2019届江苏省海安高级中学高三上学期第二次月考数学试题(解析版)

合集下载

海安县第二中学2018-2019学年高三上学期11月月考数学试卷含答案

海安县第二中学2018-2019学年高三上学期11月月考数学试卷含答案

海安县第二中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 函数y=的图象大致为()A .B .C .D .2. 长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=2AB=2AD ,G 为CC 1中点,则直线A 1C 1与BG 所成角的大小是()A .30°B .45°C .60°D .120°3. 已知集合A={x|x ≥0},且A ∩B=B ,则集合B 可能是( )A .{x|x ≥0}B .{x|x ≤1}C .{﹣1,0,1}D .R 4. 已知在△ABC 中,a=,b=,B=60°,那么角C 等于()A .135°B .90°C .45°D .75°5. 已知x ,y ∈R ,且,则存在θ∈R ,使得xcos θ+ysin θ+1=0成立的P (x ,y )构成的区域面积为( )A .4﹣B .4﹣C .D .+6. 抛物线x 2=4y 的焦点坐标是( )A .(1,0)B .(0,1)C .()D .()7. 已知奇函数是上的增函数,且,则的取值范围是( )()f x [1,1]-1(3)()(0)3f t f t f +->t A 、 B 、 C 、 D 、1163t t ⎧⎫-<≤⎨⎬⎩⎭2433t t ⎧⎫-≤≤⎨⎬⎩⎭16t t ⎧⎫>-⎨⎬⎩⎭2133t t ⎧⎫-≤≤⎨⎬⎩⎭8. 设x ,y ∈R ,且x+y=4,则5x +5y 的最小值是( )A .9B .25C .162D .509. 函数f (x )=﹣lnx 的零点个数为( )A .0B .1C .2D .3班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.若点O 和点F (﹣2,0)分别是双曲线的中心和左焦点,点P 为双曲线右支上的任意一点,则的取值范围为()A .B .C .D .11.已知双曲线,分别在其左、右焦点,点为双曲线的右支上2222:1(0,0)x y C a b a b-=>>12,F F P 的一点,圆为三角形的内切圆,所在直线与轴的交点坐标为,与双曲线的一条渐M 12PF F PM (1,0),则双曲线的离心率是( )CAB .2CD 12.若a <b <0,则下列不等式不成立是( )A .>B .>C .|a|>|b|D .a 2>b 2二、填空题13.台风“海马”以25km/h 的速度向正北方向移动,观测站位于海上的A 点,早上9点观测,台风中心位于其东南方向的B 点;早上10点观测,台风中心位于其南偏东75°方向上的C 点,这时观测站与台风中心的距离AC 等于 km .14.设α为锐角,若sin (α﹣)=,则cos2α= .15.已知命题p :∃x ∈R ,x 2+2x+a ≤0,若命题p 是假命题,则实数a 的取值范围是 .(用区间表示) 16.已知线性回归方程=9,则b= .17.若函数为奇函数,则___________.63e ()()32e x xbf x x a =-∈R ab =【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力.18.已知抛物线:的焦点为,点为抛物线上一点,且,双曲线:1C x y 42=F P 3||=PF 2C 12222=-by a x (,)的渐近线恰好过点,则双曲线的离心率为 .0>a 0>b P 2C 【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.三、解答题19.已知,其中e 是自然常数,a ∈R(Ⅰ)讨论a=1时,函数f (x )的单调性、极值; (Ⅱ)求证:在(Ⅰ)的条件下,f (x )>g (x )+.20.(本小题满分12分)求下列函数的定义域:(1);()f x =(2)()f x =21.若点(p ,q ),在|p|≤3,|q|≤3中按均匀分布出现.(1)点M (x ,y )横、纵坐标分别由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,则点M (x ,y )落在上述区域的概率?(2)试求方程x 2+2px ﹣q 2+1=0有两个实数根的概率.22.(本题满分14分)在ABC ∆中,角,,所对的边分别为,已知cos (cos )cos 0C A A B +=.A B C c b a ,,(1)求角B 的大小;(2)若,求b 的取值范围.2=+c a 【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力.23.设圆C满足三个条件①过原点;②圆心在y=x上;③截y轴所得的弦长为4,求圆C的方程.24.如图,四边形ABCD内接于⊙O,过点A作⊙O的切钱EP交CB 的延长线于P,己知∠PAB=25°.(1)若BC是⊙O的直径,求∠D的大小;(2)若∠DAE=25°,求证:DA2=DC•BP.海安县第二中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】解:令y=f(x)=,∵f(﹣x)==﹣=﹣f(x),∴函数y=为奇函数,∴其图象关于原点对称,可排除A;又当x→0+,y→+∞,故可排除B;当x→+∞,y→0,故可排除C;而D均满足以上分析.故选D.2.【答案】C【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设AA1=2AB=2AD=2,A1(1,0,2),C1(0,1,2),=(﹣1,1,0),B(1,1,0),G(0,1,1),=(﹣1,0,1),设直线A1C1与BG所成角为θ,cosθ===,∴θ=60°.故选:C.【点评】本题考查空间点、线、面的位置关系及学生的空间想象能力、求异面直线角的能力,解题时要注意向量法的合理运用.3.【答案】A【解析】解:由A={x|x≥0},且A∩B=B,所以B⊆A.A、{x|x≥0}={x|x≥0}=A,故本选项正确;B、{x|x≤1,x∈R}=(﹣∞,1]⊊[0,+∞),故本选项错误;C、若B={﹣1,0,1},则A∩B={0,1}≠B,故本选项错误;D、给出的集合是R,不合题意,故本选项错误.故选:A.【点评】本题考查了交集及其运算,考查了基本初等函数值域的求法,是基础题. 4.【答案】D【解析】解:由正弦定理知=,∴sinA==×=,∵a<b,∴A<B,∴A=45°,∴C=180°﹣A﹣B=75°,故选:D.5.【答案】A【解析】解:作出不等式组对应的平面区域如图:对应的区域为三角形OAB,若存在θ∈R,使得xcosθ+ysinθ+1=0成立,则(cosθ+sinθ)=﹣1,令sinα=,则cosθ=,则方程等价为sin(α+θ)=﹣1,即sin(α+θ)=﹣,∵存在θ∈R,使得xcosθ+ysinθ+1=0成立,∴|﹣|≤1,即x2+y2≥1,则对应的区域为单位圆的外部,由,解得,即B(2,2),A(4,0),则三角形OAB的面积S=×=4,直线y=x的倾斜角为,则∠AOB=,即扇形的面积为,则P(x,y)构成的区域面积为S=4﹣,故选:A【点评】本题主要考查线性规划的应用,根据条件作出对应的图象,求出对应的面积是解决本题的关键.综合性较强.6.【答案】B【解析】解:∵抛物线x2=4y中,p=2,=1,焦点在y轴上,开口向上,∴焦点坐标为(0,1),故选:B.【点评】本题考查抛物线的标准方程和简单性质的应用,抛物线x2=2py的焦点坐标为(0,),属基础题. 7.【答案】A【解析】考点:函数的性质。

江苏省宿迁市海安实验中学2019年高三数学理月考试题含解析

江苏省宿迁市海安实验中学2019年高三数学理月考试题含解析

江苏省宿迁市海安实验中学2019年高三数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 对x∈R,“关于X的不等式f(x)>0有解”等价于(A) ,使得f(x0)>0成立(B) ,使得f(x0)≤<0成立(C) ,f(x)>0 成立(D) ,f(x)<0 成立参考答案:A略2. 如图,将直角三角板和直角三角板拼在一起,其中直角三角板的斜边与直角三角板的角所对的直角边重合.若,则等于()A.B.C.D.参考答案:B3. 已知,若,则( )A.a+b=0 B.a﹣b=0 C.a+b=2 D.a﹣b=2参考答案:C【考点】函数奇偶性的性质;函数的值.【专题】计算题;函数思想;转化思想;函数的性质及应用.【分析】化简函数的解析式,利用函数的奇偶性求解即可.【解答】解:,则f(x)﹣1是奇函数,而,所以==2,所以a+b=2,故选:C.【点评】本题考查函数的解析式的应用,函数的奇偶性的应用,考查计算能力.4. 已知一等比数列的前三项依次为,那么是此数列的第()项。

A 4B 5CD 7参考答案:B5. 程序框图如右图所示,则输出的值为( )A.15 B.21 C.22 D.28参考答案:B6. 函数在区间上的最大值是()A. B. C. D.参考答案:C7. 设函数,则( )A.当k=2013时,在x=1处取得极小值B.当k=2013时,在x=1处取得极大值C.当k=2014时,在x=1处取得极小值D.当k=2014时,在x=1处取得极大值参考答案:8. 某产品近期销售情况如下表:根据上表可得回归方程为,据此估计,该公司8月份该产品的销售额为()A. 19.05B. 19.25C. 19.5D. 19.8参考答案:D【分析】由已知表格中的数据求得,代入线性回归方程求得,再在回归方程中取求得值即可.【详解】,,得,,取,得,故选D.【点睛】本题考查线性回归方程的求法,考查计算能力,明确线性回归方程恒过样本中心点是关键,属于基础题.9. 定义在R上的函数,对任意不等的实数都有成立,又函数的图象关于点(1,0)对称,若不等式成立,则当1≤x<4时,的取值范围是A.B.C.D.参考答案:10. 在一次数学实验中,运用计算器采集到如下一组数据:则y关于x的函数关系与下列最接近的函数(其中a、b、c为待定系数)是( )A. B. C. D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 过椭圆的左焦点作直线与椭圆相交,使弦长均为整数的所有直线中,等可能地任取一条直线,所取弦长不超过4的概率为___________.参考答案:略12. 如图是一个算法流程图,则输出的b的值为_______.参考答案:8【分析】根据程序框图,写出每次运行结果,利用循环结构计算并输出b的值.【详解】第1步:a>10不成立,a=a+b=2,b=a-b=1;第2步:a>10不成立,a=a+b=3,b=a-b=2;第3步:a>10不成立,a=a+b=5,b=a-b=3;第4步:a>10不成立,a=a+b=8,b=a-b=5;第5步:a>10不成立,a=a+b=13,b=a-b=8;第6步:a>10成立,退出循环,输出b=8.故答案为:8【点睛】本题考查循环结构的程序框图,对循环体每次循环需要进行分析并找出内在规律,属于基础题.13. 阅读右侧的程序框图,输出的结果的值为 ;参考答案:14. 如图,正方体中,、分别为、的中点,则与所成角的大小为.参考答案:15. 设,,则的最小值为______.参考答案:【分析】利用乘“”法化简所求表达式,再利用基本不等式求得最小值.【详解】依题意,所以,当且仅当时等号成立.故填.【点睛】本小题主要考查利用基本不等式求和式的最小值,考查“1”的代换,考查化归与转化的数学思想方法,属于基础题.16. 如图所示的流程图,输出的结果S是。

海安中学2019届高三月考数学试卷(含答案)

海安中学2019届高三月考数学试卷(含答案)

2. (1)求椭圆的标准方程; (2)若直线 l: y kx m (k , m R) 与椭圆 C 相交于 A,B 两点,且 kOA kOB 求证:△ AOB 的面积为定值;
3. 4
3 (1)若数列{an}是首项为 1,公差为 的等差数列,求 S66; 2 (2)若 Sn= ,求证:数列{an}是等差数列. a1+ an+1 n
3 x ,x≤a , 13.设函数 f ( x ) 2 若存在实数 b ,使得函数 y f ( x ) bx 恰有 2 个零点,则实数 x ,x a.
2. 已知复数 z a 3i ( i 为虚数单位, a 0 ) ,若 z 2 是纯虚数,则 a 的值为 3. 从某校高三年级随机抽取一个班,对该班 45 名学生的高校招生体检表中视力情况进行统 计,其结果的频率分布直方图如右图.若某 高校 A 专业对视力的要求在 0.9 以上,则该 班学生中能报 A 专业的人数为 ▲ .
1.00 0.75 0.50 0.25 1.75
a 的取值范围是


频率 组距
14.在△ABC 中,已知 sinA=13sinBsinC,cosA=13cosBcosC,则 tanA+tanB+tanC 的值 为 ▲ .
二、解答题:本大题共 6 小题,共 90 分.请在答题卡指定区域 内作答. 解答时应写出文字 ....... 说明、证明过程或演算步骤. 15.(本小题满分 14 分)
B
数学 II(附加题)
21. 【选做题】本题包括 A,B,C,D 四小题,请选定其中 两题 作答 ,每小题 10 分,共计 20 分, ..... .. .. 解答时应写出文字说明,证明过程或演算步骤. A.选修 4—1:几何证明选讲 自圆 O 外一点 P 引圆的一条切线 PA,切点为 A,M 为 PA 的中点, 过点 M 引圆 O 的割线交该圆于 B、C 两点,且∠BMP=100°, ∠BPC=40°,求∠MPB 的大小.

