交点法与线元法
交点法、线元法坐标计算
3、交点法、线元法坐标计算坐标计算是根据图纸中“直线及曲线转角一览表”提供的数据计算道路中桩坐标,然后和图纸提供的“逐桩坐标表”比对,如果一样则说明输入平曲线参数输入正确,可以计算边桩坐标和其他结构物坐标了;如果中桩坐标不一样,一般是平曲线参数输入有误,需要重新检查输入,另一种结果是图纸有错,这种情况少见,但不代表没有。
“直线及曲线转角一览表”和“逐桩坐标表”见附件1、附件2。
线元法是以路线的起点坐标、方位角、起终点桩号等节点元素来计算出要求的坐标;交点法是以路线的交点要素和路线的主要要素来求得坐标。
①交点法交点:路线的转折点,路线改变方向是相邻两直线的延长线相交的点。
用JD表示,有些图纸上用IP 表示。
看下图:交点是针对曲线的(包含圆曲线和缓和曲线),一段曲线就有一个交点。
交点参数有:坐标(X,Y)、交点桩号、转角值、圆曲线半径R、缓和曲线长度。
教学提供软件(轻松测量、双心软件、测量工具)交点法曲线要素输入说明:1、QD起点坐标:起点坐标必须在直线段上,或填写前一交点的坐标。
2、JD交点曲线要素:(1)交点桩号(2)交点坐标(X,Y)(3)曲线半径R(4)第一缓和曲线长度LS1,若为0,输入0,不能为空。
(5)第二缓和曲线长度LS2,若为0,输入0,不能为空。
3、ZD终点坐标:终点坐标也必须在直线段上,或填写后一交点的坐标。
检核数据是否输入正确的方法:软件生成的圆曲线要素中切线长、外距、交点里程:注意校正起点里程、等与设计图纸是否一致。
如果上述数据和图纸不一样,请认真检查有错误的交点处的数据输入是否正确,如果输入没有错误,请考虑是否包含不完整缓和曲线,使用公式A2=R*Ls检查是否包含不完整缓和曲线。
如果包含不完整缓和曲线,那就需要用线元法也叫积木法计算了。
有的设计院给出的直曲表是整条设计线路的直曲表的一部分,以其中某个交点作为起始点的话,起始里程有时候需要校正,当然,并不是每个图纸给出的起点里程都需要校正,大多数图纸的起点里程已经被设计院校正过,我们输入平曲线的时候需要验证一下。
测量员网
5 、坐标转换程序:可进行高斯投影正反算、坐标换带、方向与边长改化计算。
( 二 ) 本系统主要特点1 、功能全面,包含了公路、铁路施工测量的各个方面,更新版本将根据用户需求随时完善、增强。
2 、表格式的数据操作,简单、方便,所输入的历史数据均可留在系统中,每次程序启动后均可显示以前的数据,包括计算结果。
本系统还可将用户输入资料保存为磁盘文件 (*.stc) 以便交流及随身携带,也可将原始数据或计算结果输出为 EXCEL 及文本文件。
3 、所见即所得的报表输出功能,支持报表设计,用户可根据自已的需要设计出适合的报表,先进的数据计算引擎,计算速度极快,在预览页面可将报表保存为同式样的 EXCEL 或网页文件,在 EXCEL 中真正体现了人性化的报表界面,支持数据的直接显示、打印。
报表中的“单位、制表、复核”等参数在系统菜单栏的“报表设置”项中设置。
对于“逐桩坐标报表”有两种选择,根据需要可选择全部打印或只打印中桩桩号、坐标及方位角,请在菜单栏的“报表设置”项中设置。
4 、导线严密平差采用条件平差,所计算数据的变量均采用双精度浮点型,计算精度极高。
线路中缓和曲线的计算精度为 0.05mm ,由程序按精度动态选取计算项数。
5 、本系统使现场施工放样的计算工作变的简单、方便,同时也使公路互通匝道复杂曲线的计算变的容易、准确,也许这才是你真正期待的施工测量软件。
6 、本系统特别针对公路互通匝道的复杂曲线进行了优化设计,根据设计提供参数可选用多种方案进行计算,既可对组成匝道曲线的单个线元进行计算,也可将整条匝道的曲线参数输入进行全线计算,还可以根据匝道起点或终点坐标、方位角推算其它主点坐标及方位角,是互通匝道复杂曲线放样的最得力助手。
四、输入输出说明:( 一 ) 格式化输入1 、桩号输入:桩号按米数格式输入,如 K13+131.88 桩号,输入时应为 13131.88 ,单位为米;2 、角度输入:方位角、夹角按度分秒格式输入,如 59 ° 01 ′ 46.6 ″,输入时应为 59.01466 ,单位为度分秒;3 、曲线转向必须为“左”或者“右”,其它字符均不能计算;4 、本系统所指方位角均为切线方位角。
交点法线元法坐标计算
交点法线元法坐标计算交点法和线元法是计算坐标的两种方法,可以用于计算几何图形中的交点和线段的起始点和终止点的坐标。
下面将详细介绍交点法和线元法的计算过程。
交点法是通过已知条件计算出切线的方程,然后求解出两条切线的交点的坐标。
具体步骤如下:1.根据已知条件,建立两条直线的方程。
假设两条直线的方程分别为L1和L22.将L1和L2相减,得到方程L1-L2=0。
这个方程表示两条直线的交点。
3.解方程L1-L2=0,求出交点的坐标。
这可以通过代入法、消元法或者数值计算方法等得到。
交点法计算坐标的优点是可以得到精确的坐标值。
但是对于复杂的几何图形,方程求解过程可能较为繁琐,需要一定的数学知识和计算能力。
线元法是通过将线段拆分为多个小线元,然后根据已知条件和几何关系逐个计算得到各个小线元的坐标。
具体步骤如下:1. 先计算出线段的长度。
假设线段的起始点和终止点的坐标分别为(x1, y1)和(x2, y2),则线段的长度为L = sqrt((x2 - x1)^2 + (y2 - y1)^2)。
2.根据已知条件和几何关系,将线段等分为若干小线元。
每个小线元的长度为L/n,其中n表示需要等分的线元数目。
3.通过线段的起始点和终止点的坐标,以及小线元的长度计算出每个小线元的起始点和终止点的坐标。
计算公式为:起始点坐标为(x1+i*Δx,y1+i*Δy),终止点坐标为(x1+(i+1)*Δx,y1+(i+1)*Δy),其中i表示第i个小线元,Δx=(x2-x1)/n,Δy=(y2-y1)/n。
线元法计算坐标的优点是计算过程相对简单直观,并且可以得到较为精确的近似值。
但是对于曲线等复杂几何图形,需要将线段等分为较多的小线元才能得到较为准确的坐标值。
无论使用交点法还是线元法计算坐标,都需要根据几何图形的特点和已知条件选择适应的方法,并进行准确的推导和计算。
实际应用过程中,根据具体情况选择合适的计算方法会更加便捷和精确。
交点法和线元法的误差分析方法
交点法和线元法的误差分析方法交点法和线元法是两种常用的误差分析方法,用于测量和计算物体的几何特性。
本文将介绍这两种方法的基本原理和应用。
一、交点法交点法是一种通过测量物体表面上的交点来确定其几何特性的方法。
该方法基于以下原理:在三维空间中,任意两个平面的交线称为交点。
通过测量交点的坐标,可以计算出物体在空间中的位置、距离和角度等信息。
使用交点法进行误差分析时,需要先确定测量的目标和指标。
然后,通过使用合适的测量设备,测量出物体表面上的交点坐标。
接下来,通过计算交点坐标的误差,可以得出测量结果的准确性和精度。
最后,根据测量结果的误差值,进行误差分析和评估。
交点法适用于需要测量物体位置、形状和相对位置关系的情况,例如建筑物的测量、零件的装配和机器人的定位等。
通过使用交点法,可以提高测量的精确度和可靠性。
二、线元法线元法是一种基于物理模型的误差分析方法,通过计算物体表面上每个线元的误差来评估整体的误差。
