2017成都市中考数学试卷及答案详解

合集下载

2017年中考数学真题试题(含答案)

2017年中考数学真题试题(含答案)

2017年中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.﹣2017的绝对值是()A.2017 B.﹣2017 C.12017D.﹣12017【答案】A.2.一组数据1,3,4,2,2的众数是()A.1 B.2 C.3 D.4【答案】B.3.单项式32xy的次数是()A.1 B.2 C.3 D.4【答案】D.4.如图,已知直线a∥b,c∥b,∠1=60°,则∠2的度数是()A.30°B.60°C.120°D.61°【答案】B.5.世界文化遗产长城总长约670000米,将数670000用科学记数法可表示为()A.6.7×104B.6.7×105C.6.7×106D.67×104【答案】B.6.如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S2【答案】C.7.一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8 B.9 C.10 D.11【答案】C.8.把不等式组231345xx x+>⎧⎨+≥⎩的解集表示在数轴上如下图,正确的是()A.B.C.D.【答案】B.9.如图,已知点A在反比例函数kyx=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.4yx=B.2yx=C.8yx=D.8yx=-【答案】C.10.观察下列关于自然数的式子:4×12﹣12①4×22﹣32②4×32﹣52③…根据上述规律,则第2017个式子的值是()A.8064 B.8065 C.8066 D.8067 【答案】D.二、填空题(本大题共8小题,每小题4分,共32分)11.5的相反数是 . 【答案】﹣5. 12.一组数据2,3,2,5,4的中位数是 .【答案】3.13.方程1201x x-=-的解为x = . 【答案】2.14.已知一元二次方程230x x k -+=有两个相等的实数根,则k = .【答案】94. 15.已知菱形的两条对角线的长分别是5cm ,6cm ,则菱形的面积是 cm 2.【答案】15.16.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B 处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB =2米,BC =18米,则旗杆CD 的高度是 米.【答案】3.42.17.从﹣1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为 .【答案】16. 18.如图,在Rt △ABC 中,∠C =90°,点D 是AB 的中点,ED ⊥AB 交AC 于点E .设∠A =α,且tanα=13,则tan2α= .【答案】34.三、解答题19.(1)计算:101()4sin 60(3 1.732)122----+; (2)先化简,再求值:2261213x x x x x +-⋅-++,其中x =2. 【答案】(1)1;(2)21x -,2. 20.如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .【答案】证明见解析.21.某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩的样本,按A ,B ,C (A 等:成绩大于或等于80分;B 等:成绩大于或等于60分且小于80分;C 等:成绩小于60分)三个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(1)请把条形统计图补充完整;(2)扇形统计图中A 等所在的扇形的圆心角等于 度;(3)若九年级有1000名学生,请你用此样本估计体育测试众60分以上(包括60分)的学生人数.【答案】(1)作图见解析;(2)108;(3)800.22.如图,已知点E ,F 分别是平行四边形ABCD 对角线BD 所在直线上的两点,连接AE ,CF ,请你添加一个条件,使得△ABE ≌△CDF ,并证明.【答案】证明见解析.四、解答题23.某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数表达式;(2)要使销售利润达到800元,销售单价应定为每千克多少元?【答案】(1)60(020)80(2080)xyx x<<⎧=⎨-+≤≤⎩;(2)40元或60元.五、解答题24.如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E是BC的中点,连接BD,DE.(1)若ADAB=13,求sin C;(2)求证:DE是⊙O的切线.【答案】(1)13;(2)证明见解析. 六、解答题 25.如图,抛物线2y x bx c =++经过点A (﹣1,0),B (0,﹣2),并与x 轴交于点C ,点M 是抛物线对称轴l 上任意一点(点M ,B ,C 三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在抛物线上找出两点P 1,P 2,使得△MP 1P 2与△MCB 全等,并求出点P 1,P 2的坐标;(3)在对称轴上是否存在点Q ,使得∠BQC 为直角,若存在,作出点Q (用尺规作图,保留作图痕迹),并求出点Q 的坐标.【答案】(1)22y x x =--;(2)P 1(﹣1,0),P 2(1,﹣2)或P 1(2,0),P 2(52,74);(3)点Q 的坐标是:(1227-+1227--.。

2017年四川省南充市中考数学试题(含答案)

2017年四川省南充市中考数学试题(含答案)

2017年四川省南充市中考数学试卷(满分120分,时间120分钟)一、选择题(本大题共10个小题,每小题3分,共30分) 1.(2017四川南充,1,3分)31-的值是( ) A .3 B .-3 C .13 D .-13【答案】C2.(2017四川南充,2,3分)下列运算正确的是( )A .a 3a 2=a 5B .(a 2) 3=a 5C .a 3+a 3=a 6D .(a +b )2=a 2+b 2 【答案】A 3.(2017四川南充,3,3分)下列几何体的主视图既是中心对称图形又是轴对称图形的是( )A B C D【答案】D 4.(2017四川南充,4,3分)如图,已知AB ∥CD ,65C ∠=︒,30E ∠=︒,则A ∠的度数为( )DA(第2题图)A .30°B .32.5°C .35°D .37.5°【答案】C5.(2017四川南充,5,3分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,则点C的坐标为()(第5题图)A.1)B.(-1C.1)D.1)【答案】A6.(2017四川南充,6,3分)不等式组1(1)22331xx x⎧+⎪⎨⎪-<+⎩…的解集在数轴上表示正确的是()【答案】D7.(2017四川南充,7,3分)为积极响应南充市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A、B、C、D四等。

从中随机抽取了部分学生成绩进行统计,绘制成如下两幅不完整的统计图表,根据图表信息,以下说法不正确...的是()DBA.样本容量是200B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10% D.估计全校学生成绩为A等大约有900人【答案】B-23A B C D8.(2017四川南充,8,3分)如图,在△ABC 中,AB =AC ,且D 为BC 上一点,CD =AD ,AB =BD ,则∠B 的度数为( )A .30°B .36°C .40°D .45°(第8题图)【答案】B9.(2017四川南充,9,3分)如图,矩形ABCD 中,AB =5,AD =12,将矩形ABCD 按如图所示的方式在直线l 上进行两次旋转,则点B 在两次旋转过程中经过的路径的长是( )(第9题图)A .25π2B .13πC .25π D.【答案】B10.(2017四川南充,10,3分)二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b +=0;③当m ≠1时,a b +>2am bm +;④a b c -+>0;⑤若211ax bx +=222ax bx +,且1x ≠2x ,则12x x +=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤(第10题图)【答案】D北京初中数学周老师的博客:/beijingstudyAB CDl二、填空题(本大题共6个小题,每小题3分,共18分) 11.(2017四川南充,11,3分)分式方程212011x x +=--的解是__________. 【答案】x= -312.(2017四川南充,12,3分)因式分解3269x x x -+=__________. 【答案】2-x x 3()13.(2017四川南充,13,3分)一组数据按从小到大的顺序排列为1,2,3,x ,4,5,若这组数据的中位数为3,则这组数据的方差是__________. 【答案】5314.(2017四川南充,14,3分)如图,两圆圆心相同,大圆的弦AB 与小圆相切,AB =8,则图中阴影部分的面积是__________.(结果保留π)【答案】16π15. (2017四川南充,15,3分)一列数123,,,a a a ……n a ,其中1231211111,,,,111n n a a a a a a a -=-===---L L ,则12a a a a ++++=L L__________.【答案】2011216.(2017四川南充,16,3分)如图,有一矩形纸片ABCD ,AB =8,AD =17,将此矩形纸片折叠,使顶点A 落在BC 边的A ′处,折痕所在直线同时经过边AB 、AD (包括端点),设BA ′=x ,则x 的取值范围是.(第14题图)【答案】28x ≤≤北京初中数学周老师的博客:/beijingstudy 三、解答题(本大题共9个小题,共72分)17.(2017四川南充,17,6分)计算:13130tan 3)23()12014(-⎪⎭⎫⎝⎛++---【答案】解:103130tan 3)23()12014(-⎪⎭⎫⎝⎛++---2+3+113218. (2017四川南充,18,8分)如图,AD 、BC 相交于O ,OA=OC ,∠OBD=∠ODB .求证:AB=CD.【答案】证明:∵∠OBD=∠ODB . ∴OB=OD在△AOB 与△COD 中,OA OC AOB OD OB OD =⎧⎪∠=∠⎨⎪=⎩∴△AOB ≌△COD (SAS ) ∴AB=CD.19.(2017四川南充,19,8分)(8分)在学习“二元一次方程组的解”时,数学张老师设计了一个数学活动. 有A 、B 两组卡片,每组各3张,A 组卡片上分别写有0,2,3;B 组卡片上分别写有-5,-1,1.每张卡片除正面写有不同数字外,其余均相同.甲从A 组中随机抽取一张记为x ,乙从B 组中随机抽取一张记为y .(1)若甲抽出的数字是2,乙抽出的数是-1,它们恰好是ax -y =5的解,求a 的值; (2)求甲、乙随机抽取一次的数恰好是方程ax -y =5的解的概率.(请用树形图或列表法求解) 【答案】解:AB OC D(18题图)20. (2017四川南充,20,8分)(8分)已知关于x 的一元二次方程x 2-22x +m =0,有两个不相等的实数根.⑴求实数m 的最大整数值;⑵在⑴的条下,方程的实数根是x 1,x 2,求代数式x 12+x 22-x 1x 2的值. 【答案】解:⑴由题意,得:△>0,即:(24m -- >0,m <2,∴m 的最大整数值为m=1(2)把m=1代入关于x 的一元二次方程x 2-22x +m =0得x 2-22x +1=0,根据根与系数的关系:x 1+x 2 = 22,x 1x 2=1,∴x 12+x 22-x 1x 2= (x 1+x 2)2-3x 1x 2=(22)2-3×1=521.(2017四川南充,21,8分)(8分)如图,一次函数y 1=kx +b 的图象与反比例函数y 2=mx 的图象相交于点A (2,5)和点B ,与y 轴相交于点C (0,7). (1)求这两个函数的解析式; (2)当x 取何值时,1y <2y .(第21题图)【答案】解:∵反比例函数y 2=mx 的图象过点A (2,5)∴5=2m,m=10 即反比例函数的解析式为y =10x。

2017年中考数学真题试题与答案(word版)

2017年中考数学真题试题与答案(word版)

