高度或立方体试件边长。
混凝土的力学性能
图2-6 混凝土的劈裂抗拉试验
混凝土的力学性能
《混凝土结构设计规范》(GB 50010—2010)给出的混凝土 抗压、抗拉强度标准值,可参见表2-2。
表2-2 混凝土强度标准值
Ec
105 2.2 34.7
f cu ,k

混凝土结构材料的力学性能

混凝土结构材料的力学性能

02 混凝土的力学性能
抗压性能
抗压强度
混凝土抗压强度是衡量其抵抗压 力的能力,通常以MPa(兆帕)
为单位表示。
抗压弹性模量
混凝土的抗压弹性模量反映了 其抵抗压力变形的能力,是结 构设计中的重要参数。
抗压韧性
混凝土的抗压韧性是指在承受 压力时抵抗破裂的能力,与材 料的微观结构和制作工艺有关 。
抗压疲劳性能
水工建筑
水工建筑主要包括水库、水电站、堤坝等水利设施,需要承 受较大的水压力和冲刷力。
混凝土结构材料具有较好的抗渗性能和耐久性,能够满足水 工建筑的要求,提高水利设施的稳定性和安全性。
05 混凝土的未来发展
高性能混凝土
总结词
具有高强度、高耐久性和高工作性能 的混凝土材料。
详细描述
高性能混凝土通过优化原材料、配合 比和制备工艺,显著提高了混凝土的 力学性能、耐久性和工作性能,能够 满足各种复杂工程结构的需要。
混凝土在反复承受压力作用下 抵抗疲劳破坏的能力,对于长 期承受动态载荷的结构非常重
要。
抗拉性能
抗拉强度
混凝土的抗拉强度是指其抵抗拉伸应 力的能力,通常远低于抗压强度。
抗拉弹性模量
混凝土的抗拉弹性模量反映了其抵抗 拉伸变形的能力,是结构设计中的重 要参数。
抗拉韧性
混凝土的抗拉韧性是指在承受拉伸应 力时抵抗开裂和断裂的能力。
智能混凝土
总结词
具有自感知、自适应和自修复功能的混凝土材料。
详细描述
智能混凝土通过在混凝土中添加智能纤维、传感器和特殊添加剂,使其具备感 知外部应力的能力,并能够根据应力变化自适应调整内部结构,同时具有自修 复损伤的能力,提高了混凝土结构的智能化水平。
再生混凝土

混凝土结构材料的物理力学性能

混凝土结构材料的物理力学性能

第二章混凝土结构材料的物理力学性能2.1砼的物理力学性能材料的力学性能指标包括:强度指标和变形性能指标。

本节内容一、混凝土的组成结构二、单向受力状态下的混凝土强度(重点)三、复合受力状态下的混凝土强度四、混凝土的变形性能2.1.1 混凝土的组成结构普通混凝土是由水泥、砂子和石子三种材料及水按一定配合比拌合,经过凝固硬化后做成的人工石材。

1、混凝土结构分为三种基本类型:微观结构:即水泥石结构,由水泥凝胶、晶体骨架、未水化完的水泥颗粒和凝胶孔组成,其物理力学性能取决于水泥的化学—矿物成分、粉磨细度、水灰比和硬化条件亚微观结构:即混凝土中的水泥砂浆结构;可看作以水泥石为基相、砂子为分散相的二组分体系,砂子和水泥石的结合面是薄弱面。

对于水泥砂浆结构,除上述决定水泥石结构的因素外,砂浆配合比、砂的颗粒级配与矿物组成、砂粒形状、颗粒表面特性及砂中的杂质含量是重要控制因素宏观结构:即砂浆和粗骨料两组分体系。

与亚微观结构有许多共同点,因为这时可以把水泥砂浆看作基相,粗骨料分布在砂浆中,砂浆与粗骨料的结合面也是薄弱面。

2、混凝土的内部结构特点a)混凝土是一种复杂的多相复合材料。

其组份中的砂、石、水泥胶块中的晶体、未水化的水泥颗粒组成了混凝土中错综复杂的弹性骨架,主要用它来承受外力,并使混凝土具有弹性变形的特点;b)水泥胶块中的凝胶、孔隙和结合界面初始微裂缝等,在外荷载作用下则使混凝土产生塑性变形。