该方法基于以下原理:将物体表面划分成许多小线元,通过对每个线元的测量和分析,得出整体的几何特性。
使用线元法进行误差分析时,需要先确定物体表面的小线元数量和位置。
然后,通过测量每个线元的尺寸和形状,计算出其误差值。
接下来,将每个线元的误差值累加,得出整体的误差。
最后,根据整体的误差值,进行误差分析和评估。
线元法适用于需要分析复杂物体或特定区域的几何特性的情况,例如汽车外壳的造型、航空发动机的叶片设计和电子设备的尺寸控制等。
通过使用线元法,可以更加精确地评估物体的几何特性和误差情况。
综上所述,交点法和线元法是两种常用的误差分析方法,可以用于测量和计算物体的几何特性。
根据具体的测量需求和物体特点,选择合适的方法进行误差分析,可以提高测量结果的准确性和可靠性。
交点法计算曲线
交点法计算曲线在我们曲线计算种线元法和交点法最为常有,上次我们说到了线元法,今天说说交点法。
让各位测量同胞研究,学习,若有疑问请加QQ:7036384,或是进QQ群: 8465359(作者:像小强一样活着) 老规矩,还是先画个图a是直线段,A点是直线与弧线的交点(弧线起点),我们还是设a的方位角356°59′15″,A点坐标为X:3146290.239 Y:37442280.990 B点坐标为X:3146420.519 Y:37442332.702 弧线半径为168,我们可以求出圆心坐标。
X:3146290.239+cos(356°59′15″+90°0′0″)*168=3146299.068Y:37442280.990+sin(356°59′15″+90°0′0″)*168=37442448.76现在们以圆心向A点算方位角,得出方位角266°59′15″现在我们求第一个5米圆弧。
求5米弧长对应的角度:5/168*2*π*360°=1°42′18.83″如图我们设弧AB长5米,我们先求出BB'的长度(过B点作AO的垂线,垂足B')BB'=4.999259025 ≈4.9993 B'O=167.9256008≈167.926现在我们可以计算B的坐标从O往B X:3146299.068+cos(266°59′15″)*167.926+cos(266°59′15″+90°0′0″) *4.9993=3146295.235Y:37442448.76+sin(266°59′15″)*167.926+sin(266°59′15″+90°0′0″)*4.9993=37442280.8。
幽灵程序使用说明
幽灵版CASIO5800公路施工程序集使用说明1.程序总序本程序采用交点法与线元法有机结合,能够灵活自如的根据自己的标段特点,想用交点法就用交点法,想用线元法就用线元法。
真正的实现随心所欲的数据编程,本程序默认线路为三条,第1,2条线路采用交点法,第3条线路采用线元法,使你可以同时计算三个工地的数据情况,还可以根据自己的喜好和要求,无限的加载线路条数。
2.程序详情主程序分3个分别为00ZZ,01ZZ,02ZZ,支持的功能如下:1.支持三维坐标正算输出。
2.支持三维反算输出3.高程输出,一次性显示左横坡,右横坡,纵坡和算点高程。
4.左右路基宽度一次性输出。
5.边坡放样支持挖方五级边坡及以上,填方三级边坡及以上。
6.定值路基放样填挖值。
7.极坐标计算距离方位角8.隧道放样可计算任何复杂隧道圆心,采用圆曲线和直线有机串列。
9.支持单交点正反算与单交点高程计算。
10.支持导线计算,可以平差闭合附和导线,无定向导线和支导线。
11.涵洞计算放样,一次数据输入,涵洞四角点自动输出。
12.桥梁平分中矢法。
可以计算斜交桥梁的构造物坐标。
13.支持桥梁斜交高程计算。
14.附带一款抓捕双色球的自动分析程序,丰富大家的工作之余生活。
15.附带多边形面积计算程序。
16.两点后方交会程序。
17.土方路基横断面放量计算。
18.导线水准高程平差。
19.水准测量计算小程序。
20.支持桩号步长叠加功能。
总之,程序功能非常强大,期待更多程序功能望各位测友自行发掘。
2.计算实例1. 选择00ZZ主程序 EXE 进入界面1.选择1XYZ 按1(5s)进入 EXECZX? 39477.185 EXECZY? 4944.518 EXEQX;X=1,X=2,RAMP=3? 2 EXEKP=>TEP? 20 EXEKM? 2500 EXED? 10 EXEEXEZFWJ=65º28’26”X=39495.848Y=4973.375H=15.513EXEAI=57.0624DI=34.366接下来选择线元法线路3算个例子如下:1.选择1XYZ 按1(5s)进入 EXECZX? (测站X) 570.703 EXECZY? (测站Y) 4085.244 EXEQX;X=1,X=2,RAMP=3? 3 EXEKP=>TEP? 20 EXEEXEZFWJ=56º23’46.16”X=625.064Y=4048.126H=40.385EXEAI=325.4027DI=65.824计算出该点的三维坐标X,Y,H,和极坐标放样数据AI为十进制小数模式(57度06分24秒),DI为极坐标距离。
道路测量员平曲线编辑
本程序支持交点法、线元法两种方法编辑平曲线参数。
此帮助是交点法的参数编辑,需要注意的是:【注意】必须在新建线路时指定平曲线输入方法,即指定道路使用交点法、线元法中的哪一种。
编辑路线参数时没有办法更改平曲线输入方法。
如果选错只能删除重建。
进入平曲线参数列表,你可以在界面右上方看到新建、帮助、三点按钮,点击三点按钮又可以看到导入、清空选项,当你点击列表某一项后的多选框时又会出现新菜单,上面有删除、全选按钮,下面详细说明各个按钮的功能【新建】新建起点:使用交点法编辑平曲线参数时,新建第一个元素会自动跳转到新建起点界面,如下图所示,起点名默认为“QD”,不可修改。
【注意】起点要在ZH点(直缓点)或ZH点前的直线段上。
新建交点:编辑完起点后,点击新建按钮,添加平曲线元素。
进入编辑平曲线元素界面,如下图。
首先,如果要输入交点就必须在类型下拉列表中选择“交点”(默认即是交点),这样输入的才是交点元素。
此处输入方法和轻松工程测量系统输入方法类似,Ls1表示第一缓和曲线长,Ls2表示第二缓和曲线长。
输入非对称和不规则曲线时,Ls1、Ls2值不相等,如果入缓和曲线不存在,Ls1输入0;如果出缓和曲线不存在,Ls2输入0,如果都不存在,都输入0。
无论左转还是右转半径都输入正数。
如果你的路线包含不完整缓和曲线,那么请勾选包含不完整缓和曲线选项(暂时只支持部分不完整缓和曲线,还不完美,如果计算误差较大,建议使用线元法输入这条路线)。
当你输入完一个元素回到参数列表时,你可以看到程序算出的除最后一个元素之前的交点的要素,如交点桩号、切线长。
(最后一个交点的要素只能等到输入完毕后才能显示)。
新建终点:在本程序中最后一个元素必须是点元素,要输入终点,我们首页在类型下拉框中选择“折线点或终点”,然后输入终点坐标即可,如下图。
如果你输入的最后一个元素为交点元素,那么退出时程序会提示你,是否将最后一个交点元素转换成点元素。
【注意】终点要在HZ点(缓直点)或HZ点后的直线段上。
如何通过直线与圆的交点解决高考数学中的几何问题