XX★ 启用前2017 年中考题数学试卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上)1、计算2( 1) 的结果是()1B、2C、1D、 22、若∠α的余角是30°,则 cosα的值是()A 、213C、2D、3A 、B 、23223、下列运算正确的是()A 、2a a 1 B、a a2a2C、a a a2 D 、( a)2a24、下列图形是轴对称图形,又是中心对称图形的有()A、4 个B、3 个5、如图,在平行四边形∠1=()C、2 个D、1 个ABCD 中,∠ B=80 °, AE平分∠BAD交 BC于点E, CF∥ AE交 AE于点F,则A、 40°B、 50°C、 60°D、80°6、已知二次函数y ax2的图象开口向上,则直线y ax 1 经过的象限是()A 、第一、二、三象限 B、第二、三、四象限7、如图,你能看出这个倒立的水杯的俯视图是(C、第一、二、四象限)D、第一、三、四象限A B C D8、如图,是我市 5 月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A 、 28℃, 29℃B 、 28℃, 29.5℃C、 28℃, 30℃D 、 29℃, 29℃9、已知拋物线 y1 x2 2,当 1 x 5 时, y 的最大值是()2 35 7 A 、 2C 、B 、3D 、3 310、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为 1)的一块碎片到玻璃店,配制成形状、 大小与原来一致的镜面, 则这个镜面的半径是 ( )A 、 2B 、 5C 、22D 、311、如图,是反比例函数yk 1x和 yk 2 x( k 1k 2 )在第一象限的图象,直线AB ∥ x轴,并分别交两条曲线于A 、B 两点,若S AOB2 ,则k 2k 1 的值是()A 、 1B 、 2C 、 4D 、 812、一个容器装有1 升水,按照如下要求把水倒出:第1 次倒出1升水,第2 次倒出的水量是1升的1 ,223第 3 次倒出的水量是1 升的314,第4 次倒出的水量是14升的1 ,⋯按照这种倒水的方法,倒了5 10 次后容器内剩余的水量是()A 、10 升11B 、1 升9C 、110升D 、111升二、填空题(本大题共6 小题,每小题3 分,共 18 分 .把答案填在答题卡中的横线上)13、 2011的相反数是 __________14、近似数 0.618 有__________个有效数字.15、分解因式:a 3= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为 __________C 'D 17、如图,等边△ ABC 绕点 B 逆时针旋转30°时,点 C 转到 C ′的位置, 且 BC ′与 AC 交于点 D ,则CD的值为 __________16 题图17 题图18 题图18、如图, AB 是半圆 O 的直径,以 0A 为直径的半圆O ′与弦 AC 交于点 D ,O ′ E ∥ AC ,并交 OC 于点E .则下列四个结论:①点 D 为 AC 的中点;② S O 'OE1S AOC ;③ AC 2AD;④四边形 O'DEO 是菱形.其中正确的结2论是 __________.(把所有正确的结论的序号都填上)三、解答题(本大题共 8 小题,满分共 66 分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤) .19、计算: (1) 1(5) 034 .220、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为 60°,已知风筝线 BC 的长为 10 米,小强的身高 AB 为 1.55 米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到 1 米,参考数据2 ≈ 1.41 , 3≈ 1.73 )21、如图, △ OAB 的底边经过⊙ O 上的点 C ,且 OA=OB ,CA=CB ,⊙O 与 OA 、OB 分别交于 D 、E 两点.( 1)求证: AB 是⊙ O 的切线;( 2)若 D 为 OA 的中点,阴影部分的面积为33,求⊙ O 的半径 r .22、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子 3 个(分别用白 A 、白 B 、白 C 表示),若从中任意摸出一个棋子,是白色棋子的概率为3 .4( 1)求纸盒中黑色棋子的个数;( 2)第一次任意摸出一个棋子(不放回) ,第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.23、上个月某超市购进了两批相同品种的水果,第一批用了 2000 元,第二批用了 5500 元,第二批购进水果的重量是第一批的 2.5 倍,且进价比第一批每千克多 1 元.( 1)求两批水果共购进了多少千克?( 2)在这两批水果总重量正常损耗 10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于 26%,那么售价至少定为每千克多少元?利润(利润率 =100%)进价AG为边作一个正方形AEFG ,24、如图,点G 是正方形ABCD 对角线 CA 的延长线上任意一点,以线段线段 EB 和 GD 相交于点 H.( 1)求证: EB=GD ;( 2)判断 EB 与 GD 的位置关系,并说明理由;( 3)若AB=2 , AG=2,求EB的长.25、已知抛物线y ax22ax 3a ( a 0) 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点 D 为抛物线的顶点.(1)求 A 、 B 的坐标;(2)过点 D 作 DH 丄 y 轴于点 H,若 DH=HC ,求 a 的值和直线 CD 的解析式;(3)在第( 2)小题的条件下,直线 CD 与 x 轴交于点 E,过线段 OB 的中点 N 作 NF 丄 x 轴,并交直线CD 于点 F,则直线 NF 上是否存在点 M ,使得点 M 到直线 CD 的距离等于点 M 到原点 O 的距离?若存在,求出点M 的坐标;若不存在,请说明理由.中考数学试题答案一、选择题题号123456789101112答案B A C C B D B A C B C D二、填空题13. 201114. 315.a(3 a)(3 a)°17.2318.①③④16. 144三、解答题19. 解:原式 =2-1-3+2 ,=0 .故答案为: 0 .20.解:∵一元二次方程 x2-4x+1=0 的两个实数根是 x1、 x2,∴ x1 +x 2=4 , x1?x2=1 ,∴( x1+x 2)2÷()=4 2÷2=4 ÷421.解:在 Rt △ CEB 中,sin60 °=,∴CE=BC?sin60°=10×≈8.65m,∴CD=CE+ED=8.65+1.55=10.≈210m,答:风筝离地面的高度为 10m .22.( 1)证明:连 OC ,如图,∵ OA=OB , CA=CB ,∴OC ⊥AB,∴AB 是⊙ O 的切线;(2)解:∵ D 为 OA 的中点, OD=OC=r ,∴ OA=2OC=2r ,∴∠ A=30°,∠ AOC=60°, AC=r,∴∠ AOB=120°, AB=2r,∴ S 阴影部分 =S △OAB -S 扇形ODE = ?OC?AB-=-,∴?r?2r- r2=-,∴ r=1 ,即⊙ O 的半径 r 为 1 .23. 解:( 1) 3÷-3=1 .答:黑色棋子有 1 个;( 2)共12 种情况,有 6 种情况两次摸到相同颜色棋子,所以概率为.24. 解:( 1)设第一批购进水果x 千克,则第二批购进水果 2.5 千克,依据题意得:,解得 x=200 ,经检验 x=200 是原方程的解,∴x+2.5x=700 ,答:这两批水果功够进 700 千克;( 2)设售价为每千克 a 元,则:,630a≥ 7500× 1.26,∴,∴a≥15,答:售价至少为每千克 15 元.25.( 1 )证明:在△ GAD 和△ EAB 中,∠ GAD=90° +∠ EAD ,∠ EAB=90° +∠ EAD ,∴∠ GAD= ∠ EAB ,又∵ AG=AE , AB=AD ,∴△ GAD ≌△ EAB ,∴EB=GD ;( 2) EB ⊥ GD ,理由如下:连接BD ,由( 1 )得:∠ ADG= ∠ ABE ,则在△ BDH 中,∠DHB=180° - (∠ HDB+ ∠ HBD )=180°-90 °=90°,∴EB⊥GD ;( 3)设BD与AC交于点O,∵ AB=AD=2在 Rt △ABD中, DB=,∴ EB=GD=.26. 解:( 1)由y=0得, ax 2-2ax-3a=0,∵ a≠0,∴ x2 -2x-3=0,解得1=-1,x2=3,∴点 A 的坐标( -1, 0),点 B 的坐标( 3,0);(2)由 y=ax 2 -2ax-3a ,令 x=0 ,得 y=-3a ,∴ C ( 0, -3a ),又∵ y=ax 2 -2ax-3a=a ( x-1 )2-4a ,得 D (1 , -4a ),∴ DH=1 , CH=-4a- ( -3a ) =-a ,∴ -a=1 ,∴ a=-1 ,∴C(0, 3),D(1,4),设直线 CD 的解析式为y=kx+b ,把 C、 D 两点的坐标代入得,,解得,∴直线 CD 的解析式为y=x+3 ;( 3)存在.由( 2)得, E(-3,0),N(-,0)∴F(,),EN= ,作 MQ⊥CD 于 Q,设存在满足条件的点M(,m),则FM=-m ,EF==,MQ=OM=由题意得: Rt △ FQM ∽ Rt △ FNE ,∴=,整理得 4m 2+36m-63=0 ,∴m2+9m=,m 2+9m+=+(m+ )2=m+ =±∴ m1=,m2=-,∴点 M 的坐标为M1(,),M2(,-).”可见,一个人的心胸和眼光,决定了他志向的短浅或高远;一个清代“红顶商人”胡雪岩说:“做生意顶要紧的是眼光,看得到一省,就能做一省的生意;看得到天下,就能做天下的生意;看得到外国,就能做外国的生意。

历年四川省成都市中考数学试卷(A卷)(含答案)

历年四川省成都市中考数学试卷(A卷)(含答案)

2017年四川省成都市中考数学试卷(A卷)一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃2.(3分)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.3.(3分)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×10114.(3分)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<15.(3分)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a67.(3分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60708090100人数(人)7121083则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分8.(3分)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:9.(3分)已知x=3是分式方程﹣=2的解,那么实数k的值为()A.﹣1 B.0 C.1 D.210.(3分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(﹣1)0=.12.(4分)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为.13.(4分)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1y2.(填“>”或“<”).14.(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.16.(6分)化简求值:÷(1﹣),其中x=﹣1.17.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.18.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.20.(12分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)如图,数轴上点A表示的实数是.22.(4分)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.23.(4分)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.24.(4分)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=.25.(4分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.五、解答题(本大题共3小题,共30分)26.(8分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站A B C D Ex(千米)891011.513y1(分钟)1820222528(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.27.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.28.(10分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P 在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.2017年四川省成都市中考数学试卷(A卷)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•成都)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃【分析】此题主要用正负数来表示具有意义相反的两种量:若零上记为正,则零下就记为负,直接得出结论即可.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.(3分)(2017•成都)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看一层三个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3.(3分)(2017•成都)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:647亿=647 0000 0000=6.47×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•成都)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<1【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:x﹣1≥0,∴x≥1,故选(A)【点评】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.5.(3分)(2017•成都)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2017•成都)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a6【分析】利用同底数幂的乘法和除法法则以及合并同类项的法则运算即可.【解答】解:A.a5+a5=2a5,所以此选项错误;B.a7÷a=a6,所以此选项正确;C.a3•a2=a5,所以此选项错误;D.(﹣a3)2=a6,所以此选项错误;故选B.【点评】本题主要考查了同底数幂的乘法、除法、幂的乘方及合并同类项等,关键是熟记,同底数幂的除法法则:底数不变,指数相减;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘.7.(3分)(2017•成都)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60708090100人数(人)7121083则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分【分析】根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【解答】解:70分的有12人,人数最多,故众数为70分;处于中间位置的数为第20、21两个数,都为80分,中位数为80分.故选:C.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.(3分)(2017•成都)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∴DA:D′A′=OA:OA′=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:()2=,故选:A.【点评】本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.9.(3分)(2017•成都)已知x=3是分式方程﹣=2的解,那么实数k 的值为()A.﹣1 B.0 C.1 D.2【分析】将x=3代入原方程即可求出k的值.【解答】解:将x=3代入﹣=2,∴解得:k=2,故选(D)【点评】本题考查一元一次方程的解,解题的关键是将x=3代入原方程中,本题属于基础题型.10.(3分)(2017•成都)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0【分析】首先根据图象中抛物线的开口方向、对称轴的位置、与y轴交点的位置来判断出a、b、c的位置,进而判断各结论是否正确.【解答】解:根据二次函数的图象知:抛物线开口向上,则a>0;抛物线的对称轴在y轴右侧,则x=﹣>0,即b<0;抛物线交y轴于负半轴,则c<0;∴abc>0,∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故选B.【点评】本题考查了二次函数图象与系数的关系,由图象找出有关a,b,c的相关信息以及抛物线与x轴交点情况,是解题的关键.二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(2017•成都)(﹣1)0=1.【分析】直接利用零指数幂的性质求出答案.【解答】解:(﹣1)0=1.故答案为:1.【点评】此题主要考查了零指数幂的性质,正确把握定义是解题关键.12.(4分)(2017•成都)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为40°.【分析】直接用一个未知数表示出∠A,∠B,∠C的度数,再利用三角形内角和定理得出答案.【解答】解:∵∠A:∠B:∠C=2:3:4,∴设∠A=2x,∠B=3x,∠C=4x,∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得:x=20°,∴∠A的度数为:40°.故答案为:40°.【点评】此题主要考查了三角形内角和定理,正确表示出各角度数是解题关键.13.(4分)(2017•成都)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1<y2.(填“>”或“<”).【分析】由图象可以知道,当x=2时,两个函数的函数值是相等的,再根据函数的增减性即可得到结论.【解答】解:由图象知,当x<2时,y2的图象在y1上右,∴y1<y2.故答案为:<.【点评】本题考查了两条直线相交与平行,正确的识别图象是解题的关键.14.(4分)(2017•成都)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD 于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为15.【分析】根据角平分线的性质可知∠DAQ=∠BAQ,再由平行四边形的性质得出CD∥AB,BC=AD=3,∠BAQ=∠DQA,故可得出△AQD是等腰三角形,据此可得出DQ=AD,进而可得出结论.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.三、解答题(本大题共6小题,共54分)15.(12分)(2017•成都)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.【分析】(1)原式利用二次根式性质,特殊角的三角函数值,以及负整数指数幂法则计算即可得到结果.(2)分别求得两个不等式的解集,然后取其公共部分即可.【解答】解:(1)原式=﹣1﹣2+2×+4=﹣1﹣2++4=3;(2),①可化简为2x﹣7<3x﹣3,﹣x<4,x>﹣4,②可化简为2x≤1﹣3,则x≤﹣1.不等式的解集是﹣4<x≤﹣1.【点评】本题考查了解一元一次不等式组,实数的运算,负整数指数幂以及特殊角的三角函数值.熟练掌握运算法则是解本题的关键.16.(6分)(2017•成都)化简求值:÷(1﹣),其中x=﹣1.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知代入计算即可求出值.【解答】解:÷(1﹣)=•=,∵x=﹣1,∴原式==.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.(8分)(2017•成都)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有50人,估计该校1200名学生中“不了解”的人数是360人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.【分析】(1)用“非常了解”人数除以它所占的百分比即可得到调查的总人数;(2)用总人数乘以“不了解”人数所占的百分比即可得出答案;(3)先画树状图展示所有12个等可能的结果数,再找出恰好是一位男同学和一位女同学的结果数,然后根据概率公式求解.【解答】解:(1)4÷8%=50(人),1200×(1﹣40%﹣22%﹣8%)=360(人);故答案为:50,360;(2)画树状图,共有12根可能的结果,恰好抽到一男一女的结果有8个,∴P(恰好抽到一男一女的)==.【点评】本题考查了列表法与树状图法、扇形统计图、条形统计图;通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.18.(8分)(2017•成都)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.【分析】过B作BD⊥AC于点D,在直角△ABD中利用三角函数求得BD的长,然后在直角△BCD中利用三角函数求得BC的长.【解答】解:过B作BD⊥AC于点D.在Rt△ABD中,AD=AB•cos∠BAD=4cos60°=4×=2(千米),BD=AB•sin∠BAD=4×=2(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=2(千米),∴BC=BD=2(千米).答:B,C两地的距离是2千米.【点评】此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.19.(10分)(2017•成都)如图,在平面直角坐标系xOy中,已知正比例函数y=x 的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.【分析】(1)把A(a,﹣2)代入y=x,可得A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得反比例函数的表达式为y=,再根据点B与点A关于原点对称,即可得到B的坐标;(2)过P作PE⊥x轴于E,交AB于C,先设P(m,),则C(m,m),根据△POC的面积为3,可得方程m×|m﹣|=3,求得m的值,即可得到点P 的坐标.【解答】解:(1)把A(a,﹣2)代入y=x,可得a=﹣4,∴A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得k=8,∴反比例函数的表达式为y=,∵点B与点A关于原点对称,∴B(4,2);(2)如图所示,过P作PE⊥x轴于E,交AB于C,设P(m,),则C(m,m),∵△POC的面积为3,∴m×|m﹣|=3,解得m=2或2,∴P(2,)或(2,4).【点评】本题主要考查了反比例函数与一次函数的交点问题,解题时注意:反比例函数与一次函数的图象的交点坐标满足两函数的解析式.20.(12分)(2017•成都)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.【分析】(1)根据同圆的半径相等和等边对等角证明:∠ODB=∠OBD=∠ACB,则DH⊥OD,DH是圆O的切线;(2)如图2,先证明∠E=∠B=∠C,则H是EC的中点,设AE=x,EC=4x,则AC=3x,由OD是△ABC的中位线,得:OD=AC=,证明△AEF∽△ODF,列比例式可得结论;(3)如图2,设⊙O的半径为r,即OD=OB=r,证明DF=OD=r,则DE=DF+EF=r+1,BD=CD=DE=r+1,证明△BFD∽△EFA,列比例式为:,则=,求出r的值即可.【解答】证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)如图2,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵DH⊥AC,且点A是EH中点,设AE=x,EC=4x,则AC=3x,连接AD,则在⊙O中,∠ADB=90°,AD⊥BD,∵AB=AC,∴D是BC的中点,∴OD是△ABC的中位线,∴OD∥AC,OD=AC=×3x=,∵OD∥AC,∴∠E=∠ODF,在△AEF和△ODF中,∵∠E=∠ODF,∠OFD=∠AFE,∴△AEF∽△ODF,∴,∴==,∴=;(3)如图2,设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+1,∴AF=AB﹣BF=2OB﹣BF=2r﹣(1+r)=r﹣1,在△BFD和△EFA中,∵,∴△BFD∽△EFA,∴,∴=,解得:r1=,r2=(舍),综上所述,⊙O的半径为.【点评】本题是圆的综合题,考查了等腰三角形的性质和判定、切线的性质和判定、三角形的中位线、三角形相似的性质和判定、圆周角定理,第三问设圆的半径为r,根据等边对等角表示其它边长,利用比例列方程解决问题.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)(2017•成都)如图,数轴上点A表示的实数是﹣1.【分析】直接利用勾股定理得出三角形斜边长即可得出A点对应的实数.【解答】解:由图形可得:﹣1到A的距离为=,则数轴上点A表示的实数是:﹣1.故答案为:﹣1.【点评】此题主要考查了实数与数轴,正确得出﹣1到A的距离是解题关键.22.(4分)(2017•成都)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.【分析】由x12﹣x22=0得x1+x2=0或x1﹣x2=0;当x1+x2=0时,运用两根关系可以得到﹣2m﹣1=0或方程有两个相等的实根,据此即可求得m的值.【解答】解:由两根关系,得根x1+x2=5,x1•x2=a,由x12﹣x22=10得(x1+x2)(x1﹣x2)=10,若x1+x2=5,即x1﹣x2=2,∴(x1﹣x2)2=(x1+x2)2﹣4x1•x2=25﹣4a=4,∴a=,故答案为:.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.23.(4分)(2017•成都)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.【分析】直接利用圆的面积求法结合正方形的性质得出P1,P2的值即可得出答案.【解答】解:设⊙O的半径为1,则AD=,故S=π,圆O阴影部分面积为:π×2+×﹣π=2,则P1=,P2=,故=.故答案为:.【点评】此题主要考查了几何概率,正确得出各部分面积是解题关键.24.(4分)(2017•成都)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=﹣.【分析】设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),由AB=2可得出b=a+2,再根据反比例函数图象上点的坐标特征即可得出关于k、a、b的方程组,解之即可得出k值.【解答】解:设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),∵AB=2,∴b﹣a=2,即b=a+2.∵点A′,B′均在反比例函数y=的图象上,∴,解得:k=﹣.故答案为:﹣.【点评】本题考查了反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征以及两点间的距离公式,根据反比例函数图象上点的坐标特征列出关于k、a、b的方程组是解题的关键.25.(4分)(2017•成都)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.【分析】作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,首先证明△AKC′≌△GFM,可得GF=AK,由AN=4.5cm,A′N=1.5cm,C′K∥A′N,推出=,可得=,推出C′K=1cm,在Rt△AC′K中,根据AK=,求出AK即可解决问题.【解答】解:作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,∵GF⊥AA′,∴∠AFG+∠FAK=90°,∠MGF+∠MFG=90°,∴∠MGF=∠KAC′,∴△AKC′≌△GFM,∴GF=AK,∵AN=4.5cm,A′N=1.5cm,C′K∥A′N,∴=,∴=,∴C′K=1cm,在Rt△AC′K中,AK==cm,∴FG=AK=cm,故答案为.【点评】本题考查翻折变换、正方形的性质、矩形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.五、解答题(本大题共3小题,共30分)26.(8分)(2017•成都)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站A B C D Ex(千米)891011.513y1(分钟)1820222528(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.【分析】(1)根据表格中的数据,运用待定系数法,即可求得y1关于x的函数表达式;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=x2﹣9x+80,根据二次函数的性质,即可得出最短时间.【解答】解:(1)设y1=kx+b,将(8,18),(9,20),代入得:,解得:,故y1关于x的函数表达式为:y1=2x+2;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=2x+2+x2﹣11x+78=x2﹣9x+80,∴当x=9时,y有最小值,y min==39.5,答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.【点评】本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值最小值,在求二次函数的最值时,一定要注意自变量x的取值范围.27.(10分)(2017•成都)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.【分析】迁移应用:①如图②中,只要证明∠DAB=∠CAE,即可根据SAS解决问题;②结论:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解决问题;拓展延伸:①如图3中,作BH⊥AE于H,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等边三角形;②由AE=5,EC=EF=2,推出AH=HE=2.5,FH=4.5,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解决问题.【解答】迁移应用:①证明:如图②∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,,∴△DAB≌△EAC,②解:结论:CD=AD+BD.理由:如图2﹣1中,作AH⊥CD于H.∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=AD+BD.拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,。