c)混凝土结构中的孔隙、界面微裂缝等先天缺陷,往往是混凝土受力破坏的起源,而微裂缝在受荷时的发展对混凝土的力学性能起着极为重要的影响。

2.1.2、单向受力状态下的混凝土强度用途:是进行钢筋混凝土结构构件强度分析、建立强度理论公式的重要依据。

1、立方体抗压强度 混凝土强度等级立方体抗压强度是最主要和最基本的指标。

混凝土的强度等级是依据混凝土立方体抗压强度标准制f cuk 确定的。

(1)测定方法:以边长150mm 立方体标准试件,在标准条件下(20±3℃,≥90%湿度)养护28天,用标准试验方法(加载速度0.15~0.3N/mm 2/s ,两端不涂润滑剂)测得的具有95%保证率的抗压强度值,用符号C 表示,C30表示f cu,k =30N/mm 2现《规范》根据强度范围,从C15~C60共划分为14个强度等级,级差为5N/mm2。

混凝土的力学性能分析

混凝土的力学性能分析

团委书记竞职演讲(精选多篇)第一篇:团委书记竞职演讲镇团委书记竞聘演讲稿各位领导,同事们:大家好!首先感谢镇党委政府给予我这次展示自己的机会!中层干部实行公平、公正、公开的竞争上岗我一是坚决拥护、二是积极参与。

本着锻炼自己,为大家服务的宗旨我站在了这里,希望能得到大家的支持。

我叫,现年25周岁,大学文化,中共党员。

20XX年毕业于学院播音主持专业,同年8月至20XX年9月在电视台新闻部工作,20XX年被考录为潍坊市公务员;分配到镇党政办公室工作,20XX年担任政府文书至今,同时负责宣传等工作。

我认为每一次工作和经历的变化,对增长能力、丰富阅历都是难得的机遇。

越是新的环境、越是压力大的工作,往往就越能够锻炼自己,竞争镇团委书记职务,一方面是相信自己的能力能担负起委书记的责任,另一方面也是为了挖掘潜力、积累经验,提高自身综合素质。

到镇工作已经两年了,在各位领导和同事们的关心、支持、帮助下,自己在思想上、工作上都取得了新的进步。

借此机会,向所有关心、支持我成长的领导和同事,表示衷心感谢!今天,我竞争的职位是镇团委书记。

我认为自己有以下优势:一是具丰富的工作经历。

大学里我担任过团支书工作,有一定的团委工作经验,参加工作后,有机会在市电视台、我镇统计站、党政办等多个岗位,从事通讯报道、文秘、宣传等多项工作,这些经历练就了我坐下去能写、站起来能讲、走出去能干等多方面的能力,这正为我在干好团委工作奠定了基础。

其二,具有较扎实的语言表达能力。

学校里所学的专业知识加上参加工作以来,屡次上台演说和主持节目的机会锻炼,使我学会了一些与人交流、演讲演说、主持的语言艺术。

财政所验收、劳保所检查等我负责解说,锻炼了我的临场应变能力。

今年的社区文化月活动,我协助主任具体负责节目策划、征集、排演、主持等工作,并取得了成功,证明了我的组织活动能力和统筹协调能力。

第三,我兴趣广泛,思想活跃,接受新事物能力较强,热爱团委工作,工作中注意发挥主观能动性,具备一种勇于接受挑战的信念。

第2章 混凝土结构材料的物理力学性能

第2章 混凝土结构材料的物理力学性能

螺旋箍筋圆柱体约束混凝土
在接近混凝土单轴抗压强度之前, 横向钢筋几乎不受力,混凝土基本不 受约束。 轴向压力大于单轴抗压强度时, 轴向强度和变形能力均提高,横向钢 筋越密,提高幅值越大。 螺旋筋能使核心混凝土在侧向受 到均匀连续的约束力,其效果较普通 箍筋好,因而强度和延性的提高更为 显著。

普通箍筋约束混凝土柱

bc段 :当应力比约为(0.8~1.0)时,应变增长速度进一步加快, 应力-应变曲线的斜率急剧减小,混凝土内部微裂缝进入非稳 定发展阶段。当应力到达c点时,混凝土发挥出受压时的最大 承载能力,即轴心抗压强度(极限强度),相应的应变值称 为峰值应变。 cd 段:下降段,由滑移面上的摩擦咬合力和混凝土柱体的残余 强度提供
• • 摆脱端部摩擦力的影响 试件不致失稳