如何通过直线与圆的交点解决高考数学中的几何问题在高考数学中,几何问题的难易程度直接关系到考生的成绩。
而直线与圆的交点是解决几何问题的常用技巧,本文将探讨如何通过直线与圆的交点解决高考数学中的几何问题。
一、如何确定直线与圆的交点要解决几何问题,首先需要确定直线与圆的交点。
确定直线与圆的交点有以下几种方法:1. 配方法:根据圆的方程和直线的方程,将两个方程联立,求出交点坐标。
2. 投影法:通过直线的斜率、圆心与直线垂线的位置关系,求出交点坐标。
3. 切线法:通过求圆心到直线的距离和切线的方程交点,确定交点坐标。
以上三种方法都是可以解决直线与圆的交点的,具体方法根据题目给出的条件而定。
接下来我们会通过例题来说明。
二、例题解析1. 题目描述:△ABC为等腰三角形,AB=AC,点D为BC边上一点,OD⊥AC交AB于E,F为BC直线上一点,O为圆心,过点D的直线与圆O交于M、N两点,且点M在直线OF上,线段EN与线段DM交于P点。
求证:∠EPM=∠ENF。
2. 解题思路:首先需要确定直线与圆的交点坐标。
题目中给出的条件是过点D的直线与圆O交于M、N两点,且点M在直线OF上,因此可以通过切线法求解。
圆O的方程为(x-a)²+(y-b)²=r²,直线OF的方程为y=kx+b,其中k为斜率,b为截距,a、b、r为圆心坐标及半径。
首先需要求出圆心坐标和半径,通过三角形ABC相等,可知CE=BE,因此AE⊥BC,因此OE为OB的中垂线,OB=OC,OE=OE,因此△OEC为等腰三角形,OE=OC=OB,因此圆心坐标为O(x,y)=(A, B+AE)。
圆的半径为r=OA=√[(x-A)²+(y-B-AE)²]。
接下来需要求切线的方程。
过点M的切线方程为(2A-2x)x+(2B+2AE-2y)y=2r²-A²-B²-AE²。
因为点M在直线OF上,因此直线OF的方程为y=kx+b,代入可得k=(B-AE)/(A-2x),b=2r²-A²-B²-AE²/(2A-2x)。
浅谈GPS中线路参数设置交点法转化为线元法
浅谈GPS中线路参数设置交点法转化为线元法发布时间:2021-01-12T11:26:39.690Z 来源:《基层建设》2020年第25期作者:崔文硕[导读] 摘要:线路参数已广泛应与于道路测量及道路设计。
中国建筑第八工程局华北分公司天津市滨海新区 300450摘要:线路参数已广泛应与于道路测量及道路设计。
线路参数最常用的方法为交点法和线元法。
本文以实际工程案例为依托,详细论述了GPS中线路参数设置交点法转化为线元法的具体操作方法。
关键词:交点法;线元法;区别;转化方法随着中建埃塞分公司进入基础设施领域板块,先后承接阿法尔项目一标及阿法尔项目二标。
前期原地表数据测量已完成,进入施工测量阶段。
在施工放样时需要使用曲线要素表编程,利用GPS电子手簿中可以实时计算出桩号及中心偏距来确定某个点的位置,对于现场的管理也有很大的提升,可以进行单人作业,人力成本极大降,并且在结构物放样中,在设计没有提供坐标情况下,通过提供具体桩号也可以准确进行放样工作。
一、线元法与交点法的区别在工程中测算坐标的时候,线元法是以路线的起点坐标、方位角、起终点桩号等节点元素来计算出要求的坐标。
而另外一个交点法是以路线的交点要素和路线的主要要素来求得坐标。
而二者的区别分为两点,首先是特点不同:线元法特点是线型可以随心组合,没有要求、里程中间可以间断。
而交点法中交点路线的转折点,路线改变方向是相邻两直线的延长线相交的点。
是一个固定的。
其次还有参数不同:线元法的参数一般有开始里程、结束里程、起始坐标、起始方位角、半径、转向。
而交点法的参数是利用坐标、交点桩号、转角值、圆曲线半径R、缓和曲线长度。
二者区别只在于要求已知的要素不同,与精度无关。
二、GPS中线路参数设置交点法转化为线元法的工程案例现本人所处的项目为中国建筑第八工程局阿法尔公路项目一标段。
测量队现有两套GPS,为徕卡GS14(以下统称徕卡)及南方GNSS ROVER 银河6。
交点法和线元法曲线要素输入简介
测量坐标计算程序V5输入简介本程序运用Office Excel 软件VBE标准模块编写,其功能基本全面集成了以往所更新的Excel程序,程序适用于公路、铁路等线路坐标计算,程序主要包括(交点法、线元法、直线坐标正反算,竖曲线计算,平面控制网“导线、高程”平差,隧道超欠挖,超高加宽,测量工具箱等,还可以全自动生成卡西欧5800、9750程序数据库,其中包括:隧道超欠挖、交点法、线元法、竖曲线一系列数据库),已知数据输入明确,操作简单易懂,是工程测量人员的好帮手!交点法曲线要素输入简介一、适用平曲线类型交点法计算坐标适用的平曲线为对称或不对称缓和曲线、圆曲线。
注意:对于非普通的三单元曲线,本程序交点法不适用。
非普通的三单元曲线体现在本程序中的《直线、曲线及转角表》内,点击“生成要素”之后,计算值与设计图纸《直线、曲线及转角表》上的切线长和曲线主点位置等不一致,此时只能采用线元法进行坐标计算。
例如:下表的JD18及JD19处的平曲线,经本程序交点法计算之后发现,为非普通的三单元曲线,交点法不适用该类曲线的坐标计算,故只能采用线元法进行坐标计算。
二、交点法曲线要素输入说明本程序交点法输入的要素有7个(程序不限制输入行数):1、QD起点坐标:起点坐标必须在直线段上,或填写前一交点的坐标。
2、JD交点曲线要素:(1)交点桩号K,注意:当起始平曲线上的ZH点(缓和曲线)或ZY点(圆曲线)的桩号为负数时,交点桩号K统一加上100000(即增加100Km),以避免坐标正算时出现桩号计算范围错误(但是,线元法计算坐标时可以输入负坐标,坐标正算与反算都不会出现错误)。
(2)交点桩号(X,Y)(3)曲线半径R(4)第一缓和曲线长度LS1,若为0,输入0,不能为空。
(5)第二缓和曲线长度LS2,若为0,输入0,不能为空。
3、ZD终点坐标:终点坐标也必须在直线段上,或填写后一交点的坐标。
三、操作流程:1、根据设计图纸《直线、曲线及转角表》输入第一个交点坐标,作为QD起点坐标。
交点法与线元法
本人一直以来想找一个交点法与线元法相结合的坐标正反算程序,在网上找了很久很久,没能找到一个较为满意的,有幸在测量空间看到大歪哥的《Casio5800交点法程序》与《线元法(积木法)匝道坐标正反算放样程序》,根据歪哥意见“需要的自行修改结合XY框架自己修改为数据库反算程序等”,本人不才,采用最笨的办法将两个程序综合了一下,使之能既能进行交点法正反算,又能进行线元法正反算。
在此特别感谢大歪哥!将程序发上来,愿与大家一同交流学习欢迎大家吐口水,只要能进步就行!程序由一个主程序ZBZFS和8个子程序(JS、XY-A、XY-B、JDYS、1、2、3、4)构成,运行时只需运行主程序即可!本程序适用于单交点对称型、不对称型、无缓和曲线单圆曲线型一个交点范围内(含交点前后有直线段时)的曲线要素核对和坐标正反算,手工输入要素,对设计图纸的“直线、曲线转角表”中交点数据进行复核验证,并能对单一线元进行坐标正反算。
