分布列概念

合集下载

分布列知识点总结

分布列知识点总结

分布列知识点总结一、概念介绍1.1 分布列的定义分布列是离散随机变量的取值和相应概率的列。

对于离散型随机变量X,其所有可能取值x1,x2,……,xn及其上对应的概率P(X=x1),P(X=x2),……,P(X=xn)就构成了X的分布列。

1.2 分布列的性质(1)分布列的概率和为1对于任意一个随机变量X,其分布列中所有可能取值的概率之和为1,即∑P(X=xi)=1。

(2)随机变量的取值是有限个或可列无限个分布列中的随机变量的取值只能是有限个或可列无限个,不可能是连续的。

二、分布列的应用2.1 用分布列计算期望和方差分布列是计算离散随机变量的期望和方差的有力工具。

根据期望和方差的公式,可以直接利用分布列中的取值和概率来计算期望和方差。

2.2 利用分布列进行概率计算通过分布列,可以计算得到随机变量取某个值的概率,或者计算随机变量在某个范围内取值的概率等。

这对于一些概率问题的求解非常有用。

三、分布列的例子3.1 二项分布二项分布是一种常见的离散型概率分布,用于描述在n次独立重复的伯努利试验中成功的次数。

设X为二项分布随机变量,其分布列为:X 0 1 2 …… nP C(n,0) * p^0 * (1-p)^n C(n,1) * p^1 * (1-p)^(n-1) C(n,2) * p^2 * (1-p)^(n-2) …… C(n,n) * p^n * (1-p)^0其中,p为成功的概率,n为试验的次数。

3.2 泊松分布泊松分布描述了单位时间内随机事件发生的次数。

设X为泊松分布随机变量,其分布列为:X 0 1 2 3 4 ……P e^(-λ) * λ^0 / 0! e^(-λ) * λ^1 / 1! e^(-λ) * λ^2 / 2! e^(-λ) * λ^3 / 3! e^(-λ) * λ^4 / 4! ……其中,λ为单位时间内随机事件发生的平均次数。

四、分布列与其他概率分布的关系4.1 分布列与连续型概率分布分布列适用于离散型随机变量,而连续型随机变量则需要用概率密度函数进行描述。

2离散型随机变量的分布列

2离散型随机变量的分布列

X的所有可能取值是0,1,2,3.
P(X=0)=
C36 C130
=
20 120
=
1 6
,
P(X=1)=
C62C14 C130
=
60 120
=
1 2
,
P(X=2)=
C
2 4
C16
C130
=
36 120
=
3 10
,
P(X=3)=
C34 C130
=
4 120
=
1 30
.
∴X的分布列为
X
0
1
2
3
1
1
3
1
P
6
栏目索引
X
x1
x2

xi

xn
P
p1
p2

pi

pn
此表称为离散型随机变量X的概率分布列,简称为X的分布列,有时
也用等式P(X=xi)=pi,i=1,2,…,n表示X的分布列.
(2)分布列的性质
(i)pi③ ≥0 ,i=1,2,3,…,n;
n
(ii) pi 1. i 1
栏目索引
3.常见的离散型随机变量的概率分布
η
0
1
2
P
0.1
0.3
0.3
栏目索引
3 0.3
栏目索引
1-2 (2015北京朝阳一模改编)如图所示,某班一次数学测试成绩的茎叶 图和频率分布直方图都受到了不同程度的污损,其中,频率分布直方图 的分组区间分别为[50,60),[60,70),[70,80),[80,90),[90,100],据此解答以 下问题. (1)求全班人数及分数在[80,100]之间的频率; (2)现从分数在[80,100]之间的试卷中任取3份分析学生的失分情况,设 抽取的试卷分数在[90,100]的份数为X,求X的分布列.

第二章 2.1.2 离散型随机变量的分布列(一)

第二章 2.1.2 离散型随机变量的分布列(一)