江苏省海安高级中学2019届高三上学期第二次月考数学试题及答案解析

江苏省海安高级中学2019届高三上学期第二次月考数学试题及答案解析

江苏省海安高级中学2019届高三上学期第二次月考数学试题一、填空题(本大题共14小题,共70.0分)1. 已知集合 , ,则 ______.2. 复数 的共轭复数在复平面内对应的点位于第______象限.3. 为了解某一段公路汽车通过时的车速情况,现随机抽测了通过这段公路的200辆汽车的时速,所得数据均在区间 中,其频率分布直方图如图所示,则在抽测的200辆汽车中,时速在区间 内的汽车有______辆4. 袋中装有5个大小相同的球,其中3个黑球,2个白球,从中一次摸出2个球,则摸出1个黑球和1个白球的概率等于______.5. 在一次知识竞赛中,抽取5名选手,答对的题数分布情况如表,则这组样本的方差为______.6. 如图所示的算法流程图中,最后输出值为______.7. 已知m ,n 是两条不同的直线, , 是两个不同的平面.若 , ,则 ,若 , , ,则 ;若 , , ,则 ;若 , , ,则 .上述命题中为真命题的是______ 填写所有真命题的序号 .8. 公元五世纪张丘建所著《张丘建算经》卷22题为:“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈,问日益几何” 题目的意思是:有个女子善于织布,一天比一天织得快 每天增加的数量相同 ,已知第一天织布5尺,一个月 天 共织布9匹3丈,则该女子每天织尺布的增加量为______尺匹 丈,1丈 尺9. 若 ,则 ______.10. 如图,已知O 为矩形ABCD 内的一点,且 ,, ,则______. 11. 已知关于x 的方程 在 上有三个相异实根,则实数a 的取值范围是______.12. 已知 , ,且 ,则 的最小值等于______.13. 如图,已知 ,B 为AC 的中点,分别以AB ,AC 为直径在AC 的同侧作半圆,M ,N 分别为两半圆上的动点 不含端点A,B,,且,则的最大值为______.14.若关于x的不等式对任意的实数及任意的实数恒成立,则实数a的取值范围是______.二、解答题(本大题共6小题,共90.0分)15.已知内接于单位圆,且,求角C求面积的最大值.16.如图,在四面体ABCD中,,点E是BC的中点,点F在线段AC上,且.若平面ABD,求实数的值;求证:平面平面AED.17.如图,长方形材料ABCD中,已知,点P为材料ABCD内部一点,于E,于F,且,现要在长方形材料ABCD中裁剪出四边形材料AMPN,满足,点M,N分别在边AB,AD上.设,试将四边形材料AMPN的面积S表示为的函数,并指明的取值范围;试确定点N在AD上的位置,使得四边形材料AMPN的面积S最小,并求出其最小值.18.已知椭圆E:,直线l不过原点O且不平行于坐标轴,l与E有两个交点A,B,线段AB的中点为M.若,点K在椭圆E上,、分别为椭圆的两个焦点,求的范围;证明:直线OM的斜率与l的斜率的乘积为定值;若l过点,射线OM与椭圆E交于点P,四边形OAPB能否为平行四边形?若能,求此时直线l斜率;若不能,说明理由.。

江苏省海安高级中学2019届高三上学期12月月考数学试题

江苏省海安高级中学2019届高三上学期12月月考数学试题

高三年级阶段测试(三)数学试卷一.填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.)1.设全集.若集合,,则.【答案】【解析】因为,所以考点:集合运算2.已知复数满足,则_____________.【答案】【解析】分析:设,代入,由复数相等的条件列式求得的值得答案.详解:由,得,设,由得,即,解得,所以,则.点睛:本题考查复数代数形式的乘除运算,考查了复数相等的条件以及复数模的求法,是基础题,着重考查了考生的推理与运算能力.3.执行如图所示的程序框图,输出的s值为_______.【答案】【解析】【分析】直接模拟运行程序即得解.【详解】s=1-,k=2,s=,k=3,输出s=.故答案为:【点睛】本题主要考查程序框图,意在考查学生对这些知识的掌握水平和分析推理能力. 4.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是_______.【答案】【解析】【分析】利用列举法先求出不超过30的所有素数,利用古典概型的概率公式进行计算即可.【详解】在不超过30的素数中有,2,3,5,7,11,13,17,19,23,29共10个,从中选2个不同的数有45种,和等于30的有(7,23),(11,19),(13,17),共3种,则对应的概率P,故答案为:【点睛】本题主要考查古典概型的概率和组合数的计算,意在考查学生对这些知识的掌握水平和分析推理能力.5.已知双曲线的离心率为,则该双曲线的渐近线方程为__________.【答案】【解析】试题分析:由题意,则,而双曲线的渐近线方程为,因此方法为.考点:双曲线的性质.6.在中,,,,则__________.【答案】【解析】试题分析:考点:正余弦定理解三角形7.方程的解为.【答案】【解析】设,则考点:解指对数不等式8.若圆锥的侧面积与过轴的截面面积之比为,则其母线与轴的夹角的大小为.【答案】【解析】由题意得:母线与轴的夹角为考点:圆锥轴截面【名师点睛】掌握对应几何体的侧面积,轴截面面积计算方法.如圆柱的侧面积,圆柱的表面积,圆锥的侧面积,圆锥的表面积,球体的表面积,圆锥轴截面为等腰三角形.视频9.若,则【答案】【解析】试题分析:∵,∴,∵,∴,∴,∴,故答案为.考点:三角恒更变化.视频10.已知数列和,其中,,的项是互不相等的正整数,若对于任意,的第项等于的第项,则________【答案】2【解析】由,若对于任意的第项等于的第项,则,则所以,所以.11.设函数,若无最大值,则实数的取值范围是__.【答案】【解析】【分析】若f(x)无最大值,则,或,解得答案.【详解】f′(x),令f′(x)=0,则x=±1,若f(x)无最大值,则,或,解得:a∈(﹣∞,﹣1).故答案为:【点睛】本题主要考查导数和分段函数的最值,意在考查学生对这些知识的掌握水平和分析推理能力.12.在锐角三角形中,,为边上的点,与的面积分别为和.过作于,于,则.【答案】【解析】由题意得:,又,因为DEAF四点共圆,因此考点:向量数量积,解三角形13.已知圆O:,定点,过点A的直线l与圆O相较于B,C两点,两点B,C 均在x轴上方,若OC平分,则直线l的斜率为________.【答案】【解析】由角平分线的定义知,设出点B(x1,y1),由此求出点C的坐标,代入圆的方程求出x1,y1,得出点B的坐标,从而求出直线l的斜率k AB.【详解】由OC平分∠AOB知,,设点B(x1,y1),点C(x,y),则,即(x﹣x1,y﹣y1)(3﹣x,﹣y),由向量相等解得x,y y1;又1, ①x2+y21,∴,②;由①②解得x1,y1=±,∴点B(,);∴直线l的斜率为k AB.故答案为:.【点睛】本题考查了角平分线定理与直线和圆的方程应用问题,是中档题.14.已知正实数a,b满足,则的最小值是_______.【答案】【解析】由=2a++,代换后利用基本不等式即可求解.【详解】正实数a,b满足2a+b=3,∴2a+b+2=5,则=2a++=2a+b+2+﹣4=1+=1+()[2a+(b+2)]=1+(4+)=,当且仅当且2a+b=3即a=,b=时取等号,即的最小值是.故答案为:【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误二.解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.如图,在四棱锥P−ABCD中,底面ABCD为平行四边形,平面PAD⊥平面ABCD,PA=PD,E,F 分别为AD,PB的中点.(1)求证:PE⊥BC;(2)求证:EF∥平面PCD.【答案】(1)详见解析;(2)详见解析.【解析】(1)先证明平面PE⊥BC即得证.(2) 取中点,连接.证明,再证明EF∥平面PCD.【详解】(1)∵,且为的中点,∴.∵平面平面,平面平面,∴平面.∵面,∴PE⊥BC.(2)如图,取中点,连接.∵分别为和的中点,∴,且.∵四边形为平行四边形,且为的中点,∴,∴,且,∴四边形为平行四边形,∴.又平面,平面,∴平面.【点睛】本题主要考查空间位置关系的证明,意在考查学生对这些知识的掌握水平和空间想象分析推理能力.16.已知函数="4tan" xsin()cos().(Ⅰ)求f(x)的定义域与最小正周期;(Ⅱ)讨论f(x)在区间[]上的单调性.【答案】(Ⅰ),;(Ⅱ)在区间上单调递增, 在区间上单调递减.【解析】试题分析:(Ⅰ)先利用诱导公式、两角差余弦公式、二倍角公式将函数化为基本三角函数:,再根据正弦函数的性质求定义域、最小正周期;(Ⅱ)根据(Ⅰ)的结论,研究函数f(x)在区间[]上单调性.试题解析:(Ⅰ)的定义域为..所以,的最小正周期(Ⅱ)令函数的单调递增区间是由,得设,易知.所以, 当时,在区间上单调递增,在区间上单调递减.【考点】三角函数性质,诱导公式、两角差余弦公式、二倍角公式【名师点睛】三角函数是以角为自变量的函数,因此解三角函数题,首先从角进行分析,善于用已知角表示所求角,即注重角的变换.角的变换涉及诱导公式、同角三角函数基本关系式、两角和与差的正、余弦公式、二倍角公式、辅助角公式等,选用恰当的公式,是解决三角问题的关键,明确角的范围,开方时正负取舍是解题正确的保证. 对于三角函数来说,常常是先化为y=Asin(ωx+φ)+k的形式,再利用三角函数的性质求解.三角恒等变换要坚持结构同化原则,即尽可能地化为同角函数、同名函数、同次函数等,其中切化弦也是同化思想的体现;降次是一种三角变换的常用技巧,要灵活运用降次公式.视频17.在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市A(看做一点)的东偏南角方向,300 km的海面P处,并以20km / h的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60 km,并以10km / h的速度不断增大.(1)问10小时后,该台风是否开始侵袭城市A,并说明理由;(2)城市A受到该台风侵袭的持续时间为多久?【答案】(1)否;(2)小时.【解析】【分析】建立直角坐标系,则城市A(0,0),当前台风中心,设t小时后台风中心P 的坐标为(x,y),由题意建立方程组,能求出10小时后,该台风还没有开始侵袭城市A.(2)t小时后台风侵袭的范围可视为以为圆心,60+10t为半径的圆,由此利用圆的性质能求出结果.【详解】(1)如图建立直角坐标系,则城市,当前台风中心,设t小时后台风中心P的坐标为,则,此时台风的半径为,10小时后,km,台风的半径为160km,因为,故10小时后,该台风还没有开始侵袭城市A.(2)因此,t小时后台风侵袭的范围可视为以为圆心,为半径的圆,若城市A受到台风侵袭,则,即,解得答:该城市受台风侵袭的持续时间为12小时.【点睛】本题考查圆的性质在生产生活中的实际应用,是中档题,解题时要认真审题,注意挖掘题意中的隐含条件,合理地建立方程.18.已知椭圆的离心率为,焦距为.斜率为k的直线l与椭圆M有两个不同的交点A,B.(Ⅰ)求椭圆M的方程;(Ⅱ)若,求的最大值;(Ⅲ)设,直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点共线,求k.【答案】(Ⅰ)(Ⅱ)(Ⅲ)【解析】分析:(1)根据题干可得的方程组,求解的值,代入可得椭圆方程;(2)设直线方程为,联立,消整理得,利用根与系数关系及弦长公式表示出,求其最值;(3)联立直线与椭圆方程,根据韦达定理写出两根关系,结合三点共线,利用共线向量基本定理得出等量关系,可求斜率.详解:(Ⅰ)由题意得,所以,又,所以,所以,所以椭圆的标准方程为.(Ⅱ)设直线的方程为,由消去可得,则,即,设,,则,,则,易得当时,,故的最大值为.(Ⅲ)设,,,,则①,②,又,所以可设,直线的方程为,由消去可得,则,即,又,代入①式可得,所以,所以,同理可得.故,,因为三点共线,所以,将点的坐标代入化简可得,即.点睛:本题主要考查椭圆与直线的位置关系,第一问只要找到三者之间的关系即可求解;第二问主要考查学生对于韦达定理及弦长公式的运用,可将弦长公式变形为,再将根与系数关系代入求解;第三问考查椭圆与向量的综合知识,关键在于能够将三点共线转化为向量关系,再利用共线向量基本定理建立等量关系求解.19. (本小题满分14分)已知数列与满足:,,且.(Ⅰ)求的值;(Ⅱ)设,证明:是等比数列;(Ⅲ)设证明:.【答案】(Ⅰ)【解析】参考标准答案.本小题主要等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析能力和解决问题的能力及分类讨论的思想方法.视频20.已知函数,.(1)求在点P(1,)处的切线方程;(2)若关于x的不等式有且仅有三个整数解,求实数t的取值范围;(3)若存在两个正实数,满足,求证:.【答案】(1);(2);(3)见解析.【解析】【分析】(1)求出P(1,0),x>0,,f′(1)=1,利用导数的几何意义能求出f(x)在点P(1,f(1))处的切线方程.(2)求出,x>0,则f′(x)=0,得x=e,列表讨论能求出实数t的取值范围.(3)h(x)=x2﹣2x+4lnx,从而(x1+x2)2﹣2(x1+x2)﹣4lnx1x2,令t=x1x2,=t2+2t﹣4lnt,(t>0),…(11分)则=2t+2﹣=,由此利用导数性质能证明x1+x2≥3.【详解】(1),,所以点坐标为;又,,则切线方程为,所以函数在点处的切线方程为.(2)由,得;时,或,满足条件的整数解有无数个,舍;时,,得且,满足条件的整数解有无数个,舍;时,或,当时,无整数解;当时,不等式有且仅有三个整数解,又,,因为在递增,在递减;所以,即,即;所以实数的取值范围为.(3),因为,所以,即,令,,则,当时,,所以函数在上单调递减;当时,,所以函数在上单调递增.所以函数在时,取得最小值,最小值为3.因为存在两个正实数,满足,所以,即,所以或.因为为正实数,所以.【点睛】本题考查函数的切线方程的求法,考查实数取值范围的求法,考查不等式的证明,考查导数的几何意义、导数性质、函数的单调性、最值等基础知识,考查运算求解能力,是难题.。