1主程序名:ZBZFS(功能:进入计算主程序)65→Dimz↙Deg:Fix 3↙"1.JD ZFS 2. ZHADAO ZFS"? I: I→Z[61]: "1.ZHONG SHU JS 2. JS"? I↙If I=1: Then Goto1: Else Goto2:IfEnd↙LbI 1 :If Z[61]=1: Then Prog"JDYS":Else Cls:"K0"?A:"KN"?L :"X0"?U :"Y0"?V :"F0"?W :"R0"?P :"RN"?Q:"ZX:-1,+1,0"?G:IfEnd↙LbI 2 :Prog"JS"2子程序名:JS(功能:选择正算或反算模式)Cls:"XC"?H:"YC"?Z↙Cls:"1.ZS 2.FS"? I: I=2=>Goto 3↙LbI 1 : Cls: If Z[61]=1: Then"JD ZS KX+XXX"?K :Prog"4": Else "ZHADAO ZS KX+XXX"?K :IfEnd↙LbI 2: Cls:90→B: Cls:"RJ Or 0 To K"?B:B=0 =>Goto 1:"Z"?T↙Prog "XY-A"↙X+Tcos(M+B)→X↙Y+Tsin(M+B)→Y↙360Frac((M+360)÷360→M↙Pol(X-H,Y-Z : 360Frac((J+360)÷360→J↙2→O: Prog "XY-B":Goto 2↙LbI 3 : Cls: If Z[61]=1: Then"JD FS KN+"?K:"X"?C:"Y"?D:Prog"4":Else Cls: "ZHADAO FS":"X"?C:"Y"?D:IfEnd↙LbI 4 :Prog "XY-A"↙(D-Y)sin(M)+(C-X)cos(M)→H↙If Abs(H)>X10-3 :Then K+H→K:Goto 4:IfEnd↙(D-Y)÷cos(M)→T↙3→O: Prog "XY-B":Goto 3↙3子程序名:XY-A(功能:坐标计算程序)5→N: G(Q-1-P-1)÷Abs(L-A)→F: Abs(K-A)÷N→R: 90R÷π→S:W+(FNR+2GP-1)NS→M:1→E↙U+R÷6×(Cos (W)+Cos (M) +4∑(Cos (W+((E+0.5)FR+2GP-1)×(E+0.5)S),E,0,(N-1))+2∑(Cos (W+((EFR+2GP-1)ES,E,1,(N-1)))→X ↙V+R÷6×(sin (W)+sin (M) +4∑(sin (W+((E+0.5)FR+2GP-1)×(E+0.5)S),E,0,(N-1))+2∑(sin (W+((EFR+2GP-1)ES,E,1,(N-1)))→Y↙4子程序名:XY-B(功能:显示正算或反算结果)If O=2:Then↙Cls :"K×××=":"Z=":"X=":"Y=": Locate 6,1, K : Locate 4, 2, T : Locate 4,3, X : Locate 4,4, Y◢If T=0 :Then Cls :"QF(Z)=": Locate 8,1, M:M▼DMS◢IfEnd↙Cls :"K×××=":"S=": Locate 6,1, K : Locate 4, 2, I :"F=":J:J▼DMS◢IfEnd↙If O=3:Then "X=":"Y=":"K×××=":"Z=": Locate 4,1,C: Locate 4, 2, D : Locate 6,3,K :Locate 4,4,T◢IfEnd:Cls↙5子程序名:4(功能:将交点参数转为线元计算参数)LbI 1: IF Z[48]<0 :Then -1→Z[62] : Else:1→Z[62]:IfEndLbI 2: If K≥Z[57]:Then Z[57]→A:Z[1]→L:Z[23]→U:Z[24]→V : Z[31]→W : 10^45→P:10^45→Q : 0→G:IfEnd↙LbI 3:If K≥Z[1]:Then Z[1]→A : Z[2]→L : Z[19]→U : Z[20]→V:Z[29]→W : 10^45→P:Z[46]→Q : Z[62]→G: IfEnd↙LbI 4:If K≥Z[2]:Then Z[2]→A : Z[4]→L:Z[25]→U : Z[26]→V:Z[32]→W : Z[46]→P : Z[46]→Q : Z[62]→G: IfEnd↙LbI 5:f K≥Z[4]:Then Z[4]→A : Z[5]→L : Z[27]→U:Z[28]→V : Z[33]→W :Z[46]→P : 10^45→Q : Z[62]→G: IfEnd↙LbI 6:If K≥Z[5]:Then Z[5]→A : Z[5]+1000→L:Z[21]→U : Z[22]→V : Z[30]→W:10^45→P :10^45→Q : 0→G : IfEnd↙6子程序名:JDYS(功能:输入交点要素、显示交点要素及主点坐标)Cls : "BP"?H:H→Z[57]:"K(JD)"?K:K→Z[41] :"X(JD)"?X :X→Z[42]:"Y (JD)"?Y:Y →Z[43]:"LS1"?B:B→Z[44] :"LS2"?C:C →Z[45]: ?R:R →Z[46]:"(ZH)FWJ°"?M:M→Z[47] : "α(Z-,Y+)°"?O:O→Z[48] : Z[47]+Z[48]→Z[49]: Prog "1":Prog "2"↙Cls :"T1=":"T2=":"L=":"LY=": Locate 4,1, Z[50] : Locate 4,2, Z[51]: Locate 4,3, Z[52] : Locate 4,4, Z[53]◢Cls :"E=": Locate 7,1, Z[54]Cls :"K(QD)=": "X=": "Y=": "FWJ="Locate 7,1,Z[57] :Locate 7,2, Z[23] :Locate 7,3, Z[24] :Locate 7,4, Z[31] ◢Cls :"K(ZH)=": "X=": "Y=": "FWJ=":Locate 7,1,Z[1] : Locate 7,2, Z[19] :Locate 7,3, Z[20] :Locate 7,4, Z[29]◢Cls : "K(HY)=": "X=": "Y=": "FWJ=": Locate 7,1,Z[2] : Locate 7,2, Z[25] :Locate 7,3, Z[26] :Locate 7,4, Z[32]◢Cls :"K(QZ)=": Locate 7,1,Z[3]◢Cls :"K(YH)=": "X=": "Y=": "FWJ=": Locate 7,1,Z[4] : Locate 7,2, Z[27] :Locate 7,3, Z[28] :Locate 7,4, Z[33]◢Cls :"K(HZ)=": "X=": "Y=": "FWJ=": Locate 7,1,Z[5] : Locate 7,2, Z[21] :Locate 7,3, Z[22] :Locate 7,4, Z[30]◢7子程序名:1(功能:计算交点要素)If Z[48]<0 :Then -1→Z[55] : Else 1→Z[55] : IfEnd : Z[55]* Z[48]→Z[56] ↙Z[44] 2 ÷24÷Z[46]- Z[44]^(4)÷2688÷Z[46] ^(3) →Z[6] ↙Z[45] 2 ÷24÷Z[46]- Z[45]^(4)÷2688÷Z[46] ^(3) →Z[7] ↙Z[44]÷2-Z[44]^(3)÷240÷Z[46]2 →Z[8] ↙Z[45]÷2-Z[45]^(3)÷240÷Z[46]2 →Z[9] ↙Z[8]+(( Z[46]+Z[7]-( Z[46]+Z[6])cos(Z[56]))÷sin(Z[56]))→Z[50]↙Z[9]+(( Z[46]+Z[6]-( Z[46]+Z[7])cos(Z[56]))÷sin(Z[56]))→Z[51]↙Z[46]* Z[56]π÷180+( Z[44]+ Z[45]) ÷2→Z[52]↙Z[46]* Z[56]π÷180-( Z[44]+ Z[45]) ÷2→Z[53]↙(Z[46]+(Z[6]+Z[7])÷2)÷cos(Z[56]÷2)- Z[46]→Z[54]↙Z[41]-Z[50]→Z[1] ↙↙Z[1]+Z[44]→Z[2] ↙↙Z[2]+Z[53]÷2→Z[3]↙Z[1]+Z[52]-Z[45]→Z[4]↙Z[4]+Z[45]→Z[5]↙8子程序名:2(功能:计算主点坐标及切线方位角)Z[42]-Z[50]cos(Z[47])→Z[19]: (直缓坐标)Z[43]-Z[50]sin(Z[47])→Z[20]↙Z[47]→Z : 360Frac((Z+360)÷360→Z[29] (方位角)Z[42]+Z[51]cos(Z[49])→Z[21]: (缓直坐标)Z[43]+Z[51]sin(Z[49])→Z[22]↙Z[49]→Z: 360Frac((Z+360)÷360→Z[30] (方位角)Z[1]-Z[57]→L↙(H→Z[57]为前直线起点桩号)Z[42]-( Z[50]+L)cos(Z[47])→Z[23]↙(前直线起点坐标)Z[43]-( Z[50]+L)sin(Z[47])→Z[24]↙Z[47]→Z : 360Frac((Z+360)÷360→Z[31]↙(方位角)Z[44]→Z[12]:Z[44]→Z[13]:Prog"3"↙Z[4]-Z[1]→L:90(2L-Z[44])÷Z[46]÷π→Z[11]↙Z[46]sin(Z[11])+Z[8]→Z[14]:Z[46](1-cos(Z[11]))+Z[6]→Z[15]↙Z[19]+Z[14]cos(Z[47])-Z[55]Z[15]sin(Z[47])]→Z[27]↙(圆缓点坐标)Z[20]+Z[14]sin(Z[47])+Z[55]Z[15]cos(Z[47])]→Z[28]↙Z[47]+Z[55]Z[11]→Z: 360Frac((Z+360)÷360→Z[33]↙(方位角)Z[2]-Z[1]→L:90(2L-Z[44])÷Z[46]÷π→Z[58]↙Z[46]sin(Z[58])+Z[8]→Z[14]:Z[46](1-cos(Z[58]))+Z[6]→Z[15]↙Z[19]+Z[14]cos(Z[47])-Z[55]Z[15]sin(Z[47])]→Z[25]↙(缓圆点坐标)Z[20]+Z[14]sin(Z[47])+Z[55]Z[15]cos(Z[47])]→Z[26]↙Z[47]+Z[55]Z[58]→Z: 360Frac((Z+360)÷360→Z[32]↙(方位角)9子程序名:3(主点坐标计算辅助程序)If Z[12]=0 :Then 0→Z[14]: 0→Z[15]:Else↙Z[12]- Z[12]^(5)÷40÷(Z[46]*Z[13])2+ Z[12]^(9)÷3456÷(Z[46]*Z[13])^(4) →Z[14]↙Z[12]^(3)÷6÷(Z[46]*Z[13])-Z[12]^(7)÷336÷(Z[46]*Z[13])^(3)+ Z[12]^(11) ÷42240÷(Z[46]*Z[13])^(5)→Z[15] ↙IfEnd↙程序说明:1、进入程序:1.JD ZFS 2. ZHADAO ZFS? 选1为交点法正反算(以后操作均为交点法计算),选2为线元法正反算(以后操作均为线元法计算)2、ZHONG SHU JS 2. JS?选1重输参数,选2直接进入交点法或线元法正反算(参数为已输过的参数)3、参数输入:一、交点法已知数据输入:BP?上一交点ZH桩号K(JD)?交点桩号X(JD)?交点X坐标Y(JD)?交点Y坐标LS1 ?第一缓和曲线长度LS2 ?第二缓和曲线长度R ? 圆曲线半径(ZH)FWJ°?交点前(即前交点至本交点也即ZH点)的正切线方位角α(Z-,Y+)?本交点处线路转角(左转为负,右转为正,度分秒输入)交点法计算要素显示:T1=第一切线长T2=第二切线长L=曲线总长LY=圆曲线长E=曲线外距K(ZH)=直缓点桩号K(HY)=缓圆点桩号K(QZ)=曲中点桩号K(YH)=圆缓点桩号K(HZ)=缓直点桩号二、线元法已知数据输入:K0?KN? R0? RN?F0?X0? Y0?ZX? 分别为线元起点桩号、终点桩号、起点半径、终点半径、起点切线方位角、起点X坐标、起点Y坐标、线元转向。
交点法、线元法坐标计算精编版
3、交点法、线元法坐标计算坐标计算是根据图纸中“直线及曲线转角一览表”提供的数据计算道路中桩坐标,然后和图纸提供的“逐桩坐标表”比对,如果一样则说明输入平曲线参数输入正确,可以计算边桩坐标和其他结构物坐标了;如果中桩坐标不一样,一般是平曲线参数输入有误,需要重新检查输入,另一种结果是图纸有错,这种情况少见,但不代表没有。
“直线及曲线转角一览表”和“逐桩坐标表”见附件1、附件2。
线元法是以路线的起点坐标、方位角、起终点桩号等节点元素来计算出要求的坐标;交点法是以路线的交点要素和路线的主要要素来求得坐标。
①交点法交点:路线的转折点,路线改变方向是相邻两直线的延长线相交的点。
用JD表示,有些图纸上用IP表示。
看下图:交点是针对曲线的(包含圆曲线和缓和曲线),一段曲线就有一个交点。
交点参数有:坐标(X,Y)、交点桩号、转角值、圆曲线半径R、缓和曲线长度。
教学提供软件(轻松测量、双心软件、测量工具)交点法曲线要素输入说明:1、QD起点坐标:起点坐标必须在直线段上,或填写前一交点的坐标。
2、JD交点曲线要素:(1)交点桩号(2)交点坐标(X,Y)(3)曲线半径R(4)第一缓和曲线长度LS1,若为0,输入0,不能为空。
(5)第二缓和曲线长度LS2,若为0,输入0,不能为空。
3、ZD终点坐标:终点坐标也必须在直线段上,或填写后一交点的坐标。
检核数据是否输入正确的方法:软件生成的圆曲线要素中切线长、外距、交点里程:注意校正起点里程、等与设计图纸是否一致。
如果上述数据和图纸不一样,请认真检查有错误的交点处的数据输入是否正确,如果输入没有错误,请考虑是否包含不完整缓和曲线,使用公式A²=R*Ls检查是否包含不完整缓和曲线。
如果包含不完整缓和曲线,那就需要用线元法也叫积木法计算了。
有的设计院给出的直曲表是整条设计线路的直曲表的一部分,以其中某个交点作为起始点的话,起始里程有时候需要校正,当然,并不是每个图纸给出的起点里程都需要校正,大多数图纸的起点里程已经被设计院校正过,我们输入平曲线的时候需要验证一下。
交点法线元法
交点法线元法
交点法线元法又称为交线法,是解决几何问题的一种常用方法。
它的核心思想是通过找到几何图形的交点和法线,来推导出相关的几
何性质。