【精选试卷】四川成都市中考数学解答题专项练习(答案解析)

【精选试卷】四川成都市中考数学解答题专项练习(答案解析)

一、解答题1.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(020)x <<之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?2.计算:()()()21a b a 2b (2a b)-+--;()221m 4m 421m 1m m -+⎛⎫-÷ ⎪--⎝⎭. 3.解不等式组3415122x x x x ≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来4.将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D '处,折痕为EF .(1)求证:ABE AD F '≌;(2)连结CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.5.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元 (1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?6.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表组别海选成绩xA组50≤x<60 B组60≤x<70 C组70≤x<80 D组80≤x<90E组90≤x<100请根据所给信息,解答下列问题:(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为,表示C组扇形的圆心角θ的度数为度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?7.某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x (元)之间满足一次函数关系.关于销售单价,日销售量,日销售利润的几组对应值如下表:销售单价x(元)8595105115日销售量y(个)17512575m日销售利润w87518751875875(元)(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?8.如图,AB是半圆O的直径,AD为弦,∠DBC=∠A.(1)求证:BC是半圆O的切线;(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.,,,四人随机分成甲、乙两组参加羽毛球比赛,每组两人.9.将A B C D(1)A在甲组的概率是多少?,都在甲组的概率是多少?(2)A B10.小慧和小聪沿图①中的景区公路游览.小慧乘坐车速为30 km/h的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑车从飞瀑出发前往宾馆,速度为20 km/h,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点.上午10:00小聪到达宾馆.图②中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系.试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB,GH的交点B的坐标,并说明它的实际意义;(3)如果小聪到达宾馆后,立即以30 km/h的速度按原路返回,那么返回途中他几点钟遇见小慧?11.先化简,再求值: 233212-),322x x x x x x (其中+-+÷=++12.已知n 边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n 边形变为(n+x )边形,发现内角和增加了360°,用列方程的方法确定x. 13.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:232212+=+(),善于思考的小明进行了以下探索: 设()2a b 2m n 2+=+(其中a b m n 、、、均为整数),则有22a b 2m 2n 2mn 2+=++.∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a b 2+的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题: 当a b m n 、、、均为正整数时,若()2a b 3m n 3+=+,用含m 、n 的式子分别表示a b 、,得a = ,b = ;(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( +3)2;(3)若()2433a m n +=+,且ab m n 、、、均为正整数,求a 的值.14.某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y 1(元/件),销量y 2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价-成本)×销量). (1)求y 1与y 2的函数解析式.(2)求每天的销售利润W 与x 的函数解析式.(3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?15.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数; (3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数. 16.计算:103212sin45(2π)-+--+-.17.甲、乙两公司为“见义勇为基金会”各捐款60000元.已知甲公司的人数比乙公司的人数多20℅,乙公司比甲公司人均多捐20元.甲、乙两公司各有多少人? 18.矩形ABCD 的对角线相交于点O .DE ∥AC ,CE ∥BD . (1)求证:四边形OCED 是菱形;(2)若∠ACB =30°,菱形OCED 的而积为83,求AC 的长.19.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x 千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y (元)与x (千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?20.先化简,再求值:(2)(2)(4)a a a a +-+-,其中14a =. 21.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题: (1)这次调查的学生共有多少名;(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数; (3)如果要在这个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A 、B 、C 、D 、E ).22.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE 的长; (2)求△ADB 的面积.23.如图,抛物线y =ax 2+bx ﹣2与x 轴交于两点A (﹣1,0)和B (4,0),与Y 轴交于点C ,连接AC 、BC 、AB ,(1)求抛物线的解析式;(2)点D 是抛物线上一点,连接BD 、CD ,满足ABC 35DBC S S ∆=,求点D 的坐标;(3)点E 在线段AB 上(与A 、B 不重合),点F 在线段BC 上(与B 、C 不重合),是否存在以C 、E 、F 为顶点的三角形与△ABC 相似,若存在,请直接写出点F 的坐标,若不存在,请说明理由.24.某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度,方法如下:如图,首先在测量点A 处用高为1.5m 的测角仪AC 测得人民英雄纪念碑MN 项部M 的仰角为37°,然后在测量点B 处用同样的测角仪BD 测得人民英雄纪念碑MN 顶部M的仰角为45°,最后测量出A ,B 两点间的距离为15m ,并且N ,B ,A 三点在一条直线上,连接CD 并延长交MN 于点E .请你利用他们的测量结果,计算人民英雄纪念碑MN 的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan35°≈0.75)25.如图,AD 是ABC 的中线,AE BC ∥,BE 交AD 于点F ,F 是AD 的中点,连接EC .(1)求证:四边形ADCE 是平行四边形;(2)若四边形ABCE 的面积为S ,请直接写出图中所有面积是13S 的三角形.26.两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作:(1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC 、CF 、FB ,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使 DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE ,请你求出 sinα的值.27.某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次调查的学生共有人;(2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.28.如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离.(结果精确到0.1海里,参考数据2≈1.41,3≈1.73)29.在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB . 30.小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:ooo o 33711sin 37tan37s 48tan48541010in ,,,≈≈≈≈)【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、解答题 1. 2. 3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、解答题1.(1)10100y x =+;(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.【解析】【分析】(1)根据图象可得:当2x =,120y =,当4x =,140y =;再用待定系数法求解即可;(2)根据这种干果每千克的利润×销售量=2090列出方程,解方程即可.【详解】解:(1)设一次函数解析式为:y kx b =+,根据图象可知:当2x =,120y =;当4x =,140y =;∴21204140k b k b +=⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩, ∴y 与x 之间的函数关系式为10100y x =+;(2)由题意得:(6040)(10100)2090x x --+=,整理得:21090x x -+=,解得:11x =.29x =,∵让顾客得到更大的实惠,∴9x =.答:商贸公司要想获利2090元,这种干果每千克应降价9元.【点睛】本题考查了一元二次方程的应用和一次函数的应用,读懂图象信息、熟练掌握待定系数法、正确列出一元二次方程是解题的关键.2.(1)223a 5ab 3b -+-;(2)m m 2-.【分析】()1根据多项式乘多项式、完全平方公式展开,然后再合并同类项即可;()2括号内先通分进行分式的减法运算,然后再进行分式的除法运算即可.【详解】()()()21a b a2b(2a b)-+--=2222a2ab ab2b4a4ab b+---+-223a5ab3b=-+-;(2)221m4m 4 1m1m m-+⎛⎫-÷⎪--⎝⎭=()2m m1 m2m1(m2)--⋅--mm2=-.【点睛】本题考查了整式的混合运算、分式的混合运算,熟练掌握它们的运算法则是解题的关键.3.-1<x≤1【解析】【分析】分别解两个不等式,然后根据数轴或“都大取大,都小取小,大小小大取中间,大大小小无解了”求解不等式组.【详解】解:341 {5122x xxx≥--->①②解不等式①可得x≤1,解不等式②可得x>-1在数轴上表示解集为:所以不等式组的解集为:-1<x≤1.【点睛】本题考查了解不等式组,熟练掌握计算法则是解题关键. 4.(1)证明见解析;(2)四边形AECF是菱形.证明见解析.【解析】(1)根据平行四边形的性质及折叠的性质我们可以得到∠B=∠D′,AB=AD′,∠1=∠3,从而利用ASA 判定△ABE ≌△AD′F ;(2)四边形AECF 是菱形,我们可以运用菱形的判定,有一组邻边相等的平行四边形是菱形来进行验证.【详解】解:(1)由折叠可知:∠D=∠D′,CD=AD′,∠C=∠D′AE .∵四边形ABCD 是平行四边形,∴∠B=∠D ,AB=CD ,∠C=∠BAD .∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD ,即∠1+∠2=∠2+∠3.∴∠1=∠3.在△ABE 和△AD′F 中∵{13D BAB AD ∠'=∠='∠=∠∴△ABE ≌△AD′F (ASA ).(2)四边形AECF 是菱形.证明:由折叠可知:AE=EC ,∠4=∠5.∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠5=∠6.∴∠4=∠6.∴AF=AE .∵AE=EC ,∴AF=EC .又∵AF ∥EC ,∴四边形AECF 是平行四边形.又∵AF=AE ,∴平行四边形AECF 是菱形.考点:1.全等三角形的判定;2.菱形的判定.5.(1该档次蛋糕每件利润为18元;(2)该烘焙店生产的是四档次的产品.【解析】【分析】(1)依题意可求出产品质量在第五档次的每件的利润.(2)设烘焙店生产的是第x档次的产品,根据单件利润×销售数量=总利润,即可得出关于x的一元二次方程,解之即可得出结论.【详解】(1)10+2×(5-1)=18(元).答:该档次蛋糕每件利润为18元.(2)设烘焙店生产的是第x档次的产品,根据题意得:[10+2(x-1)]×[76-4(x-1)]=1024,整理得:x2﹣16x+48=0,解得:x1=4,x2=12(不合题意,舍去).答:该烘焙店生产的是四档次的产品.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)根据单件利润×销售数量=总利润,列出关于x的一元二次方程.6.(1)答案见解析;(2)a=15,72°;(3)700人.【解析】试题分析:(1)用随机抽取的总人数减去A、B、C、E组的人数,求出D组的人数,从而补全统计图;(2)用B组抽查的人数除以总人数,即可求出a;用360乘以C组所占的百分比,求出C组扇形的圆心角θ的度数;(3)用该校参加这次海选比赛的总人数乘以成绩在90分以上(包括90分)所占的百分比,即可得出答案.试题解析:(1)D的人数是:200﹣10﹣30﹣40﹣70=50(人),补图如下:(2)B组人数所占的百分比是×100%=15%;C组扇形的圆心角θ的度数为360×=72°(3)根据题意得:2000×=700(人), 答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人.考点:(1)条形统计图;(2)用样本估计总体;(3)扇形统计图7.(1)25;(2)80,100,2000;(3)该产品的成本单价应不超过65元.【解析】分析:(1)根据题意和表格中的数据可以求得y 关于x 的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w 的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.详解;(1)设y 关于x 的函数解析式为y=kx+b ,8517595125k b k b +⎧⎨+⎩==,得5600k b ==-⎧⎨⎩, 即y 关于x 的函数解析式是y=-5x+600,当x=115时,y=-5×115+600=25,即m 的值是25;(2)设成本为a 元/个,当x=85时,875=175×(85-a ),得a=80,w=(-5x+600)(x-80)=-5x 2+1000x-48000=-5(x-100)2+2000,∴当x=100时,w 取得最大值,此时w=2000,(3)设科技创新后成本为b 元,当x=90时,(-5×90+600)(90-b )≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.点睛:本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.8.(1)见解析;(2)AD=4.5.【解析】【分析】(1)若证明BC 是半圆O 的切线,利用切线的判定定理:即证明AB ⊥BC 即可;(2)因为OC ∥AD ,可得∠BEC=∠D=90°,再有其他条件可判定△BCE ∽△BAD ,利用相似三角形的性质:对应边的比值相等即可求出AD 的长.【详解】(1)证明:∵AB 是半圆O 的直径,∴BD ⊥AD ,∴∠DBA+∠A=90°,∵∠DBC=∠A ,∴∠DBA+∠DBC=90°即AB ⊥BC ,∴BC 是半圆O 的切线;(2)解:∵OC ∥AD ,∴∠BEC=∠D=90°,∵BD ⊥AD ,BD=6,∴BE=DE=3,∵∠DBC=∠A ,∴△BCE ∽△BAD ,∴=CE BE BD AD ,即436=AD; ∴AD=4.5【点睛】 本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质.9.(1)12(2)16【解析】解:所有可能出现的结果如下:总共有6种结果,每种结果出现的可能性相同.(1)所有的结果中,满足A 在甲组的结果有3种,所以A 在甲组的概率是12,··· 2分 (2)所有的结果中,满足A B ,都在甲组的结果有1种,所以A B ,都在甲组的概率是16. 利用表格表示出所有可能的结果,根据A 在甲组的概率=3162=, A B ,都在甲组的概率=1610.(1)小聪上午7:30从飞瀑出发;(2)点B 的实际意义是当小慧出发1.5 h 时,小慧与小聪相遇,且离宾馆的路程为30 km.;(3)小聪到达宾馆后,立即以30 km/h 的速度按原路返回,那么返回途中他11:00遇见小慧.【解析】【分析】(1)由时间=路程÷速度,可得小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时),从10点往前推2.5小时,即可解答;(2)先求GH 的解析式,当s=30时,求出t 的值,即可确定点B 的坐标;(3)根据50÷30=53(小时)=1小时40分钟,确定当小慧在D 点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x 小时后两人相遇,根据题意得:30x+30(x ﹣)=50,解得:x=1,10+1=11点,即可解答.【详解】(1)小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时), ∵上午10:00小聪到达宾馆,∴小聪上午7点30分从飞瀑出发.(2)3﹣2.5=0.5,∴点G 的坐标为(0.5,50),设GH 的解析式为s kt b =+,把G (0.5,50),H (3,0)代入得;150{230k b k b +=+=,解得:20{60k b =-=, ∴s=﹣20t+60,当s=30时,t=1.5,∴B 点的坐标为(1.5,30),点B 的实际意义是当小慧出发1.5小时时,小慧与小聪相遇,且离宾馆的路程为30km ;(3)50÷30=53(小时)=1小时40分钟,12﹣53=1103, ∴当小慧在D 点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x 小时后两人相遇,根据题意得:30x+30(x ﹣13)=50,解得:x=1, 10+1=11=11点,∴小聪到达宾馆后,立即以30km/h 的速度按原路返回,那么返回途中他11点遇见小慧. 11.11;12x -- 【解析】【分析】根据分式的运算顺序及运算法则化简所给的分式,化为最简后再代入求值即可.【详解】原式=()23x 3x 22-)x 2x 1++⨯+-( ,()()22433221x x x x x +--+=⨯+-,()()21221x x x x -+=⨯+-,11x =-, 当x=3时,原式=113-=12- 【点睛】 本题主要考查了分式的化简求值,利用分式的运算顺序及运算法则把分式化为最简是解题的关键.12.(1)甲对,乙不对,理由见解析;(2)2.【解析】试题分析:(1)根据多边形的内角和公式判定即可;(2)根据题意列方程,解方程即可. 试题解析:(1)甲对,乙不对.∵θ=360°,∴(n-2)×180°=360°,解得n=4.∵θ=630°,∴(n-2)×180°=630°,解得n=.∵n 为整数,∴θ不能取630°.(2)由题意得,(n-2)×180+360=(n+x-2)×180,解得x=2.考点:多边形的内角和.13.(1)22m 3n +,2mn ;(2)4,2,1,1(答案不唯一);(3)a =7或a =13.【解析】【分析】【详解】(1)∵2(a m +=+,∴2232a m n +=++,∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13. 14.(1)y 2与x 的函数关系式为y 2=-2x+200(1≤x<90);(2)W=22x 180x 2?000(1x 50),120?x 12?000(50x 90).⎧-++≤<⎨-+≤<⎩ (3)销售这种文化衫的第45天,销售利润最大,最大利润是6050元.【解析】【分析】(1)待定系数法分别求解可得;(2)根据:销售利润=(售价-成本)×销量,分1≤x <50、50≤x <90两种情况分别列函数关系式可得;(3)当1≤x <50时,将二次函数关系式配方后依据二次函数性质可得此时最值情况,当50≤x <90时,依据一次函数性质可得最值情况,比较后可得答案.【详解】(1)当1≤x<50时,设y 1=kx+b ,将(1,41),(50,90)代入,得k b 41,50k b 90,+=⎧⎨+=⎩解得k 1,b 40,=⎧⎨=⎩∴y 1=x+40,当50≤x<90时,y 1=90,故y1与x的函数解析式为y1=x40(1x50), 90(50x90);+≤<⎧⎨≤<⎩ 设y2与x的函数解析式为y2=mx+n(1≤x<90),将(50,100),(90,20)代入,得50m n100,90m n20,+=⎧⎨+=⎩解得:m2,n200,=-⎧⎨=⎩故y2与x的函数关系式为y2=-2x+200(1≤x<90).(2)由(1)知,当1≤x<50时,W=(x+40-30)(-2x+200)=-2x2+180x+2000;当50≤x<90时,W=(90-30)(-2x+200)=-120x+12000;综上,W=22x180x2?000(1x50), 120?x12?000(50x90).⎧-++≤<⎨-+≤<⎩(3)当1≤x<50时,∵W=-2x2+180x+2000=-2(x-45)2+6050,∴当x=45时,W取得最大值,最大值为6050元;当50≤x<90时,W=-120x+12000,∵-120<0,W随x的增大而减小,∴当x=50时,W取得最大值,最大值为6000元;综上,当x=45时,W取得最大值6050元.答:销售这种文化衫的第45天,销售利润最大,最大利润是6050元.15.(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A类别人数及其所占百分比可得总人数;(2)总人数减去A、C、D三个类别人数求得B的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人;(2)B类别人数为400-(80+60+20)=240,补全条形图如下:C 类所对应扇形的圆心角的度数为360°×60400=54°; (3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N ==100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.16.13【解析】 【分析】根据负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质分别化简各项后,再合并即可解答. 【详解】 原式12212132=+-⨯+ =12121313=. 【点睛】本题主要考查了实数运算,利用负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质正确化简各数是解题关键.17.甲公司有600人,乙公司有500人. 【解析】分析:根据题意,可以设乙公司人数有x 人,则甲公司有(1+20%)x 人;由乙公司比甲公司人均多捐20元列分式方程,解之即可得出答案.详解:设乙公司有x 人,则甲公司就有(1+20%)x 人,即1.2x 人, 根据题意,可列方程:60000x 600001.2x-=20 解之得:x =500经检验:x=500是该方程的实数根.18.(1)证明见解析;(2)8.【解析】【分析】(1)熟记菱形的判定定理,本题可用一组邻边相等的平行四边形是菱形.(2)因为∠ACB=30°可证明菱形的一条对角线和边长相等,可证明和对角线构成等边三角形,然后作辅助线,根据菱形的面积已知可求解.【详解】解:(1)∵DE∥AC,CE∥BD∴四边形OCED是平行四边形∵四边形ABCD是矩形∴AO=OC=BO=OD∴四边形OCED是菱形(2)∵∠ACB=30°,∴∠DCO=90°-30°=60°又∵OD=OC∴△OCD是等边三角形过D作DF⊥OC于F,则CF=12OC,设CF=x,则OC=2x,AC=4x.在Rt△DFC中,tan60°=DF FC,∴DF=3x.∴OC•DF=83.∴x=2.∴AC=4×2=8.【点睛】本题考查了矩形的性质,对角线相等且互相平分,菱形的判定和性质,以及解直角三角形等知识点.19.答案见解析【解析】试题分析:(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y 乙关于x 的函数关系式;(2)分0<x≤1和x >1两种情况讨论,分别令y 甲<y 乙、y 甲=y 乙和y 甲>y 乙,解关于x 的方程或不等式即可得出结论. 试题解析:(1)由题意知:当0<x≤1时,y 甲=22x ;当1<x 时,y 甲=22+15(x ﹣1)=15x+7.y 乙=16x+3;∴22? (01){157?(1)x x y x x 甲<<=+>,=163y x +乙;(2)①当0<x≤1时,令y 甲<y 乙,即22x <16x+3,解得:0<x <12; 令y 甲=y 乙,即22x=16x+3,解得:x=12; 令y 甲>y 乙,即22x >16x+3,解得:12<x≤1. ②x >1时,令y 甲<y 乙,即15x+7<16x+3,解得:x >4; 令y 甲=y 乙,即15x+7=16x+3,解得:x=4; 令y 甲>y 乙,即15x+7>16x+3,解得:0<x <4. 综上可知:当12<x <4时,选乙快递公司省钱;当x=4或x=12时,选甲、乙两家快递公司快递费一样多;当0<x <12或x >4时,选甲快递公司省钱. 考点:一次函数的应用;分段函数;方案型.20.44a -,3-. 【解析】试题分析:根据平方差公式和单项式乘以多项式可以对原式化简,然后将a=14代入化简后的式子,即可解答本题.试题解析:原式=2244a a a -+-=44a -;当a=14时,原式=1444⨯-=14-=3-.考点:整式的混合运算—化简求值.21.(1)280名;(2)补图见解析;108°;(3)0.1. 【解析】 【分析】(1)根据“平等”的人数除以占的百分比得到调查的学生总数即可;(2)求出“互助”与“进取”的学生数,补全条形统计图,求出“进取”占的圆心角度数即可;(3)列表或画树状图得出所有等可能的情况数,找出恰好选到“C”与“E”的情况数,即可求出所求的概率. 【详解】解:(1)56÷20%=280(名), 答:这次调查的学生共有280名;(2)280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名), 补全条形统计图,如图所示,根据题意得:84÷280=30%,360°×30%=108°, 答:“进取”所对应的圆心角是108°;(3)由(2)中调查结果知:学生关注最多的两个主题为“进取”和“感恩”用列表法为:A B C D E A(A ,B )(A ,C ) (A ,D ) (A ,E ) B (B ,A )(B ,C )(B ,D ) (B ,E ) C (C ,A ) (C ,B )(C ,D )(C ,E ) D (D ,A ) (D ,B ) (D ,C )(D ,E )E(E ,A )(E ,B )(E ,C )(E ,D )用树状图为:共20种情况,恰好选到“C”和“E”有2种, ∴恰好选到“进取”和“感恩”两个主题的概率是0.1.22.(1)DE=3;(2)ADB S 15∆=. 【解析】【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可; (2)利用勾股定理求出AB 的长,然后计算△ADB 的面积. 【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°, ∴CD=DE , ∵CD=3, ∴DE=3;(2)在Rt △ABC 中,由勾股定理得:AB 10===, ∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=. 23.(1)213y x x 222=--;(2)D 的坐标为2⎛ ⎝⎭,2⎛+ ⎝⎭,(1,﹣3)或(3,﹣2).(3)存在,F 的坐标为48,55⎛⎫- ⎪⎝⎭,(2,﹣1)或53,24⎛⎫- ⎪⎝⎭. 【解析】 【分析】(1)根据点A ,B 的坐标,利用待定系数法可求出抛物线的解析式;(2)利用二次函数图象上点的坐标特征可求出点C 的坐标,结合点A ,B 的坐标可得出AB ,AC ,BC 的长度,由AC 2+BC 2=25=AB 2可得出∠ACB=90°,过点D 作DM∥BC,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,由D 1M 1∥BC 可得出△AD 1M 1∽△ACB,利用相似三角形的性质结合S △DBC =35S ABC ∆ ,可得出AM 1的长度,进而可得出点M 1的坐标,由BM 1=BM 2可得出点M 2的坐标,由点B ,C 的坐标利用待定系数法可求出直线BC 的解析式,进而可得出直线D 1M 1,D 2M 2的解析式,联立直线DM 和抛物线的解析式成方程组,通过解方程组即可求出点D 的坐标;(3)分点E 与点O 重合及点E 与点O 不重合两种情况考虑:①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC,由点A ,C 的坐标利用待定系数法可求出直线AC 的解析式,进而可得出直线OF 1的解析式,联立直线OF 1和直线BC 的解析式成方程组,通过解方程组可求出点F 1的坐标;②当点E 不和点O 重合时,在线段AB 上取点E ,使得EB =EC ,过点E 作EF 2⊥BC 于点F 2,过点E 作EF 3⊥CE,交直线BC 于点F 3,则△CEF 2∽△BAC∽△CF 3E .由EC =EB 利用等腰三角形的性质可得出点F 2为线段BC 的中点,进而可得出点F 2的坐标;利用相似三角形的性质可求出CF 3的长度,设点F 3的坐标为(x ,12x ﹣2),结合点C 的坐标可得出关于x 的方程,解之即可得出x 的值,将其正值代入点F 3的坐标中即可得出结论.综上,此题得解. 【详解】。

