各种合金铸件浇注系统特点
铸造浇注系统设计讲解
1)、入口处的连接 (与浇口
杯连接处)
采用圆角,一般要求入 口处圆角半径r≥d/4(d为 直浇道上口直径)。
这样可以减少气体的卷 入和避免尖角型砂被冲掉引 起冲砂缺陷。
2).直浇道的形状
• 直浇道的形状—上大下小的锥形即设计锥度 上大下小的锥形,
生产中减轻水平旋涡的措施
a 用大深度浇口杯 b 浇口杯底部安放筛网等
c 在浇口杯底部设置堤坝,形成垂直旋涡。
垂直旋涡的挡渣作用: 金属液沿斜壁流下, 由于流速的减低和流 向的改变,形成垂直 方向的旋流。
a)合理
b)不合理
• 在池形浇口杯中增设隔板和在浇口杯出口处又有 底坎,就能把浇包落入浇口杯中流股的紊乱搅拌
④ 缩短直-横浇道拐弯处的湍流区。
直浇道窝的作用
⑤ 浮出金属液中的气泡:最初注入型内的最初金 属液中,常带有一定量的气体,在直浇道窝内 可以浮出去。
直浇道窝结构设计
直浇道窝的直径应为直浇道下端直径的1.4-2倍,高度为横 浇道直径的2倍,直浇道与横浇道的连接也应做成圆角。
直浇道窝常做成半球形、圆锥台等形状。
主要作用是捕集、保留由渣关口。
要求横浇道平稳、缓慢地输送金属液,而低速流动又可减少充 填时对型腔时的冲击,利于渣粒在横浇道中上浮并滞留在其顶 部而不进入型腔。
1、横浇道中的液流分配
• 金属液从直浇道进入横浇道初期,以较大速度沿 长度方向向前运动,等到达横浇道末端冲击该处 型壁后,金属液的动能转变为势能,横浇道末端 附近液面升高,形成金属浪,并开始返回移动, 使横浇道内液面向直浇道方面逐渐升高,直到全 部充满。
• 计算浇注时间和浇注系统中的最小断面积,确定直 浇道的高度(如有浇口杯则从杯中液面高度算起)
材料成型工艺
第一次1、试说明材料成形工艺的作用。
2、分析材料成形工艺特点,并分析不同材料成形工艺中的共性技术有哪些3、论述材料成形工艺的发展趋势。
第二次1.浇注系统的基本类型有哪些各有何特点根据金属液注入型腔的不同方式,浇注系统可分为顶注式、底注式、侧注式和联合注入式4种类型。
1)顶注式浇注系统,就是指金属液从型腔顶部注入,如图1-14所示。
其优点是能使金属液由型腔下部向浇注系统部分顺序凝固,获得组织致密的铸件。
缺点是浇注时金属液容易产生飞溅、涡流,易卷入气体和夹杂物,容易使铸件产生夹渣和气孔。
2)底注式浇注系统,就是金属液平稳地从型壳的下部注入,型腔中的气体能自由地从上部逸出,有良好的出气排渣作用,浇出的铸件表面光洁,如图1-15所示。
这种形式尤其适用于浇注铜、铝等非铁合金铸件。
其缺点是底部与顶部的金属液温差大,不利于顺序凝固,需增设冒口。
3)侧注式浇注系统,就是金属液由铸型型腔侧面水平或倾斜注入,如图1-16所示。
这种方式对型壳的冲击以及排气性能都比顶注要好,整体型壳的温差比底注式小,铸件补缩效果好。
而且一根直浇道可焊多个熔模,是一种应用广泛且工艺成品率较高的浇注方式。
4)联合注入式浇注系统,就是指同时兼有上述方式中的几种,如图1-17所示。
但其结构组成复杂,仅用于尺寸较大且热节分散的精铸件。
2.什么是缩孔和缩松形成条件有何异同铸件在凝固过程中,由于合金的液态收缩和凝固收缩,往往在铸件最后凝固的部位出现孔洞。
容积大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。
1、缩孔缩孔的孔洞大而集中,缩孔的形状不规则,孔壁粗糙。
缩孔有出现在铸件外部和铸件内部两种,分别称为外缩孔和内缩孔。
外缩孔是指因金属液的凝固收缩而在铸件的外部或顶部形成的缩孔,一般在铸件上部呈漏斗状。
当铸件壁厚很厚时,有时出现在侧面或凹角处。
根据铸件的形状有所不同,漏斗状的下端有的较浅,有的一直深到铸件的内部。
一般来说,产生外缩孔的铸件其内部是致密的。
精选铸造工艺学浇口设计
(1) 横浇道应呈充满状态:内浇道的截面、位置; (2) 流速应尽量低;
(3)横浇道与内浇道的位置关系要正确; a 内浇道距离直浇道应足够远,使渣团能上浮到吸动区上部。 b 有正确的横浇道末端延长段,以容纳初流金属液;吸收液流
动能使金属液平稳;防止液流折返。
27
c 封闭式浇注系统的内浇道应 位于横浇道的下部,且和横 浇道具有同一底面;开放式 浇注系统的内浇道应重叠在 横浇道之上,且搭接面积要 小,但大于内浇道横截面积 。
第7章 浇注系统设计
浇注系统:铸型中液态金属流入型腔的通道。 组成:浇口杯(又称外浇口)、直浇道、横浇道、内浇道等。