在使用交点法线元法时,我们首先需要找到几何图形的交点。
交
点可以是线段、射线、直线等。
通过计算交点的坐标、斜率或其他相
关信息,我们可以推导出图形的某些性质。
交点法线元法常用于求解
直线和圆、直线和直线、圆和圆等问题。
接下来,我们需要找到几何图形的法线。
法线是与给定图形相切
且垂直于该图形的线段、射线或直线。
可以通过计算法线的斜率、方
程等信息,来得到相关的几何性质。
例如,通过求解两条直线的法线
的交点,可以确定两条直线的交点、夹角等。
通过应用交点法线元法,我们可以解决许多关于几何图形的问题,包括求解距离、求解角度、判断两个图形是否相交等。
交点法线元法
可以帮助我们更好地理解和分析几何性质,提高解决几何问题的能力。
总而言之,交点法线元法是一种解决几何问题的常用方法,通过
找到几何图形的交点和法线来推导出相关的几何性质。
它在求解直线
和曲线、直线和直线、曲线和曲线等问题中具有广泛的应用。
道路测量员平曲线编辑.doc
本程序支持交点法、线元法两种方法编辑平曲线参数。
此帮助是交点法的参数编辑,需要注意的是:【注意】必须在新建线路时指定平曲线输入方法,即指定道路使用交点法、线元法中的哪一种。
编辑路线参数时没有办法更改平曲线输入方法。
如果选错只能删除重建。
进入平曲线参数列表,你可以在界面右上方看到新建、帮助、三点按钮,点击三点按钮又可以看到导入、清空选项,当你点击列表某一项后的多选框时又会出现新菜单,上面有删除、全选按钮,下面详细说明各个按钮的功能【新建】新建起点:使用交点法编辑平曲线参数时,新建第一个元素会自动跳转到新建起点界面,如下图所示,起点名默认为“QD”,不可修改。
【注意】起点要在ZH点(直缓点)或ZH点前的直线段上。
新建交点:编辑完起点后,点击新建按钮,添加平曲线元素。
进入编辑平曲线元素界面,如下图。
首先,如果要输入交点就必须在类型下拉列表中选择“交点”(默认即是交点),这样输入的才是交点元素。
此处输入方法和轻松工程测量系统输入方法类似,Ls1表示第一缓和曲线长,Ls2表示第二缓和曲线长。
输入非对称和不规则曲线时,Ls1、Ls2值不相等,如果入缓和曲线不存在,Ls1输入0;如果出缓和曲线不存在,Ls2输入0,如果都不存在,都输入0。
无论左转还是右转半径都输入正数。
如果你的路线包含不完整缓和曲线,那么请勾选包含不完整缓和曲线选项(暂时只支持部分不完整缓和曲线,还不完美,如果计算误差较大,建议使用线元法输入这条路线)。
当你输入完一个元素回到参数列表时,你可以看到程序算出的除最后一个元素之前的交点的要素,如交点桩号、切线长。
(最后一个交点的要素只能等到输入完毕后才能显示)。
新建终点:在本程序中最后一个元素必须是点元素,要输入终点,我们首页在类型下拉框中选择“折线点或终点”,然后输入终点坐标即可,如下图。
如果你输入的最后一个元素为交点元素,那么退出时程序会提示你,是否将最后一个交点元素转换成点元素。
【注意】终点要在HZ点(缓直点)或HZ点后的直线段上。
利用MSMT手机软件计算缓和曲线起讫半径的方法解析
线长L,缓和曲线的起点和终点的走向方位角,缓和曲线已知
图1 缓和曲线半径计算
工程案例应用介绍
新疆伊犁县互通式立交设计如图2所示,该匝道有
线线元,只有3号平曲线线元为圆曲线,其余4条平曲线均为缓
图2 线位设计图与线位表
号缓和线元的起讫半径
号缓曲线线元终点连接的是2号线元,QD为线元1的
图3 线元5的端点半径计算
根据计算线元的起讫半径和已知的设计数据
Q2X9线元法计算平曲线的终点数据如图
中可以看出,计算结果与设计值比较如表
表2 差值计算表
X(m)Y(m)终点走向方位角564.04867585.288488222.392152
564.04867585.2939488222.4092152
0.00590.0172
从表中可以看出,计算Y坐标结果与设计值相差较大,分析原因是设计院给出的线长的取值精度不够,根据道路施工测
图4 计算过程与计算结果
参考文献
[1] 覃辉,马超,朱茂东.南方MSMT道路桥梁隧道施工测量[M].
同济大学出版社,2019:89.
科学与信息化2020年7月下。
交点法和线元法要素转换
交点法和线元法要素转换交点法和线元法是空间几何中常用的两种计算方法,它们可以求解直线、平面、曲线等多种几何图形之间的交点和距离等问题。
在实际应用中,常常需要将其中一种方法的结果转换为另一种方法的结果,以满足实际需求。
本文将介绍交点法和线元法的基本概念,并探讨它们之间的要素转换。
一、交点法和线元法的基本概念1、交点法交点法是一种几何计算方法,它以直线为例,通过求解两直线的交点来得到它们之间的距离、夹角等信息。
对于平面和曲线等几何图形也可以使用类似的方法求解。
在交点法中,需要计算两条直线的方向向量以及它们的重心坐标,然后通过求解方程组来计算出它们的交点。
2、线元法线元法是一种微积分方法,它可以计算给定曲线上的任意一点处的切线、法线以及曲率等信息。
在线元法中,将曲线分为无限小的线元或者曲线段,利用微积分的方法求解每个线元上的切向量、法向量以及曲率等参数,从而得到整条曲线上的相关信息。
1、坐标系的转换在交点法中,需要求解两条直线的交点以及它们之间的距离等信息。
在坐标系的选择上,通常选取其中一条直线作为基准线,将整个坐标系平移到基准线上,然后再计算另一条直线在新坐标系中的方向向量和重心坐标,从而得到它们之间的关系。
而在线元法中,通常需要选取与曲线相关的坐标系,例如自然坐标系、Frenet-Serret坐标系等,以便计算每个线元上的切向量、法向量和曲率等参数。
2、参数的计算方法在交点法中,通常需要计算两条直线的方向向量、重心坐标以及它们的交点。
对于直线的方向向量可以直接从坐标点上得到,而重心坐标通常需要根据直线的端点坐标进行平均计算。
交点计算通常可以采用求解方程组的方法得到。
而在线元法中,需要计算每个线元上的切向量、法向量和曲率等参数。
对于曲线的切向量和法向量可以通过微积分的方法得到,而曲率需要根据曲线的导数和高阶导数等信息来计算,计算方法相对复杂。
3、精度和误差在交点法和线元法的应用中,精度和误差是一个重要的问题。
交点法、线元法
交点法、线元法坐标计算是根据图纸中“直线及曲线转角一览表”提供的数据计算道路中桩坐标,然后和图纸提供的“逐桩坐标表”比对,如果一样则说明输入平曲线参数输入正确,可以计算边桩坐标和其他结构物坐标了;如果中桩坐标不一样,一般是平曲线参数输入有误,需要重新检查输入,另一种结果是图纸有错,这种情况少见,但不代表没有。
直线及曲线转角一览表:逐桩坐标表:线元法是以路线的起点坐标、方位角、起终点桩号等节点元素来计算出要求的坐标;交点法是以路线的交点要素和路线的主要要素来求得坐标。
①交点法交点:路线的转折点,路线改变方向是相邻两直线的延长线相交的点。
用JD表示,有些图纸上用IP表示。
看下图:交点是针对曲线的(包含圆曲线和缓和曲线),一段曲线就有一个交点。
交点参数有:坐标(X,Y)、交点桩号、转角值、圆曲线半径R、缓和曲线长度。
教学提供软件(轻松测量、双心软件、测量工具)交点法曲线要素输入说明:1、QD起点坐标:起点坐标必须在直线段上,或填写前一交点的坐标。