立方体抗压强度与轴心抗压强度之间的关系

fck=0.88αc1αc2fcu,k
混凝土考虑脆性的折减系数 棱柱体强度与立方体强度的比值
结构中混凝土与试件混凝土的强度差异修正系数
2.1.1混凝土的强度
c 2 为混凝土考虑脆性的折减系数,对C40取 c 2 =1.00,对 C80取 c 2 =0.87,中间按线性规律变化取值;

轴心抗拉强度 ft
• 混凝土的抗拉强度远低于抗压强度



对于普通混凝土,抗拉强度约 1/17-1/8 的抗压强度
对于高强混凝土,抗拉强度约 1/24-1/20 的抗压强度
轴心抗拉强度的试验方法
• 直接受拉试验


劈裂试验
弯折试验
2.1.1混凝土的强度
简单受力状态下混凝土的强度

轴心抗拉强度
≈0.8fc

混凝土的材料力学性能分析

混凝土的材料力学性能分析

混凝土的材料力学性能分析混凝土是建筑工程中最常用的材料之一,其特性在很大程度上决定了建筑物的结构和安全性。

混凝土的材料力学性能分析是研究混凝土在力学上的特性和行为,以便更好地设计和建造建筑结构。

本文将详细介绍混凝土的材料力学性能分析原理。

一、混凝土的组成和特性混凝土是由水泥、水、骨料和掺合料混合而成的材料。

其中,水泥是混凝土的胶凝材料,主要起到粘结作用;水是混凝土中的溶剂,用于调节混凝土的流动性;骨料是混凝土的骨架材料,主要承受混凝土的压缩力和剪切力;掺合料是混凝土中的辅助材料,主要用于改善混凝土的性能。