2.1.2 离散型随机变量的分布列(一)学习目标 1.在对具体问题的分析中,理解取有限个值的离散型随机变量及其分布列的概念;认识分布列对于刻画随机现象的重要性.2.掌握离散型随机变量分布列的表示方法和性质.知识点 离散型随机变量的分布列思考 掷一枚骰子,所得点数为x ,则x 可取哪些数字?x 取不同的值时,其概率分别是多少?你能用表格表示x 与p 的对应关系吗? 答案 (1)x =1,2,3,4,5,6,概率均为16.(2)1.离散型随机变量的分布列的概念一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下:的分布列. 2.离散型随机变量的分布列的性质 (1)p i ≥0,i =1,2,3,…,n ; (2)∑i =1np i =1.类型一 离散型随机变量的分布列的性质的应用例1 设随机变量X 的分布列为P (X =i )=ai (i =1,2,3,4),求: (1)P ({X =1}∪{X =3}); (2)P ⎝⎛⎭⎫12<X <52.解 题中所给的分布列为由离散型随机变量分布列的性质得a +2a +3a +4a =1,解得a =110.(1)P ({X =1}∪{X =3})=P (X =1)+P (X =3) =110+310=25. (2)P ⎝⎛⎭⎫12<X <52=P (X =1)+P (X =2) =110+210=310. 反思与感悟 1.本例利用方程的思想求出常数a 的值. 2.利用分布列及其性质解题时要注意以下两个问题: (1)X 的各个取值表示的事件是互斥的.(2)不仅要注意∑i =1np i =1,而且要注意p i ≥0,i =1,2,…,n .跟踪训练1(1)下面是某同学求得的离散型随机变量X 的分布列.试说明该同学的计算结果是否正确.(2)设ξ是一个离散型随机变量,其分布列为①求q 的值; ②求P (ξ<0),P (ξ≤0).解 (1)因为P (X =-1)+P (X =0)+P (X =1)=12+14+16=1112,不满足概率之和为1的性质,因而该同学的计算结果不正确.(2)①由分布列的性质得,1-2q ≥0,q 2≥0,12+(1-2q )+q 2=1, ∴q =1-22. ②P (ξ<0)=P (ξ=-1)=12,P (ξ≤0)=P (ξ=-1)+P (ξ=0) =12+1-2⎝⎛⎭⎫1-22=2-12. 类型二 求离散型随机变量的分布列例2 一袋中装有6个同样大小的黑球,编号分别为1,2,3,4,5,6,现从中随机取出3个球,以X 表示取出球的最大号码,求X 的分布列.解 随机变量X 的可能取值为3,4,5,6.从袋中随机地取出3个球,包含的基本事件总数为C 36,事件“X =3”包含的基本事件总数为C 11C 22,事件“X =4”包含的基本事件总数为C 11C 23,事件“X =5”包含的基本事件总数为C 11C 24,事件“X =6”包含的基本事件总数为C 11C 25, 从而有P (X =3)=C 11C 22C 36=120,P (X =4)=C 11C 23C 36=320,P (X =5)=C 11C 24C 36=310,P (X =6)=C 11C 25C 36=12,所以随机变量X 的分布列为:反思与感悟 求离散型随机变量的分布列的步骤(1)明确随机变量的所有可能取值以及取每个值所表示的意义. (2)利用概率的有关知识,求出随机变量取每个值的概率. (3)按规范形式写出分布列,并用分布列的性质验证.跟踪训练2 袋中有1个白球和4个黑球,每次从中任取一个球,每次取出的黑球不再放回,直到取出白球为止,求取球次数X 的分布列. 解 X 的可能取值为1,2,3,4,5,则第1次取到白球的概率为P (X =1)=15,第2次取到白球的概率为P (X =2)=4×15×4=15,第3次取到白球的概率为P (X =3)=4×3×15×4×3=15,第4次取到白球的概率为P (X =4)=4×3×2×15×4×3×2=15,第5次取到白球的概率为P (X =5)=4×3×2×1×15×4×3×2×1=15,所以X 的分布列为类型三 离散型随机变量的分布列的综合应用例3 袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球时终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.(1)求袋中原有的白球的个数. (2)求随机变量ξ的分布列. (3)求甲取到白球的概率.解 (1)设袋中原有n 个白球,由题意知17=C 2nC 27=n (n -1)27×62=n (n -1)7×6.可得n =3或n =-2(舍去),即袋中原有3个白球. (2)由题意,ξ的可能取值为1,2,3,4,5. P (ξ=1)=37;P (ξ=2)=4×37×6=27;P (ξ=3)=4×3×37×6×5=635;P (ξ=4)=4×3×2×37×6×5×4=335;P (ξ=5)=4×3×2×1×37×6×5×4×3=135.所以ξ的分布列为:(3)因为甲先取,所以甲只有可能在第一次、第三次和第五次取到白球,记“甲取到白球”为事件A ,则P (A )=P (ξ=1)+P (ξ=3)+P (ξ=5)=2235.反思与感悟 求离散型随机变量的分布列,首先要根据具体情况确定ξ的取值情况,然后利用排列、组合与概率知识求出ξ取各个值的概率,即必须解决好两个问题,一是求出ξ的所有取值,二是求出ξ取每一个值时的概率.跟踪训练3 北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮.现有8个相同的盒子,每个盒子中放一只福娃,每种福娃的数量如下表:从中随机地选取5只.(1)求选取的5只恰好组成完整“奥运会吉祥物”的概率.(2)若完整地选取奥运会吉祥物记100分;若选出的5只中仅差一种记80分;差两种记60分;以此类推,设X 表示所得的分数,求X 的分布列.解 (1)选取的5只恰好组成完整“奥运会吉祥物”的概率P =C 12·C 13C 58=656=328.(2)X 的取值为100,80,60,40.P (X =100)=C 12·C 13C 58=328,P (X =80)=C 23(C 22·C 13+C 12·C 23)+C 33(C 22+C 23)C 58=3156, P (X =60)=C 13(C 22·C 23+C 12·C 33)+C 23·C 33C 58=1856=928, P (X =40)=C 22·C 33C 58=156.X 的分布列为1.已知随机变量X 的分布列如下:则P (X =10)等于( ) A.239 B.2310 C.139 D.1310 答案 C解析 P (X =10)=1-23-…-239=139.2.设随机变量ξ的分布列为P (ξ=k )=k15(k =1,2,3,4,5),则P ⎝⎛⎭⎫12<ξ<52等于( ) A.12 B.19 C.16 D.15 答案 D解析 由12<ξ<52知ξ=1,2.P (ξ=1)=115,P (ξ=2)=215,∴P ⎝⎛⎭⎫12<ξ<52=P (ξ=1)+P (ξ=2)=15. 3.将一枚硬币扔三次,设X 为正面向上的次数,则P (0<X <3)=________. 答案 0.75解析 P (0<X <3)=1-P (X =0)-P (X =3) =1-123-123=0.75.4.将一颗骰子掷两次,求两次掷出的最大点数ξ的分布列. 解 由题意知ξ=i (i =1,2,3,4,5,6), 则P (ξ=1)=1C 16C 16=136;P (ξ=2)=3C 16C 16=336=112;P (ξ=3)=5C 16C 16=536;P (ξ=4)=7C 16C 16=736;P (ξ=5)=9C 16C 16=936=14;P (ξ=6)=11C 16C 16=1136.所以抛掷两次掷出的最大点数构成的分布列为1.离散型随机变量的分布列,不仅能清楚地反映其所取的一切可能的值,而且能清楚地看到取每一个值时的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.2.一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.一、选择题1.随机变量ξ的所有可能的取值为1,2,3,…,10,且P (ξ=k )=ak (k =1,2,…,10),则a 的值为( )A.1110B.155 C.110 D.55 答案 B解析 ∵随机变量ξ的所有可能的取值为1,2,3,…,10, 且P (ξ=k )=ak (k =1,2,…,10), ∴a +2a +3a +…+10a =1, ∴55a =1,∴a =155.2.若随机变量X 的概率分布列为:P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P ⎝⎛⎭⎫12<X <52的值为( ) A.23 B.34 C.45 D.56 答案 D解析 ∵P (X =1)+P (X =2)+P (X =3)+P (X =4) =a ⎝⎛⎭⎫1-15=1, ∴a =54.∴P ⎝⎛⎭⎫12<X <52=P (X =1)+P (X =2)=a 1×2+a 2×3=a ⎝⎛⎭⎫1-13=54×23=56. 3.若随机变量η的分布列如下:则当P (η<x )=0.8时,实数x 的取值范围是( ) A.x ≤1 B.1≤x ≤2 C.1<x ≤2 D.1≤x <2答案 C解析 由分布列知,P (η=-2)+P (η=-1)+P (η=0)+P (η=1) =0.1+0.2+0.2+0.3=0.8, ∴P (η<2)=0.8,故1<x ≤2. 4.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,则函数f (x )=x 2+2x +ξ有且只有一个零点的概率为( ) A.16 B.13 C.12 D.56 答案 B解析 由题意知⎩⎪⎨⎪⎧2b =a +c ,a +b +c =1,解得b =13.∵f (x )=x 2+2x +ξ有且只有一个零点, ∴Δ=4-4ξ=0,解得:ξ=1, ∴P (ξ=1)=13.5.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是( ) A.⎣⎡⎦⎤0,13 B.⎣⎡⎦⎤-13,13 C.[-3,3] D.[0,1]答案 B解析 设随机变量ξ取x 1,x 2,x 3的概率分别为a -d ,a ,a +d ,则由分布列的性质得(a -d )+a +(a +d )=1,故a =13,由⎩⎨⎧13-d ≥013+d ≥0,解得-13≤d ≤13.6.抛掷2颗骰子,所得点数之和X 是一个随机变量,则P (X ≤4)等于( )A.16B.13C.12D.23 答案 A解析 根据题意,有P (X ≤4)=P (X =2)+P (X =3)+P (X =4).抛掷两颗骰子,按所得的点数共36个基本事件,而X =2对应(1,1),X =3对应(1,2),(2,1),X =4对应(1,3),(3,1),(2,2), 故P (X =2)=136,P (X =3)=236=118,P (X =4)=336=112,所以P (X ≤4)=136+118+112=16.二、填空题7.一批产品分为一、二、三级,其中一级品是二级品的两倍,三级品为二级品的一半,从这批产品中随机抽取一个检验,其级别为随机变量ξ,则P ⎝⎛⎭⎫13≤ξ≤53=________. 答案 47解析 设二级品有k 个,∴一级品有2k 个,三级品有k 2个,总数为72k 个.∴分布列为P ⎝⎛⎭⎫13≤ξ≤53=P (ξ=1)=47. 8.由于电脑故障,使得随机变量X 的分布列中部分数据丢失,以□代替,其表如下:根据该表可知X 取奇数值时的概率是________. 答案 0.6解析 由离散型随机变量的分布列的性质可求得P (X =3)=0.25,P (X =5)=0.15,故X 取奇数值时的概率为P (X =1)+P (X =3)+P (X =5)=0.20+0.25+0.15=0.6.9.甲、乙两队在一次对抗赛的某一轮中有3道题,比赛规则:对于每道题,没有抢到题的队伍得0分,抢到题,并回答正确的得1分,抢到题目但回答错误的扣1分(即-1分),若X 是甲队在该轮比赛获胜时的得分(分数高者胜),则X 的所有可能值为________. 答案 -1,0,1,2,3解析 X =-1表示甲抢到1题但答错了, 若乙两题都答错,则甲获胜; 甲获胜还有以下可能:X =0,甲没抢到题,或甲抢到2题,但答时1对1错. X =1时,甲抢到1题,且答对或甲抢到3题,且1错2对. X =2时,甲抢到2题均答对. X =3时,甲抢到3题均答对.10.将3个小球任意地放入4个大玻璃杯中,一个杯子中球的最多个数记为X ,则X 的分布列是________. 答案解析 由题意知X =1,2,3. P (X =1)=A 3443=38;P (X =2)=C 23A 2443=916;P (X =3)=A 1443=116.∴X 的分布列为三、解答题11.某篮球运动员在一次投篮训练中的得分ξ的分布列如下表,其中a ,b ,c 成等差数列,且c =ab .求这名运动员投中3分的概率.解 由题中条件知,2b =a +c ,c =ab ,再由分布列的性质,知a +b +c =1,且a ,b ,c 都是非负数,由三个方程联立成方程组,可解得a =12,b =13,c =16,所以投中3分的概率是16.12.设S 是不等式x 2-x -6≤0的解集,整数m ,n ∈S .(1)设“使得m +n =0成立的有序数组(m ,n )”为事件A ,试列举事件A 包含的基本事件; (2)设ξ=m 2,求ξ的分布列.解 (1)由x 2-x -6≤0,得-2≤x ≤3, 即S ={x |-2≤x ≤3}.由于m ,n ∈Z ,m ,n ∈S 且m +n =0,所以事件A 包含的基本事件为:(-2,2),(2,-2),(-1,1),(1,-1),(0,0). (2)由于m 的所有不同取值为-2,-1,0,1,2,3, 所以ξ=m 2的所有不同取值为0,1,4,9,且有 P (ξ=0)=16,P (ξ=1)=26=13,P (ξ=4)=26=13,P (ξ=9)=16.故ξ的分布列为:13.某商店试销某种商品20天,获得如下数据:试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.解(1)P(“当天商店不进货”)=P(“当天商品销售量为0件”)+P(“当天商品销售量为1件”)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2) =P(当天商品销售量为1件)=520=1 4;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.故X的分布列为。

新高考数学一轮复习第十一章计数原理概率随机变量及其分布:离散型随机变量及其分布列pptx课件人教B版

新高考数学一轮复习第十一章计数原理概率随机变量及其分布:离散型随机变量及其分布列pptx课件人教B版

【解析】选B.由分布列的性质知2q2+ 11 -3q+ 1 =1,解得q=1或q= 1 ,
6
6
2
又因为2q2<1,0< 11 3q <1,所以舍去q=1,
6
所以q= 1 .
2
3.(选修2-3 P47习题2-1BT2改编)设随机变量X的概率分布列为
X
1
2
3
4
P
1
m
1
1
3
4
6
则P(|X-3|=1)=________.
④一个在数轴上随机运动的质点,它在数轴上的位置记为X.其中是离散型随机 变量的是 ( ) A.①② B.①③ C.①④ D.①②④
2.若随机变量X的概率分布列为
X
x1
x2
P
p1
p2
且p1=
1 2
p2,则p1等于
(
)
A. 1
B. 1
C. 1
D. 1
2
3
4
6
3.某学习小组共12人,其中有五名是“三好学生”,现从该小组中任选5人参加
n
pi
=1.
i1
2.常见的两类分布列 (1)两点分布: 若随机变量X服从两点分布,即其分布列为
X
0
1
P
_1_-_p_
p
其中p= _P_(_X_=_1_)_称为成功概率.
(2)超几何分布
在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=
C C k nk M NM

CnN
k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.
【解析】选C.因为P(X=1)= 1 ,所以A,B不正确;