1
浇注基本要求: (1)内浇道设置符合铸件凝固原则和补缩方法; (2)在规定的浇注时间内充满型腔; (3)提供必要的充型压头,保证铸件轮廓、棱角清晰; (4)使金属液流动平稳,防止紊流、卷气、金属氧化; (5)具有良好的阻渣能力; (6)金属液进入时速度不可过高,避免飞溅、冲刷; (7)保证金属液面有足够的上升速度,避免夹砂结疤、浇
P = Pα+ρg·h (2)伯努利(E.Bernoulli)方程(能量守衡定律)
在封闭系统中移动的流体由三种不同的能量组成: 位能:用位于距离基准面以上h处的单位体积的流体来表
示(基准面位置任选)。EP=h(m)
压能:作用在单位体积流体上的压力来表示。
EP=p/ρ(m) p 质量压力(kg/m2)
ρ金属密度(kg/m3)
动能:用单位体积的流体以速度v移动时的动量来表示。
EK=v2/2g
定理:在一封闭系统中,单位质量流体所携带的总能量是
不变的,但其位能、压能、动能可以互换。
h1+p1/γ+V12/2g=h2+p2/γ+v22/2g 伯努利方程 (3)托里拆利(Torricelli)定理
铜合金铸件浇注系统设计
八、铜合金铸件浇注系统(一)铜合金铸件浇注系统的形式铜合金按铸造性能分两大类:一类是锡青铜和磷青铜;另一类是无锡青铜和黄铜。
其性能特点、浇注系统形式和适用范围见表!"!"#$%。
表!"!"#$%铜合金浇注系统的形式和适用范围合金种类性能特点浇注系统形式适用范围锡青铜和磷青铜结晶温度范围宽,易产生缩松;氧化倾向较小雨淋式压边式滤渣网式大型长套类铸件短小圆套、圆盘及轴瓦类铸件大、中型复杂件无锡青铜和黄铜结晶温度范围窄,易产生缩孔,易氧化多采用底注法,呈开放式,并常设有滤渣网或集渣包,内浇口做成喇叭状各类铸件(二)铜合金铸件浇注系统的设计铜合金铸件浇注系统的截面比见表!"!"#$&。
铜合金铸件重量和直浇道直径的关系见图!"!"#!#。
表!"!"#$&铜合金浇注系统断面比例及适用范围合金种类各部分截面积比例适用范围锡青铜!直’!横’!内(#’(#)!*!)’(#)!*$)!直’!网’!横’!内(#’+),’(#)!*!)’(#)!*$)复杂的大、中型铸件。
采用底部注入式,且内浇道处不设暗冒口!直’!横’!内(#)!’(#)-*!)’#阀体类铸件。
采用雨淋式浇口,且内浇道处设暗冒口补缩!直’!网’!横’!内(#)!’#’#)-’(!*$)阀体类铸件。
采用带滤渣网的浇注系统无锡青铜及黄铜!直’!网’!横’!内(#’+),’#)!’($*#+)复杂的大型铸件!直’!网’!横’!内(#’+),’#)!’(#)-*!)中、小型铸件特殊黄铜!直’!直出’!横’!网’!内(#’+)&’(!*!)-)’#’(#+*$+)螺旋桨注:!直出一直浇道出口处的总断面积;!网—滤渣网眼的总断面积。
·#.-·w ww .b zf xw .c o m·!"#·w ww .b zf x w .c o m图!"!"#!$铜铸件重量与直浇道直径的关系(三)铜合金浇注系统的尺寸锡青铜铸件用浇注系统尺寸见表!"!"#%&。
铸造工艺,特点及其应用
铸造可按铸件的材料分为:
黑色金属铸造(包括铸铁、铸钢)和有色金属铸造(包括铝合金、铜合金、锌合金、镁合金等)
铸造有可按铸型的材料分为:
砂型铸造和金属型铸造。
按照金属液的浇注工艺可分为:
1、重力铸造:指金属液在地球重力作用下注入铸型的工艺,也称浇铸。
广义的重力铸造包括砂型浇铸、金属型浇铸、熔模铸造、消失模铸造,泥模铸造等;窄义的重力铸造专指金属型浇铸。
2、压力铸造是指金属液在其他外力(不含重力)作用下注入铸型的工艺,按照压力的大小,又分为高压铸造(压铸)和低压铸造。
补充知识:
1、精密铸造是相对于传统的铸造工艺而言的一种铸造方法。
它能获得相对准确地形状和较高的铸造精度。
较普遍的做法是:首先做出所需毛坯(可
留余量非常小或者不留余量)的电极,然后用电极腐蚀模具体,形成空腔。
再用浇铸的方法铸蜡,获得原始的蜡模。
在蜡模上一层层刷上耐高温的液体砂料。
待获得足够的厚度之后晾干,再加温,使内部的蜡模溶化掉,获得与所需毛坯一致的型腔。
再在型腔里浇铸铁水,固化之后将外壳剥掉,就能获得精密制造的成品
2、选择铸造方式时应考虑:a.优先采用砂型铸造 b.铸造方法应和生产批量相适
c.造型方法应适合工厂条件 d.要兼顾铸件的精度要求和成
3、金属材料的力学性能主要指:强度、刚度、硬度、塑性、韧性等。
浇注系统