混凝土具有许多特性,包括强度、韧性、耐久性和可塑性等。

其中,强度是混凝土最重要的特性之一,通常通过抗压强度和抗拉强度来衡量。

韧性是混凝土的抗裂性能,可以通过延性指标来评价。

耐久性是混凝土的抗氧化和抗渗性能,主要与混凝土的化学成分和孔隙结构有关。

可塑性是混凝土的流动性能,可以通过工作性、流动度和坍落度等指标来评价。

二、混凝土的力学性能分析原理混凝土的力学性能分析主要包括强度分析、变形分析和破坏分析三个方面。

1. 强度分析混凝土的强度是指混凝土承受外力时的抵抗能力。

强度分析是混凝土力学性能分析中最基本的部分。

混凝土的强度分析涉及到混凝土的抗压强度、抗拉强度、剪切强度和抗弯强度等多个方面。

抗压强度是混凝土在受到垂直于其表面的力时的抗力能力,是评价混凝土强度的最主要指标。

抗压强度的大小受多种因素影响,包括混凝土的配合比、骨料种类和水泥品种等因素。

抗拉强度是混凝土在受到垂直于其表面的拉力时的抗裂能力,通常比抗压强度低一个数量级。

剪切强度是混凝土在受到平行于其表面的剪切力时的抗力能力,通常比抗压强度低一个数量级。

抗弯强度是混凝土在受到弯曲力时的抗力能力,通常比抗压强度低一个数量级。

2. 变形分析混凝土在受力时会发生变形,变形分析是混凝土力学性能分析的另一个重要部分。

混凝土的变形包括拉伸变形、压缩变形和剪切变形等多个方面。

混凝土的材料力学性能

混凝土的材料力学性能

混凝土的材料力学性能混凝土是一种常见的建筑材料,被广泛应用于各种建筑结构中。

它的性能与其材料力学特性密切相关。

本文将介绍混凝土的材料力学性能,包括强度、刚度、韧性、疲劳性能以及耐久性。

1. 强度混凝土的强度是指其承载能力,即在承受荷载时能够抵抗破坏的能力。

混凝土的强度主要体现在抗压强度和抗拉强度上。

抗压强度是指混凝土在受到压力时的抵抗能力。

一般采用标准试块进行压力测试来评定混凝土的抗压强度。

混凝土的抗压强度与其配合比、水胶比、使用的水泥种类等因素有关。

抗拉强度是指混凝土在受到拉力时的抵抗能力。

由于混凝土的抗拉强度相对较低,常常需要通过钢筋等材料提供增强。

混凝土的抗拉强度与其配合比、加筋方式、养护条件等因素有关。

2. 刚度混凝土的刚度是指其在受力后的变形能力。

混凝土的刚度可以通过弹性模量来评定,即混凝土在受力后的应力与应变之间的关系。

弹性模量越大,混凝土的刚度越高。

刚度对于结构的稳定性和变形控制都非常重要。

较高的刚度可以减小结构的变形,提高结构的稳定性。

刚度还与混凝土的配合比、固化温度等因素相关。

3. 韧性混凝土的韧性是指其在受到外力作用下的变形能力。

韧性较好的混凝土能够在受到较大荷载时发生塑性变形,而不会立即破裂。

韧性对于结构的抗震性能十分重要。

具有较好韧性的混凝土可以吸收震动能量,减小震害程度。

提高混凝土的韧性可以采用适当的配合比、添加适量的粘结剂等方法。

4. 疲劳性能混凝土的疲劳性能是指其在循环荷载作用下的耐久性。

由于长期的循环荷载可能导致混凝土的裂缝扩展,因此疲劳性能对于结构的安全性也是一个重要考虑因素。

提高混凝土的疲劳性能可以采用添加适量的纤维材料、优化结构设计以及合理的施工工艺等措施。

5. 耐久性混凝土的耐久性是指其在长期使用条件下的性能稳定性和抵抗环境侵蚀的能力。

混凝土在面对不同的环境,如湿度、温度、化学物质等,会发生不同程度的腐蚀和损害。

提高混凝土的耐久性可以采用选用高质量的原材料、加强养护措施、设计合理的排水系统等方法。

混凝土材料的力学特性

混凝土材料的力学特性

混凝土材料的力学特性一、介绍混凝土是一种常用的建筑材料,具有优良的力学性能和耐久性。

混凝土的力学特性对于结构的设计和施工具有重要影响。

本文将介绍混凝土的力学特性,包括强度、刚度、韧性和疲劳性能等方面的内容。

二、混凝土的强度混凝土的强度是指其在受到外力作用下抵抗破坏的能力。

混凝土的强度可分为抗压强度、抗拉强度和抗剪强度三种。

其中,抗压强度是最重要的指标,通常用于混凝土的设计和评价。

1. 抗压强度混凝土的抗压强度是指在标准试件上,经过一定时间的养护后,受到垂直于试件轴线方向的压力作用下,试件发生破坏的最大应力值。

混凝土的抗压强度与配合比、水胶比、骨料种类和质量、养护条件等因素有关。

通常,混凝土的抗压强度在28天龄期时达到峰值,其后逐渐趋于稳定。

2. 抗拉强度混凝土的抗拉强度与抗压强度相比较低,通常只有抗压强度的10%左右。

因此,在混凝土结构中,钢筋被用来承受拉应力,混凝土则承受压应力。

混凝土的抗拉强度通常用间接试验方法来测定,如梁的挠度法、环形试件法等。