2020年高考数学专题复习离散型随机变量及其分布列

2020年高考数学专题复习离散型随机变量及其分布列

离散型随机变量及其分布列1.随机变量的有关概念(1)随机变量:随着试验结果的变化而变化的变量,常用字母X ,Y ,ξ,η,…表示. (2)离散型随机变量:所有取值可以一一列出的随机变量. 2.离散型随机变量的分布列及其性质(1)概念:一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则下表称为离散型随机变量X 的概率分布列,简称为X 的分布列,有时为了表达简单,也用等式P (X =x i )=p i ,i =1,2,…,n 表示X 的分布列.(2)离散型随机变量的分布列的性质 ①p i ≥0(i =1,2,…,n );②∑ni =1p i =1. 3.常见的离散型随机变量分布列 (1)两点分布若随机变量X 服从两点分布,则其分布列为其中p =P (X =1)称为成功概率. (2)超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -kN -MC n N,k =0,1,2,…,m ,即:其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *.如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.判断正误(正确的打“√”,错误的打“×”)(1)随机变量和函数都是一种映射,随机变量把随机试验的结果映射为实数.( ) (2)抛掷均匀硬币一次,出现正面的次数是随机变量.( ) (3)离散型随机变量的各个可能值表示的事件是彼此互斥的.( )(4)离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.( )(5)从4名男演员和3名女演员中选出4人,其中女演员的人数X 服从超几何分布.( ) (6)由下表给出的随机变量X 的分布列服从两点分布.( )答案:(1)√ (2)√ (3)√ (4)√ (5)√ (6)×(教材习题改编)设随机变量X 的分布列如下表所示,则p 4的值是( )A.1 B .12 C .14D .18解析:选D.由分布列的性质,得12+14+18+p 4=1,所以p 4=18.设随机变量X 的分布列为P (X =k )=k 15,k =1,2,3,4,5,则P ⎝ ⎛⎭⎪⎫12<X <52=________.解析:P ⎝ ⎛⎭⎪⎫12<X <52=P (X =1)+P (X =2)=115+215=15. 答案:15在含有3件次品的10件产品中任取4件,则取到次品数X 的分布列为________. 解析:由题意知,X 服从超几何分布,其中N =10,M =3,n =4,所以分布列为P (X =k )=C k3·C 4-k7C 410,k =0,1,2,3.答案:P(X =k )=C k 3·C 4-k7C 410,k =0,1,2,3离散型随机变量的分布列的性质设离散型随机变量X 的分布列为求:(1)2X +1的分布列; (2)|X -1|的分布列.【解】 由分布列的性质知:0.2+0.1+0.1+0.3+m =1, 解得m =0.3. (1)2X +1的分布列为(2)|X -1|的分布列为在本例条件下,求P (1<X ≤4). 解:由本例知,m =0.3,P (1<X ≤4)=P (X =2)+(X =3)+P (X =4)=0.1+0.3+0.3=0.7.离散型随机变量分布列的性质的应用(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负值;(2)若X 为随机变量,则2X +1仍然为随机变量,求其分布列时可先求出相应的随机变量的值,再根据对应的概率写出分布列.1.设随机变量X 等可能地取1,2,3,…,n ,若P (X <4)=0.3,则n 的值为( ) A .3 B .4 C .10D .不确定解析:选C.“X <4”的含义为X =1,2,3,所以P (X <4)=3n=0.3,所以n =10.2.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|X |=1)=________,公差d 的取值范围是________. 解析:因为a ,b ,c 成等差数列,所以2b =a +c . 又a +b +c =1,所以b =13,所以P (|X |=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,所以-13≤d≤13. 答案:23 ⎣⎢⎡⎦⎥⎤-13,13离散型随机变量的分布列(高频考点)离散型随机变量的分布列是高考命题的热点,多以解答题的形式出现,试题难度不大,多为容易题或中档题.主要命题角度有:(1)用频率代替概率的离散型随机变量的分布列; (2)古典概型的离散型随机变量的分布列;(3)与独立事件(或独立重复试验)有关的分布列的求法.(下一讲内容)角度一 用频率代替概率的离散型随机变量的分布列某商店试销某种商品20天,获得如下数据:试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X 为第二天开始营业时该商品的件数,求X 的分布列. 【解】 (1)P (当天商店不进货)=P (当天商品销售量为0件)+P (当天商品销售量为1件)=120+520=310.(2)由题意知,X 的可能取值为2,3.P (X =2)=P (当天商品销售量为1件)=520=14;P (X =3)=P (当天商品销售量为0件)+P (当天商品销售量为2件)+P (当天商品销售量为3件)=120+920+520=34.所以X 的分布列为角度二 古典概型的离散型随机变量的分布列(2019·浙江省名校协作体高三联考)一个盒子里装有大小均匀的6个小球,其中有红色球4个,编号分别为1,2,3,4;白色球2个,编号分别为4,5,从盒子中任取3个小球(假设取到任何一个小球的可能性相同).(1)求取出的3个小球中,含有编号为4的小球的概率;(2)在取出的3个小球中,小球编号的最大值设为X ,求随机变量X 的分布列. 【解】 (1)“设取出的3个小球中,含有编号为4的小球”为事件A , P (A )=C 12C 24+C 22C 14C 36=45,所以取出的3个小球中,含有编号为4的小球的概率为45. (2)X 的可能取值为3,4,5.P (X =3)=1C 36=120;P (X =4)=C 12C 23+C 22C 13C 36=920; P (X =5)=C 35C 36=12,所以随机变量X 的分布列为离散型随机变量分布列的求解步骤(1)明取值:明确随机变量的可能取值有哪些,且每一个取值所表示的意义. (2)求概率:要弄清楚随机变量的概率类型,利用相关公式求出变量所对应的概率. (3)画表格:按规范要求形式写出分布列.(4)做检验:利用分布列的性质检验分布列是否正确.[提醒] 求随机变量某一范围内取值的概率,要注意它在这个范围内的概率等于这个范围内各概率值的和.某校校庆,各届校友纷至沓来,某班共来了n 位校友(n >8且n ∈N *),其中女校友6位,组委会对这n 位校友登记制作了一份校友名单,现随机从中选出2位校友代表,若选出的2位校友是一男一女,则称为“最佳组合”.(1)若随机选出的2位校友代表为“最佳组合”的概率不小于12,求n 的最大值;(2)当n =12时,设选出的2位校友代表中女校友人数为X ,求X 的分布列. 解:(1)由题意可知,所选2人为“最佳组合”的概率为C 1n -6C 16C 2n =12(n -6)n (n -1),则12(n -6)n (n -1)≥12,化简得n 2-25n +144≤0,解得9≤n ≤16, 故n 的最大值为16.(2)由题意得,X 的可能取值为0,1,2,则P (X =0)=C 26C 212=522,P (X =1)=C 16C 16C 212=611,P (X =2)=C 26C 212=522,X 的分布列为超几何分布一个袋中有大小相同的黑球和白球共10个.已知从袋中任意摸出2个球,至少得到1个白球的概率是79.(1)求白球的个数;(2)从袋中任意摸出3个球,记得到白球的个数为X ,求随机变量X 的分布列. 【解】 (1)记“从袋中任意摸出2个球,至少得到1个白球”为事件A ,设袋中白球的个数为x ,则P (A )=1-C 210-x C 210=79,得到x =5.故白球有5个.(2)X 服从超几何分布,其中N =10,M =5,n =3, P (X =k )=C k 5C 3-k5C 310,k =0,1,2,3.于是可得其分布列为在本例条件下,若从袋中任意摸出4个球,记得到白球的个数为X ,求随机变量X 的分布列.解:X 服从超几何分布,其中N =10,M =5,n =4, P (X =k )=C k 5C 4-k5C 410,k =0,1,2,3,4,于是可得其分布列为超几何分布的特点(1)对于服从某些特殊分布的随机变量,其分布列可直接应用公式给出.(2)超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数,随机变量取值的概率实质上是古典概型.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列. 解:(1)由已知,有P (A )=C 22C 23+C 23C 23C 48=635. 所以,事件A 发生的概率为635. (2)随机变量X 的所有可能取值为1,2,3,4. P (X =k )=C k 5C 4-k3C 48(k =1,2,3,4).所以,随机变量X 的分布列为对于随机变量X 的研究,需要了解随机变量取哪些值以及取这些值或取某一个集合内的值的概率,对于离散型随机变量,它的分布正是指出了随机变量X 的取值范围以及取这些值的概率.求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列、组合与概率知识求出X 取各个值的概率.易错防范(1)确定离散型随机变量的取值时,易忽视各个可能取值表示的事件是彼此互斥的. (2)对于分布列易忽视其性质p 1+p 2+…+p n =1及p i ≥0(i =1,2,…,n ),其作用可用于检验所求离散型随机变量的分布列是否正确.[基础达标]1.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( )A .0B .12C .13D .23解析:选C.设X 的分布列为即“X =0”表示试验失败,“X =1”表示试验成功.由p +2p =1,得p =13,故应选C.2.(2019·绍兴调研)在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,则下列概率中等于C 47C 68C 1015的是( )A .P (X =2)B .P (X ≤2)C .P (X =4)D .P (X ≤4)解析:选C.X 服从超几何分布,P (X =k )=C k 7C 10-k8C 1015,故k =4,故选C.3.设随机变量Y 的分布列为则“32≤Y ≤72”的概率为( )A .14B .12C .34D .23解析:选C.依题意知,14+m +14=1,则m =12.故P ⎝ ⎛⎭⎪⎫32≤Y ≤72=P (Y =2)+P (Y =3)=12+14=34.4.设随机变量X 的概率分布列如下表所示:若F (x )=P (X ≤x ),则当x 的取值范围是[1,2)时,F (x )等于( ) A .13 B .16 C .12D .56解析:选D.由分布列的性质,得a +13+16=1,所以a =12.而x ∈[1,2),所以F (x )=P (X ≤x )=12+13=56.5.已知离散型随机变量X 的分布列为则P (X ∈Z )=( ) A .0.9 B .0.8 C .0.7D .0.6解析:选A.由分布列性质得0.5+1-2q +13q =1,解得q =0.3,所以P (X ∈Z )=P (X =0)+P (X =1)=0.5+1-2×0.3=0.9,故选A.6.抛掷2颗骰子,所得点数之和X 是一个随机变量,则P (X ≤4)=________. 解析:抛掷2颗骰子有36个基本事件,其中X =2对应(1,1);X =3对应(1,2),(2,1);X =4对应(1,3),(2,2),(3,1).所以P (X ≤4)=P (X =2)+P (X =3)+P (X =4)=136+236+336=16.答案:167.已知随机变量ξ只能取三个值:x 1,x 2,x 3,其概率依次成等差数列,则公差d 的取值范围是________.解析:设ξ取x 1,x 2,x 3时的概率分别为a -d ,a ,a +d ,则(a -d )+a +(a +d )=1,所以a =13,由⎩⎪⎨⎪⎧13-d ≥0,13+d ≥0,得-13≤d ≤13.答案:⎣⎢⎡⎦⎥⎤-13,138.若离散型随机变量X 的分布列为则常数c =________,P (X =1)=________. 解析:依分布列的性质知,⎩⎪⎨⎪⎧9c 2-c ≥0,3-8c ≥0,9c 2-c +3-8c =1,解得c =13,故P (X =1)=3-8×13=13.答案:13 139.在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,则这两次取出白球数X 的分布列为________.解析:X 的所有可能值为0,1,2. P (X =0)=C 11C 11C 12C 12=14,P (X =1)=C 11C 11×2C 12C 12=12,P (X =2)=C 11C 11C 12C 12=14.所以X 的分布列为答案:10.(2019·温州市高考模拟)袋中有6个编号不同的黑球和3个编号不同的白球,这9个球的大小及质地都相同,现从该袋中随机摸取3个球,则这三个球中恰有两个黑球和一个白球的方法总数是________,设摸取的这三个球中所含的黑球数为X ,则P (X =k )取最大值时,k 的值为________.解析:袋中有6个编号不同的黑球和3个编号不同的白球,这9个球的大小及质地都相同,现从该袋中随机摸取3个球,则这三个球中恰有两个黑球和一个白球的方法总数是:n =C 26C 13=45.设摸取的这三个球中所含的黑球数为X ,则X 的可能取值为0,1,2,3, P (X =0)=C 33C 39=184,P (X =1)=C 16C 23C 39=1884,C 984P (X =3)=C 36C 39=2084,所以P (X =k )取最大值时,k 的值为2. 答案:45 211.抛掷一枚质地均匀的硬币3次. (1)写出正面向上次数X 的分布列; (2)求至少出现两次正面向上的概率. 解:(1)X 的可能取值为0,1,2,3. P (X =0)=C 0323=18;P (X =1)=C 1323=38;P (X =2)=C 2323=38;P (X =3)=C 3323=18.所以X 的分布列为(2)至少出现两次正面向上的概率为P (X ≥2)=P (X =2)+P (X =3)=38+18=12. 12.(2019·台州高三质检)在一次购物活动中,假设每10张券中有一等奖券1张,可获得价值50元的奖品;有二等奖券3张,每张可获得价值10元的奖品;其余6张没有奖.某顾客从这10张券中任取2张.(1)求该顾客中奖的概率;(2)求该顾客获得的奖品总价值X (元)的分布列. 解:(1)该顾客中奖的概率P =1-C 04C 26C 210=1-1545=23.(2)X 的所有可能取值为0,10,20,50,60,且 P (X =0)=C 04C 26C 210=13,P (X =10)=C 13C 16C 210=25,P (X =20)=C 23C 210=115,P (X =50)=C 11C 16C 210=215,C 1015故X 的分布列为[能力提升]1.(2019·浙江高中学科基础测试)一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5;4个白球编号分别为1,2,3,4,从袋中任意取出3个球.(1)求取出的3个球编号都不相同的概率;(2)记X 为取出的3个球中编号的最小值,求X 的分布列.解:(1)设“取出的3个球编号都不相同”为事件A ,“取出的3个球中恰有两个球编号相同”为事件B ,则P (B )=C 14C 17C 39=2884=13,所以P (A )=1-P (B )=23.(2)X 的取值为1,2,3,4,P (X =1)=C 12C 27+C 22C 17C 39=4984,P (X =2)=C 12C 25+C 22C 15C 39=2584, P (X =3)=C 12C 23+C 22C 13C 39=984,P (X =4)=1C 39=184. 所以X 的分布列为2.(2019·惠州市第三次调研考试)某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列.解:(1)设“选出的3名同学是来自互不相同的学院”为事件A ,则P (A )=C 13·C 27+C 03·C 37C 310=4960. 所以选出的3名同学是来自互不相同学院的概率为4960.(2)随机变量X 的所有可能值为0,1,2,3. P (X =k )=C k4·C 3-k6C 310(k =0,1,2,3). 所以随机变量X 的分布列为3.小波以游戏方式决定是参加学校合唱团还是参加学校排球队.游戏规则为:以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6,A 7,A 8(如图),这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X .若X =0就参加学校合唱团,否则就参加学校排球队.(1)求小波参加学校合唱团的概率; (2)求X 的分布列.解:(1)从8个点中任取两点为向量终点的不同取法共有C 28=28(种),当X =0时,两向量夹角为直角,共有8种情形,所以小波参加学校合唱团的概率为P (X =0)=828=27. (2)两向量数量积X 的所有可能取值为-2,-1,0,1,X =-2时,有2种情形;X =1时,有8种情形;X =-1时,有10种情形.所以X 的分布列为4.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17.现在甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球为止,每个球在每一次被取出的机会是相等的,用X 表示终止时所需要的取球次数.(1)求袋中原有白球的个数; (2)求随机变量X 的分布列; (3)求甲取到白球的概率. 解:(1)设袋中原有n 个白球,由题意知17=C 2nC 27=n (n -1)27×62=n (n -1)7×6,所以n (n -1)=6,解得n =3或n =-2(舍去). 即袋中原有3个白球.(2)由题意知X 的可能取值为1,2,3,4,5.P (X =1)=37; P (X =2)=4×37×6=27; P (X =3)=4×3×37×6×5=635;P (X =4)=4×3×2×37×6×5×4=335;P (X =5)=4×3×2×1×37×6×5×4×3=135.所以取球次数X 的分布列为(3)因为甲先取,所以甲只可能在第1次、第3次和第5次取球. 设“甲取到白球”的事件为A , 则P (A )=P (X =1或X =3或X =5).因为事件“X =1”“X =3”“X =5”两两互斥,所以P (A )=P (X =1)+P (X =3)+P (X =5)=37+635+135=2235.。