第2章浇注系统§2-1 概述§2-2 液态金属在浇注系统中的流动§2-3 浇注系统类型及其应用范围§2-4 铸铁件浇注系统计算方法§2-5 其它合金铸件浇注系统特点§2-1 概述1.浇注系统浇注系统是铸型中使液态金属充填型腔的通道。
浇注系统设置不当,常使铸件产生冲砂、夹砂、缩孔、缩松、裂纹、冷隔,以及气孔等多种缺陷,甚至会使铸件报废。
因此,正确的设计浇注系统,对提高铸件质量及降低生产成本具有重要意义。
2.浇注系统的结构一般情况下,浇注系统的结构由:浇口杯、直浇道、横浇道和内浇道组成。
对于某些复杂铸件的浇注系统,除上述四个组元外,尚可增加其他组元;而对于某些简单铸的浇注系统可以少于四个组元。
图2-1 浇注系统的基本组元3.浇注系统的设计内容包括浇注系统的结构、开设位置及各组元尺寸等。
4.浇注系统要求良好的浇注系统通常满足以下几点要求:1) 控制金属液流动的速度和方向,并保证充满型腔,保证适当的浇注时间。
2) 金属注入方式及内浇口方向应不致使金属冲毁铸型或砂型,并有利于杂质上浮和型中气体排出。
金属液在型腔中的流动应平稳、均匀以免夹带空气、产生金属氧化物。
3)有利于铸件温度的合理分布。
(铸型充满后,型内金属的温度分布状态尽可能有利于铸件预期的凝固方式。
希望同时凝固的铸件,温度应分布均匀;希望顺序凝固的铸件,温度应朝向冒口递增。
)4)浇注系统应具有除渣功能。
生产无锡青铜、球墨铸铁等铸铁件,要求浇注系统具有较强的挡渣能力,以防止溶渣进入铸型。
5)浇注系统不应阻碍铸件收缩,在生产裂纹敏感性强的大型铸件时,这点尤为重要。
6)在保证铸件质量的前提下,浇注系统力求简单,便于造型,金属消耗量最少,以及有利于铸件清理。
附加:对浇注系统的基本要求由以上的叙述大致上可以看出,浇注系统对铸件质量的影响是多方面的,其作用显然是重要的。
对浇注系统的基本要求如下:(1)根据铸件结构和合金凝固特点考虑浇注系统的结构,使金属液能以合理的充填速度或上升速度、尽可能平稳地(紊流程度低)、无喷射、飞溅地充填型腔;金属流股不冲蚀砂型或砂芯,也不在型内相互冲击,防止卷入气体和吸收气体,防止金属氧化。
材料成型浇注系统
浇注系统是为填充型腔和冒口而开设于铸型中的一系列通道。
常用的浇注系统大多由浇口杯、直浇道、横浇道、内浇道等部分组成。
除导入液态合金这一基本作用外,浇注系统还能实现其它的一些作用,其作用如下:(1)使液态合金平稳充满砂型,不冲击型壁和砂芯,不产生激溅和涡流,不卷入气体,并顺利地让型腔内的空气和其它气体排出型外,以防止金属过渡氧化及生产砂眼、铁豆、气孔等缺陷。
(2)阻挡夹杂物进入型腔,以免在铸件上形成渣孔。
(3)调节砂型及铸件上各部分温差,控制铸件的凝固顺序,不阻碍铸件的收缩,减少铸件变形和开裂等缺陷。
(4)起一定的补缩作用,一般是在内浇道凝固前补给部分液态收缩。
(5)让液态合金以最短的距离,最合宜的时间充满型腔,并有合适的型内液面上升速度,得到轮廓完整清晰的铸件。
(6)充型流股不要对正冷铁和芯撑,防止降低外冷铁的激冷效果及表面熔化,不使芯撑过早软化和熔化,而造成铸件壁厚变化。
(7)在保证铸件质量的前提下,浇注系统要有利于减小冒口体积,结构要简单,在砂型中占据的面积和体积要小,以方便工人操作、清除和浇注系统模样的制造,节约金属液和型砂的消耗量,提高砂型有效面积的利用。
一、浇注系统各组成部分与作用:(1)浇口杯:浇口杯又称外浇口,其作用是承接来自浇包的金属液,减轻金属液对铸型的冲击,阻止熔渣、杂物、气泡等进入直浇道,增加金属液的充型压力等。
常用浇口杯有呈漏斗形和池形(浇口盆),漏斗形浇口杯可单独制造或直接在铸型内形成,成为直浇道顶部的扩大部分;它结构简单,体积小,可节约金属,但阻渣能力较差,它常用于中、小型铸件,在机器造型中广泛采用。
对大、中型铸件,特别是铸铁件,常采用浇口盆,它具有较好的阻渣效果,浇口盆是与直浇道顶端连接,用以承接导入熔融金属的容器。
在浇口盆出口处常放置有浇口塞,当浇口盆充满金属后,塞子升起即开始浇注。
(2)直浇道:浇注系统中的垂直通道,它通常带有一定的锥度。
对黑色金属,直浇道应做成上大下小的锥体,锥度一般为1:20,其底部常比横浇道的底部稍低并呈(它可储存最初进入的金属液,球形。
第三章锌合金压铸浇注系统设计
第三章锌合金压铸浇注系统设计* 浇注系统包括鹅颈、射咀、分流锥、浇道、浇口和排气系统;*常用有扇形浇道和锥形浇道兩種;*设计原则:浇注系统内的金属液能有效的、平稳的流动,并避免气体混入。