3. 抗剪强度混凝土的抗剪强度是指在试件上,经过一定时间的养护后,受到平面内剪切力作用下,试件发生破坏的最大应力值。

混凝土的抗剪强度与试件形状、尺寸、加载速率、配合比等因素有关。

通常,混凝土的抗剪强度与其抗压强度成正比关系。

三、混凝土的刚度混凝土的刚度是指其在受到外力作用下的变形程度。

混凝土的刚度可分为弹性模量、剪切模量和泊松比三种。

1. 弹性模量混凝土的弹性模量是指在小应变范围内,混凝土的应力与应变之比。

混凝土的弹性模量与其强度和密度有关,通常在抗压强度越高、密度越大的情况下,弹性模量越大。

2. 剪切模量混凝土的剪切模量是指在试件上,经过一定时间的养护后,受到平面内剪切力作用下,试件发生剪切变形的应力与应变之比。

混凝土的剪切模量通常比其弹性模量小。

3. 泊松比混凝土的泊松比是指在试件上,经过一定时间的养护后,沿垂直于应力方向的试件截面上的横向应变与纵向应变之比。

混凝土力学性能包括哪些方面

混凝土力学性能包括哪些方面

混凝土力学性能包括哪些方面混凝土作为建筑工程中使用最为广泛的建筑材料之一,其力学性能对工程的安全性、耐久性以及可靠性具有决定性影响。

混凝土的力学性能可以从多个方面进行评估和描述,主要包括以下几个方面。

强度混凝土的强度是指其抵抗外力作用而不发生破坏的能力。

根据受力性质的不同,混凝土强度主要分为抗压强度、抗拉强度和抗弯强度。

其中,抗压强度是混凝土最重要的力学性能指标之一,通常用来评价混凝土的质量和等级。

模量混凝土的弹性模量(也称为杨氏模量)是衡量其在受力过程中刚度或硬度的指标,反映了混凝土在受到外力作用时的形变能力。

混凝土的弹性模量与其密度、配合比以及骨料的类型和性质有关。

韧性混凝土的韧性是指其在受力后能够承受形变而不发生断裂的能力。

高韧性的混凝土在遭受冲击或重复加载时,能够表现出更好的耐久性和安全性。

蠕变混凝土的蠕变是指在长期静态荷载作用下,混凝土体积或形状发生缓慢且持续的变形现象。

蠕变会影响到结构在使用过程中的稳定性和使用寿命,因此在设计和施工过程中需要予以考虑。

收缩混凝土在硬化过程中由于水分蒸发而产生的体积减小称为收缩。

收缩会导致混凝土结构产生裂缝,影响结构的外观和耐久性。

收缩主要包括干燥收缩、碳化收缩和自收缩等。

疲劳混凝土的疲劳性能是指在反复荷载作用下,混凝土的承载能力逐渐降低直至破坏的特性。

疲劳性能对于承受交变荷载的结构,如桥梁、道路等,尤为重要。

抗冻性抗冻性是指混凝土在冻融循环作用下能够保持其力学性能不显著下降的能力。

抗冻性能不足的混凝土在经历冻融循环后,会出现剥落、裂缝等损伤现象,影响结构的安全性和耐久性。

抗化学腐蚀性混凝土的抗化学腐蚀性是指其能够抵抗外界化学物质(如酸、碱、盐等)侵蚀的能力。

在特定的化学环境下,混凝土的化学稳定性是确保其长期服务性能的关键因素。

综上所述,混凝土的力学性能是多方面的,包括但不限于强度、模量、韧性、蠕变、收缩、疲劳、抗冻性和抗化学腐蚀性等。

这些性能的好坏直接关系到混凝土结构的安全性、耐久性和可靠性,因此在混凝土材料的选择、配比设计以及施工过程中,需要综合考虑各种力学性能指标,以确保工程质量和结构的长期稳定性。

混凝土的物理力学参数

混凝土的物理力学参数

混凝土的物理力学参数
混凝土是一种常见的建筑材料,具有良好的物理力学性能。

以下是混凝土的一些物理力学参数:
1. 弹性模量:混凝土的弹性模量是衡量其刚度和变形能力的参数。

一般情况下,混凝土的弹性模量在20-40 GPa之间。

2. 抗拉强度:混凝土的抗拉强度是衡量其抵抗拉伸力的能力。

一般情况下,混凝土的抗拉强度在2-5 MPa之间。

3. 抗压强度:混凝土的抗压强度是衡量其抵抗压缩力的能力。

一般情况下,混凝土的抗压强度在20-40 MPa之间。

4. 弯曲强度:混凝土的弯曲强度是衡量其抵抗弯曲力的能力。

一般情况下,混凝土的弯曲强度在3-6 MPa之间。

5. 剪切强度:混凝土的剪切强度是衡量其抵抗剪切力的能力。

一般情况下,混凝土的剪切强度在2-4 MPa之间。

6. 密度:混凝土的密度是其单位体积的质量。

一般情况下,混凝土的密度在
2200-2500 kg/m³之间。

7. 硬度:混凝土的硬度是其抵抗外界力量和磨损的能力。

一般情况下,混凝土的硬度在1-4级之间。

这些参数是设计和工程实践中常用的混凝土力学参数,可以根据具体项目的需求进行调整和优化。

混凝土的主要力学性能

混凝土的主要力学性能

钢筋的主要力学性能
级别及品种: 我国建筑工程中采 用的钢筋,国产普通钢筋 有以下4级: ①热轧光面235级②热轧 带肋335级
σ(Mpa)
高强钢丝 HRB400 HRB335 HPB235
0