新高考数学离散型随机变量的分布列和数字特征精品课件

新高考数学离散型随机变量的分布列和数字特征精品课件
课堂考点探究
变式题 (1)若X是离散型随机变量,P(X=x1)=,P(X=x2)=,且x1<x2,E(X)=,D(X)=,则x1+x2的值为 ( )A. B. C.3 D.
课堂考点探究
C
[解析] 由题意知x1+x2=,+=,解得或因为x1<x2,所以x1=1,x2=2,所以x1+x2=3.
课前基础巩固
x1p1+x2p2+…+xnpn
平均水平
[x1-E(X)]2p1+[x2-E(X)]2p2+…+[xn-E(X)]2pn
离散程度
aE(X)+b
a2D(X)
课前基础巩固
4. 两点分布(1)定义:对于只有两个可能结果的随机试验,用A表示“成功”,表示“失败”,定义X=如果P(A)=p,则P()=1-p,那么X的分布列如下表所示,称随机变量X服从两点分布或0-1分布.(2)均值与方差若随机变量X服从参数为p的两点分布,则E(X)=p,D(X)=p(1-p).
(2)已知随机变量X的分布列为P(X=k)=mk(k=1,2,3,4,5),则实数m= ( )A. B. C. D.
课堂考点探究
C
[解析]因为随机变量X的分布列为P(X=k)=mk(k=1,2,3,4,5),所以m+2m+3m+4m+5m=1,解得m=.
(2)在某工厂年度技术工人团体技能大赛中,有甲、乙两个团体进行比赛,比赛分两轮,每轮比赛必有胜负,没有平局.第一轮比赛甲团体获胜的概率为0.6,第二轮比赛乙团体获胜的概率为0.7,第一轮获胜团体有奖金5000元,第二轮获胜团体有奖金8000元,未获胜团体每轮有1000元鼓励奖金.①求甲团体至少胜一轮的概率;②记乙团体两轮比赛获得的奖金总额为X元,求X的分布列及其数学期望.

(完整版)随机变量及其分布列概念公式总结

(完整版)随机变量及其分布列概念公式总结

随机变量及其分布总结1、定义:随着试验结果变化而变化的变量称为随机变量 .随机变量常用字母 X , Y ,,,… 表示.ξη2、定义:所有取值可以一一列出的随机变量,称为离散型随机变量3、分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…,ξ取每一个值x i (i =1,2,…)的概率为,则称表()i i P x p ξ==ξx 1x 2…x i …PP 1P 2…P i…为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质:(1)P i ≥0,i =1,2,…; (2)P 1+P 2+…=1.5.求离散型随机变量的概率分布的步骤:ξ(1)确定随机变量的所有可能的值x i (2)求出各取值的概率p(=x i )=p i ξ(36.两点分布列:ξ01P1p -p7超几何分布列:一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X 件次品数,则事件{X=k }发生的概率为,其中(),0,1,2,,k n k M N MnNC C P X k k m C --=== ,且.称分布列min{,}m M n =,,,,n N M N n M N N *≤≤∈X 01…mP0n M N Mn NC C C -11n M N Mn NC C C --…m n m M N Mn NC C C --为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量X 服从超几何分布8.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是,(k =0,1,2,…,n ,).kn k k n n q p C k P -==)(ξp q -=1于是得到随机变量ξ的概率分布如下:ξ01…k…nPnn qp C 00111-n n qp C …kn k k n qp C -…qp C n n n 称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数。

分布列PPT课件

分布列PPT课件
离散型随机变量
所有取值可以一一列出的随机变量,称为离 散型随机变量
问题2.什么是离散型随机变量的分布列? 其如何构成?如何表示?有何性质?
课题引入
引例 : 抛掷一枚骰子,所得的点数 有哪些值? 取 每个值的概率是多少?
解 的取值有1、2、3、4、5、6
则 P( 1) 1
6
分布列的构成:
⑴列出随机变量ξ的所有取值, ⑵给出ξ的每一个取值的概率.
分布列的表示:
离散型随机变量的分布列可以用解析式、 表格或图象表示。
概率分布列用图象来表示.
如在掷骰子实验中,掷出的点数 X的分布列在直角坐标系中的图 像如右图所示:
在图 2.1 2 中,横坐标是随 机变量的取值,纵坐标为概 率 .从中可以看出, X的取值
(2)P(X≥35)=P(X=35)+P(X=45)+P(X=55) =135+145+155=45, 或 P(X≥35)=1-P(X≤25)=1-(115+125)=45.
(3)因为110<X<170,所以 X=15,25,35. 故 P(110<X<170)=P(X=15)+P(X=25)+P(X=35)=115+125+135=25.
通过小组学习集体讨论等提高团队合作精神2930六课堂结构和教学过程性质定义性质一性质二引入随机变量的分布列课堂巩固练习堂上评价课堂小结课后探索课后过程性评价反思课堂典例讲解课堂典例讲解课堂巩固练习堂上评价31七教学评价一你对这节课中所举的例子理解的程度如何
离散型随机变量 的分布列
提出问题
1.什么是随机变量?什么是离散型随机变 量?
3.学生有可能遇到的困难是离散型随机变量的 可能取值的列出及相应概率的求法,这是要 突破的难点。