3.1澆注系统对填充条件的影响金属液在压铸过程中的充型状态是由压力、速度、时间、温度、排气等因素综合作用形成的,因而水口系统与压力传递、合金流速、填充时间、凝固时间、模具温度、排气条件有着密切的关系。
a.压力传递一方面要保证水口处金属液以高压、高速充填型腔,另一方面又要保证在流道和水口截面内的金属液先不凝固,以保证传递最终压力。
这样就需要最佳的流道和水口设计,最小的压力损失。
b.水口面积过大或过小都会影响填充过程,过大的水口充填速度低,金属过早凝固,甚至充填不足,过小的水口又会使喷射加剧,增加热量损失,产生涡流并卷入过多气体,减短模具寿命。
c.气体的排出主要取决于金属液的流动速度与流动方向,以及排溢系统的开设能否使气体顺畅排出,排气面积是否足够。
排气是否良好,将直接影响铸件的外形和强度。
d.模具温度的控制对铸件的质量产生很大的影响,同时影响生产的速度和效率,水口的合理设计可以对模具的温度分布起调节作用。
e.模具寿命除了取决于良好的钢材外,又与模具的工作状态有关,良好的水口系统设计也是为了使模具各部分热平衡处于最佳状态,而不是恶劣的状态下,这样才能得到压铸生产的最大经济效益。
3.2浇注系统位置的选择1.使金属液充型路径减少曲折,避免过多迂回,避免卷气,散失热量,压力损耗。
2.尽量使金属液流至各部位距离相等,如开中心水口。
3.使温度分布符合工艺要求(模温、铸件温度)、尽量选择最短流程。
4.尽量采用单个水口,避免各水口的射流产生对撞,当需多处水口时,考虑射流相互促进,避免卷气,能量损耗。
5.尽量避免正面冲击型芯或型壁,减少动能损耗、卷气、流向混乱、粘模。
6.减少铸件收缩变形的倾向,使易收缩部位得到补缩、增压。
7.有利于排气。
铸造中浇注系统设计
应用:
主要用于构造复杂旳多种黑色金属 铸件和易氧化旳有色金属铸件。
3、中间注入式浇注系统
对内浇道下列旳型腔部分为顶注 式;对内浇道以上旳型腔部分相 当于底注式。故它兼有顶注式和 底注式浇注系统旳优缺陷。因为 内浇道在分型面上开设,故极为 以便,广为应用。合用于高度不 大旳中档壁厚旳铸件。
轻易充斥,可降低薄壁 件浇不到、冷隔方面旳 缺陷
充型后上部温度高于底 部,有利于铸件自下而 上 旳顺序凝固和冒口旳 补缩
冒口尺寸小,节省金属
内浇道附近受热较轻
构造简朴,易于清除
缺陷:
易造成冲砂缺陷金属, 液下落过程中接触空气, 出现飞溅、氧化、 卷入 空气等现象,使充型不 平稳
易产生砂孔、铁豆、气 孔和氧化夹杂物缺陷, 大部分浇注时间,内浇 道工作在非淹没状态,
第四章 浇注系统
浇注系统旳作用:将液态金属引入铸型。
经典浇注系统旳构造 a)封闭式 b)开放式 1-浇口杯,2-直浇道,3-直浇道窝,4-横浇道,5-末端延长段,6-内浇道
对浇注系统旳基本要求
1.所拟定旳内浇道旳位置、方向和个数应符合铸件旳凝固原则或补缩 措施。
2.在要求旳浇注时间内充斥型腔。 3.提供必要旳充型压力头,确保铸件轮廓、棱角清楚。 4.使金属液流动平稳,防止严重紊流。预防卷入、吸收气体和使金属
过分氧化。 5.具有良好旳阻渣能力。 6.金属液进人型腔时线速度不可过高,防止飞溅、冲刷型壁或砂芯。 7.确保型内金属液面有足够旳上升速度,以免形成夹砂结疤、皱皮、
冷隔等缺陷。
第一节、浇注系统各单元旳作用:
1、浇口杯旳作用:①承接来自浇包旳金属液,预防金属液 飞溅和溢出,便于浇注;②减轻液流对型腔旳冲击、分离 渣滓和气泡,阻止其进入型腔;③增长充型压力头。
浇注系统设计
通常用最大相对流量偏差值K来评价内浇道中的 流量不均匀性。
K=(δmax-δmin)/(Qn-1) δmax—— 内浇道中最大流量 δmin—— 内浇道中最小流量 Q —— 系统中的总流量 n —— 内浇道的个数
(图3-2-29) 不同分布的内浇道中,最大流量偏 差与F损/F内的关系
由于内浇道在分型面上开设,就能方便地 按需作出布置,有利于控制金属液的流量分 布和铸型的热分布,对形状复杂的铸件十分 有利。这种浇注系统应用很普遍,适用于中 等重量、高度不大、中等壁厚的铸件。
4. 阶梯式浇注系统 金属液应该是先按底注方式又最下层内浇道引入
型腔,待金属液面接近第二层内浇道时,才有第二层 内浇道引金属液进入型腔,……如此类推,使金属液 由下面逐层按顺序充填型腔,最热的金属液经最高的 那层内浇道进入型腔顶部或顶冒口中,见图3-2-8。
应用:重量不大,不高和形状简单的薄壁或 中等壁厚的铸件。