江苏省2019年高三上学期数学(理)第二次月考试题

江苏省2019年高三上学期数学(理)第二次月考试题

........6)的最小正周期为8.若实数x,y满足⎨y≤3,则x2+y2的取值范围是▲.⎪3x+4y≥12,第一学期第二次月考试卷高三数学(理科)一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上.1.若复数(a-2i)(1+3i)(i是虚数单位)是纯虚数,则实数a的值为▲.2.函数f(x)=sin(4x+π▲.3.已知等差数列{a}满足a+a+a+a+a=10,a2-a2=36,则a的值为▲.n1357982114.为了了解某学校男生的身体发育情况,随机抽查了该校100名男生的体重情况,整理所得数据并画出样本的频率分布直方图.根据此图估计该校2000名男生中体重在70~78(kg)的人数为▲.(第4题)(第5题)5.运行如图所示的流程图,输出的结果是▲.6.将一个半径为1的小铁球与一个底面周长为2π,高为4的铁制圆柱重新锻造成一个大铁球,则该大铁球的表面积为▲.7.连续2次抛掷一颗质地均匀的骰子(六个面上分别标有数字1,2,3,4,5,6的正方体),观察向上的点数,则事件“点数之积是3的倍数”的概率为▲.⎧x≤4,⎪⎩9.已知圆C与圆x2+y2+10x+10y=0相切于原点,且过点A(0,6),则圆C的标准方程为▲.10.在平面直角坐标系xOy中,若双曲线x2y2-a2b2=1(a>0,b>0)的渐近线与圆x2+y2-6y+5=0没有交点,则双曲线离心率的取值范围是▲.▲ n }满足:ak 2k3B11. 如图,在由 5 个边长为1 ,一个顶角为 60 的菱形组成的图形中,CAB ⋅ CD = ▲ .DA第 11 题12. 在△ABC 中,角 A ,B ,C 所对的边分别为 a ,b ,c ,且 a 不是最大边,已知a 2-b 2=2bc sin A ,则 2tan A -3tan B 的最小值为________13. 已知数列 {a1= 3 , a = 2an n -1- 3 (-1)n (n ≥ 2).若 a , a , a 成等差数列,1k , k ∈ N* ,k < k ,则 k - k =▲ .2 3233214. 已知 f (x ) = (x - 1)e x - e ln x , g (x ) = - x 3 +3 2x 2+ a ,若存在 x ∈ (0, +∞)及唯一正1整数 x ,使得 f (x ) = g (x 212) ,则实数 a 的取值范围是 ▲ .二、 解答题:本大题共 6 小题,计 90 分.解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分 14 分)如图,在直三棱柱 ABC-A 1B 1C 1 中,D ,E 分别为 AB ,AC 的中点.(1) 证明:B 1C 1∥平面 A 1DE ;(2) 若平面 A 1DE ⊥平面 ABB 1A 1,证明:AB ⊥DE.16.(本小题满分14分))cos B=b cos C;在∆ABC中,角A,B,C的对边分别为a,b,c,且满足(2a-c(1)求角B的大小;),n=(4k,1)(k>1),且m⋅n的最大值是5,求k的值.(2)设m=(sin A,cos2A317.(本小题满分 14 分)如图,某小区内有两条相互垂直的道路l 和 l ,以l 、 l 所在的直线为坐标轴建系,平面12 1 2直角坐标系 xOy 的第一象限有一块空地 O AB ,其边界OAB 是函数 y = f (x )的图像,前一段曲线 OA 是函数 y = k x 图像的一部分,后一段 AB 是一条线段.测得 A 到 l 的距离为 8 米,到 l 的12距离为 16 米,OB 长为 20 米. y(1) 求函数 y = f (x )的解析式;A(2) 现要在此地建一个社区活动中心,平面l2PQ图形为梯形 OPQB (其中 PQ , OB 为两x底边).问:梯形的高为多少米时,该Ol1B社区活动中心的占地面积最大,并求出最大面积.18.(本小题满分 16 分)如图,在平面直角坐标系 xOy 中,已知椭圆x 2 y 2 1+ = 1(a > b > 0) 的离心率为 ,且过a 2b 2 2点(1, ). F 为椭圆的右焦点, A , B 为椭圆上关于原点2对称的两点,连接 AF , BF 分别交椭圆于 C , D 两点.y(1) 求椭圆的标准方程;A(2) 若 AF = 2 F C ,求BF FD的值;OD(3) 设直线 AB , CD 的斜率分别为 k , k ,是否存在F12x实BC数m,使得k2mk,若存在,求出m的值;若不存1在,请说明理由.(2) 设 c = 2a n +2 -a n ,求数列的前 n 项和 S ;(2) 若存在 x ∈ , e ⎪ 使得不等式 f (x )>x 2+m 成立,求实数 m 的取值范围;19.(本小题满分 16 分)在数列 {a }中,已知 a = a = 1, a + a n 1 2 nn +2= λ + 2a , n ∈ N*, λ 为常数.n +1(1) 证明: a , a a 成等差数列;1 4, 5n n(3) 当 λ ≠ 0 时,数列 {a n- 1}中是否存在三项 as +1- 1, a t +1- 1, ap +1- 1 成等比数列, 且 s , t , p 也成等比数列?若存在,求出 s , t , p 的值;若不存在,说明理由.20. (本小题满分 16 分)已知函数 f (x ) = e x , g (x ) = ax + b , a , b ∈ R.(1) 若 g (-1) = 0 ,且函数 g (x )的图象是函数 f (x )图象的一条切线,求实数 a 的值:⎛ 1 ⎫⎝ e ⎭(3) 若对任意实数 a ,函数 F (x )=f (x )-g (x )在 (0, +∞) 上总有零点,求实数 b 的取值范围.⎧⎪x =m + 2t ,xOy 中,直线 l 的参数方程是⎨(t 是参数,m 是常数).以 O⎪⎩y = 2t第一学期第二次月考试卷高三数学(理科)附加题(本部分满分 40 分,考试时间 30 分钟)21. (本小题满分 10 分)⎡ 2 x ⎤已知 x ,y ∈R ,若点 M (1,1)在矩阵 A =⎢ ⎥对应的变换作用下得到点 N(3,5),求矩阵 A⎣ 3 y ⎦的逆矩阵 A -1.22 (本小题满分 10 分)在平面直角坐标系22为极点,x 轴正半轴为极轴建立极坐标系,曲线 C 的极坐标方程为 ρ =6cos θ .(1) 求直线 l 的普通方程和曲线 C 的直角坐标方程;(2) 若直线 l 与曲线 C 相交于 P ,Q 两点,且 PQ =2,求实数 m 的值.23.(本题满分10分)如图,在三棱锥A-BCD中,已知∆ABD,∆BCD都是边长为2的等边三角形,E为BD中点,且AE⊥平面BCD,F为线段AB上一动点,记BFBA=λ.(1)当λ=13时,求异面直线DF与BC所成角的余弦值;(2)当CF与平面ACD所成角的正弦值为1510时,求λ的值.AF DE CB24.(本小题满分10分)某学生参加4门学科的学业水平测试,每门得A等级的概率都是14,该学生各学科等级成绩彼此独立,规定:有一门学科获A等级加1分,有两门学科获A等级加2分,有三门学科获A等级加3分,四门学科全获A等级加5分,记ξ1表示该生的加分数,ξ2表示该生获A等级的学科门数与未获A等级学科门数的差的绝对值。

江苏省海安高级中学2019届高三阶段测试数学试卷

江苏省海安高级中学2019届高三阶段测试数学试卷

海安高级中学2019届高三阶段测试数学试卷一.填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.)1.设全集U =R ,若集合{}{}1234|23A B x x ==,,,,≤≤,则U A B =ð .{}14, 2.已知复数z 满足30z z+=,则||z = .3.执行如图所示的程序框图,输出的s 值为 .564.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 .1155.双曲线22221(00)x y a b a b-=>>,的离心率为线方程为. y =6.在ABC △中,4a =,5b =,6c =,则sin 2sin AC= .1 7.方程()()1122log 95log 322x x ---=-+的解为 .28.若圆锥的侧面积与过轴的截面积面积之比为2π,则其母线与轴的夹角的大小为 . 3π9.若12cos cos sin sin sin 2sin 223x y x y x y +=+=,,则()sin x y += .2310.已知数列{}n a 和{}n b ,其中2()n a n n *=∈N ,{}n b 的项是互不相等的正整数,若对于任意n *∈N ,数列{}n b 中的第n a 项等于{}n a 中的第n b 项,则149161234lg()lg()b b b b b b b b = .211.设函数()332x x x af x x x a ⎧-=⎨->⎩,≤,,若()f x 无最大值,则实数a 的取值范围是 .1a <-12.在锐角ABC ∆中,1tan 2A =,D 为BC 边上的一点,ABD △与ACD △面积分别为2和4,过D 作DE AB ⊥于E ,DF AC ⊥于F ,则DE DF ⋅= .1615-13. 已知圆O :221x y +=,定点()30A ,,过点A 的直线l 与圆O 相较于B ,C 两点,两点B ,C 均在x 轴上方,若OC 平分AOB ∠,则直线l 的斜率为.14.已知正实数a ,b 满足23a b +=,则222122a b a b +-++的最小值是 .135二.解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.如图,在四棱锥P−ABCD 中,底面ABCD 为平行四边形,平面P AD ⊥平面ABCD ,P A =PD ,E ,F 分别为AD ,PB 的中点.(1)求证:PE ⊥BC ; (2)求证:EF ∥平面PCD .【解析】(1)∵PA PD =,且E 为AD 的中点,∴PE AD ⊥.∵平面PAD ⊥平面ABCD ,平面PAD I 平面ABCD AD =, ∴PE ⊥平面ABCD .∵BC ⊂面ABCD ,∴PE ⊥BC .(2)如图,取PC 中点G ,连接,FG GD .∵,F G 分别为PB 和PC 的中点,∴FG BC ∥,且12FG BC =. ∵四边形ABCD 为平行四边形,且E 为AD 的中点, ∴1,2ED BC DE BC =∥, ∴ED FG ∥,且ED FG =,∴四边形EFGD 为平行四边形, ∴EF GD ∥.又EF ⊄平面PCD ,GD ⊂平面PCD , ∴EF ∥平面PCD .16.已知函数f (x )=4tan sin cos 23x x x ππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭(1)求f (x )的定义域与最小正周期;(2)讨论f (x )在区间44ππ⎡⎤-⎢⎥⎣⎦,上的单调性.【解析】(1)()f x 的定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭. ()4tan cos cos 4sin cos 33f x x x x x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭21=4sin cos 2sin cos 2x x x x x x ⎛⎫+=+- ⎪ ⎪⎝⎭)=sin 21-cos 2sin 22=2sin 23x x x x x π⎛⎫+=- ⎪⎝⎭.所以, ()f x 的最小正周期2.2T ππ== (2)由222232k x k πππππ-+≤-≤+,得5,.1212k x k k Z ππππ-+≤≤+∈ 设5,,,441212A B x k x k k Z ππππππ⎧⎫⎡⎤=-=-+≤≤+∈⎨⎬⎢⎥⎣⎦⎩⎭,易知,124A B ππ⎡⎤=-⎢⎥⎣⎦.所以, 当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 在区间,124ππ⎡⎤-⎢⎥⎣⎦上单调递增, 在区间412ππ⎡⎤--⎢⎥⎣⎦,上单调递减.17.在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市A (看做一点)的东偏南θ角方向cos θ⎛= ⎝⎭,300 km 的海面P 处,并以20km / h 的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60 km ,并以10km / h 的速度不断增大.(1) 问10小时后,该台风是否开始侵袭城市A ,并说明理由; (2) 城市A 受到该台风侵袭的持续时间为多久? 【解析】(1)如图建立直角坐标系,则城市()00A ,,当前台风中心(P -,设t 小时后台风中心P 的坐标为(),x y ,则302102x y ⎧=⎪⎨=-⎪⎩,此时台风的半径为6010t +,10小时后,184.4PA ≈km ,台风的半径为=r 160km ,因为r PA <,故10小时后,该台风还没有开始侵袭城市A . (2)因此,t 小时后台风侵袭的范围可视为以()P -为圆心,6010t +为半径的圆,若城市A 受到台风侵袭,则()6010t + 210800864000300t t -+⇒≤,即2362880t t -+≤,解得1224t ≤≤ 答:该城市受台风侵袭的持续时间为12小时.18.已知椭圆2222:1(0)x y M a b a b+=>>斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B .(1)求椭圆M 的方程; (2)若1k =,求AB 的最大值;(3)设(20)P -,,直线P A 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71()44Q -,共线,求k .【解析】(1)由题意得2c=,所以c =又c e a ==,所以a =2221b a c =-=, 所以椭圆M 的标准方程为2213x y +=.(2)设直线AB 的方程为y x m =+,由2213y x m x y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232m x x +=-,212334m x x -=,则12|||AB x x =-==易得当20m =时,max ||AB ,故||AB. (3)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,则221133x y += ①,222233x y += ②,又(2,0)P -,所以可设1112PA y k k x ==+,直线PA 的方程为1(2)y k x =+, 由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222111(13)121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+, 所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+-,4471(,)44QD x y =+-, 因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=,将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =.19.已知数列{}n a 与{}n b 满足:1123(1)02nn n n n n n b a a b a b ++++-++==,,*n ∈N ,且 1224a a ==,.(1)求345a a a ,,的值;(2)设*2121n n n c a a n -+=+∈N ,,证明:{}n c 是等比数列; (3)设*242k k S a a a k =++⋅⋅⋅+∈N ,,证明:4*17()6nk k kS n a =<∈∑N . 【解析】(1)解:由3(1)2nn b +-=,*n ∈N ,可得12n n b n ⎧=⎨⎩,为奇数,为偶数又1120n n n n n b a a b a +++++=,123123234434541202432205320 4.n a a a a a a n a a a a n a a a a =++====-=++==-=++==当时,,由,,可得;当时,,可得;当时,,可得(2)证明:对任意*,n N ∈2122120,n n n a a a -+++= ① 2212220,n n n a a a ++++= ② 21222320,n n n a a a +++++=③ ②—③,得223.n n a a +=④将④代入①,可得21232121()n n n n a a a a ++-++=-+ 即*1()n n c c n N +=-∈又1131,0,n c a a =+=-≠故c 因此11,{}n n nc c c +=-所以是等比数列. (3)证明:由(2)可得2121(1)kk k a a -++=-,于是,对任意*2k k ∈N 且≥,有 133********()11(1)() 1.k k k a a a a a a a a --+=--+=-+=--+=-,,,将以上各式相加,得121(1)(1),kk a a k -+-=-- 即121(1)(1)k k a k +-=-+,此式当k =1时也成立.由④式得12(1)(3).k k a k +=-+从而22468424()()(),k k k S a a a a a a k -=++++++=-2124 3.k k k S S a k -=-=+所以,对任意*2n n ∈N ,≥, 44342414114342414()nnk m m m mk m k m m m m S S S S S a a a a a ---==---=+++∑∑12221232()2222123nm m m m mm m m m =+-+=--++++∑ 123()2(21)(22)(22)nm m m m m ==++++∑2253232(21)(22)(23)nm m m n n ==++⨯+++∑ 21533(21)(21)(22)(23)n m m m n n =<++-+++∑ 151111113[()()()]3235572121(22)(23)n n n n =+⋅-+-++-+-+++ 1551336221(22)(23)7.6n n n =+-⋅++++<对于n =1,不等式显然成立. 所以,对任意*,n N ∈2121212212n nn nS S S S a a a a --++++ 32121241234212()()()n nn nS S S S S S a a a a a a --=++++++ 22211121(1)(1)(1)41244(41)4(41)n nn =--+--++----- 22211121()()()41244(41)44(41)n n n n n =-+-+--+-- 111().4123n n -+=-≤20.已知函数ln ()xf x x=,2()2g x x x =-. (1)求()f x 在点P (1,()1f )处的切线方程;(2)若关于x 的不等式2()()0f x tf x +>有且仅有三个整数解,求实数t 的取值范围; (3)若()()4()h x g x xf x =+存在两个正实数1x ,2x 满足221212()()0h x h x x x +-=,求证:123x x +≥.【解析】(1),,所以点坐标为; 又,,则切线方程为, 所以函数在点处的切线方程为.(2)由, 得;① 时,或,满足条件的整数解有无数个,舍;② 时,,得且,满足条件的整数解有无数个,舍; ③ 时,或,当时,无整数解; 当时,不等式有且仅有三个整数解,又,, 因为在递增,在递减;所以, 即,即;所以实数的取值范围为. (3),因为,所以, 即,令,, 则, 当时,,所以函数在上单调递减; 当时,,所以函数在上单调递增. 所以函数在时,取得最小值,最小值为3.因为存在两个正实数,满足,所以,即,所以或. 因为为正实数,所以.ln ()xf x x=(1)0=f P (1,0)21ln '()xf x x -='(1)1=f 01-=-y x ()f x (1,(1))P f 10--=x y 21ln '()(0)-=>xf x x 2()()0f x tf x +>()[()]0+>f x f x t 0t >()0f x >()f x t <-0t =()0f x ≠0x >1x ≠0t <()0f x <()f x t >-()0f x <()f x t >-ln3(3)3f =ln 2(2)(4)2f f ==ln5(5)5f =()f x (0,)e (,)e +∞(5)(4)f t f ≤-<ln5ln 252t ≤-<ln 2ln525t -<≤-t ln 2ln525t -<≤-2()24ln =-+h x x x x 221212()()0+-=h x h x x x 22221112221224ln 24ln 0x x x x x x x x -++-+-=2221212121212()2()24ln x x x x x x x x x x +-+=+-12t x x =2()24ln (0)t t t t t ϕ=+->2(1)(2)4()22(0)t t t t t ttϕ-+'=+-=>(0,1)t ∈()0t ϕ'<2()24ln (0)t t t t t ϕ=+->(0,1)(1,)t ∈+∞()0t ϕ'>2()24ln (0)t t t t t ϕ=+->(1,)+∞2()24ln (0)t t t t t ϕ=+->1t =12,x x 221212()()0+-=h x h x x x 21212()2()3x x x x +-+≥21212()2()30x x x x +-+-≥123x x +≥121x x +-≤12,x x 123x x +≥(附加题)21.(B )已知矩阵13a M b ⎡⎤=⎢⎥⎣⎦的一个特征值λ1=-1及对应的特征向量11⎡⎤=⎢⎥-⎣⎦e ,求矩阵M 的逆矩阵.【解析】由题知, - = -- =-1· - = - ⇒ - - , - ,所以a=2,b=2,M=.det(M )==1×2-2×3=-4,所以M -1= --.21.(C )在直角坐标系xOy 中,曲线C 的参数方程为2cos 4sin x θy θ=⎧⎨=⎩,(θ为参数),直线l 的参数方程为1cos 2sin x t αy t α=+⎧⎨=+⎩,(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(12),,求l 的斜率.【解析】(1)曲线C 的直角坐标方程为221416x y +=. 当cos 0α≠时,l 的直角坐标方程为tan 2tan y x αα=⋅+-, 当cos 0α=时,l 的直角坐标方程为1x =.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程22(13cos )4(2cos sin )80t t ααα+++-=.①因为曲线C 截直线l 所得线段的中点(12),在C 内,所以①有两个解,设为1t ,2t ,则120t t +=.又由①得1224(2cos sin )13cos t t ααα++=-+,故2c o s s i n 0αα+=,于是直线l 的斜率tan 2k α==-. 22.如图,在平面直角坐标系xOy 中,点F (1,0),直线x=-1与动直线y=n 的交点为M ,线段MF 的中垂线与动直线y=n 的交点为P . (1)求动点P 的轨迹E 的方程;(2)过动点M 作曲线E 的两条切线,切点分别为A ,B ,求证:∠AMB 的大小为定值.【解析】(1) 因为直线y=n 与x=-1垂直,所以MP 为点P 到直线x=-1的距离. 连接PF ,因为P 为线段MF 的中垂线与直线y=n 的交点,所以MP=PF . 所以点P 的轨迹是抛物线, 焦点为F (1,0),准线为x=-1. 所以轨迹E 的方程为y 2=4x.(2) 由题意,过点M (-1,n )的切线斜率存在,设切线方程为y -n=k (x+1), 联立, ,得ky 2-4y+4k+4n=0,所以Δ1=16-4k (4k+4n )=0, 即k 2+nk -1=0,(*)因为Δ2=n 2+4>0,所以方程(*)存在两个不相等的实数根,设为k 1,k 2, 因为k 1·k 2=-1,所以∠AMB=90°,为定值.23.设M k 是第k 行中的最大数,其中1≤k ≤n ,k ∈N *,记M 1<M 2<…<M n 的概率为P n . (1)求P 2的值;(2)求证:P n >()211n C n ++!.【解析】(1) 由题意知P 2== ,即P 2的值为. (2) 先排第n 行,则最大数在第n 行的概率为=;去掉第n 行已经排好的n 个数,则余下的 - n= -个数中最大数在第n -1行的概率为 - -= ;… 故P n = ··…·= - · ·…· =.由于2n =(1+1)n = + + +…+ ≥ + + > + = ,所以>,即P n >.。