成都市青羊区2017年九年级二诊数学试题及答案

成都市青羊区2017年九年级二诊数学试题及答案

(2017年四川省成都市青羊区中考数学二诊试卷)A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分)1. 在算式(-2)□(-3),□的中填上运算符号,使结果最小,运算符号是( )A. 加号B. 减号C. 乘号D. 除号2. 国家卫生和计划生育委员会公布H 7N 9禽流感病毒直径约为0.00000012米,这一直径用科学计数法表示为( )A. 1.2×10-9米B. 12×10-8米C. 1.2×10-8米D. 1.2×10-7米3. 下面的图形中,既是轴对称图形又是中心对称图形的是( )A B C D4. 下列计算正确的是( )A. x x x 25332-=-B.x x x 32623=÷C.623)31(x x = D.126)42(3--=--x x 5. 如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠CDB=30°,过点C 作⊙O 的切线交AB 的延长线于E ,则sin ∠E 的值为( )A. 21B.23C.22D.336. 如图,将三角形的直角顶点放在直尺的一边上,∠1=30°,∠3=20°,则∠2=( )A. 55°B. 30°C. 50°D. 60°7. 如图,△DEF 经过怎样的平移得到△ABC ( )A. 把△DEF 向左平移4个单位,再向下平移2个单位B. 把△DEF 向右平移4个单位,再向下平移2个单位C. 把△DEF 向右平移4个单位,再向上平移2个单位D. 把△DEF 向左平移4个单位,再向上平移2个单位8. 将一个三角形改成与它相似的三角形,如果面积扩大为原来的9倍,那么周长扩大为原来的( )A. 9倍B. 3倍C. 81倍D. 18倍9. 某小区20户家庭的日用电量(单位:千瓦时)统计如下:这20户家庭日用电量的众数、中位数分别是( )A. 6,6.5B. 6,7C. 6,7.5D. 7,7.510. 某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为( )第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,第小题4分,共16分)11. 分解因式:=-+-x x x 1212323 .12. 如图,已知⊙O 的半径为30mm ,先AB=36mm ,则点O 到AB 的距离为 mm.13. 如图,一人乘雪橇沿坡比1:3的斜坡笔直滑下72米,那么他下降的高度为 米.14. 关于x 的方程012)2(2=++-x x m 有实数根,则偶数m 的最大值为 .三、解答题(本大题共6个小题,共54分)15.(每小题6分,共12分)(1)计算:︒-+-︒++--60sin 23)376(cos )21()1(032017π(2)解方程:01322=-+x x16、(本小题满分6分)如图,在△ABC 中,AB=AC ,BD=CD ,CE ⊥AB 于E.(1)求证:△ABD ∽△CBE ;(2)若BD=3,BE=2,求AC 的值.第16题图如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?(结果精确到0.1m)(参考数据:2≈1.414,3≈1.732)第17题图18.(本小题满分8分)某校将举办“心怀感恩孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.如图,一次函数b kx y +=的图象与反比例函数xm y =(x >0)的图象交于点P(n ,2),与x 轴交于点A ,与y 轴交于点C ,PB ⊥x 轴于点B ,且AC=BC ,S △PBC =4.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象上是否存在点D ,使四边形BCPD 为菱形?如果存在,求出点D 的坐标;如果不存在,说明理由.第19题图如图,在Rt △ABC 中,∠C=90°,BD 为∠ABC 的平分线,DF ⊥BD 交AB 于点F ,△BDF 的外接圆⊙O 与边BC 相交于点M ,过点M 作AB 的垂线交BD 于点E ,交⊙O 于点N ,交AB 于点H ,连接FN.(1)求证:AC 是⊙O 的切线;(2)若AF=1,tan ∠N=34,求⊙O 的半径r 的长; (3)在(2)的条件下,求BE 的长.B 卷(满分50分)一、填空题(本大题共5小题,每小题4分,共20分)21.如图,在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上,C 点在斜边上,设矩形的一边AB=x m ,矩形的面积为y m 2,则y 的最大值为 .22.有五张正面分别标有数20,1,3,4的不透明卡片,它们除了数字不同外其余全部相同。

2017年四川省成都市中考数学试题(含答案)

2017年四川省成都市中考数学试题(含答案)

成都市二O 一四年高中阶段教育学校统一招生考试(含成都市初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。

2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。

考试结束,监考人员将试卷和答题卡一并收回。

3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。

4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。

5. 保持答题卡清洁,不得折叠、污染、破损等。

A 卷(共100分) 第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上) 1.在-2,-1、0、2这四个数中,最大的数是( )(A)-2 (B)-1 (C)0 (D)2 2.下列几何体的主视图是三角形的是( )(A) (B) (C) (D)3.正在建设的成都第二绕城高速全长超过220公里,串起我市二、三圈层以及周边的广汉、简阳等地,总投资达290亿元,用科学计数法表示290亿元应为( ) (A )290×810 (B )290×910 (C )2.90×1010 (D )2.90×11104.下列计算正确的是( )(A )32x x x =+ (B )x x x 532=+ (C )532)(x x = (D )236x x x =÷ 5.下列图形中,不是..轴对称图形的是( )(A) (B) (C) (D) 6.函数5-=x y 中自变量x 的取值范围是( )(A )5-≥x (B )5-≤x (C )5≥x (D )5≤x 7.如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为( )(A )60° (B )50° (C )40° (D )30°8.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下:则该办学生成绩的众数和中位数分别是( )(A )70分,80分 (B )80分,80分 (C )90分,80分 (D )80分,90分9.将二次函数322+-=x x y 化为k h x y +-=2)(的形式,结果为( ) (A )4)1(2++=x y (B )2)1(2++=x y (C )4)1(2+-=x y (D )2)1(2+-=x y10.在圆心角为120°的扇形AOB 中,半径OA =6cm ,则扇形AOB 的面积是( ) (A )π62cm (B )π82cm (C )π122cm (D )π242cm第Ⅱ卷(非选择题,共70分)二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.计算:=-2_______________.12.如图,为估计池塘两岸边A ,B 两点间的距离,在池塘的一侧选取点O ,分别去OA 、OB 的中点M ,N ,测的MN=32 m ,则A ,B 两点间的距离是_____________m.13.在平面直角坐标系中,已知一次函数12+=x y 的图像经过),(11y x P x ,),(222y x P两点,若21x x <,则1y ________2y .(填”>”,”<”或”=”)14.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 切⊙O 于点D ,连接AD ,若∠A =25°,则∠C =__________度.三.解答题(本大题共6个小题,共54分,解答过程写在答题卡上) 15.(本小题满分12分,每题6分)(1)计算202)2014(30sin 49--+-π .(2)解不等式组⎩⎨⎧+<+>-②① .,7)2(2513x x x16.(本小题满分6分)如图,在一次数学课外实践活动中,小文在点C 处测得树的顶端A 的仰角为37°,BC =20m ,求树的高度AB .(参考数据:60.037sin ≈,80.037cos ≈,75.037tan ≈)17.(本小题满分8分) 先化简,再求值:221ba b b a a -÷⎪⎭⎫⎝⎛--,其中13+=a ,13-=b .18.(本小题满分8分)第十五届中国“西博会”将于2017年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2、3、4、5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.19.(本小题满分10分)如图,一次函数5+=kx y (k 为常数,且0≠k )的图像与反比例函数xy 8-=的图像交于()b A ,2-,B 两点.(1)求一次函数的表达式;(2)若将直线AB 向下平移)0(>m m 个单位长度后与反比例函数的图像有且只有一个公共点,求m 的值.20.(本小题满分10分)如图,矩形ABCD 中,AB AD 2=,E 是AD 边上一点,AD nDE 1=(n 为大于2的整数),连接BE ,作BE 的垂直平分线分别交AD 、BC 于点F ,G ,FG 与BE 的交点为O ,连接BF 和EG .(1)试判断四边形BFEG 的形状,并说明理由; (2)当a AB =(a 为常数),3=n 时,求FG 的长; (3)记四边形BFEG 的面积为1S ,矩形ABCD 的面积为2S , 当301721=S S 时,求n 的值.(直接写出结果,不必写出解答过程)CDGB 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上) 21. 在开展“国学诵读”活动中,某校为了解全校1300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据。

成都市中考数学试题(含答案)

成都市中考数学试题(含答案)

成都市中考数学试题(含答案)(含成都市初三毕业会考)数 学注意事项:1. 全卷分A 卷和B 卷.A 卷满分100分.B 卷满分50分;考试时间120分钟.2. 五城区及高新区的考生使用答题卡作答.郊区(市)县的考生使用机读卡加答题卷作答。

3. 在作答前.考生务必将自己的姓名、准考证号涂写在答题卡(机读卡加答题卷)上。

考试结束.监考人员将试卷和答题卡(机读卡加答题卷) 一并收回。

4.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色墨水签字笔书写.字体工整、笔迹清楚。

5.请按照题号在答题卡(机读卡加答题卷)上各题目对应的答题区域内作答.超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

6.保持答题卡面(机读卡加答题卷)清洁.不得折叠、污染、破损等。

A 卷(共100分) 第Ⅰ卷(选择题.共30分)一、选择题:(每小题3分.共3 0分)每小题均有四个选项.其中只有一项符合题目要求。

1. 4的平方根是(A)±16 (B)16 (C )±2 (D)2 2.如图所示的几何体的俯视图是3. 在函数12y x =-x 的取值范围是 (A)12x ≤(B) 12x < (C) 12x ≥ (D) 12x > 4. 近年来.随着交通网络的不断完善.我市近郊游持续升温。