ε
③HRB400(20MnSiV 、 20MnSiNb 、 20MnTi): 热 轧 带 肋 400 级 ④ RRB400(K20MnSi):余热处理钢筋400级(用HRB335(20MnSi) 穿水 热处理而成),各级别 性能见图1-4
R
符号 φ
d(mm) 8~20
6~50 6~50 8~40
fyk 235
335 400 400
fy 210
300 360 360
fy' 210
300 360 360
注:1.当d大于40mm时,应有可靠的工程经验。 2. fyk钢筋的标准强度,具有95%以上的保证 率,由屈服极限确定。 3. fy钢筋的抗拉强度设计值,fy'钢筋的 抗压强度设计值。
消除应 力钢丝
光 面 螺旋肋
刻 痕
ΦP ΦH ΦI ΦHT
1770 1670 1570 1570 1470
40Si2Mn
热处理钢筋 48Si2Mn 45Si2Cr
钢筋的主要力学性能
表1-4钢筋 弹性模量(×105N/mm2)
种 HPB235 热处理钢筋 类 Es 2.1 2.0
注:必要时钢铰线可采用实测的弹性模量 消除应力钢丝(光面钢丝、螺旋肋钢丝、刻痕钢丝) 2.05
(2)冷拔 冷拔是将Φ 6~Φ 8的HPB235级钢筋,用强力从直径较小的 硬质合金拔丝模拔出使它产生塑性变形,拔成较细直径的钢丝, 以提高其强度的冷加工方法。冷拔后钢筋的强度得到了较大的提 高,但塑性却有较大的降低。经过冷拔加工的低碳钢丝,须逐盘 检验,分为甲、乙两级,甲级用作预应力钢筋,乙级用作非预应 力钢筋。

钢筋混凝土材料的主要力学性能

钢筋混凝土材料的主要力学性能
第1章 钢筋混凝土材料 的主要力学性能
混凝土结构材料
混凝土 钢筋
强度和变形 (主要力学性能)
第一节 混凝土的主要力学性能
一.混凝土的强度
荷载的性质和受力条件不同,使混凝土具有不同的强 度
立方体抗压强度 单向应力状态下的强度 轴心抗压强度
轴心抗拉强度
复合应力状态下的强度 双向受力强度 三向受压强度
《规范》规定采用反复加荷的方法确定
对标准棱柱体试件
,取
150150 300mm3
0.5 fc
反复加荷、卸载5至10次,随加载次数增加,
接近直线,该直线斜率即为弹性模量 。
Ec
Ec tg 0
据实验值的统计分析,得出 Ec 与 fcu的,k 关系式:
Ec
ቤተ መጻሕፍቲ ባይዱ
102
2.2
34.7
(kN/mm2)
过某一应力 作曲线切线,其斜率为
规律: 随荷载增大, 和 不断减小。 c
E
'' c
(3)混凝土轴向受拉时的应力应变曲线
E'
与受压时相似——上升段、下降段 c
E
'' c
但其应力、应变峰值小的多,
u 0.0001
弹性模量
Ec tg0
变形模量
Ec tg1
切线模量
Ec'' tg
2. 荷载长期作用下混凝土的变形性 能
重复荷载作用下的变形
2. 混凝土的体积变形 收缩、膨胀、温度变化
1. 一次短期加载下混凝土的变形性能
(1)混凝土受压时的应力——应变曲线
(通过应力——应变曲线,可以了解混凝土各阶段的强度和变形)
采用棱柱体试件测定混凝土受压时应力——应变 全曲线,包括:上升段和下降段
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F
F fts
2F
fts dl
一、混凝土强度和变形
3. 复合受力状态下混凝土的抗拉强度
双轴应力下的强度
1.2 1.0 2/f
c
-0.2 拉 -0.2 /fc 0.2
1.0 1.2 压 1/fc
双向正应力下的强度曲线
0.1
-0.1 0.0 单轴抗拉强度
/fc
0.6
1.0
单轴抗压强度
法向应力和剪应力下的强度曲线
包络线与一次性加载时
的应力-应变曲线相似
p e
轴向受拉时混凝土的应力应变关系
t(MPa) 4
cr =0.00012
3
标距=83mm
t
ft 理论模型
2
试件:
1
7619305mm fc = 44MPa
(mm)
0 0.01 0.02 0.03 0.04 0.05 0.06
t o t0 tu
二、混凝土的强度和变形
4. 混凝土的变形性能
重复荷载下混凝土的变形性能
0 0.002 0.5 fcu 5010 5
u 0.0033 fcu 5010 5
二、混凝土的强度和变形