海安县高级中学2018-2019学年高三上学期11月月考数学试卷含答案

海安县高级中学2018-2019学年高三上学期11月月考数学试卷含答案

海安县高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知函数关于直线对称 , 且,则的最小值为()sin f x a x x =-6x π=-12()()4f x f x ⋅=-12x x +A 、 B 、C 、D 、6π3π56π23π2. 设m 、n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m ⊥α,n ∥α,则m ⊥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ;③若m ⊥α,n ⊥α,则m ∥n ;④若α⊥β,m ⊥β,则m ∥α;其中正确命题的序号是()A .①②③④B .①②③C .②④D .①③3. 极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点,则|PQ|的最小值为( )A .1B .C .D .24. 给出函数,如下表,则的值域为()()f x ()g x (())f g xA .B .C .D .以上情况都有可能{}4,2{}1,3{}1,2,3,45. 某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为( )1111]A .B .C .D .105120306. 下列函数中,在区间(0,+∞)上为增函数的是( )A .y=x ﹣1B .y=()x C .y=x+D .y=ln (x+1)7. 设a >0,b >0,若是5a 与5b 的等比中项,则+的最小值为( )A .8B .4C .1D .8. 在正方体中, 分别为的中点,则下列直线中与直线 EF相交1111ABCD A B C D -,E F 1,BC BB 的是()A .直线B .直线C. 直线D .直线1AA 11A B 11A D 11B C 9. 把“二进制”数101101(2)化为“八进制”数是()A .40(8)B .45(8)C .50(8)D .55(8)10.已知函数f (x )=,则的值为()A .B .C .﹣2D .3班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________11.以下四个命题中,真命题的是( )A .2,2x R x x ∃∈≤- B .“对任意的,”的否定是“存在,x R ∈210x x ++>0x R ∈20010x x ++< C .,函数都不是偶函数R θ∀∈()sin(2)f x x θ=+ D .已知,表示两条不同的直线,,表示不同的平面,并且,,则“”是m n αβm α⊥n β⊂αβ⊥ “”的必要不充分条件//m n 【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.12.已知α,β为锐角△ABC 的两个内角,x ∈R ,f (x )=()|x ﹣2|+()|x ﹣2|,则关于x 的不等式f (2x ﹣1)﹣f (x+1)>0的解集为( )A .(﹣∞,)∪(2,+∞)B .(,2)C .(﹣∞,﹣)∪(2,+∞)D .(﹣,2)二、填空题13.定义在[1,+∞)上的函数f (x )满足:(1)f (2x )=2f (x );(2)当2≤x ≤4时,f (x )=1﹣|x ﹣3|,则集合S={x|f (x )=f (34)}中的最小元素是 . 14.若数列{a n }满足:存在正整数T ,对于任意的正整数n ,都有a n+T =a n 成立,则称数列{a n }为周期为T 的周期数列.已知数列{a n }满足:a1>=m (m >a ),a n+1=,现给出以下三个命题:①若 m=,则a 5=2;②若 a 3=3,则m 可以取3个不同的值;③若 m=,则数列{a n }是周期为5的周期数列.其中正确命题的序号是 . 15.在中,有等式:①;②;③;④ABC ∆sin sin a A b B =sin sin a B b A =cos cos a B b A =.其中恒成立的等式序号为_________.sin sin sin a b cA B C+=+16.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为 .17.已知,,则的值为.1sin cos 3αα+=(0,)απ∈sin cos 7sin 12ααπ-18.如图:直三棱柱ABC ﹣A ′B ′C ′的体积为V ,点P 、Q 分别在侧棱AA ′和CC ′上,AP=C ′Q ,则四棱锥B ﹣APQC 的体积为 .三、解答题19.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的极坐标方程为,以极点为原点, 极轴为轴正半轴,建立直角坐标系.C 4sin()3πρθ=-x xOy (1)求曲线的直角坐标方程;C(2)若点在曲线上,点的直角坐标是(其中P C Q (cos ,sin )ϕϕ)ϕ∈R 20.(本小题满分16分)在互联网时代,网校培训已经成为青年学习的一种趋势,假设某网校的套题每日的销售量()h x (单位:千套)与销售价格(单位:元/套)满足的关系式()()()h x f x g x =+(37x <<,m 为常数),其中()f x 与()3x -成反比,()g x 与()7x -的平方成正比,已知销售价格为5元/套时,每日可售出套题21千套,销售价格为3.5元/套时,每日可售出套题69千套.(1) 求()h x 的表达式;(2) 假设网校的员工工资,办公等所有开销折合为每套题3元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数)21.已知等差数列满足:=2,且,成等比数列。