顶注式浇注系统的其它形式: 雨淋式和压边浇口
2. 底注式浇注系统:
它是内浇道开设在型腔底侧或底下的浇 注系统。
优点:金属液充型平稳,液面逐渐升高, 可以避免冲击,飞溅和氧化及由此而形成的 铸件缺陷。型腔内气体容易逐渐排出。整个 浇注系统较快充满,有利于横浇道撇渣。
浇口杯分为漏斗形浇口杯和浇口盒
(一)、漏斗形浇口杯
漏斗形浇口杯撇渣效果差,但结构简单,节 约金属,多用于一般铸铁小件。(图3-2-10 a)
对于重要的件,常配合过滤网使用。(图3-210 b)
(二)、浇口盒
对于较大的铸件,为了能较好的初次撇渣和 控制流量以及均匀地供给金属,常采用浇口盒, 如图3-2-11 a 所示,金属也从侧面进入浇口杯时, 产生二支股流,一支股流在垂直面内运动,会耗 损能量,减小流量,但有利于渣和气泡上浮。
金属材料成形工艺的种类及特点
金属材料成形工艺的种类及特点金属材料成形方法是零件设计的重要内容,也是制造者们极度关心的问题,金属成形工艺分为八大工艺:铸造、塑性成形、机加工、焊接、粉末冶金、金属注射成型、金属半固态成型、3D打印。
一、铸造液态金属浇注到与零件形状、尺寸相适应的铸型型腔中,待其冷却凝固,以获得毛坯或零件的生产方法,通常称为金属液态成形或铸造。
1、工艺流程:液体金属→充型→凝固收缩→铸件2、工艺特点:1)可生产形状任意复杂的制件,特别是内腔形状复杂的制件。
2)适应性强,合金种类不受限制,铸件大小几乎不受限制。
3)材料来源广,废品可重熔,设备投资低。
4)废品率高、表面质量较低、劳动条件差。
3、铸造分类:(1)砂型铸造砂型铸造:在砂型中生产铸件的铸造方法。
钢、铁和大多数有色合金铸件都可用砂型铸造方法获得。
工艺流程:技术特点:1)适合于制成形状复杂,特别是具有复杂内腔的毛坯;2)适应性广,成本低;3)对于某些塑性很差的材料,如铸铁等,砂型铸造是制造其零件或,毛坯的唯一的成形工艺。
应用:汽车的发动机气缸体、气缸盖、曲轴等铸件(2)熔模铸造熔模铸造:通常是指在易熔材料制成模样,在模样表面包覆若干层耐火材料制成型壳,再将模样熔化排出型壳,从而获得无分型面的铸型,经高温焙烧后即可填砂浇注的铸造方案。
常称为“失蜡铸造”。
工艺流程:优点:1)尺寸精度和几何精度高;2)表面粗糙度高;3)能够铸造外型复杂的铸件,且铸造的合金不受限制。
缺点:工序繁杂,费用较高应用:适用于生产形状复杂、精度要求高、或很难进行其它加工的小型零件,如涡轮发动机的叶片等。
(3)压力铸造压铸:是利用高压将金属液高速压入一精密金属模具型腔内,金属液在压力作用下冷却凝固而形成铸件。
工艺流程:优点:1)压铸时金属液体承受压力高,流速快2)产品质量好,尺寸稳定,互换性好;3)生产效率高,压铸模使用次数多;4)适合大批大量生产,经济效益好。
缺点:1)铸件容易产生细小的气孔和缩松。
铸件的凝固方式
铸件的凝固方式:逐层凝固,中间凝固,糊状凝固合金的结晶温度范围越小,铸件断面的温度梯度越大,铸件越倾向于逐层凝固方式,也越容易铸造一,合金的收缩分类及导致的缺陷、缩孔与缩松形成原因及防止答:分类:1.液态收缩2.凝固收缩3.固态收缩。
会导致如缩孔、缩松、变形、裂纹、残余应力等缺陷。
形成原因:合金液在铸型内冷凝过程中,若其体积收缩得不到补充时,将在铸件最后凝固的部位形成孔洞,容积较大的孔洞叫缩孔,细小而分散的孔叫缩松。
防止:1.合理选择铸造合金。
2.合理选用凝固原则。
铸件的凝固原则分为“顺序凝固”和“同时凝固”两种。
实现顺序凝固的办法:1,在铸件的厚大部位安放冒口2.安放冷铁3.设置补贴浇注位置的选择原则:1.铸件的重要加工面或质量要求高的面,尽可能置于铸件的下部或处于侧立位置2.大平面的浇注位置是将铸件的大平面朝下,以免在此面上出现气孔和夹砂等缺陷3.具有大面积薄壁的铸件,应将薄壁部分放在铸型的下部或处于侧立位置,以免产生浇不足和冷隔等缺陷 4.为防止铸件产生缩孔缺陷,应把铸件容易产生缩孔的厚大部位置于铸型的顶部和侧面拔模斜度与结构斜度:为使模样(或型芯)易从铸型(或芯盒)中取出,在制造模样或芯盒时,凡平行于拔模方向上的壁,需给出一定的斜度,此斜度称为拔模斜度(拔模斜度);铸件上凡垂直于分型面的不加工面都应有一定的倾斜度,即结构斜度。
浇注系统的分类:1.顶注式浇注系统:优点容易实现顺序凝固和进行补缩。
缺点是金属液对铸型冲击大,容易产生飞溅,氧化和卷入空气。
适于高度不大,形状简单,薄壁或中等壁厚的铸件。