据统计.在今年“五一”期间.某风景区接待游览的人数约为20.3万人.这一数据用科学记数法表示为(A)420.310⨯人 (B) 52.0310⨯人 (C) 42.0310⨯人 (D) 32.0310⨯人 5.下列计算正确的是 (A )2x x x += (B)2x x x ⋅= (C)235()x x =(D)32x x x ÷=6.已知关于x 的一元二次方程20(0)mx nx k m ++=≠有两个实数根.则下列关于判别式24n mk -的判断正确的是(A) 240n mk -< (B)240n mk -=BC D E ABCDE30(C)240n mk -> (D)240n mk -≥ 7.如图.若AB 是⊙0的直径.CD 是⊙O 的弦.∠ABD=58°. 则∠BCD=(A)116° (B)32° (C)58° (D)64°8.已知实数m 、昆在数轴上的对应点的位置如图所示.则下列判断正确的是 (A)0m > (B)0n < (C)0mn < (D)0m n ->9. 为了解某小区“全民健身”活动的开展情况.某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计.并绘制成如图所示的条形统计图.根据图中提供的信息.这50人一周的体育锻炼时间的众数和中位数分别是(A)6小时、6小时 (B) 6小时、4小时 (C) 4小时、4小时 (D)4小时、6小时10. 已知⊙O 的面积为9π2cm .若点0到直线l 的距离为πcm .则直线l 与⊙O 的位置关系是(A)相交 (B)相切 (C)相离 (D)无法确定第Ⅱ卷《非选择题.共7()分)二、填空题:(每小题4分.共l 6分)11. 分解因式:.221x x ++=________________。

2017年度成都市中考数学试卷及标准答案详解

2017年度成都市中考数学试卷及标准答案详解

2017年四川省成都市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃2.(3分)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.3.(3分)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×10114.(3分)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<15.(3分)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a67.(3分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60708090100人数(人)7121083则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分8.(3分)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:9.(3分)已知x=3是分式方程﹣=2的解,那么实数k的值为()A.﹣1 B.0 C.1 D.210.(3分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(﹣1)0=.12.(4分)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为.13.(4分)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1y2.(填“>”或“<”).14.(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.16.(6分)化简求值:÷(1﹣),其中x=﹣1.17.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.18.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.20.(12分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)如图,数轴上点A表示的实数是.22.(4分)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.23.(4分)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.24.(4分)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=.25.(4分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.五、解答题(本大题共3小题,共30分)26.(8分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站A B C D Ex(千米)891011.513y1(分钟)1820222528(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.27.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.28.(10分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P 在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.2017年四川省成都市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.2.(3分)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.【解答】解:从上边看一层三个小正方形,故选:C.3.(3分)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×1011【解答】解:647亿=647 0000 0000=6.47×1010,故选:C.4.(3分)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<1【解答】解:由题意可知:x﹣1≥0,∴x≥1,故选(A)5.(3分)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.6.(3分)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a6【解答】解:A.a5+a5=2a5,所以此选项错误;B.a7÷a=a6,所以此选项正确;C.a3•a2=a5,所以此选项错误;D.(﹣a3)2=a6,所以此选项错误;故选B.7.(3分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60708090100人数(人)7121083则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分【解答】解:70分的有12人,人数最多,故众数为70分;处于中间位置的数为第20、21两个数,都为80分,中位数为80分.故选:C.8.(3分)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∴DA:D′A′=OA:OA′=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:()2=,故选:A.9.(3分)已知x=3是分式方程﹣=2的解,那么实数k的值为()A.﹣1 B.0 C.1 D.2【解答】解:将x=3代入﹣=2,∴解得:k=2,故选(D)10.(3分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0【解答】解:根据二次函数的图象知:抛物线开口向上,则a>0;抛物线的对称轴在y轴右侧,则x=﹣>0,即b<0;抛物线交y轴于负半轴,则c<0;∴abc>0,∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故选B.二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(﹣1)0=1.【解答】解:(﹣1)0=1.故答案为:1.12.(4分)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为40°.【解答】解:∵∠A:∠B:∠C=2:3:4,∴设∠A=2x,∠B=3x,∠C=4x,∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得:x=20°,∴∠A的度数为:40°.故答案为:40°.13.(4分)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1<y2.(填“>”或“<”).【解答】解:由图象知,当x<2时,y2的图象在y1上右,∴y1<y2.故答案为:<.14.(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为15.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.【解答】解:(1)原式=﹣1﹣2+2×+4=﹣1﹣2++4=3;(2),①可化简为2x﹣7<3x﹣3,﹣x<4,x>﹣4,②可化简为2x≤1﹣3,则x≤﹣1.不等式的解集是﹣4<x≤﹣1.16.(6分)化简求值:÷(1﹣),其中x=﹣1.【解答】解:÷(1﹣)=•=,∵x=﹣1,∴原式==.17.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有50人,估计该校1200名学生中“不了解”的人数是360人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.【解答】解:(1)4÷8%=50(人),1200×(1﹣40%﹣22%﹣8%)=360(人);故答案为:50,360;(2)画树状图,共有12根可能的结果,恰好抽到一男一女的结果有8个,∴P(恰好抽到一男一女的)==.18.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.【解答】解:过B作BD⊥AC于点D.在Rt△ABD中,AD=AB•cos∠BAD=4cos60°=4×=2(千米),BD=AB•sin∠BAD=4×=2(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=2(千米),∴BC=BD=2(千米).答:B,C两地的距离是2千米.19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.【解答】解:(1)把A(a,﹣2)代入y=x,可得a=﹣4,∴A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得k=8,∴反比例函数的表达式为y=,∵点B与点A关于原点对称,∴B(4,2);(2)如图所示,过P作PE⊥x轴于E,交AB于C,设P(m,),则C(m,m),∵△POC的面积为3,∴m×|m﹣|=3,解得m=2或2,∴P(2,)或(2,4).20.(12分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.【解答】证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)如图2,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵DH⊥AC,且点A是EH中点,设AE=x,EC=4x,则AC=3x,连接AD,则在⊙O中,∠ADB=90°,AD⊥BD,∵AB=AC,∴D是BC的中点,∴OD是△ABC的中位线,∴OD∥AC,OD=AC=×3x=,∵OD∥AC,∴∠E=∠ODF,在△AEF和△ODF中,∵∠E=∠ODF,∠OFD=∠AFE,∴△AEF∽△ODF,∴,∴==,∴=;(3)如图2,设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+1,∴AF=AB﹣BF=2OB﹣BF=2r﹣(1+r)=r﹣1,在△BFD和△EFA中,∵,∴△BFD∽△EFA,∴,∴=,解得:r1=,r2=(舍),综上所述,⊙O的半径为.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)如图,数轴上点A表示的实数是﹣1.【解答】解:由图形可得:﹣1到A的距离为=,则数轴上点A表示的实数是:﹣1.故答案为:﹣1.22.(4分)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.【解答】解:由两根关系,得根x1+x2=5,x1•x2=a,由x12﹣x22=10得(x1+x2)(x1﹣x2)=10,若x1+x2=5,即x1﹣x2=2,∴(x1﹣x2)2=(x1+x2)2﹣4x1•x2=25﹣4a=4,∴a=,故答案为:.23.(4分)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.【解答】解:设⊙O的半径为1,则AD=,=π,故S圆O阴影部分面积为:π×2+×﹣π=2,则P1=,P2=,故=.故答案为:.24.(4分)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=﹣.【解答】解:设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),∵AB===(b﹣a)=2,∴b﹣a=2,即b=a+2.∵点A′,B′均在反比例函数y=的图象上,∴,解得:k=﹣.故答案为:﹣.25.(4分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.【解答】解:作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,∵GF⊥AA′,∴∠AFG+∠FAK=90°,∠MGF+∠MFG=90°,∴∠MGF=∠KAC′,∴△AKC′≌△GFM,∴GF=AK,∵AN=4.5cm,A′N=1.5cm,C′K∥A′N,∴=,∴=,∴C′K=1cm,在Rt△AC′K中,AK==cm,∴FG=AK=cm,故答案为.五、解答题(本大题共3小题,共30分)26.(8分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站A B C D Ex(千米)891011.513y1(分钟)1820222528(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.【解答】解:(1)设y1=kx+b,将(8,18),(9,20),代入得:,解得:,故y1关于x的函数表达式为:y1=2x+2;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=2x+2+x2﹣11x+78=x2﹣9x+80,∴当x=9时,y有最小值,y min==39.5,答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.27.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.【解答】迁移应用:①证明:如图②∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,,∴△DAB≌△EAC,②解:结论:CD=AD+BD.理由:如图2﹣1中,作AH⊥CD于H.∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=AD+BD.拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,∴BC=BE=BD=BA,FE=FC,∴A、D、E、C四点共圆,∴∠ADC=∠AEC=120°,∴∠FEC=60°,∴△EFC是等边三角形,②解:∵AE=5,EC=EF=2,∴AH=HE=2.5,FH=4.5,在Rt△BHF中,∵∠BFH=30°,∴=cos30°,∴BF==3.28.(10分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P 在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.【解答】解:(1)由题意抛物线的顶点C(0,4),A(﹣2,0),设抛物线的解析式为y=ax2+4,把A(﹣2,0)代入可得a=﹣,∴抛物线C的函数表达式为y=﹣x2+4.(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为y=(x ﹣2m)2﹣4,由,消去y得到x2﹣2mx+2m2﹣8=0,由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有,解得2<m<2,∴满足条件的m的取值范围为2<m<2.(3)结论:四边形PMP′N能成为正方形.理由:1情形1,如图,作PE⊥x轴于E,MH⊥x轴于H.由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,∴PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵点M在y=﹣x2+4上,∴m﹣2=﹣(m+2)2+4,解得m=﹣3或﹣﹣3(舍弃),∴m=﹣3时,四边形PMP′N是正方形.情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),把M(m﹣2,2﹣m)代入y=﹣x2+4中,2﹣m=﹣(m﹣2)2+4,解得m=6或0(舍弃),∴m=6时,四边形PMP′N是正方形.综上,四边形PMP′N能成为正方形,m=﹣3或6.。

2017年四川省泸州市中考数学试卷(附答案解析版)

2017年四川省泸州市中考数学试卷(附答案解析版)