2022新高考大一轮复习第九章离散型随机变量的分布列和数字特征

2022新高考大一轮复习第九章离散型随机变量的分布列和数字特征

§9.5 离散型随机变量的分布列和数字特征考试要求 1.理解取有限个值的离散型随机变量及其分布列的概念.2.理解并会求离散型随机变量的数字特征.1.离散型随机变量一般地,对于随机试验样本空间Ω中的每个样本点w ,都有唯一的实数X (w )与之对应,我们称X 为随机变量;可能取值为有限个或可以一一列举的随机变量称为离散型随机变量. 2.离散型随机变量的分布列一般地,设离散型随机变量X 的可能取值为x 1,x 2,…,x n ,我们称X 取每一个值x i 的概率P (X =x i )=p i ,i =1,2,…,n 为X 的概率分布列,简称分布列. 3.离散型随机变量的分布列的性质: ①p i ≥0(i =1,2,…,n );②p 1+p 2+…+p n =1. 4.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为X x 1 x 2 … x i … x n Pp 1p 2…p i…p n(1)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n =∑i =1nx i p i 为随机变量X 的均值或数学期望.它反映了离散型随机变量取值的平均水平. (2)方差 称D (X )=(x 1-E (X ))2p1+(x 2-E (X ))2p 2+…+(x n -E (X ))2p n =∑i =1n(x i -E (X ))2p i 为随机变量X 的方差,并称D (X )为随机变量X 的标准差,记为σ(X ),它们都可以度量随机变量取值与其均值的偏离程度. 5.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X )(a ,b 为常数).微思考1.某电子元件的使用寿命x 1,掷一枚骰子,正面向上的点数x 2,思考x 1,x 2可作为离散型随机变量吗?提示 x 1不可作为离散型随机变量,x 2可作为离散型随机变量. 2.期望和算术平均数有何区别?提示 期望刻画了随机变量取值的平均水平;而算术平均数是针对若干个已知常数来说的.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)离散型随机变量的概率分布列描述了由这个随机变量所刻画的随机现象.( √ ) (2)离散型随机变量的分布列中,随机变量取各个值的概率之和可以小于1.( × ) (3)离散型随机变量的各个可能值表示的事件是彼此互斥的.( √ )(4)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量的平均程度越小.( √ ) 题组二 教材改编2.设随机变量X 的分布列如下:X 1 2 3 4 5 P112161316p则p 为( ) A.16 B.13 C.14 D.112 答案 C解析 由分布列的性质知,112+16+13+16+p =1, ∴p =1-34=14.3.有一批产品共12件,其中次品3件,每次从中任取一件,在取到合格品之前取出的次品数X 的所有可能取值是____________. 答案 0,1,2,3解析 因为次品共有3件,所以在取到合格品之前取出的次品数X 的可能取值为0,1,2,3. 4.若随机变量X 满足P (X =c )=1,其中c 为常数,则D (X )的值为________. 答案 0解析 ∵P (X =c )=1,∴E (X )=c ×1=c , ∴D (X )=(c -c )2×1=0. 题组三 易错自纠5.袋中有3个白球、5个黑球,从中任取2个,可以作为随机变量的是( ) A .至少取到1个白球 B .至多取到1个白球 C .取到白球的个数 D .取到的球的个数答案 C解析 选项A ,B 表述的都是随机事件;选项D 是确定的值2,并不随机;选项C 是随机变量,可能取值为0,1,2. 6.若随机变量X 的分布列为X -2 -1 0 1 2 3 P0.10.20.20.30.10.1则当P (X <a )=0.8时,实数a 的取值范围是( ) A .(-∞,2] B .[1,2] C .(1,2] D .(1,2)答案 C解析 由随机变量X 的分布列知,P (X <-1)=0.1,P (X <0)=0.3,P (X <1)=0.5,P (X <2)=0.8,则当P (X <a )=0.8时,实数a 的取值范围是(1,2].题型一 分布列的性质例1 (1)离散型随机变量X 的概率分布规律为P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P ⎝⎛⎭⎫12<X <52的值为( ) A.23 B.34 C.45 D.56 答案 D解析 因为P (X =n )=a n (n +1)(n =1,2,3,4),所以a 2+a 6+a 12+a 20=1,所以a =54,所以P ⎝⎛⎭⎫12<X <52=P(X=1)+P(X=2)=54×12+54×16=56.故选D.(2)设离散型随机变量X的分布列为X 0123 4P 0.20.10.10.3m求2X+1的分布列.解由分布列的性质知,0.2+0.1+0.1+0.3+m=1,得m=0.3.列表为X 0123 42X+113579从而2X+1的分布列为2X+113579P 0.20.10.10.30.31.若例1(2)中条件不变,求随机变量η=|X-1|的分布列.解由例1(2)知m=0.3,列表为X 0123 4|X-1|1012 3所以P(η=1)=P(X=0)+P(X=2)=0.2+0.1=0.3,P(η=0)=P(X=1)=0.1,P(η=2)=P(X=3)=0.3,P(η=3)=P(X=4)=0.3.故η=|X-1|的分布列为η012 3P 0.10.30.30.32.若例1(2)中条件不变,求随机变量η=X2的分布列.解依题意知η的值为0,1,4,9,16.列表为X 0 1 2 3 4 X 214916从而η=X 2的分布列为η 0 1 4 9 16 P0.20.10.10.30.3思维升华 (1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负数.(2)求随机变量在某个范围内的概率时,根据分布列,将所求范围内各随机变量对应的概率相加即可,其依据是互斥事件的概率加法公式.跟踪训练1 (1)已知随机变量X 的分布列为P (X =k )=12k ,k =1,2,…,则P (2<X ≤4)等于( )A.316B.14C.116D.516 答案 A解析 P (2<X ≤4)=P (X =3)+P (X =4)=123+124=316.(2)已知随机变量X 的分布列为X 0 1 2 3 4 5 P110310x310yz则P (X ≥2)等于( )A .0.3B .0.4C .0.5D .0.6 答案 D解析 P (X ≥2)=x +310+y +z =1-⎝⎛⎭⎫110+310=0.6.题型二 分布列的求法例2 (2021·河南新乡模拟)2021年元旦班级联欢晚会上,某班设计了一个摸球表演节目的游戏:在一个纸盒中装有1个红球,1个黄球,1个白球和1个黑球,这些球除颜色外完全相同,同学不放回地每次摸出1个球,若摸到黑球,则停止摸球,否则就要将纸盒中的球全部摸出才停止.规定摸到红球表演两个节目,摸到白球或黄球表演1个节目,摸到黑球不用表演节目.(1)求a 同学摸球三次后停止摸球的概率;(2)记X 为a 同学摸球后表演节目的个数,求随机变量X 的分布列. 解 (1)设“a 同学摸球三次后停止摸球”为事件E , 则P (E )=A 23A 34=14,故a 同学摸球三次后停止摸球的概率为14.(2)随机变量X 的可能取值为0,1,2,3,4.P (X =0)=14,P (X =1)=2A 24=16,P (X =2)=1A 24+A 22A 34=16,P (X =3)=C 12A 22A 34=16,P (X =4)=A 33A 44=14.所以随机变量X 的分布列为X 0 1 2 3 4 P1416161614思维升华 离散型随机变量分布列的求解步骤跟踪训练2 有编号为1,2,3,…,n 的n 个学生,入座编号为1,2,3,…,n 的n 个座位,每个学生规定坐一个座位,设学生所坐的座位号与该生的编号不同的学生人数为X ,已知X =2时,共有6种坐法. (1)求n 的值;(2)求随机变量X 的分布列.解 (1)因为当X =2时,有C 2n 种方法,因为C 2n =6,即n (n -1)2=6,也即n 2-n -12=0, 解得n =4或n =-3(舍去),所以n =4.(2)因为学生所坐的座位号与该生的编号不同的学生人数为X , 由题意可知X 的可能取值是0,2,3,4,所以P (X =0)=1A 44=124,P (X =2)=C 24×1A 44=14,P (X =3)=C 34×2A 44=13,P (X =4)=1-124-14-13=38,所以X 的分布列为X 0 2 3 4 P124141338题型三 离散型随机变量的数字特征例3 为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为14,16;1小时以上且不超过2小时离开的概率分别为12,23;两人滑雪时间都不会超过3小时.(1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与均值E (ξ),方差D (ξ). 解 (1)两人所付费用相同,相同的费用可能为0,40,80元,甲、乙两人2小时以上且不超过3小时离开的概率分别为1-14-12=14,1-16-23=16.两人都付0元的概率为P 1=14×16=124,两人都付40元的概率为P 2=12×23=13,两人都付80元的概率为P 3=14×16=124,则两人所付费用相同的概率为 P =P 1+P 2+P 3=124+13+124=512.(2)ξ的所有可能取值为0,40,80,120,160,则 P (ξ=0)=14×16=124,P (ξ=40)=14×23+12×16=14,P (ξ=80)=14×16+12×23+14×16=512,P (ξ=120)=12×16+14×23=14,P (ξ=160)=14×16=124.所以ξ的分布列为E (ξ)=0×124+40×14+80×512+120×14+160×124=80.D (ξ)=(0-80)2×124+(40-80)2×14+(80-80)2×512+(120-80)2×14+(160-80)2×124=4 0003.思维升华 求离散型随机变量ξ的均值与方差的步骤 (1)理解ξ的意义,写出ξ可能的全部值. (2)求ξ取每个值的概率. (3)写出ξ的分布列. (4)由均值的定义求E (ξ). (5)由方差的定义求D (ξ).跟踪训练3 现有A ,B ,C 3个项目,已知某投资公司投资A 项目的概率为23,投资B ,C 项目的概率均为p ,且投资这3个项目是相互独立的,记X 是该投资公司投资项目的个数,若P (X =0)=112,则随机变量X 的均值E (X )=________.答案 53解析 由题意可知,X 的所有可能取值为0,1,2,3,由于P (X =0)=112,故13(1-p )2=112,∴p=12.P (X =1)=23×12×12+13×12×12+13×12×12=412=13, P (X =2)=23×12×12+23×12×12+13×12×12=512,P (X =3)=1-112-412-512=212=16,∴E (X )=0×112+1×13+2×512+3×16=53.