江苏省海安高级中学高三月月考数学试题含答案

江苏省海安高级中学高三月月考数学试题含答案

阶段性测试(三)数学Ⅰ参考公式:样本数据1x ,2x ,…,n x 的方差2211()ni i s x x n ==-∑,其中11ni i x x n ==∑.锥体的体积13V Sh =,其中S 为底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1. 设全集U ={1,2,3,4,5}.若U A =ð{1,2,5},则集合A = ▲ . 2. 已知复数z 满足(z 2)i 1i -=+(i 为虚数单位),则复数z 的实部是 ▲ .3. 已知样本数据1234a a a a ,,,的方差为2,则数据123421212121a a a a ++++,,,的方差为 ▲ . 4. 右图是一个算法的伪代码,其输出的结果为 ▲ .5. 从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,则该三位数为奇数的概率为 ▲ .6. 在平面直角坐标系xOy 中,若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为10,则双曲线C 的渐近线方程为 ▲ .7. 将函数f (x )的图象向右平移π6个单位后得到函数()π4sin 23y x =-的图象,则()π4f 的值为 ▲ .8. 设定义在R 上的奇函数()f x 在区间[0 )+∞,上是单调减函数,且2(3)f x x -(2)f +0>,则实数x 的取值范围是 ▲ .9. 在锐角三角形ABC 中,若3sin 5A =,1tan()3A B -=-,则3tan C 的值为 ▲ .10. 设S n 为数列{}n a 的前n 项和.若S n =na n -3n (n -1)(n ∈N *),且211a =,则S 20的值为 ▲ . 11. 设正实数x ,y 满足x yxy x y+=-,则实数x 的最小值为 ▲ . 12. 如图,正四棱柱1111ABCD A B C D -的体积为27,点E ,F(第4题)CA 1分别为棱1B B ,1C C 上的点(异于端点),且//EF BC , 则四棱锥1A AEFD -的体积为 ▲ .13.已知向量a ,b ,c 满足++=0a b c ,且a 与b 的夹角的正切为12-,b 与c 的夹角的正切为13-,2=b ,则⋅a c 的值为 ▲ .14.已知()()()23f x m x m x m =-++,()22x g x =-,若同时满足条件:①x ∀∈R ,()0f x <或()0g x <;②()4x ∃∈-∞-,,()()0f x g x ⋅<,则实数m 的取值范围是 ▲ .二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)已知△ABC的面积为()18AC AB CB ?=u u u r u u u ru u u r,向量(tan tan sin 2)A B C =+,m 和(1cos cos )A B =,n 是共线向量.(1)求角C 的大小; (2)求△ABC 的三边长.16.(本题满分14分)如图,在四棱锥P -ABCD 中,已知底面ABCD 为矩形,且 AB =2,BC =1,E ,F 分别是AB ,PC 的中点,PA ⊥DE . (1)求证:EF ∥平面PAD ; (2)求证:平面PAC ⊥平面PDE .17.(本题满分14分)如图,OM ,ON 是某景区的两条道路(宽度忽略不计,OM 为东西方向),Q 为景区内一景点,A 为道路OM 上一游客休息区.已知tan ∠MON =-3,OA =6(百米),Q 到直线OM ,ON 的距离分别为3(百米),6105(百米).现新修一条自A 经过Q 的有轨观光直路并延伸至道路ON 于点B ,并在B 处修建一游客休息区. (1)求有轨观光直路AB 的长;(2)已知在景点Q 的正北方6 百米的P 处有一大型组合音乐喷泉,喷泉表演一次的时长为9分(第16题)AOBPQMN(第17题)钟.表演时,喷泉喷洒区域以P 为圆心,r 为半径变化,且t 分钟时,r =百米)(0≤t ≤9,0<a <1).当喷泉表演开始时,一观光车S (大小忽略不计)正从休息区B 沿(1)中的轨道BA 以2(百米/分钟)的速度开往休息区A ,问:观光车在行驶途中是否会被喷泉喷洒到,并说明理由.18.(本题满分16分)在平面直角坐标系xOy 中,已知椭圆E :22221(0)x y a b a b+=>>过点(1,(1)求椭圆E 的标准方程;(2)若A ,B 分别是椭圆E 的左,右顶点,动点M 满足MB AB ⊥,且MA 交椭圆E 于点P .①求证:OP OM ⋅u u u r u u u u r为定值;②设PB 与以PM 为直径的圆的另一交点为Q ,求证:直线MQ 经过定点.19.(本题满分16分)已知数列{}n a 满足:123a a a k ===(常数k >0),112n n n n k a a a a -+-+=(n ≥3,*n ∈N ).数列{}n b 满足:21n n n n a a b a +++=(*n ∈N ). (1)求b 1,b 2的值; (2)求数列{}n b 的通项公式;(3)是否存在k ,使得数列{}n a 的每一项均为整数? 若存在,求出k 的所有可能值;若不存在,请说明理由.20.(本题满分16分)设函数f (x )=(x -a )ln x -x +a ,a ∈R . (1)若a =0,求函数f (x )的单调区间;(2)若a <0,且函数f (x )在区间()22e e -,内有两个极值点,求实数a 的取值范围; (3)求证:对任意的正数a ,都存在实数t ,满足:对任意的x ∈(t ,t +a ), f (x )<a -1.数学Ⅰ一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上.........1. 【答案】{3,5}2. 【答案】33. 【答案】84. 【答案】1011 5. 【答案】356. 【答案】y =±3x7. 【答案】48. 【答案】(1,2)9. 【答案】79 10. 【答案】1 24011. 【答案1 12. 【答案】9 13.【答案】4514.【答案】()42--,二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)解:(1)因为向量(tan tan sin 2)A B C =+,m 和(1cos cos )A B =,n 是共线向量,所以()cos cos tan tan sin 20A B A B C +-=, ……2分 即sin A cos B +cos A sin B -2sin C cos C =0,化简得sin C -2sin C cos C =0,即sin C (1-2cos C )=0. ……4分 因为0πC <<,所以sin C >0,从而1cos 2C =,π.3C = ……6分(2)()()218AC AB CB AC BC BA AC =?=?=u u u r u u u r u u u r u u u r u u u ru u u r u u u r ,于是AC =. ……8分因为△ABC 的面积为1sin 2CA CB C ?,即1πsin 23CB ,解得CB = …… 11分 在△ABC 中,由余弦定理得((2222212cos 254.2AB CA CB CA CB C=+-?+-创所以AB = …… 14分16.(本题满分14分)证明:(1)取PD 中点G ,连AG ,FG , 因为F ,G 分别为PC ,PD 的中点,所以FG ∥CD ,且FG =12C D . ……2分又因为E 为AB 中点,所以AE //CD ,且AE =12C D . ……4分所以AE //FG ,AE =FG .故四边形AEFG 为平行四边形. 所以EF //AG ,又EF ⊄平面PAD ,AG ⊂平面PAD ,故EF //平面PA D . ……6分(2)设AC ∩DE =H ,由△AEH ∽△CDH 及E 为AB 中点得AG CG =AE CD =12,又因为AB =2,BC =1,所以AC =3,AG =13AC =33. 所以AG AE =AB AC =23,又∠BAD 为公共角,所以△GAE ∽△BA C .所以∠AGE =∠ABC =90︒,即DE ⊥A C . ……10分 又DE ⊥PA ,PA ∩AC =A ,所以DE ⊥平面PA C . ……12分 又DE ⊂平面PDE ,所以平面PAC ⊥平面PDE . ……14分17.(本题满分14分)解:(1)以点O 为坐标原点,直线OM 为x 轴,建立平面直角坐标系,如图所示.则由题设得:A (6,0),直线ON 的方程为()()003 30y x Q x x =->,,.,解得03x =,所以()3 3Q ,. ……2分 故直线AQ 的方程为()6y x =--,由360y x x y =-⎧⎨+-=⎩,得39x y =-⎧⎨=⎩,,即()3 9B -,,故AB == …… 5分答:水上旅游线AB 的长为. ……6分 (2)将喷泉记为圆P ,由题意可得P (3,9),生成t 分钟时,观光车在线段AB 上的点C 处, 则BC =2t ,0≤t ≤9,所以C (-3+t ,9-t ).若喷泉不会洒到观光车上,则PC 2>r 2对t ∈[0,9]恒成立,即PC 2=(6-t )2+t 2=2t 2-12t +36>4at , ……10分 当t =0时,上式成立,当t ∈(0,9]时,2a <t +18t -6,(t +18t -6)min =62-6,当且仅当t =32时取等号, 因为a ∈(0,1),所以r <PC 恒成立,即喷泉的水流不会洒到观光车上.……13分 答:喷泉的水流不会洒到观光车上. ……14分18.解:(1)设椭圆焦距为2c,所以223121 a b c a ⎧⎪+=⎪⎨⎪⎪⎩,且222c a b =-,解得224 2 a b ⎧=⎪⎨=⎪⎩,,所以椭圆E 的方程为22142x y +=; ……4分(2)设0(2 )M y ,,11( )P x y ,, ①易得直线MA 的方程为:0042y yy x =+, 代入椭圆22142x y +=得,()2222000140822y y y x x +++-=, 由()201204828y x y --=+得,()20120288y x y --=+,从而012088y y y =+, ……8分所以()20002200288 (2 )88y y OP OM y y y --⎛⎫⋅=⋅ ⎪++⎝⎭u u u r u u u u r ,, ()22002200488488y y y y --=+=++. ……10分 ②直线MQ 过定点(0 0)O ,,理由如下:依题意,()020200208822828PB y y k y y y +==----+,由MQ PB ⊥得,02MQ y k =, 则MQ 的方程为:00(2)2y y y x -=-,即02yy x =, 所以直线MQ 过定点(0 0)O ,. ……16分 19.(本题满分16分)解:(1)由已知得,41a k =+, 所以1312=2a a b a +=,2423121a a k k kb a k k ++++===. ……2分 (2)由条件可知:()1213n n n n a a k a a n +--=+≥,①所以()21+12n n n n a a k a a n +-=+≥.② ……4分 ①-②得122111n n n n n n n n a a a a a a a a +-+--+-=-. 即:121121n n n n n n n n a a a a a a a a +-+-+-+=+.因此:2211n n n nn n a a a a a a +-+-++=, ……6分故()23n n b b n -=≥,又因为12b =,221k b k+=,所以221n n b k n k⎧⎪=⎨+⎪⎩,为奇数,为偶数. ……8分(3)假设存在k ,使得数列{}n a 的每一项均为整数,则k 为正整数. ……10分由(2)知21221222122(123)21n n n n n n a a a n k a a a k +-++=-⎧⎪=⎨+=-⎪⎩L ,,③ 由162Z 4Z a k a k k=∈=++∈,,所以k =1或2, ……12分检验:当1k =时,312=+kk 为整数, 利用123Z a a a ∈,,结合③,{a n }各项均为整数; ……14分 当2k =时③变为21221222122(123)52n n n n n n a a a n a a a +-++=-⎧⎪=⎨=-⎪⎩L ,, 消去2121n n a a +-,得:222223(2)n n n a a a n +-=-≥ 由24Z a a ∈,,所以偶数项均为整数,而2221252n n n a a a ++=-,所以21n a +为偶数,故12a k ==,故数列{}n a 是整数列. 综上所述,k 的取值集合是{}12,. ……16分 20.(本题满分16分)解:(1)当a =0时,f (x )=x ln x -x ,f’(x )=ln x ,令f’(x )=0,x =1,列表分析x (0,1) 1 (1,+∞)f’(x ) - 0 + f (x ) 单调递减单调递增故f (x )的单调递减区间为(0,1),单调递增区间为(1,+∞). ……3分(2)f (x )=(x -a )ln x -x +a ,f’(x )=ln x -ax ,其中x >0,令g (x )=x ln x -a ,分析g (x )的零点情况.g ’(x )=ln x +1,令g ’(x )=0,x =1e ,列表分析g (x )min =g (1e )=-1e -a , ……5分而f’(1e )=ln 1e -a e =-1-a e ,()2e f -'=-2-a e 2=-(2+a e 2),f’(e 2)=2-a e 2=1e 2(2e 2-a ),①若a ≤-1e ,则f’(x )=ln x -ax ≥0, 故f (x )在()22e e -,内没有极值点,舍;②若-1e <a <-2e 2,则f’(1e )=ln 1e -a e <0,f’(e -2)=-(2+a e 2)>0,f’(e 2)=1e 2(2e 2-a )>0,因此f’(x )在()22e e -,有两个零点,设为1x ,2x ,所以当()21e x x -∈,时,f (x )单调递增,当()12x x x ∈,时,f (x )单调递减, 当()22e x x ∈,时,f (x )单调递增,此时f (x )在()22e e -,内有两个极值点;③若-2e 2≤a <0,则f’(1e )=ln 1e -a e <0,f’(e -2)=-(2+a e 2)≤0, f’(e 2)=1e 2(2e 2-a )>0,因此f’(x )在()22e e -,有一个零点,f (x )在()22e e -,内有一个极值点;综上所述,实数a 的取值范围为(-1e ,-2e 2). ……10分 (3)存在1t =:x ∈(1,1+a ),f (x )<a -1恒成立. ……11分 证明如下:由(2)得g (x )在(1e ,+∞)上单调递增, 且g (1)=-a <0,g(1+a )=(1+a )ln(1+a )-a .因为当x >1时,ln x >1-1x (*),所以g(1+a )>(1+a )(1-1a +1)-a =0.故g (x )在(1,1+a )上存在唯一的零点,设为x 0.由知,x ∈(1,1+a ),f (x )<max{f (1),f (1+a )}. ……13分又f (1+a )=ln(1+a )-1,而x >1时,ln x <x -1(**), 所以f (1+a )<(a +1)-1-1=a -1=f (1). 即x ∈(1,1+a ),f (x )<a -1.所以对任意的正数a ,都存在实数t =1,使对任意的x ∈(t ,t +a ),使 f (x )<a -1. ……15分补充证明(*):令F (x )=ln x +1x -1,x ≥1.F ’(x )=1x -1x 2=x -1x 2≥0,所以F (x )在[1,+∞)上单调递增. 所以x >1时,F (x )>F (1)=0,即ln x >1-1x . 补充证明(**)令G (x )=ln x -x +1,x ≥1.G ’(x )=1x -1≤0,所以G (x )在[1,+∞)上单调递减.所以x >1时,G (x )<G (1)=0,即ln x <x -1.……16分数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A . 选修4-2:矩阵与变换【解】由特征值、特征向量定义可知,A 1α1λ=1α,即11111 a b c d ⎡⎤⎡⎤⎡⎤=-⨯⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,得11.a b c d -=-⎧⎨-=⎩, ……5分 同理可得3212328a b c d +=⎧⎨+=⎩,, 解得2321, , , a b c d ====.因此矩阵A 2321 ⎡⎤=⎢⎥⎣⎦. ……10分B .解:因为A ( 1,π3 ),B ( 9,π3),所以线段AB 的中点坐标为(5,π3), ……2分设点P (ρ,θ)为直线l 上任意一点, 在直角三角形OMP 中,ρcos(θ-π3)=5,所以,l 的极坐标方程为ρcos(θ-π3)=5, ……6分令θ=0,得ρ=10,即C (10,0). …… 8分 所以,△ABC 的面积为:12×(9-1)×10×sin π3=203. ……10分C .证明:因为|a +b |≤2,所以|a 2+2a -b 2+2b |=|a +b ||a -b +2| =|a +b ||2a -(a +b )+2| ≤|a +b |(|2a |+|a +b |+2)≤4(|a |+2). ……10分22.解:依题意,以A 为坐标原点,AB ,AD ,AP 分别为x ,y ,z 轴建立空间直角坐标系A -xyz 则B (1,0,0),D (0,2,0),P (0,0,2),因为DC →=λAB →,所以C (λ,2,0), ……2分 (1)从而PC →=(λ,2,-2),BD →=(-1,2, 0), 则cos <PC →,BD →>=PC →·BD →|PC →|·|BD →|=4-λλ2+8×5=1515,解得λ=2;(第22题)(2)易得PC →=(2,2,-2),PD →=(0,2,-2), 设平面PCD 的法向量n =(x ,y ,z ), 则n ·PC →=0,且n ·PD →=0, 即x +y -z =0,且y -z =0, 所以x =0,不妨取y =z =1,则平面PCD 的一个法向量n =(0,1,1), …… 8分 又易得PB →=(1,0,-2),故cos <PB →,n >=PB →·n |PB →|·|n |=-22×5=-105,所以直线PB 与平面PCD 所成角的正弦值为105. ……10分 23.(本小题满分10分)解:(1)S 1=C 11a 1=1,S 2=C 12a 1+C 22a 2=3. ……2分(2)记α=1+52,β=1-52.则S n =15∑n i =1C i n (αi -βi )=15∑n i =0C i n (αi -βi )=15(∑n i =0C i n αi -∑n i =0C i n βi)=15[(1+α)n -(1+β)n ]=15[(3+52)n -(3-52)n ]. ……6分因为(3+52)×(3-52)=1.故S n +2=15{[(3+52)n +1-(3-52)n +1][ (3+52)+(3-52)]-[(3+52)n - (3-52)n]}=3S n +1-S n .所以存在=3λ,使得213n n n S S S +++=恒成立. ……10分。