2017年四川省泸州市中考数学试卷一、选择题(每题3分.共36分)1.(3分)﹣7的绝对值是()A.7 B.﹣7 C.D.﹣2.(3分)“五一”期间.某市共接待海内外游客约567000人次.将567000用科学记数法表示为()A.567×103B.56.7×104C.5.67×105D.0.567×1063.(3分)下列各式计算正确的是()A.2x•3x=6x B.3x﹣2x=x C.(2x)2=4x D.6x÷2x=3x4.(3分)如图是一个由4个相同的正方体组成的立体图形.它的左视图是()A.B.C.D.5.(3分)已知点A(a.1)与点B(﹣4.b)关于原点对称.则a+b的值为()A.5 B.﹣5 C.3 D.﹣36.(3分)如图.AB是⊙O的直径.弦CD⊥AB于点E.若AB=8.AE=1.则弦CD的长是()A.B.2 C.6 D.87.(3分)下列命题是真命题的是()A.四边都是相等的四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.对角线相等的平行四边形是矩形8.(3分)下列曲线中不能表示y与x的函数的是()A.B.C.D.9.(3分)已知三角形的三边长分别为a、b、c.求其面积问题.中外数学家曾经进行过深入研究.古希腊的几何学家海伦(Heron.约公元50年)给出求其面积的海伦公式S=.其中p=;我国南宋时期数学家秦九韶(约1202﹣1261)曾提出利用三角形的三边求其面积的秦九韶公式S=.若一个三角形的三边长分别为2.3.4.则其面积是()A.B.C.D.11.(3分)如图.在矩形ABCD中.点E是边BC的中点.AE⊥BD.垂足为F.则tan∠BDE的值是()A.B.C.D.12.(3分)已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0.2)的距离与到x轴的距离始终相等.如图.点M的坐标为(.3).P是抛物线y=x2+1上一个动点.则△PMF周长的最小值是()A.3 B.4 C.5 D.6二、填空题(本大题共4小题.每题3分.共12分)13.(3分)在一个不透明的袋子中装有4个红球和2个白球.这些球除了颜色外无其他差别.从袋子中随机摸出一个球.则摸出白球的概率是.14.(3分)分解因式:2m2﹣8= .(3分)若关于x的分式方程+=3的解为正实数.则实数m的取值范围是.15.16.(3分)在△ABC中.已知BD和CE分别是边AC、AB上的中线.且BD⊥CE.垂足为O.若OD=2cm.OE=4cm.则线段AO的长度为cm.三、解答题(每题6分.共18分)17.(6分)计算:(﹣3)2+20170﹣×sin45°.18.(6分)如图.点A、F、C、D在同一条直线上.已知AF=DC.∠A=∠D.BC∥EF.求证:AB=DE.19.(6分)化简:•(1+)四、本大题共2小题.每小题7分.共14分20.(7分)某单位750名职工积极参加向贫困地区学校捐书活动.为了解职工的捐数量.采用随机抽样的方法抽取30名职工作为样本.对他们的捐书量进行统计.统计结果共有4本、5本、6本、7本、8本五类.分别用A、B、C、D、E表示.根据统计数据绘制成了如图所示的不完整的条形统计图.由图中给出的信息解答下列问题:(1)补全条形统计图;(2)求这30名职工捐书本数的平均数、众数和中位数;(3)估计该单位750名职工共捐书多少本?21.(7分)某中学为打造书香校园.计划购进甲、乙两种规格的书柜放置新购进的图书.调查发现.若购买甲种书柜3个、乙种书柜2个.共需资金1020元;若购买甲种书柜4个.乙种书柜3个.共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个.其中乙种书柜的数量不少于甲种书柜的数量.学校至多能够提供资金4320元.请设计几种购买方案供这个学校选择.五、本大题共2小题.每小题8分.共16分.(8分)如图.海中一渔船在A处且与小岛C相距70nmile.若该渔船由西向东航行30nmile 22.到达B处.此时测得小岛C位于B的北偏东30°方向上;求该渔船此时与小岛C之间的距离.23.(8分)一次函数y=kx+b(k≠0)的图象经过点A(2.﹣6).且与反比例函数y=﹣的图象交于点B(a.4)(1)求一次函数的解析式;(2)将直线AB向上平移10个单位后得到直线l:y1=k1x+b1(k1≠0).l与反比例函数y2=的图象相交.求使y1<y2成立的x的取值范围.六、本大题共两个小题.每小题12分.共24分24.(12分)如图.⊙O与Rt△ABC的直角边AC和斜边AB分别相切于点C、D.与边BC相交于点F.OA与CD相交于点E.连接FE并延长交AC边于点G.(1)求证:DF∥AO;(2)若AC=6.AB=10.求CG的长.25.(12分)如图.已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1.0)、B(4.0)、C (0.2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点.且满足∠DBA=∠CAO(O是坐标原点).求点D的坐标;(3)点P是该二次函数图象上位于一象限上的一动点.连接PA分别交BC.y轴与点E、F.若△PEB、△CEF的面积分别为S1、S2.求S1﹣S2的最大值.2017年四川省泸州市中考数学试卷参考答案与试题解析一、选择题(每题3分.共36分)1.(3分)(2017•泸州)﹣7的绝对值是()A.7 B.﹣7 C.D.﹣【分析】根据绝对值的性质解答.当a是负有理数时.a的绝对值是它的相反数﹣a.【解答】解:|﹣7|=7.故选A.【点评】本题考查了绝对值的性质.如果用字母a表示有理数.则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时.a的绝对值是它本身a;②当a是负有理数时.a的绝对值是它的相反数﹣a;③当a是零时.a的绝对值是零.2.(3分)(2017•泸州)“五一”期间.某市共接待海内外游客约567000人次.将567000用科学记数法表示为()A.567×103B.56.7×104C.5.67×105D.0.567×106【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10.n为整数.确定n的值时.要看把原数变成a时.小数点移动了多少位.n的绝对值与小数点移动的位数相同.当原数绝对值>1时.n是正数;当原数的绝对值<1时.n是负数.【解答】解:567000=5.67×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式.其中1≤|a|<10.n为整数.表示时关键要正确确定a的值以及n的值.3.(3分)(2017•泸州)下列各式计算正确的是()A.2x•3x=6x B.3x﹣2x=x C.(2x)2=4x D.6x÷2x=3x【分析】各项计算得到结果.即可作出判断.【解答】解:A、原式=6x2.不符合题意;B、原式=x.符合题意;C、原式=4x2.不符合题意;D、原式=3.不符合题意.故选B【点评】此题考查了整式的混合运算.熟练掌握运算法则是解本题的关键.4.(2017•泸州)如图是一个由4个相同的正方体组成的立体图形.它的左视图是()(3分)A.B.C.D.【分析】根据左视图是从左边看到的图形解答.【解答】解:左视图有2行.每行一个小正方体.故选D.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.5.(3分)(2017•泸州)已知点A(a.1)与点B(﹣4.b)关于原点对称.则a+b的值为()A.5 B.﹣5 C.3 D.﹣3【分析】根据关于原点的对称点.横纵坐标都变成相反数.可得a、b的值.根据有理数的加法.可得答案.【解答】解:由A(a.1)关于原点的对称点为B(﹣4.b).得a=4.b=﹣1.a+b=3.故选:C.【点评】本题考查了关于原点对称的点的坐标.利用了关于原点对称的点的坐标规律:关于原点的对称点.横纵坐标都变成相反数.6.(3分)(2017•泸州)如图.AB是⊙O的直径.弦CD⊥AB于点E.若AB=8.AE=1.则弦CD 的长是()A.B.2 C.6 D.8【分析】根据垂径定理.可得答案.【解答】解:由题意.得OE=OB﹣AE=4﹣1=3.CE=CD==.CD=2CE=2.故选:B.【点评】本题考查了垂径定理.利用勾股定理.垂径定理是解题关键.7.(3分)(2017•泸州)下列命题是真命题的是()A.四边都是相等的四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.对角线相等的平行四边形是矩形【分析】根据矩形的判定定理.菱形的性质.正方形的判定判断即可得到结论.【解答】解:A、四边都相等的四边形是菱形.故错误;B、矩形的对角线相等.故错误;C、对角线互相垂直的平行四边形是菱形.故错误;D、对角线相等的平行四边形是矩形.正确.故选D.【点评】此题考查了命题与定理.正确的命题叫真命题.错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.(3分)(2017•泸州)下列曲线中不能表示y与x的函数的是()A.B.C.D.【分析】函数是在一个变化过程中有两个变量x.y.一个x只能对应一个y.【解答】解:当给x一个值时.y有唯一的值与其对应.就说y是x的函数.x是自变量.选项C中的图形中对于一个自变量的值.图象就对应两个点.即y有两个值与x的值对应.因而不是函数关系.故选C.【点评】考查了函数的概念.理解函数的定义.是解决本题的关键.9.(3分)(2017•泸州)已知三角形的三边长分别为a、b、c.求其面积问题.中外数学家曾经进行过深入研究.古希腊的几何学家海伦(Heron.约公元50年)给出求其面积的海伦公式S=.其中p=;我国南宋时期数学家秦九韶(约1202﹣1261)曾提出利用三角形的三边求其面积的秦九韶公式S=.若一个三角形的三边长分别为2.3.4.则其面积是()A.B.C.D.【分析】根据题目中的秦九韶公式.可以求得一个三角形的三边长分别为2.3.4的面积.从而可以解答本题.【解答】解:∵S=.∴若一个三角形的三边长分别为 2.3.4.则其面积是:S==.故选B.【点评】本题考查二次根式的应用.解答本题的关键是明确题意.求出相应的三角形的面积.11.(3分)(2017•泸州)如图.在矩形ABCD中.点E是边BC的中点.AE⊥BD.垂足为F.则tan∠BDE的值是()A.B.C.D.【分析】证明△BEF∽△DAF.得出EF=AF.EF=AE.由矩形的对称性得:AE=DE.得出EF=DE.设EF=x.则DE=3x.由勾股定理求出DF==2x.再由三角函数定义即可得出答案.【解答】解:∵四边形ABCD是矩形.∴AD=BC.AD∥BC.∵点E是边BC的中点.∴BE=BC=AD.∴△BEF∽△DAF.∴=.∴EF=AF.∴EF=AE.∵点E是边BC的中点.∴由矩形的对称性得:AE=DE.∴EF=DE.设EF=x.则DE=3x.∴DF==2x.∴tan∠BDE===;故选:A.【点评】本题考查了相似三角形的判定和性质.矩形的性质.三角函数等知识;熟练掌握矩形的性质.证明三角形相似是解决问题的关键.12.(3分)(2017•泸州)已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0.2)的距离与到x轴的距离始终相等.如图.点M的坐标为(.3).P是抛物线y=x2+1上一个动点.则△PMF周长的最小值是()A.3 B.4 C.5 D.6【分析】过点M作ME⊥x轴于点E.交抛物线y=x2+1于点P.由PF=PE结合三角形三边关系.即可得出此时△PMF周长取最小值.再由点F、M的坐标即可得出MF、ME的长度.进而得出△PMF周长的最小值.【解答】解:过点M作ME⊥x轴于点E.交抛物线y=x2+1于点P.此时△PMF周长最小值. ∵F(0.2)、M(.3).∴ME=3.FM==2.∴△PMF周长的最小值=ME+FM=3+2=5.故选C.【点评】本题考查了二次函数的性质以及三角形三边关系.根据三角形的三边关系确定点P 的位置是解题的关键.二、填空题(本大题共4小题.每题3分.共12分)13.(3分)(2017•泸州)在一个不透明的袋子中装有4个红球和2个白球.这些球除了颜色外无其他差别.从袋子中随机摸出一个球.则摸出白球的概率是.【分析】根据概率的求法.找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解;袋子中球的总数为:4+2=6.∴摸到白球的概率为:=.故答案为:.【点评】此题主要考查了概率的求法.如果一个事件有n种可能.而且这些事件的可能性相同.其中事件A出现m种结果.那么事件A的概率P(A)=.14.(3分)(2017•泸州)分解因式:2m2﹣8= 2(m+2)(m﹣2).【分析】先提取公因式2.再对余下的多项式利用平方差公式继续分解因式.【解答】解:2m2﹣8.=2(m2﹣4).=2(m+2)(m﹣2).故答案为:2(m+2)(m﹣2).【点评】本题考查了提公因式法与公式法分解因式.要求灵活使用各种方法对多项式进行因式分解.