课时精练1.抛掷两枚骰子一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为ξ,则“ξ≥5”表示的试验结果是( ) A .第一枚6点,第二枚2点 B .第一枚5点,第二枚1点 C .第一枚1点,第二枚6点 D .第一枚6点,第二枚1点 答案 D解析 第一枚的点数减去第二枚的点数不小于5,即只能等于5.故选D. 2.设随机变量X 的分布列为P (X =i )=i2a (i =1,2,3),则P (X =2)等于( )A.19B.16C.13D.14答案 C解析 由分布列的性质,得1+2+32a =1,解得a =3,所以P (X =2)=22×3=13,故选C.3.(2020·沈阳模拟)设离散型随机变量X 可能的取值为1,2,3,4,P (X =k )=ak +b ,若X 的均值为E (X )=3,则a -b 等于( ) A.110 B .0 C .-110 D.15 答案 A解析 由题意知(a +b )+(2a +b )+(3a +b )+(4a +b )=1,即10a +4b =1,又X 的均值E (X )=3,则(a +b )+2(2a +b )+3(3a +b )+4(4a +b )=3,即30a +10b =3,∴a =110,b =0,∴a -b=110. 4.已知随机变量的分布列如下,且E (ξ)=6.3,则a 的值为( )ξ 4 a 9 P0.50.1bA.5B .6C .7D .8答案 C解析 由概率分布列性质,知0.5+0.1+b =1,所以b =0.4,所以E (ξ)=4×0.5+a ×0.1+9×0.4=6.3,所以a =7,故选C.5.(多选)(2020·泰安期末)设离散型随机变量X 的分布列为若离散型随机变量Y 满足Y =2X +1,则下列结果正确的有( ) A .q =0.1B .E (X )=2,D (X )=1.4C .E (X )=2,D (X )=1.8 D .E (Y )=5,D (Y )=7.2 答案 ACD解析 因为q +0.4+0.1+0.2+0.2=1,所以q =0.1,故A 正确; 又E (X )=0×0.1+1×0.4+2×0.1+3×0.2+4×0.2=2,D (X )=(0-2)2×0.1+(1-2)2×0.4+(2-2)2×0.1+(3-2)2×0.2+(4-2)2×0.2=1.8,故C 正确;因为Y =2X +1,所以E (Y )=2E (X )+1=5,D (Y )=4D (X )=7.2,故D 正确.故选ACD. 6.(多选)(2020·杭州质检)已知随机变量ξ的分布列如下:则当a 在⎝⎛⎭⎫0,12内增大时( ) A .E (ξ)增大B .E (ξ)减小C .D (ξ)先增大后减小 D .D (ξ)先减小后增大答案 AC解析 由随机变量ξ的分布列得⎩⎪⎨⎪⎧0≤b -a ≤1,0≤b ≤1,0≤a ≤1,b -a +b +a =1,解得b =0.5,0≤a ≤0.5,∴E (ξ)=0.5+2a ,0≤a ≤0.5.故a 在⎝⎛⎭⎫0,12内增大时,E (ξ)增大. D (ξ)=(-2a -0.5)2(0.5-a )+(0.5-2a )2×0.5+(1.5-2a )2a =-4a 2+2a +14=-4⎝⎛⎭⎫a -142+12, 所以当a ∈⎝⎛⎭⎫0,14时,D (ξ)单调递增,当a ∈⎝⎛⎭⎫14,12时,D (ξ)单调递减,故选AC. 7.某射击选手射击环数的分布列为若射击不小于9环为优秀,其射击一次的优秀率为______. 答案 40%解析 由分布列的性质得a +b =1-0.3-0.3=0.4,故射击一次的优秀率为40%. 8.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|X |=1)=________,公差d 的取值范围是________. 答案 23 ⎣⎡⎦⎤-13,13 解析 ∵a ,b ,c 成等差数列,∴2b =a +c . 又a +b +c =1,∴b =13,∴P (|X |=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,∴-13≤d ≤13.9.已知随机变量ξ的分布列为若E (ξ)=158,则D (ξ)=________.答案5564解析 由分布列性质,得x +y =0.5.又E (ξ)=158,得2x +3y =118,可得⎩⎨⎧x =18,y =38.D (ξ)=⎝⎛⎭⎫1-1582×12+⎝⎛⎭⎫2-1582×18+⎝⎛⎭⎫3-1582×38=5564. 10.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.设ξ为取出的4个球中红球的个数,则P (ξ=2)=________. 答案310解析 由题意可知,P (ξ=2)=C 13C 12C 14+C 23C 22C 24C 26=310. 11.(2021·皖南八校模拟)小李参加一种红包接龙游戏:他在红包里塞了12元,然后发给朋友A ,如果A 猜中,A 将获得红包里的所有金额;如果A 未猜中,A 将当前的红包转发给朋友B ,如果B 猜中,A ,B 平分红包里的金额;如果B 未猜中,B 将当前的红包转发给朋友C ,如果C 猜中,A ,B 和C 平分红包里的金额;如果C 未猜中,红包里的钱将退回小李的账户,设A ,B ,C 猜中的概率分别为13,12,13,且A ,B ,C 是否猜中互不影响.(1)求A 恰好获得4元的概率;(2)设A 获得的金额为X 元,求X 的分布列. 解 (1)依题意,当且仅当C 猜中时A 恰好获得4元, ∴A 恰好获得4元的概率为23×12×13=19.(2)X 的所有可能取值为0,4,6,12, P (X =0)=23×12×23=29,P (X =4)=19,P (X =6)=23×12=13,P (X =12)=13,∴X 的分布列为12.某投资公司在2021年年初准备将1 000万元投资到“低碳”项目上,现有两个项目供选择:项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率分别为79和29;项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,可能损失30%,也可能不赔不赚,且这三种情况发生的概率分别为35,13和115.针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.解 若按“项目一”投资,设获利为X 1万元,X 1的所有可能取值为300,-150.则X 1的分布列为∴E (X 1)=300×79+(-150)×29=200(万元).若按“项目二”投资,设获利X 2万元,X 2的所有可能取值为500,-300,0.则X 2的分布列为∴E (X 2)=500×35+(-300)×13+0×115=200(万元).D (X 1)=(300-200)2×79+(-150-200)2×29=35 000,D (X 2)=(500-200)2×35+(-300-200)2×13+(0-200)2×115=140 000.所以E (X 1)=E (X 2),D (X 1)<D (X 2),这说明虽然项目一、项目二获利相等,但项目一更稳妥. 综上所述,建议该投资公司选择项目一投资.13.已知在10件产品中可能存在次品,从中抽取2件检查,其次品数为ξ,已知P (ξ=1)=1645,且该产品的次品率不超过40%,则这10件产品的次品率为( ) A .10% B .20% C .30% D .40% 答案 B解析 设10件产品中有x 件次品,则P (ξ=1)=C 1x ·C 110-xC 210=x (10-x )45=1645,所以x =2或8.因为次品率不超过40%,所以x =2,所以次品率为210=20%.14.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E (X )=________.答案 65解析 由题意知X =0,1,2,3,P (X =0)=27125,P (X =1)=54125,P (X =2)=36125,P (X =3)=8125,∴E (X )=0×27125+1×54125+2×36125+3×8125=150125=65.15.(多选)(2020·烟台质检)某学校共有6个学生餐厅,甲、乙、丙、丁四位同学每人随机地选择一家餐厅就餐(选择每个餐厅的概率相同),则下列结论正确的是( ) A .四人去了四个不同餐厅就餐的概率为518B .四人去了同一餐厅就餐的概率为11 296C .四人中恰有两人去了第一餐厅就餐的概率为25216D .四人中去第一餐厅就餐的人数的均值为23答案 ACD解析 四人去餐厅就餐的情况共有64种,其中四人去了四个不同餐厅就餐的情况有A 46种,则四人去了四个不同餐厅就餐的概率为A 4664=518,故A 正确;同理,四人去了同一餐厅就餐的概率为664=1216,故B 错误;四人中恰有两人去了第一餐厅就餐的概率为C 24×5264=25216,故C正确;设四人中去第一餐厅就餐的人数为ξ,则ξ=0,1,2,3,4.则P (ξ=0)=5464,P (ξ=1)=C 145364,P (ξ=2)=C 245264,P (ξ=3)=C 34×564,P (ξ=4)=164,则四人中去第一餐厅就餐的人数的分布列为则四人中去第一餐厅就餐的人数的均值E (ξ)=0×5464+1×C 145364+2×C 245264+3×C 34×564+4×164=23,故D 正确. 16.(2020·唐山模拟)某城市美团外卖配送员底薪是每月1 800元,设每月配送单数为X ,若X ∈[1,300],每单提成3元,若X ∈(300,600],每单提成4元,若X ∈(600,+∞),每单提成4.5元,饿了么外卖配送员底薪是每月2 100元,设每月配送单数为Y ,若Y ∈[1,400],每单提成3元,若Y ∈(400,+∞),每单提成4元,小王想在美团外卖和饿了么外卖之间选择一份配送员工作,他随机调查了美团外卖配送员甲和饿了么外卖配送员乙在2020年4月份(30天)的送餐量数据,如下表: 表1:美团外卖配送员甲送餐量统计表2:饿了么外卖配送员乙送餐量统计(1)设美团外卖配送员月工资为f (X ),饿了么外卖配送员月工资为g (Y ),当X =Y ∈(300,600]时,比较f (X )与g (Y )的大小关系;(2)将4月份的日送餐量的频率视为日送餐量的概率. ①计算外卖配送员甲和乙每日送餐量的均值E (x )和E (y ); ②请利用所学的统计学知识为小王作出选择,并说明理由. 解 (1)因为X =Y ∈(300,600],所以g(X)=g(Y),当X∈(300,400]时,f(X)-g(X)=(1 800+4X)-(2 100+3X)=X-300>0,当X∈(400,600]时,f(X)-g(X)=(1 800+4X)-(2 100+4X)=-300<0,故当X∈(300,400]时,f(X)>g(Y),故X∈(400,600]时,f(X)<g(Y).(2)①甲日送餐量x的分布列为乙日送餐量y的分布列为则E(x)=13×115+14×15+16×25+17×15+18×115+20×115=16,E(y)=11×215+13×16+14×25+15×110+16×16+18×130=14.②E(X)=30E(x)=480∈(300,600],E(Y)=30E(y)=420∈(400,+∞),美团外卖配送员,估计月薪平均为1 800+4E(X)=3 720(元),饿了么外卖配送员,估计月薪平均为2 100+4E(Y)=3 780元>3 720元,故小王应选择做饿了么外卖配送员.。