2019届高三上学期第二次月考数学试题.docx

2019届高三上学期第二次月考数学试题.docx

1.设全集 1/= {0,1,2,3,4},集合A = {1,2,3}, 8 ={2,4},则An (QB )=()A. {0,1,3}B. {1,3}C. {1,2,3}D. {0,1,2,3} 1. B2. 如下图所示,观察四个儿何体,其中判断正确的是()2. [答案]C[解析]图①不是由棱锥截來的,所以①不是棱台;图②上.下两个面不平行,所以②不是所以④是棱柱;很明显③是棱锥.A. 必要而不充分条件B. 充分而不必要条件D.既不充分也不必耍条件4. B5. 设(1 + 2Q(a + i)的实部与虚部相等,其中Q 为实数,贝归=()A. -3B. -2C. 2D. 3 5. 【答案】A6. 下列命题正确的个数是() ®AB + BA = 6;②0 伽=0;③代-AC = BC ;④0-AB = 0A. 1B. 2 C- 3 D. 4 6. A3.已知复数z= 1 ■ . + /,则复数Z 的模|z|=(1-1c. V104. “兀>2”是“〒_4>o”的( 圆台;图④前、后两个面平行,其他面是平行四边形,且每相邻两个川边形的公共边平行,C.充要条件8. A9. 为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁〜18岁的根据上图可得这100名学生中体重在(56.5, 64. 5)的学生人数是(). A. 20 B. 30 C. 40D. 509. C10. C7.有一个几何体的三视图及其尺寸如下图(单位:cm ),体的表面积为()则该几何A. 12n cm 2 侧视图B. 15 n cm 2C. 24 n cm 2D. 36JI cm 2 7.C8.己知九V 满足不等式x-y>0x+y-3>0,则函数z = x + 3y 取得最大值是() x<3A. 12(B) 9 (C) 6 (D) 310.在矩形ABCD 中,0为AC 的中点,A. — (3tz + 2/?)B. 扫亠)C. ^(3a-2b)5俯视冬•— 6-1止视冬男生体重(kg ),得到频率分布直方图如下:体重(kg )(第9题)BC = 3a 、CD = 2b 、则 AO =(11. 下列不等式正确的是()A. %1 2 +1 > —2xB.+ —T =- > 4 (x > 0)C. x + 丄 n 2D. sin x 4 ----------- ' 2 (x H k7r)x sinx11. A12. 已知向量 a,b,满足 Q ・b=0,Q = b=l,贝 ij a-b =() A. 0 B. 1 C. 2 D. V2-12. D.22【解析】由己知有I :-亦=(:-7)2 = : —2打+/ =1 —0+1 = 2,所以\a-b\=y/2-. —2考点:|a|2=Q ,向量的数量积运算.13. 已知直线与平面则下列四个命题中假命题是()• • •14. C15. 答案:C13又••• SbAEF= 4 S, S%R= 4 SA-如果d 丄a"丄那么a//b B. 如果a 丄a.a!!b,那么/?丄a C. 如果d 丄%a 丄伏那么/?//&D. 如果a 丄a.b! !a ,那么a 丄b13. C14.己知样本的平均数为4,方差为 3,则 %] +9,花 +9,X 3 +9^X 4 +9,X 5 +9的平均数和方差分别为(A. 4 和 3B. 4 和 12C. 13 和 3D. 13 和 1215. 在面积为S 的△/!比的内部任収一点P,s则的面积小于㊁的概率为()丄A. 41 B-23 C. 4解析:如图所示,矿为△初C 的中位线.S 当点P 位于四边形砂71内时,氐破的面枳小于N3 S4S 3:./\PBC 的面积小于㊁的概率为7?=~5=4-16、命题 0: VxeR,x 3 4+l>l,则初是 _____________________________________________ 16. Kx G R, %2 4-1 < 117. 设向量a 二(尢 对1), b 二(1,2),且a 丄/?,则尸 ________ ・【答案】3【解析】由题意’讥=0,兀+ 2(兀+1) = 0,・*-彳・18. 已知一个几何体的三视图如图3所示,正视图、俯视图为直角三角形,侧视图是直角梯形,则它的体积等于 _________40 18. —319、一个体枳为8",的正方体的顶点都在球面上,则球的表面积是________________________________________________________________________19. 12/rcm 2 :20. 从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:分组(重量)(80,85) 185,90) 190,95) (95,100) 频数(个)51020153 根据频数分布表计算苹果的重量在[90,95)的频率;4 用分层抽样的方法从重量在[80,85:和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?正视图⑶ 在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率・2020.(1)重量在[90,95)的频率=一=0.4 ;(2)若采用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,则重量在[80,85)的个数=(3)设在[80,85)屮抽収的一个苹果为兀,在[95,100)屮抽取的三个苹果分别为a,b,c ,从抽出的4个苹果中,任取2个共有(x,a),(x,b),(x,c),a/?),(Q,c),0,c)6种情况,其中符合“重量在[80,85)和[95,100)中各有一个”的情况共有(兀卫),(兀“),(兀,c)种;设“抽出的4 个苹果中,任取2个,求重量在[80,85)和[95,100)中各有一个”为事件A,则事件A的概21.如图,在矩形血尬9中,〃〃丄平面力庞;AE=EB=BC二2,尸为必'上的点,且处丄平U ACE.(1)求证:九LL平面〃必;(2)求证:皿〃平而BFD.(3)求三棱锥E-ABF的体积.E21.证明:⑴・・•初丄平面肋E AD//BC・•・BCA_平面ABE,则AEL BC又•・•〃、丄平而彳6K :.AEIBF:.AEV平面磁(2)依题意可知:6■是化的中点,•: BFI平面彳传,:・CEA_BF.又BC=BE, :.F是应'的中点.在△力兀中,连接FG则FG//AE. 又/冈平面BFD, FGu平面BFD, :.AE//平面BED.A.723.D。

江苏省海安高级中学2019届高三上学期12月月考数学试题含答案

江苏省海安高级中学2019届高三上学期12月月考数学试题含答案

2019届高三年级阶段测试(三)数学试卷全卷满分150分,考试时间120分钟。

★祝考试顺利★注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题作答用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试卷和草稿纸上无效。

3.非选择题作答用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。

答在试卷和草稿纸上无效。

考生必须保持答题卡的整洁。

考试结束后,只需上交答题卡 一.填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.)1.设全集U =R ,若集合{}{}1234|23A B x x ==,,,,≤≤,则B C A U . 2.已知复数z 满足30z z+=,则||z = . 3.执行如图所示的程序框图,输出的s 值为 .4.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 .5.双曲线22221(00)x y a b a b-=>>,则其渐近线方程为 .6.在ABC △中,4a =,5b =,6c =,则sin 2sin AC= . 7.方程()()1122log 95log 322x x ---=-+的解为 .8.若圆锥的侧面积与过轴的截面积面积之比为2π,则其母线与轴的夹角的大小为 .9.若12cos cos sin sin sin 2sin 223x y x y x y +=+=,,则()sin x y += .10.已知数列{}n a 和{}n b ,其中2()n a n n *=∈N ,{}n b 的项是互不相等的正整数,若对于任意n *∈N ,数列{}n b 中的第n a 项等于{}n a 中的第n b 项,则149161234lg()lg()b b b b b b b b = .11.设函数()332x x x af x x x a ⎧-=⎨->⎩,≤,,若()f x 无最大值,则实数a 的取值范围是 .12.在锐角ABC ∆中,1tan 2A =,D 为BC 边上的一点,ABD △与ACD △面积分别为2和4,过D 作DE AB ⊥于E ,DF AC ⊥于F ,则DE DF ⋅= .13. 已知圆O :221x y +=,定点()30A ,,过点A 的直线l 与圆O 相较于B ,C 两点,两点B ,C 均在x 轴上方,若OC 平分AOB ∠,则直线l 的斜率为 .14.已知正实数a ,b 满足23a b +=,则222122a b a b +-++的最小值是 . 二.解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.如图,在四棱锥P−ABCD 中,底面ABCD 为平行四边形,平面P AD ⊥平面ABCD ,P A =PD ,E ,F 分别为AD ,PB 的中点.(1)求证:PE ⊥BC ; (2)求证:EF ∥平面PCD .16.已知函数f (x )=4tan sin cos 23x x x ππ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭.(1)求f (x )的定义域与最小正周期; (2)讨论f (x )在区间44ππ⎡⎤-⎢⎥⎣⎦,上的单调性.17.在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市A (看做一点)的东偏南θ角方向cos θ⎛= ⎝⎭,300 km 的海面P 处,并以20km / h 的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60 km ,并以10km / h 的速度不断增大.(1) 问10小时后,该台风是否开始侵袭城市A ,并说明理由; (2) 城市A 受到该台风侵袭的持续时间为多久?18.已知椭圆2222:1(0)x y M a b a b+=>>斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B .(1)求椭圆M 的方程; (2)若1k =,求AB 的最大值;(3)设(20)P -,,直线P A 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71()44Q -,共线,求k .19.已知数列{}n a 与{}n b 满足:1123(1)02nn n n n n n b a a b a b ++++-++==,,*n ∈N ,且 1224a a ==,.(1)求345a a a ,,的值;(2)设*2121n n n c a a n -+=+∈N ,,证明:{}n c 是等比数列; (3)设*242k k S a a a k =++⋅⋅⋅+∈N ,,证明:4*17()6nk k kS n a =<∈∑N .20.已知函数ln ()xf x x=,2()2g x x x =-. (1)求()f x 在点P (1,()1f )处的切线方程;(2)若关于x 的不等式2()()0f x tf x +>有且仅有三个整数解,求实数t 的取值范围;(3)若()()4()h x g x xf x =+存在两个正实数1x ,2x 满足221212()()0h x h x x x +-=,求证:123x x +≥.高三阶段测试数学试卷一.填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.)1..{}14,2.3. 564. 115 5. y = 6. 1 7. 28.3π9. 23 10. 2 11. 1a <- 12. 1615- 13. 14. 135 二.解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.【解析】(1)∵PA PD =,且E 为AD 的中点,∴PE AD ⊥.∵平面PAD ⊥平面ABCD ,平面PAD I 平面ABCD AD =,∴PE ⊥平面ABCD .∵BC ⊂面ABCD ,∴PE ⊥BC .(2)如图,取PC 中点G ,连接,FG GD .∵,F G 分别为PB 和PC 的中点,∴FG BC ∥,且12FG BC =. ∵四边形ABCD 为平行四边形,且E 为AD 的中点, ∴1,2ED BC DE BC =∥, ∴ED FG ∥,且ED FG =,∴四边形EFGD 为平行四边形, ∴EF GD ∥.又EF ⊄平面PCD ,GD ⊂平面PCD ,∴EF ∥平面PCD .16. 【解析】(1)()f x 的定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭. ()4tan cos cos 4sin cos 33f x x x x x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭21=4sin cos 2sin cos 2x x x x x x ⎛⎫-=+ ⎪ ⎪⎝⎭)=sin 21-cos 2sin 22=2sin 23x x x x x π⎛⎫+-=- ⎪⎝⎭.所以, ()f x 的最小正周期2.2T ππ== (2)由222232k x k πππππ-+≤-≤+,得5,.1212k x k k Z ππππ-+≤≤+∈ 设5,,,441212A B x k x k k Z ππππππ⎧⎫⎡⎤=-=-+≤≤+∈⎨⎬⎢⎥⎣⎦⎩⎭,易知,124A B ππ⎡⎤=-⎢⎥⎣⎦.所以, 当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 在区间,124ππ⎡⎤-⎢⎥⎣⎦上单调递增, 在区间412ππ⎡⎤--⎢⎥⎣⎦,上单调递减. 17.【解析】(1)如图建立直角坐标系,则城市()00A ,,当前台风中心(P -,设t 小时后台风中心P 的坐标为(),x y ,则x y ⎧=⎪⎨=-⎪⎩,此时台风的半径为6010t +,10小时后,184.4PA ≈km ,台风的半径为=r 160km , 因为r PA <,故10小时后,该台风还没有开始侵袭城市A . (2)因此,t 小时后台风侵袭的范围可视为以()P -为圆心,6010t +为半径的圆,若城市A 受到台风侵袭,则()6010t +210800864000300t t -+⇒≤,即2362880t t -+≤,解得1224t ≤≤ 答:该城市受台风侵袭的持续时间为12小时. 18.【解析】(1)由题意得2c =c =又3c e a ==,所以a =2221b a c =-=, 所以椭圆M 的标准方程为2213x y +=.(2)设直线AB 的方程为y x m =+,由2213y x m x y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232m x x +=-,212334m x x -=,则12|||2AB x x =-==,易得当20m =时,max ||AB =||AB(3)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y , 则221133x y += ①,222233x y += ②, 又(2,0)P -,所以可设1112PA y k k x ==+,直线PA 的方程为1(2)y k x =+, 由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222111(13)121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+,又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+, 所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+-,4471(,)44QD x y =+-, 因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=,将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =.19.【解析】(1)解:由3(1)2nn b +-=,*n ∈N ,可得12n n b n ⎧=⎨⎩,为奇数,为偶数又1120n n n n n b a a b a +++++=,123123234434541202432205320 4.n a a a a a a n a a a a n a a a a =++====-=++==-=++==当时,,由,,可得;当时,,可得;当时,,可得(2)证明:对任意*,n N ∈2122120,n n n a a a -+++= ① 2212220,n n n a a a ++++= ② 21222320,n n n a a a +++++=③ ②—③,得223.n n a a +=④将④代入①,可得21232121()n n n n a a a a ++-++=-+ 即*1()n n c c n N +=-∈ 又1131,0,n c a a =+=-≠故c 因此11,{}n n nc c c +=-所以是等比数列. (3)证明:由(2)可得2121(1)k k k a a -++=-, 于是,对任意*2k k ∈N 且≥,有133********()11(1)() 1.k k k a a a a a a a a --+=--+=-+=--+=-,,,将以上各式相加,得121(1)(1),k k a a k -+-=-- 即121(1)(1)k k a k +-=-+,此式当k =1时也成立.由④式得12(1)(3).k k a k +=-+ 从而22468424()()(),k k k S a a a a a a k -=++++++=-2124 3.k k k S S a k -=-=+所以,对任意*2n n ∈N ,≥, 44342414114342414()nnk m m m mk m k m m m m S S S S S a a a a a ---==---=+++∑∑ 12221232()2222123nm m m m mm m m m =+-+=--++++∑ 123()2(21)(22)(22)nm m m m m ==++++∑2253232(21)(22)(23)nm m m n n ==++⨯+++∑ 21533(21)(21)(22)(23)n m m m n n =<++-+++∑ 151111113[()()()]3235572121(22)(23)n n n n =+⋅-+-++-+-+++ 1551336221(22)(23)7.6n n n =+-⋅++++<对于n =1,不等式显然成立.所以,对任意*,n N ∈2121212212n nn nS S S S a a a a --++++32121241234212()()()n nn nS S S S S S a a a a a a --=++++++ 22211121(1)(1)(1)41244(41)4(41)n n n=--+--++----- 22211121()()()41244(41)44(41)n n nn n =-+-+--+-- 111().4123n n -+=-≤20.【解析】(1)ln ()xf x x=,(1)0=f ,所以P 点坐标为(1,0); 又21ln '()xf x x-=,'(1)1=f ,则切线方程为01-=-y x , 所以函数()f x 在点(1,(1))P f 处的切线方程为10--=x y . (2)21ln '()(0)-=>xf x x x由2()()0f x tf x +>, 得()[()]0+>f x f x t ;① 0t >时,()0f x >或()f x t <-,满足条件的整数解有无数个,舍; ② 0t =时,()0f x ≠,得0x >且1x ≠,满足条件的整数解有无数个,舍; ③ 0t <时,()0f x <或()f x t >-,当()0f x <时,无整数解; 当()f x t >-时,不等式有且仅有三个整数解,又ln3(3)3f =,ln 2(2)(4)2f f ==,ln5(5)5f = 因为()f x 在(0,)e 递增,在(,)e +∞递减;所以(5)(4)f t f ≤-<,即ln5ln 252t ≤-<,即l n 2l n 525t -<≤-;所以实数t 的取值范围为ln 2ln525t -<≤-. (3)2()24ln =-+h x x x x ,因为221212()()0+-=h x h x x x ,所以22221112221224ln 24ln 0x x x x x x x x -++-+-=, 即2221212121212()2()24ln x x x x x x x x x x +-+=+-,令12t x x =,2()24ln (0)t t t t t ϕ=+->, 则2(1)(2)4()22(0)t t t t t ttϕ-+'=+-=>, 当(0,1)t ∈时,()0t ϕ'<,所以函数2()24ln (0)t t t t t ϕ=+->在(0,1)上单调递减; 当(1,)t ∈+∞时,()0t ϕ'>,所以函数2()24ln (0)t t t t t ϕ=+->在(1,)+∞上单调递增. 所以函数2()24ln (0)t t t t t ϕ=+->在1t =时,取得最小值,最小值为3.因为存在两个正实数12,x x ,满足221212()()0+-=h x h x x x ,所以21212()2()3x x x x +-+≥,即21212()2()30x x x x +-+-≥,所以123x x +≥或121x x +-≤. 因为12,x x 为正实数,所以123x x +≥.(附加题)21.(B )【解析】由题知,==-1·=⇒所以a=2,b=2,M=.det(M )==1×2-2×3=-4,所以M -1=.21.(C )【解析】(1)曲线C 的直角坐标方程为221416x y +=. 当cos 0α≠时,l 的直角坐标方程为tan 2tan y x αα=⋅+-, 当cos 0α=时,l 的直角坐标方程为1x =.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程22(13cos )4(2cos sin )80t t ααα+++-=.①第 11 页 共 11 页 因为曲线C 截直线l 所得线段的中点(12),在C 内,所以①有两个解,设为1t ,2t ,则120t t +=. 又由①得1224(2cos sin )13cos t t ααα++=-+,故2cos sin 0αα+=,于是直线l 的斜率tan 2k α==-. 22.【解析】(1) 因为直线y=n 与x=-1垂直,所以MP 为点P 到直线x=-1的距离. 连接PF ,因为P 为线段MF 的中垂线与直线y=n 的交点,所以MP=PF . 所以点P 的轨迹是抛物线,焦点为F (1,0),准线为x=-1.所以轨迹E 的方程为y 2=4x. (2) 由题意,过点M (-1,n )的切线斜率存在,设切线方程为y -n=k (x+1), 联立 得ky 2-4y+4k+4n=0,所以Δ1=16-4k (4k+4n )=0,即k 2+nk -1=0,(*)因为Δ2=n 2+4>0,所以方程(*)存在两个不相等的实数根,设为k 1,k 2, 因为k 1·k 2=-1,所以∠AMB=90°,为定值.23. 【解析】(1) 由题意知P 2==,即P 2的值为.(2) 先排第n 行,则最大数在第n 行的概率为=;去掉第n 行已经排好的n 个数, 则余下的 - n=个数中最大数在第n -1行的概率为=;…故P n =··…·==.由于2n =(1+1)n =+++…+≥++>+=, 所以>,即P n >.。