一般来说.如果可以先提取公因式的要先提取公因式.再考虑运用公式法分解.15.(3分)(2017•泸州)若关于x的分式方程+=3的解为正实数.则实数m的取值范围是m<6且m≠2 .【分析】利用解分式方程的一般步骤解出方程.根据题意列出不等式.解不等式即可.【解答】解:+=3.方程两边同乘(x﹣2)得.x+m﹣2m=3x﹣6.解得.x=.由题意得.>0.解得.m<6.∵≠2.∴m≠2.故答案为:m<6且m≠2.【点评】本题考查的是分式方程的解、一元一次不等式的解法.掌握解分式方程的一般步骤、分式方程无解的判断方法是解题的关键.16.(3分)(2017•泸州)在△ABC中.已知BD和CE分别是边AC、AB上的中线.且BD⊥CE.垂足为O.若OD=2cm.OE=4cm.则线段AO的长度为4cm.【分析】连接AO并延长.交BC于H.根据勾股定理求出DE.根据三角形中位线定理求出BC.根据直角三角形的性质求出OH.根据重心的性质解答.【解答】解:连接AO并延长.交BC于H.由勾股定理得.DE==2.∵BD和CE分别是边AC、AB上的中线.∴BC=2DE=4.O是△ABC的重心.∴AH是中线.又BD⊥CE.∴OH=BC=2.∵O是△ABC的重心.∴AO=2OH=4.故答案为:4.【点评】本题考查的是重心的概念和性质.掌握三角形的重心是三角形三条中线的交点.且重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.三、解答题(每题6分.共18分)17.(6分)(2017•泸州)计算:(﹣3)2+20170﹣×sin45°.【分析】首先计算乘方、开方、乘法.然后从左向右依次计算.求出算式的值是多少即可.【解答】解:(﹣3)2+20170﹣×sin45°=9+1﹣3×=10﹣3=7【点评】此题主要考查了实数的运算.要熟练掌握.解答此题的关键是要明确:在进行实数运算时.和有理数运算一样.要从高级到低级.即先算乘方、开方.再算乘除.最后算加减.有括号的要先算括号里面的.同级运算要按照从左到右的顺序进行.另外.有理数的运算律在实数范围内仍然适用.18.(6分)(2017•泸州)如图.点A、F、C、D在同一条直线上.已知AF=DC.∠A=∠D.BC∥EF.求证:AB=DE.【分析】欲证明AB=DE.只要证明△ABC≌△DEF即可.【解答】证明:∵AF=CD.∴AC=DF.∵BC∥EF.∴∠ACB=∠DFE.在△ABC和△DEF中..∴△ABC≌△DEF(ASA).∴AB=DE.【点评】本题考查全等三角形的判定和性质、平行线的性质等知识.熟练掌握全等三角形的判定方法是解决问题的关键.19.(6分)(2017•泸州)化简:•(1+)【分析】原式括号中两项通分并利用同分母分式的加法法则计算.约分即可得到结果.【解答】解:原式=•=.【点评】此题考查了分式的混合运算.熟练掌握运算法则是解本题的关键.四、本大题共2小题.每小题7分.共14分20.(7分)(2017•泸州)某单位750名职工积极参加向贫困地区学校捐书活动.为了解职工的捐数量.采用随机抽样的方法抽取30名职工作为样本.对他们的捐书量进行统计.统计结果共有4本、5本、6本、7本、8本五类.分别用A、B、C、D、E表示.根据统计数据绘制成了如图所示的不完整的条形统计图.由图中给出的信息解答下列问题:(1)补全条形统计图;(2)求这30名职工捐书本数的平均数、众数和中位数;(3)估计该单位750名职工共捐书多少本?【分析】(1)根据题意列式计算得到D类书的人数.补全条形统计图即可;(2)根据次数出现最多的数确定众数.按从小到大顺序排列好后求得中位数;(3)用捐款平均数乘以总人数即可.【解答】解(1)捐D类书的人数为:30﹣4﹣6﹣9﹣3=8.补图如图所示;(2)众数为:6 中位数为:6平均数为:=(4×4+5×6+6×9+7×8+8×3)=6;(3)750×6=4500.即该单位750名职工共捐书约4500本.【点评】此题主要考查了中位数.众数.平均数的求法.条形统计图的画法.用样本估计总体的思想和计算方法;要求平均数只要求出数据之和再除以总个数即可;找中位数要把数据按从小到大的顺序排列.位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据.注意众数可以不止一个.21.(7分)(2017•泸州)某中学为打造书香校园.计划购进甲、乙两种规格的书柜放置新购进的图书.调查发现.若购买甲种书柜3个、乙种书柜2个.共需资金1020元;若购买甲种书柜4个.乙种书柜3个.共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个.其中乙种书柜的数量不少于甲种书柜的数量.学校至多能够提供资金4320元.请设计几种购买方案供这个学校选择.【分析】(1)设甲种书柜单价为x元.乙种书柜的单价为y元.根据:若购买甲种书柜3个、乙种书柜2个.共需资金1020元;若购买甲种书柜4个.乙种书柜3个.共需资金1440元列出方程求解即可;(2)设甲种书柜购买m个.则乙种书柜购买(20﹣m)个.根据:所需经费=甲图书柜总费用+乙图书柜总费用、总经费W≤1820且购买的甲种图书柜的数量≥乙种图书柜数量列出不等式组.解不等式组即可的不等式组的解集.从而确定方案.【解答】(1)解:设甲种书柜单价为x元.乙种书柜的单价为y元.由题意得:.解之得:.答:设甲种书柜单价为180元.乙种书柜的单价为240元.(2)解:设甲种书柜购买m个.则乙种书柜购买(20﹣m)个;由题意得:解之得:8≤m≤10因为m取整数.所以m可以取的值为:8.9.10即:学校的购买方案有以下三种:方案一:甲种书柜8个.乙种书柜12个.方案二:甲种书柜9个.乙种书柜11个.方案三:甲种书柜10个.乙种书柜10个.【点评】本题主要考查二元一次方程组、不等式组的综合应用能力.根据题意准确抓住相等关系或不等关系是解题的根本和关键.五、本大题共2小题.每小题8分.共16分.22.(8分)(2017•泸州)如图.海中一渔船在A处且与小岛C相距70nmile.若该渔船由西向东航行30nmile到达B处.此时测得小岛C位于B的北偏东30°方向上;求该渔船此时与小岛C之间的距离.【分析】过点C作CD⊥AB于点D.由题意得:∠BCD=30°.设BC=x.解直角三角形即可得到结论.【解答】解:过点C作CD⊥AB于点D.由题意得:∠BCD=30°.设BC=x.则:在Rt△BCD中.BD=BC•sin30°=x.CD=BC•cos30°=x;∴AD=30x.∵AD2+CD2=AC2.即:(30+x)2+(x)2=702.解之得:x=50(负值舍去).答:渔船此时与C岛之间的距离为50海里.【点评】此题考查了方向角问题.此题难度适中.注意能借助于方向角构造直角三角形.并利用解直角三角形的知识求解是解此题的关键.23.(8分)(2017•泸州)一次函数y=kx+b(k≠0)的图象经过点A(2.﹣6).且与反比例函数y=﹣的图象交于点B(a.4)(1)求一次函数的解析式;(2)将直线AB向上平移10个单位后得到直线l:y1=k1x+b1(k1≠0).l与反比例函数y2=的图象相交.求使y1<y2成立的x的取值范围.【分析】(1)根据点B的纵坐标利用反比例函数图象上点的坐标特征可求出点B的坐标.根据点A、B的坐标利用待定系数法即可求出直线AB的解析式;(2)根据“上加下减”找出直线l的解析式.联立直线l和反比例函数解析式成方程组.解方程组可找出交点坐标.画出函数图象.根据两函数图象的上下位置关系即可找出使y1<y2成立的x的取值范围.【解答】解:(1)∵反比例函数y=﹣的图象过点B(a.4).∴4=﹣.解得:a=﹣3.∴点B的坐标为(﹣3.4).将A(2.﹣6)、B(﹣3.4)代入y=kx+b中..解得:.∴一次函数的解析式为y=﹣2x﹣2.(2)直线AB向上平移10个单位后得到直线l的解析式为:y1=﹣2x+8.联立直线l和反比例函数解析式成方程组..解得:..∴直线l与反比例函数图象的交点坐标为(1.6)和(3.2).画出函数图象.如图所示.观察函数图象可知:当0<x<1或x>3时.反比例函数图象在直线l的上方.∴使y1<y2成立的x的取值范围为0<x<1或x>3.【点评】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、待定系数法求一次函数解析式以及解方程组.解题的关键是:(1)根据点A、B的坐标利用待定系数法求出直线AB的解析式;(2)联立两函数解析式成方程组.通过解方程组求出两函数图象的交点坐标.六、本大题共两个小题.每小题12分.共24分24.(12分)(2017•泸州)如图.⊙O与Rt△ABC的直角边AC和斜边AB分别相切于点C、D.与边BC相交于点F.OA与CD相交于点E.连接FE并延长交AC边于点G.(1)求证:DF∥AO;(2)若AC=6.AB=10.求CG的长.【分析】(1)欲证明DF∥OA.只要证明OA⊥CD.DF⊥CD即可;(2)过点作EM⊥OC于M.易知=.只要求出EM、FM、FC即可解决问题;【解答】(1)证明:连接OD.∵AB与⊙O相切与点D.又AC与⊙O相切与点.∴AC=AD.∵OC=OD.∴OA⊥CD.∴CD⊥OA.∵CF是直径.∴∠CDF=90°.∴DF⊥CD.∴DF∥AO.(2)过点作EM⊥OC于M.∵AC=6.AB=10.∴BC==8.∴AD=AC=6.∴BD=AB﹣AD=4.∵BD2=BF•BC.∴BF=2.∴CF=BC﹣BF=6.OC=CF=3.∴OA==3.∵OC2=OE•OA.∴OE=.∵EM∥AC.∴===.∴OM=.EM=.FM=OF+OM=.∴===.∴CG=EM=2.【点评】本题考查切线的性质、直径的性质、切线长定理、勾股定理、平行线分线段成比例定理等知识.解题的关键是学会添加常用辅助线.灵活运用所学知识解决问题.25.(12分)(2017•泸州)如图.已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1.0)、B(4.0)、C(0.2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点.且满足∠DBA=∠CAO(O是坐标原点).求点D的坐标;(3)点P是该二次函数图象上位于一象限上的一动点.连接PA分别交BC.y轴与点E、F.若△PEB、△CEF的面积分别为S1、S2.求S1﹣S2的最大值.【分析】(1)由A、B、C三点的坐标.利用待定系数法可求得抛物线解析式;(2)当点D在x轴上方时.则可知当CD∥AB时.满足条件.由对称性可求得D点坐标;当点D在x轴下方时.可证得BD∥AC.利用AC的解析式可求得直线BD的解析式.再联立直线BD 和抛物线的解析式可求得D点坐标;(3)过点P作PH∥y轴交直线BC于点H.可设出P点坐标.从而可表示出PH的长.可表示出△PEB的面积.进一步可表示出直线AP的解析式.可求得F点的坐标.联立直线BC和PA的解析式.可表示出E点横坐标.从而可表示出△CEF的面积.再利用二次函数的性质可求得S1﹣S2的最大值.【解答】解:(1)由题意可得.解得.∴抛物线解析式为y=﹣x2+x+2;(2)当点D在x轴上方时.过C作CD∥AB交抛物线于点D.如图1.∵A、B关于对称轴对称.C、D关于对称轴对称.∴四边形ABDC为等腰梯形.∴∠CAO=∠DBA.即点D满足条件.∴D(3.2);当点D在x轴下方时.∵∠DBA=∠CAO.∴BD∥AC.∵C(0.2).∴可设直线AC解析式为y=kx+2.把A(﹣1.0)代入可求得k=2.∴直线AC解析式为y=2x+2.∴可设直线BD解析式为y=2x+m.把B(4.0)代入可求得m=﹣8.∴直线BD解析式为y=2x﹣8.联立直线BD和抛物线解析式可得.解得或. ∴D(﹣5.﹣18);综上可知满足条件的点D的坐标为(3.2)或(﹣5.﹣18);(3)过点P作PH∥y轴交直线BC于点H.如图2.设P(t.﹣t2+t+2).由B、C两点的坐标可求得直线BC的解析式为y=﹣x+2.∴H(t.﹣t+2).∴PH=y P﹣y H=﹣t2+t+2﹣(﹣t+2)=﹣t2+2t.设直线AP的解析式为y=px+q.∴.解得.∴直线AP的解析式为y=(﹣t+2)(x+1).令x=0可得y=2﹣t.∴F(0.2﹣t).∴CF=2﹣(2﹣t)=t.联立直线AP和直线BC解析式可得.解得x=.即E点的横坐标为.∴S1=PH(x B﹣x E)=(﹣t2+2t)(5﹣).S2=••.∴S1﹣S2=(﹣t2+2t)(5﹣)﹣••=﹣t2+5t=﹣(t﹣)2+.∴当t=时.有S1﹣S2有最大值.最大值为.【点评】本题为二次函数的综合应用.涉及待定系数法、平行线的判定和性质、三角形的面积、二次函数的性质、方程思想伋分类讨论思想等知识.在(1)中注意待定系数法的应用.在(2)中确定出D点的位置是解题的关键.在(3)中用P点的坐标分别表示出两个三角形的面积是解题的关键.本题考查知识点较多.综合性较强.计算量大.难度较大.参与本试卷答题和审题的老师有:bjf;gbl210;sks;星期八;dbz1018;2300680618;王学峰;弯弯的小河;zgm666;家有儿女;曹先生;三界无我;知足长乐;放飞梦想;nhx600;Ldt(排名不分先后)菁优网2017年6月23日。