2.1.2 离散型随机变量的分布列

2.1.2  离散型随机变量的分布列
6
23
11 32
一般地,若离散型随机变量X的所有可能取值
为x1,x2,…,xi,…, xn,X取每一个值xi(i= 1,2,…,n)的概率P(X=xi)=pi,以表格的形式
表示如下:
X x1 x2 … xi … xn P p1 p2 … pi … pn
上表称为离散型随机变量X的概率分布列,简称为X 的分布列.
P(X≥3)=P(X=3)+P(X=4)+P(X=5)
=
C C 3 53 10 3010
C140
C≈350041.0191C150
C55 30 10
C530
C350
C350
思考:若将这个游戏的中奖概率控制在55%左右,那 么应该如何设计中奖规则?
游戏规则可定为至少摸到2个红球就中奖.
【提升总结】 两点分布与超几何分布
(1)两点分布又称为0-1分布或伯努利分布,它反映 了随机试验的结果只有两种可能,如抽取的奖券是 否中奖;买回的一件产品是否为正品;一次投篮是 否命中等.在两点分布中,随机变量的取值必须是0 和1,否则就不是两点分布; (2)超几何分布列给出了一类用数字模型解决的问 题,对该类问题直接套用公式即可.但在解决相关
变量X的分布列具有上表的形式,则称随机变量X服
从超几何分布.
例3 在某年级的联欢会上设计了一个摸奖游戏, 在一个口袋中装有10个红球和20个白球,这些球除 颜色外完全相同.一次从中摸出5个球,至少摸到3 个红球就中奖,求中奖的概率.
解:设摸出红球的个数为X,则X服从超几何分布,
其中N=30,M=10,n=5.于是中奖的概率
X∈{1,2,3,4,5,6}, P(X i) 1 ,(i 1,2,3,4,5,6)
6

随机变量及其分布列概念公式总结

随机变量及其分布列概念公式总结

随机变量及其分布总结1、定义:随着试验结果变化而变化的变量称为随机变量 .随机变量常用字母 X , Y ,ξ,η,… 表示.2、定义:所有取值可以一一列出的随机变量,称为离散型随机变量3、分布列:设离散型随机变量ξ可能取得值为x 1,x 2,…,x 3,…,ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质:(1)P i ≥0,i =1,2,…; (2)P 1+P 2+…=1. 5.求离散型随机变量ξ的概率分布的步骤: (1)确定随机变量的所有可能的值x i (2)求出各取值的概率p(ξ=x i )=p i (3)画出表格6.两点分布列:7超几何分布列:一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X 件次品数,则事件 {X=k }发生的概率为(),0,1,2,,k n kM NMnNC C P X k k m C --===,其中min{,}m M n =,且,,,,n N M N n M N N *≤≤∈.称分布列为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X 服从超几何分布8.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k kn n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).于是得到随机变量ξ的概率分布如下:ξ 01 … k … nPnn q p C 00111-n n q p C … kn k k n q p C - …q p C n n n称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数。

随机变量及其分布列

随机变量及其分布列

随机变量及其分布列.几类典型的随机分布一、离散型随机变量及其分布列随机变量是指在试验中可能出现的结果可以用一个变量X 来表示,并且X是随着试验的结果的不同而变化的。

离散型随机变量是指所有可能的取值都能一一列举出来的随机变量。

离散型随机变量常用大写字母X,Y表示。

离散型随机变量的分布列是将所有可能的取值与对应的概率列出的表格。

二、几类典型的随机分布1.两点分布二点分布是指随机变量X的分布列为X:1,P:pq,其中p 为0~1之间的参数,q为1-p。

伯努利试验只有两种可能结果的随机试验,因此又称为伯努利分布。

2.超几何分布超几何分布是指有总数为N件的两类物品,其中一类有M件,从所有物品中任取n件,这n件中含有这类物品件数X 是一个离散型随机变量,它取值为m时的概率为C(n,m)C(M,m)/C(N,n)。

超几何分布只要知道N,M和n,就可以根据公式求出X取不同值时的概率P(X=m),从而列出X的分布列。

3.二项分布二项分布是指在n次独立重复试验中,事件A发生的次数X服从二项分布,事件A不发生的概率为q=1-p,事件A恰好发生k次的概率为P(X=k)=C(n,k)p^kq^(n-k)。

其中p为事件A发生的概率,k为事件A发生的次数,n为试验的总次数。

首先,将文章中的格式错误和明显有问题的段落删除。

然后对每段话进行小幅度改写。

对于二项分布,当一个试验重复进行n次,每次成功的概率为p,失败的概率为q=1-p时,事件发生k次的概率可以用公式P(n,k) = n。

/ (k!(n-k)!) * p^k * q^(n-k)来计算。

这个公式可以展开成X的分布列,其中X表示事件发生的次数。

因为每个值都可以对应到表中的某个项,所以我们称这样的散型随机变量X服从参数为n,p的二项分布,记作X~B(n,p)。

二项分布的均值和方差可以用公式E(X) = np和D(X) = npq(q=1-p)来计算。

正态分布是一种连续型随机变量的概率分布。

2024届高考一轮复习数学课件(新教材人教A版):离散型随机变量及其分布列、数字特征

2024届高考一轮复习数学课件(新教材人教A版):离散型随机变量及其分布列、数字特征

n
xipi
为随机变量
X
的均值或数学期望,
i=1
数学期望简称期望.它反映了随机变量取值的_平__均__水__平__.
(2)方差
n
(xi-E(X))2pi
称D(X)=(x1-E(X))2p1+(x2-E(X))2p2+…+(xn-E(X))2pn=_i=_1___________
为随机变量X的方差,并称 DX 为随机变量X的 标准差 ,记为σ(X),它们
跟踪训练3 某班体育课组织篮球投篮考核,考核分为定点投篮与三步上 篮两个项目.每个学生在每个项目投篮5次,以规范动作投中3次为考核合 格,定点投篮考核合格得4分,否则得0分;三步上篮考核合格得6分,否 则得0分.现将该班学生分为两组,一组先进行定点投篮考核,一组先进 行三步上篮考核,若先考核的项目不合格,则无需进行下一个项目,直 接判定为考核不合格;若先考核的项目合格,则进入下一个项目进行考 核,无论第二个项目考核是否合格都结束考核.已知小明定点投篮考核合 格的概率为0.8,三步上篮考核合格的概率为0.7,且每个项目考核合格的 概率与考核次序无关. (1)若小明先进行定点投篮考核,记X为小明的累计得分,求X的分布列;
都可以度量随机变量取值与其均值的 偏离程度 .
知识梳理
5.均值(数学期望)与方差的性质 (1)E(aX+b)= aE(X)+b . (2)D(aX+b)= a2D(X) (a,b为常数).
常用结论
1.E(k)=k,D(k)=0,其中k为常数. 2.E(X1+X2)=E(X1)+E(X2). 3.D(X)=E(X2)-(E(X))2. 4.若X1,X2相互独立,则E(X1X2)=E(X1)·E(X2).
定这两个“?”处的数值相同.据此计算,下列各式中:①E(ξ)=1;

高中数学人教A版选修2-3课件2-1-2离散型随机变量的分布列

高中数学人教A版选修2-3课件2-1-2离散型随机变量的分布列
付款,其利润为250元;分4期或5期付款,其利润为300元.若η表示经
销一件该商品的利润,求η的分布列.
探究一
探究二
探究三
探究四
思维辨析
当堂检测
解:由题易得,η的可能取值为200元,250元,300元,
则P(η=200)=P(ξ=1)=0.12,
P(η=250)=P(ξ=2)+P(ξ=3)=0.24+0.18=0.42,
=1
【做一做1】 离散型随机变量X的分布列为
X
1
1
4
)
P
则m的值为(
A.
C.
1
2
1
4
B.
2
3
m
4
1
3
1
3
1
D.
6
1
1
1
1
4
3
6
4
解析:由概率分布列的性质知, +m+ + =1,得 m= .
答案:C
1
6
2.两点分布
随机变量X的分布列为
X
P
0
1-p
1
p
若随机变量X的分布列具有上表的形式,则称X服从两点分布,并
C 345
C 350
C 350
.
,
探究一
探究二
探究三
探究四
思维辨析
当堂检测
离散型随机变量的分布列
例1 从装有除颜色外完全相同的6个白球,4个黑球和2个黄球的箱
中随机地取出两个球,规定每取出1个黑球赢2元,而每取出1个白球
输1元,取出黄球无输赢.
(1)以X表示赢得的钱数,随机变量X可以取哪些值?求X的分布列;

(完整版)分布列概念

(完整版)分布列概念

1. 分布列定义:设离散型随机变量所有可能取得的值为x 1,x 2,…,x 3,…x n ,若取每一个值x i (i=1,2,…,n)的概率为,则称表为随机变量的概率分布,简称的分布列. 离散型随机变量的分布列都具有下面两个性质:(1)P i ≥0,i=1,2,…,n ;(2)P 1+P 2+…+P n =1 要点四、两类特殊的分布列 1. 两点分布像上面这样的分布列称为两点分布列. 要点诠释:(1)若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1)为成功率. (2)两点分布又称为0-1分布或伯努利分布(3)两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列来研究. 2. 超几何分布一般地,在含有件次品的件产品中,任取件,其中恰有件次品,则则事件 {X=k }发生的概率为, 其中,且.称分布列为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X 服从超几何分布ξξi i P x P ==)(ξξξM N n X (),0,1,2,,k n kM N MnNC C P X k k m C --===L min{,}m M n =,,,,n N M N n M N N *≤≤∈要点一、条件概率的概念 1.定义设、为两个事件,且,在已知事件发生的条件下,事件B 发生的概率叫做条件概率。