2.中注式浇注系统:其横浇道和内浇道均开设在分型面上,易于操作,便于控制金属夜的流量分布和铸型的热分布。
3.底注式浇注系统:优点金属液的充型过程平稳,无飞溅,型腔中的气体易于排出,挡渣效果好,缺点是不能利用金属夜的自重进行补缩压力铸造的特点:1.生产效率高,便于实现自动化2.获得铸件的尺寸精度高(11~13),表面粗糙度低(3.2~0.8),一些铸件无需机加工可直接使用3.可获得细晶粒组织的铸件,机械强度比砂型铸造高4.便于实在嵌铸自由锻的基本工序:墩粗和拔长。
石膏、熔模、砂型、离心、低压铸造优缺点
1.石膏型铸造分为:拔模型石膏铸造、失蜡铸造其特点为: 1.能够很好地复制出复杂的铸件。
由于石膏浆料的流动性能好,使得其充型性能优良,复膜性优异,型腔表面光洁。
制作出来的产品粗糙度等级能够达到Ra1.6um。
2.热导率低。
这一性能会使得金属液很好地填充模具,但亦会因凝结时间过长,而出现疏松、缩孔等缺陷。
3.透气性差。
因而要合理设置浇注系统以防止出现浇不足、气孔等缺陷。
4.耐火度不高,故只适用于中低温合金的铸造。
其浇注方式一般为:低压浇注、重力浇注、真空辅助浇注等2.熔模铸造是液态金属在重力作用下浇入由蜡模熔失后形成的中空型壳并在其中成形从而获得精密铸件的方法,又称为失蜡铸造。
熔模铸造的优点:⑴铸件精度高,表面粗糙度低,质量好,又称精密铸造。
⑵可铸出形状复杂的薄壁铸件。
⑶铸造合金种类不受限制,钢铁及非铁合金均可适用。
⑷生产批量不受限制,单件、小批、成批、大量生产均可适用。
熔模铸造的缺点:⑴工序复杂,生产周期长。
⑵原材料价格高,铸件成本高。
⑶铸件不能太大、太长,否则蜡模易变形,丧失原有精度。
3.离心铸造:优点:利用自由表面生产圆筒形或环形铸件时,可省去型芯和浇注系统,因而省工、省料,降低了铸件成本。
在离心力的作用下,铸件呈由外向内的定向凝固,而气体和熔渣因密度较金属小、则向铸件内腔(即自由表面)移动而排除,故铸件极少有缩孔、缩松、气孔、夹渣等缺陷。
便于制造双金属铸件。
如可在钢套上镶铸薄层铜材,用这种方法制出的滑动轴承较整体铜轴承节省铜料,降低了成本。
缺点:(1)依靠自由表面所形成的内孔尺寸偏差大,而且内表面粗糙,若需切削加工,必须加大余量;(2)不适于密度偏析大的合金及轻合金铸件,如铅青铜、铝合金、镁合金等。
此外,因需要专用设备的投资,故不适于单件、小批生产。
4.砂型铸造:粘土湿砂型铸造的优点是:①粘土的资源丰富、价格便宜。
②使用过的粘土湿砂经适当的砂处理后,绝大部分均可回收再用。
③制造铸型的周期短、工效高。
材质低合金钢(35cr Mo)的铸件的浇注设计 精品
第一章绪论我国铸造技术已有6000年的悠久历史,铸造具有使用范围广,材料采用范围广等特点。
铸件具有一定的尺寸精度,成本低廉,综合性能良好,但是铸造环境差,粉尘多,温度高,劳动强度大,废气,废料,处理任务繁重。
今后应走优质,高效,低耗,清洁可持续发展的道路,从而开阔更广的空间。
钢铁的应用使人类文明进入了铁器时代。
铸钢是四十年代末(1947年)发展起来的一种新型结构材料。
铸钢的诞生,是继人类发明炼钢技术之后,在黑色金属应用技术方面又一次大的技术创新,是20世纪材料科学最重大的技术进展之一。
本设计主要对主要铸造低合金钢铸件做一些阐述,铸造碳钢虽然应用较广,但是在性能上有许多不足之处,如淬透性差,大断面零件无法通过热处理进行强化。
力学性能有限使用温度低,抗磨耐腐蚀耐热等特殊性能差。
利用合金元素可以提高力学性能和改善某些物理化学性能。
从而使钢得到很好的改善。
本设计选用材质低合金钢(35cr Mo)的铸件,在铸件中加入合金元素来提高铸件的耐热性和耐磨性,提高强度及改变钢的塑形和韧性,同时还提高钢的再结晶温度抑制热处理过程中产生的回火脆性。
本主要从铸件的铸造工艺进行分析。
具体包括铸件的造型,制芯,合金的熔炼,铸件的浇注,及合箱,几个工段。
严格控制个个工段的工艺十分重要,以避免铸件产生气孔,夹渣,浇不到,缩孔缩松,裂纹等缺陷。
第二章浇注系统的设计金属液在充型时的状态对获得优质铸件有很大影响,一些铸件缺陷如气孔,裂纹,冷隔,浇不到,砂眼,夹砂等都是在充型不利的情况下产生的。
而金属液的充型要靠浇注系统来实现。
所以浇注系统设计是否合理将直接影响铸件的质量。
如何设计合理的浇注,应根据铸件的结构特点、技术条件、合金种类等因素。
结合所学的理论知识和实践经验对本铸件来设计浇注系统,如有不足敬请老师指导改正。