江苏海安高级中学2019高三12月检测试题-数学

江苏海安高级中学2019高三12月检测试题-数学

江苏海安高级中学2019高三12月检测试题-数学【一】填空题:〔本大题共14小题,每题5分,共70分、请将答案填在答题卡相应的位置........上.〕 1、 复数2i1iz =-〔i 为虚数单位〕的实部是 ▲ 、【答案】—1 2、 集合{}3,2a A =,{},B a b =,假设{}2AB =,那么AB = ▲ 、【答案】{1,2,3} 3、 等比数列{}n a 的各项都为正数,它的前三项依次为1,a +1,2a +5,那么数列{}n a 的通项公式n a = ▲ 、【答案】13n -4、 假设()ππ,42θ∈,且1sin 216θ=,那么cos sin θθ-的值是 ▲ 、【答案】5、 设,,a b c 是单位向量,且=+a b c ,那么向量a,b 的夹角等于 ▲ 、【答案】3π 6、 假设函数ln 26y x x =+-的零点为0x ,那么满足0k x ≤的最大整数k = ▲ 、【答案】27、 定义在R 上的可导函数()y f x =满足()()5f x f x +=-,()()250x f x '->、错误!未找到引用源。

12x x <,那么“()()12f x f x >”是“125x x +<”错误!未找到引用源。

的 ▲ 条件. 【答案】充分必要8、 函数()32f x x ax bx c =+++的图象过点A 〔2,1〕,且在点A 处的切线方程2x —y + a = 0,那么a + b + c = ▲ 、【答案】09、 在平面直角坐标系中,两条平行直线的横截距相差20,纵截距相差15,那么这两条平行直线间的距离为 ▲ 、【答案】1210、半径为4的球面上有A 、B 、C 、D 四点,且满足AB ⊥AC ,AC ⊥AD ,AD ⊥AB ,那么ABC S ∆+ACD ADB S S ∆∆+的最大值为〔S 为三角形的面积〕 ▲ 、【答案】32 11、(A ,O 是原点,点P 的坐标为〔x ,y 〕满足条件0200y x y -≤-+≥⎨⎪≥⎪⎩,那么||OA OP z OP ⋅=的取值范围是 ▲ 、【答案】[]3,3-12、假设对任意[],1,2x y ∈,x y =2,总有不等式2—x ≥4a y -成立,那么实数a 的取值范围是▲ 、【答案】a ≤0①“k =1”是“函数22cos sin y kx kx =-的最小正周期为π”的充要条件;②函数()πsin 26y x =-的图像沿x 轴向右平移π6个单位所得的图像的函数表达式是cos2y x =;③函数()2lg 21y ax ax =-+的定义域为R ,那么实数a 的取值范围是〔0,1〕;④设O 是△ABC 内部一点,且2OA OB OC ++=0,那么△AOB 和△AOC 的面积之比为1:2; 其中真命题的序号是▲、〔写出所有真命题的序号〕【答案】④14、定义在R 上的函数满足()()()1(0)0,11,()52x f f x f x f f x =+-==,且当1201x x ≤<≤时,()()12f x f x ≤,那么1()2012f =▲、【答案】132 【二】解答题:〔本大题共6小题,共计90分,请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤〕 15、〔本大题总分值14分〕如图,A 、B 是海面上位于东西方向相距(53+海里的两个观测点,现位于A 点北偏东45,B 点北偏西60的D 点有一艘轮船发出求救信号,位于B 点南偏西60且与B 点相距C 点救援船马上前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间? 【答案】由题意知AB =(53+海里,906030DBA ∠=-=,904545DAB ∠=-=,∴()1804530105ADB ∠=-+=、在ABD ∆中,由正弦定理得:sin sin DB AB DAB ADB =∠∠,∴(53sin 45sin sin sin105AB DAB DB ADB⋅⋅∠===∠又()30906060DBC DBA ABC ∠=∠+∠=+-=,BC = 在DBC ∆中,由余弦定理得:22212cos 300120029002CD BD BC BD BC DBC =+-⋅⋅∠=+-⨯=∴30CD =〔海里〕∴需要的时间30130t ==〔小时〕故救援船到达D 点需要1小时、16、〔本大题总分值14分〕如图,,,M N K 分别是正方体1111ABCD A B C D -的棱11,,AB CD C D 的中点、 〔1〕求证:AN //平面1A MK ; 〔2〕求证:平面11A B C ⊥平面1A MK 、 【答案】〔1〕证明:连结NK . 在正方体1111ABCD A B C D -中, 四边形1111,AA D D DD C C 都为正方形,1111//,,AA DD AA DD ∴= 1111//,.C D CD C D CD =,N K 分别为11,CD C D 的中点,11//,.DN D K DN D K ∴=1DD KN ∴为平行四边形. 11/,.KN DD KN DD ∴= 11//,.AA KN AA KN ∴=1AA KN ∴为平行四边形.1//.AN A K ∴ 1A K ⊂平面1,A MK AN ⊄平面1A MK ,//AN ∴平面1.A MK〔2〕连结1.BC在正方体1111ABCD A B C D -中,1111//,.AB C D AB C D =,M K 分别11,AB C D 中点,11//,.BM C K BM C K ∴=∴四边形1BC KM 为平行四边形.1//.MK BC ∴在正方体1111ABCD A B C D -中,11A B ⊥平面111,BB C C BC ⊂平面11,BB C C111.A B BC ∴⊥D 1A 1B 1C 1KNCBA M DD 1A 1B 1KND111//,.MK BC A B MK ∴⊥11BB C C 为正方形,11.BC B C ∴1.MK B C ⊥ 11A B ⊂平面111,A B C B C ⊂平面111111,,A B C A B B C B =MK ∴⊥平面11.A B CMK ⊂平面1,A MK ∴平面1A MK ⊥平面11.A B C17、〔本大题总分值14分〕如图:在平面直角坐标系中,锐角α和钝角β的终边分别与单位圆交于A 、B 两点、 〔1〕假设A 、B 两点的纵坐标分别为45、1213,求()cos βα-的值;〔2〕点(C -,求函数()f OA OC α=⋅的值域、 【答案】〔1〕依照三角函数的定义,得4sin 5α=,12sin 13β=、 又α是锐角,因此3cos 5α=、由12sin 13β=;因为β是钝角,因此5cos 13β=-、因此5312433c o s ()c o s c o ss i n s i n ()13513565βαβαβα-=+=-⨯+⨯=、 〔2〕由题意可知,(c o s s i n)O A αα=,,(O C 、 因此()3s i nc o s 2s i n ()6f O A O C παααα=⋅=-=-, 因为02πα<<,因此663πππα-<-<,1s i n ()26a π-<-从而1()f α-<,因此函数()f O A O C α=⋅的值域为(1-、 18、〔本大题总分值16分〕O 为平面直角坐标系的原点,过点()2,0M -的直线l 与圆221x y +=交于P 、Q 两点、〔1〕假设12OP OQ ⋅=-,求直线l 的方程;〔2〕假设OMP ∆与OPQ ∆的面积相等,求直线l 的斜率、 【答案】〔1〕依题意,直线l 的斜率存在,因为直线l 过点(2,0)M -,可设直线l :(2)y k x =+、因为Q P ,两点在圆221x y +=上,因此1OP OQ ==,因为12OP OQ ⋅=-,因此1cos 2OP OQ OP OQ POQ ⋅=⋅⋅∠=-. 因此120POQ ︒∠=因此O 到直线l的距离等于12、12=,得15k =±.因此直线l 的方程为20x +=或20x ++=、 〔2〕因为OMP ∆与OPQ ∆的面积相等,因此2MQ MP =,设11(,)P x y ,22(,)Q x y ,因此22(2,)MQ x y =+,11(2,)MP x y =+、 因此⎩⎨⎧=+=+,12122),2(22y y x x 即⎩⎨⎧=+=.12122),1(2y y x x 〔*〕因为P ,Q 两点在圆上,因此⎩⎨⎧=+=+.1,122222121y x y x 把〔*〕代入得⎩⎨⎧=++=+.14)1(4,121212121y x y x 因此11788x y ⎧=-⎪⎪⎨⎪=±⎪⎩, 故直线l 的斜率9MP k k ==±,即9k =±、 19、〔本大题总分值16分〕函数()()322152f x x k k x x =--++-,()221g x k x kx =++,其中k ∈R 、 〔1〕设函数()()()p x f x g x =+,假设()p x 在区间〔0,3〕是单调函数,求k 的取值范围;〔2〕设函数()()(),0,0g x x q x f x x ⎧≥⎪=⎨<⎪⎩,是否存在实数k ,对任意给定的非零实数1x ,存在惟一的非零实数()221x x x ≠,使得()()21q x q x ''=成立?假设存在,求k 的值;假设不存在,请说明理由、【答案】〔1〕因32()()()(1)(5)1P x f x g x x k x k =+=+-++- ()232(1)(5)p x x k x k '=+-++,∵()p x 在区间(0,3)上单调..恒成立或00≤'≥'∴)()(x P x P)523()12()523()12(22+--≤++--≥+x x x k x x x k 或即恒成立01230>+∴∈x x ),( ∴125231252322++--≤++--≥x x x k x x x k 或恒成立 设()()2325391*********x x F x x x x -+⎡⎤=-=-++-⎢⎥++⎣⎦ 令21,t x =+有()1,7t ∈,记9(),h t t t=+由函数()h t 的图像可知,()h t 在(]1,3上单调递减,在[)3,7上单调递增,∴()[)6,10h t ∈,因此],()(25--∈x F ∴5,2-≤-≥k k 或 〔2〕当0x <时有()()2232(1)5q x f x x k k x ''==--++;当0x >时有()()22q x g x k x k''==+,因为当0k =时不合题意,因此0k ≠,……8分下面讨论0k ≠的情形,记}|)({},|)({00<'=>'=x x f B x x g A 求得A (,)k =+∞,B=()5,+∞〔ⅰ〕当10x >时,()q x '在()0,+∞上单调递增,因此要使()()21q x q x ''=成立,只能20x <且A B ⊆,因此有5k ≥〔ⅱ〕当10x <时,()q x '在()0,+∞上单调递减,因此要使()()21q x q x ''=成立,只能20x >且A B ⊆,因此5k ≤综合〔ⅰ〕〔ⅱ〕5k =当5k =时A=B ,那么()110,x q x B A'∀<∈=,即20,x ∃>使得()()21q x q x ''=成立,因为()q x '在()0,+∞上单调递增,因此2x 的值是唯一的;…13分同理,10x ∀<,即存在唯一的非零实数221()x x x ≠,要使()()21q x q x ''=成立,因此5k =满足题意.20、〔本大题总分值16分〕设集合W 由满足以下两个条件的数列{}n a 构成:①212n n n a a a +++<;②存在实数M ,使n a M ≤〔n 为正整数〕、 〔1〕在只有5项的有限数列{}n a ,{}n b 中,其中123451,2,3,4,5a a a a a =====; 123451,4,5,4,1b b b b b =====;试判断数列{}n a ,{}n b 是否为集合W 的元素;〔2〕设{}n c 是各项为正的等比数列,n S 是其前n 项和,314c =,374S =,证明:数列{}n S W ∈;并写出M 的取值范围;〔3〕设数列{}n d W ∈,且对满足条件的M 的最小值0M ,都有()*0n d M n ≠∈N 、求证:数列{}n d 单调递增、 【答案】〔1〕关于数列{}n a ,取13222a a a +==,显然不满足集合W 的条件,① 故{}n a 不是集合W 中的元素, 关于数列{}nb ,当{1,2,3,4,5}n ∈时,不仅有13232b b b +=<,24342b bb +=<,33432b b b +=<,而且有5n b ≤,显然满足集合W 的条件①②, 故{}n b 是集合W 中的元素、〔2〕∵{}n c 是各项为正数的等比数列,n S 是其前n 项和,3317,,44c S ==设其公比为0q >, ∴333274c c c q q ++=,整理得2610q q --=、 ∴12q =,∴1111,2n n c c -==,1122n n S -=-关于*n ∀∈N ,有222111222222n n n n n n S S S ++++=--<-=,且2n S <,故{}n S W ∈,且[)2,M ∈+∞〔3〕证明:〔反证〕假设数列{}n d 非单调递增,那么一定存在正整数k , 使1k k d d +≥,易证于任意的n k ≥,都有1k k d d +≥,证明如下: 假设()n m m k =≥时,1k k d d +≥当1n m =+时,由212m m m d d d +++<,212m m m d d d ++<-、而12111(2)0m m m m m m m d d d d d d d +++++->--=-≥ 因此12,m m d d ++>因此关于任意的n k ≥,都有1m m d d +≥、 显然12,,,k d d d 这k 项中有一定存在一个最大值,不妨记为0n d ;因此0*()n n d d n ∈N ≥,从而00n d M =与这题矛盾、 因此假设不成立,故命题得证、。