用符号表示。

读作:发生的条件下B 发生的概率。

要点诠释在条件概率的定义中,事件A 在“事件B 已发生”这个附加条件下的概率与没有这个附加条件的概率是不同的,应该说,每一个随机试验都是在一定条件下进行的.而这里所说的条件概率,则是当试验结果的一部分信息已知,求另一事件在此条件下发生的概率.2.P (A |B )、P (AB )、P (B )的区别P (A |B )是在事件B 发生的条件下,事件A 发生的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 分布列定义:设离散型随机变量所有可能取得的值为x 1,x 2,…,x 3,…x n ,若取每一个值x i (i=1,2,…,n)的概率为,则称表为随机变量的概率分布,简称的分布列. 离散型随机变量的分布列都具有下面两个性质:(1)P i ≥0,i=1,2,…,n ;(2)P 1+P 2+…+P n =1 要点四、两类特殊的分布列 1. 两点分布像上面这样的分布列称为两点分布列. 要点诠释:(1)若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1)为成功率. (2)两点分布又称为0-1分布或伯努利分布(3)两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列来研究. 2. 超几何分布一般地,在含有件次品的件产品中,任取件,其中恰有件次品,则则事件 {X=k }发生的概率为, 其中,且.称分布列为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X 服从超几何分布ξξi i P x P ==)(ξξξM N n X (),0,1,2,,k n kM N MnNC C P X k k m C --===min{,}m M n =,,,,n N M N n M N N *≤≤∈要点一、条件概率的概念 1.定义设、为两个事件,且,在已知事件发生的条件下,事件B 发生的概率叫做条件概率。

用符号表示。

读作:发生的条件下B 发生的概率。

要点诠释在条件概率的定义中,事件A 在“事件B 已发生”这个附加条件下的概率与没有这个附加条件的概率是不同的,应该说,每一个随机试验都是在一定条件下进行的.而这里所说的条件概率,则是当试验结果的一部分信息已知,求另一事件在此条件下发生的概率.2.P (A |B )、P (AB )、P (B )的区别P (A |B )是在事件B 发生的条件下,事件A 发生的概率。

P (AB )是事件A 与事件B 同时发生的概率,无附加条件。

P (B )是事件B 发生的概率,无附加条件. 它们的联系是:. 要点诠释一般说来,对于概率P(A|B)与概率P(A),它们都以基本事件空间Ω为总样本,但它们取概率的前提是不相同的。

概率P(A)是指在整个基本事件空间Ω的条件下事件A 发生的可能性大小,而条件概率P(A|B)是指在事件B 发生的条件下,事件A 发生的可能性大小。

例如,盒中球的个数如下表。

从中任取一球,记A=“取得蓝球”,B=“取得玻璃球”。

基本事件空间Ω包含的样本点总数为16,事件A 包含的样本点总数为11,故。

如果已知取得玻璃球的条件下取得蓝球的概率就是事件B 发生的条件下事件A 发生的条件概率,那么在事件B 发生的条件下可能取得的样本点总数应为“玻璃球的总数”,即把样本空间压缩到玻璃球全体。

而在事件B 发生的条件下事件A 包含的样本点数为蓝玻璃球数,故。

要点二、条件概率的公式A B ()0P A >A (|)P B A (|)P B A A ()(|)()P AB P A B P B =11()16P A =42(|)63P A B ==1.计算事件B 发生的条件下事件A 发生的条件概率,常有以下两种方式: ①利用定义计算.先分别计算概率P (AB )及P (B ),然后借助于条件概率公式求解. ②利用缩小样本空间的观点计算.在这里,原来的样本空间缩小为已知的条件事件B ,原来的事件A 缩小为事件AB ,从而,即:,此法常应用于古典概型中的条件概率求解. 要点诠释概率P(B|A)与P(AB)的联系与区别: 联系:事件A ,B 都发生了。

区别:①在P(B|A)中,事件A ,B 发生有时间上的差异,事件A 先发生事件B 后发生;在P(AB)中,事件A ,B 同时发生;②基本事件空间不同在P(B|A)中,事件A 成为基本事件空间;在P(AB)中,基本事件空间仍为原基本事件空间。

2.条件概率公式的变形. 公式揭示了P (B )、P (A |B )、P (AB )的关系,常常用于知二求一,即要熟练应用它的变形公式如,若P (B )>0,则P (AB )=P (B )·P (A |B ),该式称为概率的乘法公式. 要点诠释条件概率也是概率,所以条件概率具有概率的性质.如: ①任何事件的条件概率取值在0到1之间;②必然事件的条件概率为1,不可能事件的条件概率为0; ③条件概率也有加法公式:P (B ∪C |A )=P (B |A )+P (C |A ),其中B 和C 是两个互斥事件. 要点三、相互独立事件 1.定义:事件(或)是否发生对事件(或)发生的概率没有影响,即,这样的两个事件叫做相互独立事件。

()(|)()P AB P A B P B =(|)AB P A B B =包含的基本事件数包含的基本事件数()(|)()n AB P B A n A =()(|)()P AB P A B P B =A B B A (|)()P B A P B =若与是相互独立事件,则与,与,与也相互独立。

2.相互独立事件同时发生的概率公式:对于事件A 和事件B ,用表示事件A 、B 同时发生。

(1)若与是相互独立事件,则; (2)若事件相互独立,那么这个事件同时发生的概率,等于每个事件发生的概率的积,即:。

要点诠释(1)P (AB )=P (A )P (B )使用的前提是A 、B 为相互独立事件,也就是说,只有相互独立的两个事件同时发生的概率,才等于每个事件发生的概率的积.(2)两个事件、相互独立事件的充要条件是。

3.相互独立事件与互斥事件的比较互斥事件与相互独立事件是两个不同的概念,它们之间没有直接关系。

互斥事件是指两个事件不可能同时发生,而相互独立事件是指一个事件是否发生对另一个事件发生的概率没有影响。

一般地,两个事件不可能既互斥又相互独立,因为互斥事件是不可能同时发生的,而相互独立事件是以它们能够同时发生为前提的。

相互独立事件同时发生的概率等于每个事件发生的概率的积,这一点与互斥事件的概率和也是不同的。

4. 几种事件的概率公式的比较已知两个事件A ,B ,它们发生的概率为P (A ),P (B ),将A ,B 中至少有一个发生记为事件A+B ,都发生记为事件A·B ,都不发生记为事件A B ⋅,恰有一个发生记为事件,至多有一个发生记为事件,则它们的概率间的关系如下表所示:要点二、独立重复试验的概率公式A B A B A B A B A B ⋅A B ()()()P A B P A P B ⋅=⋅12,,,n A A A n 1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅A B ()()()P A B P A P B ⋅=⋅A B A B ⋅+⋅A B A B A B ⋅+⋅+⋅1.定义如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中,事件A 恰好发生k 次的概率为:(k=0,1,2,…,n ).令得,在n 次独立重复试验中,事件A 没有发生的概率为........令得,在n 次独立重复试验中,事件A 全部发生的概率为........。

要点诠释:1. 在公式中,n 是独立重复试验的次数,p 是一次试验中某事件A 发生的概率,k 是在n 次独立重复试验中事件A 恰好发生的次数,只有弄清公式中n ,p ,k 的意义,才能正确地运用公式.2. 独立重复试验是相互独立事件的特例,就像对立事件是互斥事件的特例一样,只是有“恰好”字样的用独立重复试验的概率公式计算更方便.要点三、n 次独立重复试验常见实例:1.反复抛掷一枚均匀硬币2.已知产品率的抽样3.有放回的抽样4.射手射击目标命中率已知的若干次射击 要点诠释:抽样问题中的独立重复试验模型:①从产品中有放回地抽样是独立事件,可按独立重复试验来处理; ②从小数量的产品中无放回地抽样不是独立事件,只能用等可能事件计算;③从大批量的产品中无放回地抽样,每次得到某种事件的概率是不一样的,但由于差别太小,相当于是独立事件,所以一般情况下仍按独立重复试验来处理。

要点四、离散型随机变量的二项分布 1. 定义:在一次随机试验中,事件A 可能发生也可能不发生,在次独立重复试验中事件A 发生的次数是一个离散型随机变量.如果在一次试验中事件A 发生的概率是,则此事件不发生的概率为,那么在次独立重复试验中事件A 恰好发生次的概率是,().()(1)k kn k n n P k C p p -=-0k =00(0)(1)(1)n n n n P C p p p =-=-k n =0()(1)n n n n n P n C p p p =-=n ξp 1q p =-n k ()()k k n kn n n P k P k C p q -===ξ0,1,2,...,k n =于是得到离散型随机变量的概率分布如下:由于表中第二行恰好是二项展开式中各对应项的值,所以称这样的随机变量服从参数为,的二项分布,记作.要点诠释:判断一个随机变量是否服从二项分布,关键有三: 其一是独立性。

即每次试验的结果是相互独立的; 其二是重复性。

即试验独立重复地进行了n 次;其三是试验的结果的独特性。

即一次试验中,事件发生与不发生,二者必居其一。

2.如何求有关的二项分布(1)分清楚在n 次独立重复试验中,共进行了多少次重复试验,即先确定n 的值,然后确定在一次试验中某事件A 发生的概率是多少,即确定p 的值,最后再确定某事件A 恰好发生了多少次,即确定k 的值;(2)准确算出每一种情况下,某事件A 发生的概率;(3)用表格形式列出随机变量的分布列。

要点一、离散型随机变量的期望 1.定义:一般地,若离散型随机变量的概率分布为则称…… 为的均值或数学期望,简称期望. 要点诠释:(1)均值(期望)是随机变量的一个重要特征数,它反映或刻画的是随机变量取值的平均水平.(2)一般地,在有限取值离散型随机变量的概率分布中,令…,则有…,…,所以的数学期望又称为平均数、均值。

(3)随机变量的均值与随机变量本身具有相同的单位.ξ011100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+-- ξn p ~(,)B n p ξξ=ξE +11p x +22p x ++n n p x ξξ=1p =2p n p ==1p =2p n p n 1===ξE +1(x +2x nx n 1)⨯+ξ2.性质:①;②若(a 、b 是常数),是随机变量,则也是随机变量,有;的推导过程如下::的分布列为于是……=……)……)= ∴。

相关文档
最新文档