2、JD交点曲线要素:(1)交点桩号(2)交点坐标(X,Y)(3)曲线半径R(4)第一缓和曲线长度LS1,若为0,输入0,不能为空。
(5)第二缓和曲线长度LS2,若为0,输入0,不能为空。
3、ZD终点坐标:终点坐标也必须在直线段上,或填写后一交点的坐标。
检核数据是否输入正确的方法:软件生成的圆曲线要素中切线长、外距、交点里程:注意校正起点里程、等与设计图纸是否一致。
如果上述数据和图纸不一样,请认真检查有错误的交点处的数据输入是否正确,如果输入没有错误,请考虑是否包含不完整缓和曲线,使用公式A²=R*Ls检查是否包含不完整缓和曲线。
如果包含不完整缓和曲线,那就需要用线元法也叫积木法计算了。
有的设计院给出的直曲表是整条设计线路的直曲表的一部分,以其中某个交点作为起始点的话,起始里程有时候需要校正,当然,并不是每个图纸给出的起点里程都需要校正,大多数图纸的起点里程已经被设计院校正过,我们输入平曲线的时候需要验证一下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本人一直以来想找一个交点法与线元法相结合的坐标正反算程序,在网上找了很久很久,没能找到一个较为满意的,有幸在测量空间看到大歪哥的《Casio5800交点法程序》与《线元法(积木法)匝道坐标正反算放样程序》,根据歪哥意见“需要的自行修改结合XY框架自己修改为数据库反算程序等”,本人不才,采用最笨的办法将两个程序综合了一下,使之能既能进行交点法正反算,又能进行线元法正反算。
在此特别感谢大歪哥!将程序发上来,愿与大家一同交流学习欢迎大家吐口水,只要能进步就行!程序由一个主程序ZBZFS和8个子程序(JS、XY-A、XY-B、JDYS、1、2、3、4)构成,运行时只需运行主程序即可!本程序适用于单交点对称型、不对称型、无缓和曲线单圆曲线型一个交点范围内(含交点前后有直线段时)的曲线要素核对和坐标正反算,手工输入要素,对设计图纸的“直线、曲线转角表”中交点数据进行复核验证,并能对单一线元进行坐标正反算。
1主程序名:ZBZFS(功能:进入计算主程序)65→Dimz↙Deg:Fix 3↙"1.JD ZFS 2. ZHADAO ZFS"? I: I→Z[61]: "1.ZHONG SHU JS 2. JS"? I↙If I=1: Then Goto1: Else Goto2:IfEnd↙LbI 1 :If Z[61]=1: Then Prog"JDYS":Else Cls:"K0"?A:"KN"?L :"X0"?U :"Y0"?V :"F0"?W :"R0"?P :"RN"?Q:"ZX:-1,+1,0"?G:IfEnd↙LbI 2 :Prog"JS"2子程序名:JS(功能:选择正算或反算模式)Cls:"XC"?H:"YC"?Z↙Cls:"1.ZS 2.FS"? I: I=2=>Goto 3↙LbI 1 : Cls: If Z[61]=1: Then"JD ZS KX+XXX"?K :Prog"4": Else "ZHADAO ZS KX+XXX"?K :IfEnd↙LbI 2: Cls:90→B: Cls:"RJ Or 0 To K"?B:B=0 =>Goto 1:"Z"?T↙Prog "XY-A"↙X+Tcos(M+B)→X↙Y+Tsin(M+B)→Y↙360Frac((M+360)÷360→M↙Pol(X-H,Y-Z : 360Frac((J+360)÷360→J↙2→O: Prog "XY-B":Goto 2↙LbI 3 : Cls: If Z[61]=1: Then"JD FS KN+"?K:"X"?C:"Y"?D:Prog"4":Else Cls: "ZHADAO FS":"X"?C:"Y"?D:IfEnd↙LbI 4 :Prog "XY-A"↙(D-Y)sin(M)+(C-X)cos(M)→H↙If Abs(H)>X10-3 :Then K+H→K:Goto 4:IfEnd↙(D-Y)÷cos(M)→T↙3→O: Prog "XY-B":Goto 3↙3子程序名:XY-A(功能:坐标计算程序)5→N: G(Q-1-P-1)÷Abs(L-A)→F: Abs(K-A)÷N→R: 90R÷π→S:W+(FNR+2GP-1)NS→M:1→E↙U+R÷6×(Cos (W)+Cos (M) +4∑(Cos (W+((E+0.5)FR+2GP-1)×(E+0.5)S),E,0,(N-1))+2∑(Cos (W+((EFR+2GP-1)ES,E,1,(N-1)))→X ↙V+R÷6×(sin (W)+sin (M) +4∑(sin (W+((E+0.5)FR+2GP-1)×(E+0.5)S),E,0,(N-1))+2∑(sin (W+((EFR+2GP-1)ES,E,1,(N-1)))→Y↙4子程序名:XY-B(功能:显示正算或反算结果)If O=2:Then↙Cls :"K×××=":"Z=":"X=":"Y=": Locate 6,1, K : Locate 4, 2, T : Locate 4,3, X : Locate 4,4, Y◢If T=0 :Then Cls :"QF(Z)=": Locate 8,1, M:M▼DMS◢IfEnd↙Cls :"K×××=":"S=": Locate 6,1, K : Locate 4, 2, I :"F=":J:J▼DMS◢IfEnd↙If O=3:Then "X=":"Y=":"K×××=":"Z=": Locate 4,1,C: Locate 4, 2, D : Locate 6,3,K :Locate 4,4,T◢IfEnd:Cls↙5子程序名:4(功能:将交点参数转为线元计算参数)LbI 1: IF Z[48]<0 :Then -1→Z[62] : Else:1→Z[62]:IfEndLbI 2: If K≥Z[57]:Then Z[57]→A:Z[1]→L:Z[23]→U:Z[24]→V : Z[31]→W : 10^45→P:10^45→Q : 0→G:IfEnd↙LbI 3:If K≥Z[1]:Then Z[1]→A : Z[2]→L : Z[19]→U : Z[20]→V:Z[29]→W : 10^45→P:Z[46]→Q : Z[62]→G: IfEnd↙LbI 4:If K≥Z[2]:Then Z[2]→A : Z[4]→L:Z[25]→U : Z[26]→V:Z[32]→W : Z[46]→P : Z[46]→Q : Z[62]→G: IfEnd↙LbI 5:f K≥Z[4]:Then Z[4]→A : Z[5]→L : Z[27]→U:Z[28]→V : Z[33]→W :Z[46]→P : 10^45→Q : Z[62]→G: IfEnd↙LbI 6:If K≥Z[5]:Then Z[5]→A : Z[5]+1000→L:Z[21]→U : Z[22]→V : Z[30]→W:10^45→P :10^45→Q : 0→G : IfEnd↙6子程序名:JDYS(功能:输入交点要素、显示交点要素及主点坐标)Cls : "BP"?H:H→Z[57]:"K(JD)"?K:K→Z[41] :"X(JD)"?X :X→Z[42]:"Y (JD)"?Y:Y →Z[43]:"LS1"?B:B→Z[44] :"LS2"?C:C →Z[45]: ?R:R →Z[46]:"(ZH)FWJ°"?M:M→Z[47] : "α(Z-,Y+)°"?O:O→Z[48] : Z[47]+Z[48]→Z[49]: Prog "1":Prog "2"↙Cls :"T1=":"T2=":"L=":"LY=": Locate 4,1, Z[50] : Locate 4,2, Z[51]: Locate 4,3, Z[52] : Locate 4,4, Z[53]◢Cls :"E=": Locate 7,1, Z[54]Cls :"K(QD)=": "X=": "Y=": "FWJ="Locate 7,1,Z[57] :Locate 7,2, Z[23] :Locate 7,3, Z[24] :Locate 7,4, Z[31] ◢Cls :"K(ZH)=": "X=": "Y=": "FWJ=":Locate 7,1,Z[1] : Locate 7,2, Z[19] :Locate 7,3, Z[20] :Locate 7,4, Z[29]◢Cls : "K(HY)=": "X=": "Y=": "FWJ=": Locate 7,1,Z[2] : Locate 7,2, Z[25] :Locate 7,3, Z[26] :Locate 7,4, Z[32]◢Cls :"K(QZ)=": Locate 7,1,Z[3]◢Cls :"K(YH)=": "X=": "Y=": "FWJ=": Locate 7,1,Z[4] : Locate 7,2, Z[27] :Locate 7,3, Z[28] :Locate 7,4, Z[33]◢Cls :"K(HZ)=": "X=": "Y=": "FWJ=": Locate 7,1,Z[5] : Locate 7,2, Z[21] :Locate 7,3, Z[22] :Locate 7,4, Z[30]◢7子程序名:1(功能:计算交点要素)If Z[48]<0 :Then -1→Z[55] : Else 1→Z[55] : IfEnd : Z[55]* Z[48]→Z[56] ↙Z[44] 2 ÷24÷Z[46]- Z[44]^(4)÷2688÷Z[46] ^(3) →Z[6] ↙Z[45] 2 ÷24÷Z[46]- Z[45]^(4)÷2688÷Z[46] ^(3) →Z[7] ↙Z[44]÷2-Z[44]^(3)÷240÷Z[46]2 →Z[8] ↙Z[45]÷2-Z[45]^(3)÷240÷Z[46]2 →Z[9] ↙Z[8]+(( Z[46]+Z[7]-( Z[46]+Z[6])cos(Z[56]))÷sin(Z[56]))→Z[50]↙Z[9]+(( Z[46]+Z[6]-( Z[46]+Z[7])cos(Z[56]))÷sin(Z[56]))→Z[51]↙Z[46]* Z[56]π÷180+( Z[44]+ Z[45]) ÷2→Z[52]↙Z[46]* Z[56]π÷180-( Z[44]+ Z[45]) ÷2→Z[53]↙(Z[46]+(Z[6]+Z[7])÷2)÷cos(Z[56]÷2)- Z[46]→Z[54]↙Z[41]-Z[50]→Z[1] ↙↙Z[1]+Z[44]→Z[2] ↙↙Z[2]+Z[53]÷2→Z[3]↙Z[1]+Z[52]-Z[45]→Z[4]↙Z[4]+Z[45]→Z[5]↙8子程序名:2(功能:计算主点坐标及切线方位角)Z[42]-Z[50]cos(Z[47])→Z[19]: (直缓坐标)Z[43]-Z[50]sin(Z[47])→Z[20]↙Z[47]→Z : 360Frac((Z+360)÷360→Z[29] (方位角)Z[42]+Z[51]cos(Z[49])→Z[21]: (缓直坐标)Z[43]+Z[51]sin(Z[49])→Z[22]↙Z[49]→Z: 360Frac((Z+360)÷360→Z[30] (方位角)Z[1]-Z[57]→L↙(H→Z[57]为前直线起点桩号)Z[42]-( Z[50]+L)cos(Z[47])→Z[23]↙(前直线起点坐标)Z[43]-( Z[50]+L)sin(Z[47])→Z[24]↙Z[47]→Z : 360Frac((Z+360)÷360→Z[31]↙(方位角)Z[44]→Z[12]:Z[44]→Z[13]:Prog"3"↙Z[4]-Z[1]→L:90(2L-Z[44])÷Z[46]÷π→Z[11]↙Z[46]sin(Z[11])+Z[8]→Z[14]:Z[46](1-cos(Z[11]))+Z[6]→Z[15]↙Z[19]+Z[14]cos(Z[47])-Z[55]Z[15]sin(Z[47])]→Z[27]↙(圆缓点坐标)Z[20]+Z[14]sin(Z[47])+Z[55]Z[15]cos(Z[47])]→Z[28]↙Z[47]+Z[55]Z[11]→Z: 360Frac((Z+360)÷360→Z[33]↙(方位角)Z[2]-Z[1]→L:90(2L-Z[44])÷Z[46]÷π→Z[58]↙Z[46]sin(Z[58])+Z[8]→Z[14]:Z[46](1-cos(Z[58]))+Z[6]→Z[15]↙Z[19]+Z[14]cos(Z[47])-Z[55]Z[15]sin(Z[47])]→Z[25]↙(缓圆点坐标)Z[20]+Z[14]sin(Z[47])+Z[55]Z[15]cos(Z[47])]→Z[26]↙Z[47]+Z[55]Z[58]→Z: 360Frac((Z+360)÷360→Z[32]↙(方位角)9子程序名:3(主点坐标计算辅助程序)If Z[12]=0 :Then 0→Z[14]: 0→Z[15]:Else↙Z[12]- Z[12]^(5)÷40÷(Z[46]*Z[13])2+ Z[12]^(9)÷3456÷(Z[46]*Z[13])^(4) →Z[14]↙Z[12]^(3)÷6÷(Z[46]*Z[13])-Z[12]^(7)÷336÷(Z[46]*Z[13])^(3)+ Z[12]^(11) ÷42240÷(Z[46]*Z[13])^(5)→Z[15] ↙IfEnd↙程序说明:1、进入程序:1.JD ZFS 2. ZHADAO ZFS? 选1为交点法正反算(以后操作均为交点法计算),选2为线元法正反算(以后操作均为线元法计算)2、ZHONG SHU JS 2. JS?选1重输参数,选2直接进入交点法或线元法正反算(参数为已输过的参数)3、参数输入:一、交点法已知数据输入:BP?上一交点ZH桩号K(JD)?交点桩号X(JD)?交点X坐标Y(JD)?交点Y坐标LS1 ?第一缓和曲线长度LS2 ?第二缓和曲线长度R ? 圆曲线半径(ZH)FWJ°?交点前(即前交点至本交点也即ZH点)的正切线方位角α(Z-,Y+)?本交点处线路转角(左转为负,右转为正,度分秒输入)交点法计算要素显示:T1=第一切线长T2=第二切线长L=曲线总长LY=圆曲线长E=曲线外距K(ZH)=直缓点桩号K(HY)=缓圆点桩号K(QZ)=曲中点桩号K(YH)=圆缓点桩号K(HZ)=缓直点桩号二、线元法已知数据输入:K0?KN? R0? RN?F0?X0? Y0?ZX? 分别为线元起点桩号、终点桩号、起点半径、终点半径、起点切线方位角、起点X坐标、起点Y坐标、线元转向。