江苏省海安高级中学高三数学月考试题

江苏省海安高级中学高三数学月考试题

lg( b1b4b9b16 ) lg( b1b2 b3 b4 )
.
x3 3x ,x ≤ a
11.设函数 f x
,若 f x 无最大值,则实数 a 的取值范围是

2x ,x a
12.在锐角
ABC 中, tan A
1
, D 为 BC 边上的一点, △ ABD 与 △ ACD 面积分别为 2 和 4,过 D
an 1 bn 1an 2
0,bn
3 ( 1)n ,n
2
*
N ,且
a1 2,a2 4 .
( 1)求 a3 ,a4 ,a5 的值;
( 2)设 cn a2n 1 a2n 1 ,n N * ,证明: cn 是等比数列;
( 3)设 Sk a2 a4
a2k ,k
N* ,证明:
S 4n k
a k 1 k
7 (n
(3)设 A(x1, y1) , B(x2, y2 ) , C (x3, y3 ) , D ( x4 , y4) , 则 x12 3 y12 3 ①, x22 3 y22 3 ②,
又 P( 2,0) ,所以可设 k1 kPA
y1 ,直线 PA 的方程为 y x1 2
k1( x 2) ,
y k1( x 2)
1n
5
3
3 m 2 (2 m 1)(2 m 1) (2 n 2)(2 n 3)
15 11 11
[(
)(
)
32 35 57
1
1
3
(
)]
2n 1 2n 1 (2 n 2)(2 n 3)
155 1
3
3 6 2 2n 1 (2n 2)(2 n 3)
16.已知函数 f ( x) =4 tan xsin

江苏省海安高级中学高三数学上学期第二次月考试题

江苏省海安高级中学高三数学上学期第二次月考试题

江苏省海安高级中学2019届高三数学上学期第二次月考试题说明:1. 以下题目的答案请全部填写在答卷纸上; 2. 本卷总分160分,考试时间120分钟. 方差公式2222121[()()()]n s x x x x x x n =-+-++-,其中121()n x x x x n=+++.一、填空题:本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上......... 1.已知集合{02}A x x =<<,{1}B x x =>,则A B = ▲ . 2.复数(1)z i i =-的共轭复数在复平面内对应的点位于第 ▲ 象限. 3.为了解某一段公路汽车通过时的车速情况,现随机抽测了通过这段公路的200辆汽车的时速,所得数据均在区间[40,80]中,其频率分布直方图如图所示,则在抽测的200辆汽车中,时速在区间[40,60]内的汽车有 ▲ 辆.4.袋中装有5个大小相同的球,其中3个黑球,2个白球,从中一次摸出2个球,则摸出1个黑球和1个白球的概率等于 ▲ .5.在一次知识竞赛中,抽取5名选手,答对的题数分布情况如下表,则这组样本的方差为 ▲ .6.如右图所示的算法流程图中,最后输出值为 ▲ .7.已知m ,n 是两条不同的直线,α,β是两个不同的平面. ①若m α⊂,m β⊥,则αβ⊥; ②若m α⊂,n αβ=,αβ⊥,则m n ⊥;③若m α⊂,n β⊂,//αβ,则//m n ; ④若//αm ,m β⊂,n αβ=,则//m n . 上述命题中为真命题的是 ▲ .(填写所有真命题的序号).8.公元五世纪张丘建所著《张丘建算经》卷22题为:“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈,问日益几何”.题目的意思是:有个女子善于织布,一天比一天织得快(每天增加的数量相同),已知第一天织布5尺,一个月(30天)共织布9匹3丈,答对题数 4 8 9 10 人数分布1121第6题图(第3题图)(第5题表)则该女子每天织尺布的增加量为 ▲ 尺.(1匹=4丈,1丈=10尺) 9.若cos 2cos()4ααπ=+,则tan()8απ+= ▲ .10.如图,已知O 为矩形ABCD 内的一点,且2OA =,4OC =,5AC =,则OB OD ⋅= ▲ .11.已知关于x 的方程()1x x a -=在(2,)-+∞上有三个相异实根,则实数a 的取值范围是 ▲ . 12.已知0,0a b >>,且111a b +=,则32ba b a++的最小值等于 ▲ . 13.如图,已知8=AC ,B 为AC 的中点,分别以 AB,AC 为直径在AC 的同侧作半圆, M,N 分别为两半圆上的动点(不含端点A B C ,,),且BM BN ⊥,则⋅AM CN 的最大值为 ▲ .14.若关于x 的不等式323+0x x ax b -+<对任意的实数[1,3]x ∈及任意的实数[2,4]b ∈恒成立,则实数a 的取值范围是 ▲ .二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.已知△ABC 内接于单位圆(半径为1个单位长度的圆),且(1tan )(1tan )2A B ++=.(1)求角C 的大小; (2)求△ABC 面积的最大值.16.如图,在四面体ABCD 中,AB AC DB DC ===,点E 是BC 的中点,点F 在线段AC 上,且AF ACλ=.(1)若EF //平面ABD ,求实数λ的值; (2)求证:平面BCD ⊥平面AED .EABCDFBAOCD(第10题图)17. 如图,长方形材料ABCD中,已知AB =4AD =.点P 为材料ABCD 内部一点,PE AB ⊥于E ,PF AD ⊥于F ,且1PE =,PF =.现要在长方形材料ABCD 中裁剪出四边形材料AMPN ,满足150MPN ∠=︒,点M ,N 分别在边AB ,AD 上.(1)设FPN θ∠=,试将四边形材料AMPN 的面积S 表示为θ的函数,并指明θ的取值范围;(2)试确定点N 在AD 上的位置,使得四边形材料AMPN 的面积S 最小,并求出其最小值.18.已知椭圆E :2229+=x y m (0m >),直线l 不过原点O 且不平行于坐标轴,l 与E 有两个交点,A B ,线段AB 的中点为M .(1)若3=m ,点K 在椭圆E 上,1F 、2F 分别为椭圆的两个焦点,求21KF ⋅的范围; (2)证明:直线OM 的斜率与l 的斜率的乘积为定值; (3)若l 过点(,)3mm ,射线OM 与椭圆E 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时直线l 斜率;若不能,说明理由.19.已知函数()e =xf x a ,()ln ln =-g x x a ,其中a 为常数,且曲线()y =f x 在其与y 轴DN F (第17题图)的交点处的切线记为1l ,曲线()y =g x 在其与x 轴的交点处的切线记为2l ,且12l // l .(1)求12,l l 之间的距离; (2)若存在x使不等式()->x mf x m 的取值范围; (3)对于函数()f x 和()g x 的公共定义域中的任意实数0x ,称00|()()|-f x g x 的值为两函数在0x 处的偏差.求证:函数()f x 和()g x 在其公共定义域内的所有偏差都大于2.20.设数列{}n a 的前n 项和为n S ,2+3=n n S a ,*∈N n .(1)求数列{}n a 的通项公式;(2)设数列{}n b 满足:对于任意的*∈N n ,都有11213211=333---⎛⎫+++++- ⎪⎝⎭n n n n n a b a b a b a b n 成立.①求数列{}n b 的通项公式;②设数列⋅n n n c =a b ,问:数列{}n c 中是否存在三项,使得它们构成等差数列?若存在,求出这三项;若不存在,请说明理由.数 学 试 卷说明:1. 以下题目的答案请全部填写在答卷纸上; 2. 本卷总分160分,考试时间120分钟. 方差公式2222121[()()()]n s x x x x x x n =-+-++-,其中121()n x x x x n=+++.一、填空题:本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上......... 1. (1,2) 2.四; 3.804. 35 5. 2256.25 7.①④ 8.1629 9.13; 10.52- 11. 5(,2)2--12.11 13.4 14.(,2)-∞-二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.命题立意:本题主要考查两角和与差的正切公式与正、余弦定理等基础知识,考查运算求解能力.(1)由(1tan )(1tan )2A B ++=得tan tan 1tan tan A B A B +=-,所以tan tan tan()11tan tan A B A B A B ++==-,(4分)故△ABC 中,A B π+=4,C 3π=4(6分)(2)由正弦定理得2sin c =3π4,即c =(8分)由余弦定理得2222cos a b ab 3π=+-4,即222a b =+,(10分)由2222a b ab =+≥得2ab ≤(当且仅当a b =时取等号)(12分)所以13sin 2S ab π=4.(14分)16.命题立意:本题主要考查直线与平面、平面与平面的位置关系,考查空间想象与推理论证能力.解:(1)因为EF ∥平面ABD ,易得EF ⊂平面ABC , 平面ABC平面ABD AB =,所以//EF AB ,(5分)又点E 是BC 的中点,点F 在线段AC 上, 所以点F 为AC 的中点, 由AF AC λ=得12λ=;(7分) (2)因为AB AC DB DC ===,点E 是BC 的中点, 所以BC AE ⊥,BC DE ⊥,(9分) 又AEDE E =,AE DE ⊂、平面AED ,所以BC ⊥平面AED ,(12分) 而BC ⊂平面BCD ,所以平面BCD ⊥平面AED .(14分)17.解:(1)在直角△NFP 中,因为PF FPN θ∠=,所以NF θ=,所以11(1)22NAP S NA PF θ∆=⋅=+ ……………………………2分 在直角△MEP 中,因为1PE =,π3EPM θ∠=-,所以πtan()3ME θ=-,所以11πtan()]1223AMP S AM PE θ∆=⋅=-⨯. ………………………………4分所以31πtan tan()223NAP AMP S S S θθ∆∆=+=+-,π[0,]3θ∈. ……………………………………………………………………………………6分 (注:定义域错误扣1分) (2)因为31πtan tan()223S θθ=+-3tan 2θ=+…8分令1t θ=,由π[0,]3θ∈,得[1,4]t ∈,所以24)233S t t =++22=+. ………………12分当且仅当t =时,即tan θ=时等号成立. ………………13分此时,AN =min 2S =+.答:当AN =AMPN 的面积S最小,最小值为2 ……………………………………………………………………………………14分18.解:(Ⅰ)3m =,椭圆E :2219+=x y,两个焦点1(-F,2F设(,)K x y,1()=+F K x y,2()=-F K x y ,2221212=()()8=81⋅=⋅+⋅-=+--+KF KF FK F K x y x y x y y ,∵11-≤≤y ,∴21KF ⋅的范围是[7,1]-(4分)(2)设,A B 的坐标分别为11(,)x y ,22(,)x y ,则222112222299.⎧+=⎪⎨+=⎪⎩,x y m x y m 两式相减,得12121212()()9()()0+-++-=x x x x y y y y ,12121212()()190()()+-+=+-y y y y x x x x ,即190+⋅=OM l k k ,故19⋅=-OM l k k ;(8分) (3)∵直线l 过点(,)3mm ,∴直线l 不过原点且与椭圆E 有两个交点的充要条件是0>k 且13≠k . 设(,)P P P x y ,设直线:()3=-+m l y k x m (0,0m k ≠≠),即:3=-+m l y kx km , 由(2)的结论可知1:9=-OM y x k ,代入椭圆方程得,2222991=+P m k x k , (10分) 由()3=-+m y k x m 与19=-y x k ,联立得222933,9191⎛⎫- ⎪-- ⎪++ ⎪⎝⎭m km k m km M k k .(12分) 若四边形OAPB 为平行四边形,那么M 也是OP 的中点,所以02P x x =,即22222293949191⎛⎫-= ⎪++⎝⎭k m km m k k k ,整理得29810-+=k k解得,k .所以当k 时,四边形OAPB 为平行四边形.(16分)19. 解:(1)()x f x ae '=,()1g x x'=,()y f x =的图像与坐标轴的交点为()0,a ,()y g x =的图像与坐标轴的交点为()a ,0,由题意得()()f 0g a ''=,即1a a= 又∵a 0>,∴a 1=. (2分)∴()x f x e =,()g x ln x =,∴函数()y f x =和()y g x =的图像在其坐标轴的交点处的切线方程分别为:x y 10-+=,x y 10--=(4分) (2)由()x m f x ->x x me->,故x m x <在[)x 0,∈+∞有解, 令()x h x x =-,则()max m h x <。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前
江苏省海安高级中学2019届高三上学期第二次月考
数学试题
(解析版)
一、填空题(本大题共14小题)
1.,则.
【解析】
【分析】
利用交集定义直接求解.
【点睛】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.
2.______象限.
【答案】四
【解析】
【分析】
利用复数代数形式的乘法运算化简,
则复数位于第四象限.
故答案为:四.
【点睛】本题考查复数代数形式的乘法运算,考查复数的代数表示法及其几何意义,是基础题.3.为了解某一段公路汽车通过时的车速情况,现随机抽测了通过这段公路的200辆汽车的时速,
,其频率分布直方图如图所示,则在抽测的200辆汽车中,时速在区
______
【答案】80
【解析】
内的汽车有
考点:频率分布直方图
4.袋中装有5个大小相同的球,其中3个黑球,2个白球,从中一次摸出2个球,则摸出1个黑球和1个白球的概率等于______.
【解析】
分析:通过枚举法写出摸出2个球的所有情况,再找出摸出1个黑球和1个白球的情况,由此能求出概率.
详解:设3个黑球用A,B,C表示;2个白球用甲,乙表示,
摸出2个球的所有情况:(A,B)、(A,C)、(A,甲)、(A,乙)、(B,C)、(B,甲)、(B,乙)、(C,甲)、(C,乙)、(甲,乙)共10种,其中摸出1个黑球和1个白球的情况有6种,
所以,摸出1个黑球和1个白球的概率为
点睛:本题考查利用古典概型的概率公式求事件的概率,解题时要注意枚举法的合理运用. 5.在一次知识竞赛中,抽取5名选手,答对的题数分布情况如表,则这组样本的方差为______.。

相关文档
最新文档