1. 铁液消耗总重量的计算考虑该铁件壁厚大,采用开放式浇注系统,内浇道从铸件分型面上引入,选用中间式浇注。
采用开放式具有内浇道流速低,充型平稳金属氧化程度低具有挡渣。
铝合金重力铸造浇注工艺
铝合金重力铸造浇注工艺铝合金重力铸造是一种常见的铝合金铸造工艺,其优点包括制造成本低、加工性能好、耐腐蚀性能优异等。
在铝合金重力铸造浇注工艺中,铸型内热液金属通过重力作用,从浇注口进入模腔,填充整个铸型,最终形成所需的铸件。
以下是相关参考内容,分为四个部分进行说明。
1. 铝合金重力铸造工艺的基本原理:- 浇注温度:铝合金浇注温度是铝液和模腔之间的接触温度,决定了铝液充填铸型的时间和温度。
- 流动速度:铝液在铸型中的流动速度会直接影响铸件的成形质量,太快会导致气体夹杂和缺陷,太慢则会使铸件有孔隙。
- 液体表面张力:液体与气体和固体界面处产生的接触角,直接影响液体在铸型中的流动性能。
- 浇注过程:铝合金的重力铸造浇注可以分为铸型充填、冷凝固化和铸型脱模三个阶段。
2. 铝合金重力铸造工艺的主要工艺参数:- 浇注温度:一般情况下,浇注温度稍高于铝合金固化温度,可根据铸造钢型的形态和凝固性能进行调整。
- 浇注速度:决定了铝液在铸型中的流动速度,一般较低速度有利于减少气体夹杂和提高铸件质量。
- 浇注压力:通过设置铝液头部的高度差,调整铝液在铸型中的流动压力,控制铸件中的缺陷和气孔。
- 浇注时间:一般通过控制浇注的时间来调整铸件中的冷缩和应力分布,以防止铸件出现表皮裂纹等缺陷。
3. 铝合金重力铸造工艺的工装设计:- 浇注系统设计:包括浇注杯、导流装置和浇注通道等,用于引导铝液从浇注杯顺利流入铸型。
- 温度控制:通过在浇注系统中加设温度探针、温度传感器等设备,实时监控铝液的温度,确保浇注温度的稳定性。
- 模具设计:根据铸件的形状、尺寸和结构要求,设计模具的冷却系统,保证铸件能够均匀冷却并快速凝固。
4. 铝合金重力铸造工艺的缺陷控制方法:- 气孔控制:通过优化浇注系统设计、减小铝液的冷凝压力,降低气泡在铸件中的聚集程度,减少气孔的产生。
- 热裂缝控制:合理设计模具的冷却系统,控制铸件的冷缩差异,减少内部应力累积,从而减少热裂缝的产生。
铝合金铸造过程工艺参数
铝合金铸造是金属铸造领域的重要分支,广泛应用于航空、汽车、电子、建筑等各个行业。
一、浇注系统浇注系统是铝合金铸造过程中的重要组成部分,它包括浇口杯、直浇道、横浇道、内浇口等部分。
浇注系统的设计合理与否直接影响到金属液体的充型能力和充型速度。
在选择浇注系统时,需要根据铸件的结构和要求来选择合适的浇口杯形状、尺寸和位置,以及合理的直浇道和横浇道结构。
同时,还需要根据浇注速度和充型时间等因素来调整内浇口的尺寸和位置。
二、铝合金铸造的参数铝合金铸造的参数主要包括压铸压力、注射速度、模具温度和填充时间。
1. 压铸压力压铸压力也是影响铸件质量和性能的重要参数。
压铸过程中的压力由压力泵产生,作用在金属液体上的压力是获得结构致密、轮廓清晰的铸件的主要因素。
压铸压力的大小直接影响到金属液体的充型能力和压实程度。
过高的压铸压力可能导致金属液体过度流动,形成飞边等缺陷;而过低的压铸压力则可能导致金属液体无法充分填充型腔,形成缩孔等缺陷。
因此,选择合适的压铸压力可以保证金属液体的充型能力和压实程度,提高铸件的质量和性能。
2. 速度(1)压铸速度铝合金铸造的注射速度是指压铸过程中注射头的速度。
注射速度的设置应该根据具体的情况来决定。
注射速度分为慢速注射和快速注射,一般慢速为0.1~0.5M/S,快速一般为0.1~1.1M/S。
铸件壁厚越薄,注射速度越快,铸件形状越复杂,注射速度越快。
铸件的突出面越大,注射速度越快,铸球路径越长,注射速度越快。
(2)浇注速度浇注速度是影响铸件质量和性能的重要因素之一。
过快的浇注速度可能导致金属液体在充型过程中产生涡流和卷气等缺陷;而过慢的浇注速度则可能导致金属液体无法充分填充型腔,形成缩孔等缺陷。
因此,在铝合金铸造过程中,需要根据铸件的结构和要求来选择合适的浇注速度。
同时,还需要根据金属液体的流动性和充型能力等因素来调整内浇口的尺寸和位置。
3. 模具温度铝合金铸造的模具温度是影响铸件质量和性能的重要参数之一。
第三章 浇注系统设计
m Nnq
m —— 浇注金属质量(kg);N —— 同时浇注的浇包数; n —— 单个浇包的包孔数。
四、铸造非铁合金的浇注系统