4. 混凝土的变形性能
侧向受约束时混凝土的变形特点
c fcc
fc
非约束混凝土
Ec Esec
o
c0 2c0 sp cc
环箍断裂 约束混凝土
c cu
二、混凝土的强度和变形
4. 混凝土的变形性能
棱柱体抗压强度fc
承压板 标准试块:150×150 ×300
非标准试块:100×100 ×300 换算系数 0.95
200×200 ×400 换算系数 1.05


•考虑到承压板对试件的约束,立方体抗压强度大
于棱柱体抗压强度,且有:fc=0.76fcu (试验结果)
•考虑到构件和试件的区别,取fc=0.67fcu
3 fcf 2 疲劳强度<fc 1
重复荷载下的应力-应变曲线
破坏
•fcf的确定原则: 100×100 ×300或
150×150 ×450 的棱柱
体试块承受200万次
(或以上)循环荷载时
发生破坏的最大压应力

二、混凝土的强度和变形
4. 混凝土的变形性能
单轴受压时的应力-应变关系
作用是:峰值 应力后,吸收 试验机的变形 能,测出下降 段
立方体抗压强度fcu 标准试块:150×150 ×150
非标准试块:100×100 ×100 换算系数 0.95 200×200 ×200 换算系数 1.05
•立方体抗压强度是区分混凝土强度等级的指标,我国规范混凝土的强度等 级有: •C15,C20,C25,C30,C35,C40,C45,C50,C55,C60,C65,C70, C75,C80
1
1
c 0
2
c
u=0.0038
o
0=0.002
c u=0.0035
美国Hognestad模 型
德国Rüsch模型
二、混凝土的强度和变形
4. 混凝土的变形性能
单轴受压时的应力-应变关系的数学模型----中国规范
n
2
1 60
(
f
cu
50),当n
2时,取n
2
c fc
c
fc
1
1
c 0
n
o
0
c u
(C40以下混凝土)
•对国外(美国、日本、欧洲混凝土协会等)采用的圆柱体试件(d=150,
h=300),有fc’=0.79fcu
圆柱体抗
压强度
一、混凝土强度和变形
2. 单轴受力状态下混凝土的抗拉强度
劈裂试验fts
F
F
d
d
•我国根据100mm立方体的 劈裂与抗压试验结果有:
•fts=0.19fcu 3/4
一、混凝土强度和变形
3. 复合受力状态下混凝土的抗拉强度
三向受压时的混凝土强度
1=fcc’
2= 3= fL
fL----侧向约束压 应力(加液压)
圆柱体试验
fcc ' fc '4.1 fL
1=fcc’
有侧向约 束时的抗 压强度
无侧向约 束时圆柱 体的单轴 抗压强度
二、混凝土的强度和变形
4. 混凝土的疲劳强度
混凝土强度提高
(MPa)
25 fc
c
20 b
15
10 a
5
0
o
24
加载速度减慢
68
10
d (10-3)
二、混凝土的强度和变形
4. 混凝土的变形性能
单轴受压时的应力-应变关系的数学模型
c
fc
c
fc
1
1
c 0
2
o
c
f
c
1
0.15
c u
0 0
c
fc 0.15fc
0=0.002
c
f
c
混凝土材料的力学性能
一、混凝土强度和变形
1. 单轴受力状态下混凝土的抗压强度
立方体抗压强度fcu
承压板
摩擦力
•压力试件裂缝 发展扩张整个体 系解体,丧失承载力
试块
•另影响强度的因素 还有:龄期、加载速 率、试块尺寸等
不涂润滑剂 涂润滑剂
强度大于
我国规范的方法:不涂润滑剂
一、混凝土强度和变形
1. 单轴受力状态下混凝土的抗压强度
一、混凝土强度和变形
1. 单轴受力状态下混凝土的抗压强度
强度指标的确定
强度
随机变量
概率
密度

度 标
根据统计资料,运用
强度 平均 值

数理统计方法确定的

具有一定保证率
强度 标准
(95%)的统计特征

值:
强度标准值=强度平均值1.645×均方差
材料强度
一、混凝土强度和变形
1. 单轴受力状态下混凝土的抗压强度
相关文档
最新文档