特点:密度小、熔点低、热容量小而热导率大,且极 易氧化和液态吸气性强。 常见铸造缺陷:非金属夹杂、浇不到、冷隔、气孔、 缩孔、缩松及裂纹、变形等。
设计非铁合金浇注系统应注意: 非铁合金降温快,应快浇。 1)浇注温度不高,对 型砂的热作用较轻。
二、计算举例(浇注系统设计方法和步骤) 图3-19为灰铸铁件的垂直分型浇注系统的结构形 式,即模板布置简图。
1.绘制模板布置简图 模板布置来自于工艺设计方案和参照造型机标准模 板尺寸及合理吃砂量(图中A、B、C三个尺寸)等。据此 确定出各层铸件内浇道的金属压力头为: h1 =100mm; h2 =250mm; h3 =350mm。 2.计算型内金属质量m 每个铸件质量 2kg,共布置12件。铸件工艺出品率 (灰铁件)按70%估计,则型内金属质量(即铁液质量 数)为2×12 kg / 0.7 = 34.3 kg。
3.确定浇注时间和浇注速度q 造型机产率为300箱/h,节拍12s/型。据表3-8查出 浇注时间为8s。约用2s充满浇注系统,则充填单个型腔的 净浇注时间为6s。每个型腔的浇注速度应为2kg/6s≈0.33 kg/s。
4.选用浇口杯 根据铸型的浇注速度,参照表3-7,可查出浇口杯 尺寸。 如用手工浇注,使用4号浇口杯,铁液积存5.5kg; 如用自动浇注,使用2号浇口杯,铁液积存4kg。
A直: A横: A内=1:2:4
第二节
浇注系统组元中金属液的流动特性及组元设计
一、浇口杯(盆)
1.漏斗形浇口杯
特点:漏斗形浇口杯结构简 单,制作方便,其本身消耗 金属液少。 适用:小型铸件,在机器造 型中广泛使用。 杯底安放滤孔芯,可挡 渣并对金属液起缓冲作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 各种合金铸件浇注系统特点 2020年8月17日
问题 目的与要求 重点和难点
可锻铸铁 球墨铸铁 铸钢件 轻合金 铜合金 思考与练习
4 各种合金铸件浇注系统特点 2020年8月17日
问题 目的与要求 重点和难点
可锻铸铁 球墨铸铁 铸钢件 轻合金 铜合金 思考与练习
4 各种合金铸件浇注系统特点 2020年8月17日
4 各种合金铸件浇注系统特点 2020年8月17日
问题 目的与要求 重点和难点
可锻铸铁 球墨铸铁 铸钢件 轻合金 铜合金 思考与练习
思考与练习: 在浇注系统中金属过滤网的应用方法有几种?
4 各种合金铸件浇注系统特点 2020年8月17日
问题 目的与要求 重点和难点
可锻铸铁 球墨铸铁 铸钢件 轻合金 铜合金 思考与练习
4 各种合金铸件浇注系统特点 2020年8月17日
问题 目的与要求 重点和难点
可锻铸铁 球墨铸铁 铸钢件 轻合金 铜合金 思考与练习
4 各种合金铸件浇注系统特点 2020年8月17日
可锻铸铁 球墨铸铁 铸钢件 轻合金 铜合金 思考与练习
问题: 各种合金浇注系统有什么不同?
4 各种合金铸件浇注系统特点 2020年8月17日
问题 目的与要求 重点和难点
可锻铸铁 球墨铸铁 铸钢件 轻合金 铜合金 思考与练习
目的与要求: 1.掌握各种合金铸件浇注系统特点。 2.了解设计时注意事项。
重点与难点: 难点:比较 重点:设计
4 各种合金铸件浇注系统特点 2020年8月17日
问题 目的与要求 重点和难点
可锻铸铁 球墨铸铁 铸钢件 轻合金 铜合金 思考与练习
良好的心是花园, 良好的思想是根茎, 良好的说话是花朵, 良好的事业就是果子。
——英国谚语
4 各种合金铸件浇注系统特点 2020年8月17日
问题 目的与要求 重点和难点
问题 目的与要求 重点和难点
可锻铸铁 球墨铸铁 铸钢件 轻合金 铜合金 思考与练习
4 各种合金铸件浇注系统特点 2020年8月17日
问题 目的与要求 重点和难点
可锻铸铁 球墨铸铁 铸钢件 轻合金 铜合金 思考与练习
4 各种合金铸件浇注系统特点 2020年8月17日
问题 目的与要求 重点和难点
可Байду номын сангаас铸铁 球墨铸铁 铸钢件 轻合金 铜合金 思考与练习
问题 目的与要求 重点和难点
可锻铸铁 球墨铸铁 铸钢件 轻合金 铜合金 思考与练习
4 各种合金铸件浇注系统特点 2020年8月17日
问题 目的与要求 重点和难点
可锻铸铁 球墨铸铁 铸钢件 轻合金 铜合金 思考与练习
4 各种合金铸件浇注系统特点 2020年8月17日
问题 目的与要求 重点和难点
可锻铸铁 球墨铸铁 铸钢件 轻合金 铜合金 思考与练习