成都市青羊区九年级二诊数学试题及答案

成都市青羊区九年级二诊数学试题及答案

(2017年四川省成都市青羊区中考数学二诊试卷)A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分)1. 在算式(-2)□(-3),□的中填上运算符号,使结果最小,运算符号是( )A. 加号B. 减号C. 乘号D. 除号2. 国家卫生和计划生育委员会公布H 7N 9禽流感病毒直径约为0.00000012米,这一直径用科学计数法表示为( )A. 1.2×10-9米B. 12×10-8米C. 1.2×10-8米D. 1.2×10-7米3. 下面的图形中,既是轴对称图形又是中心对称图形的是( )A B C D4. 下列计算正确的是( )A. x x x 25332-=-B.x x x 32623=÷C.623)31(x x =D.126)42(3--=--x x5. 如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠CDB=30°,过点C 作⊙O 的切线交AB 的延长线于E ,则sin ∠E 的值为( )A. 21 B.23 C.22 D.336. 如图,将三角形的直角顶点放在直尺的一边上,∠1=30°,∠3=20°,则∠2=( )A. 55°B. 30°C. 50°D. 60°7. 如图,△DEF 经过怎样的平移得到△ABC ( )A. 把△DEF 向左平移4个单位,再向下平移2个单位B. 把△DEF 向右平移4个单位,再向下平移2个单位C. 把△DEF 向右平移4个单位,再向上平移2个单位D. 把△DEF 向左平移4个单位,再向上平移2个单位8. 将一个三角形改成与它相似的三角形,如果面积扩大为原来的9倍,那么周长扩大为原来的( )A. 9倍B. 3倍C. 81倍D. 18倍9. 某小区20户家庭的日用电量(单位:千瓦时)统计如下:这20户家庭日用电量的众数、中位数分别是( )A. 6,6.5B. 6,7C. 6,7.5D. 7,7.510. 某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为( )第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,第小题4分,共16分)11. 分解因式:=-+-x x x 1212323 .12. 如图,已知⊙O 的半径为30mm ,先AB=36mm ,则点O 到AB 的距离为 mm.13. 如图,一人乘雪橇沿坡比1:3的斜坡笔直滑下72米,那么他下降的高度为 米.14. 关于x 的方程012)2(2=++-x x m 有实数根,则偶数m 的最大值为 .三、解答题(本大题共6个小题,共54分)15.(每小题6分,共12分)(1)计算:︒-+-︒++--60sin 23)376(cos )21()1(032017π(2)解方程:01322=-+x x16、(本小题满分6分)如图,在△ABC 中,AB=AC ,BD=CD ,CE ⊥AB 于E.(1)求证:△ABD ∽△CBE ;(2)若BD=3,BE=2,求AC 的值.第16题图如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?(结果精确到0.1m)(参考数据:2≈1.414,3≈1.732)第17题图18.(本小题满分8分)某校将举办“心怀感恩孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.如图,一次函数b kx y +=的图象与反比例函数x m y =(x >0)的图象交于点P(n ,2),与x 轴交于点A ,与y 轴交于点C ,PB ⊥x 轴于点B ,且AC=BC ,S △PBC =4.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象上是否存在点D ,使四边形BCPD 为菱形?如果存在,求出点D 的坐标;如果不存在,说明理由.第19题图如图,在Rt △ABC 中,∠C=90°,BD 为∠ABC 的平分线,DF ⊥BD 交AB 于点F ,△BDF 的外接圆⊙O 与边BC 相交于点M ,过点M 作AB 的垂线交BD 于点E ,交⊙O 于点N ,交AB 于点H ,连接FN.(1)求证:AC 是⊙O 的切线;(2)若AF=1,tan ∠N=34,求⊙O 的半径r 的长; (3)在(2)的条件下,求BE 的长.B 卷(满分50分)一、填空题(本大题共5小题,每小题4分,共20分)21.如图,在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上,C 点在斜边上,设矩形的一边AB=x m ,矩形的面积为y m 2,则y 的最大值为 .22.有五张正面分别标有数2,0,1,3,4的不透明卡片,它们除了数字不同外其余全部相同。

2017年中考数学真题试卷(含答案详细解析)

2017年中考数学真题试卷(含答案详细解析)

2017年中考数学真题卷及答案详解一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)计算:(﹣12)2﹣1=( ) A .﹣54 B .﹣14 C .﹣34D .0 【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘方运算,再计算加减运算即可得到结果.【解答】解:原式=14﹣1=﹣34,故选C 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(3分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )A .B .C .D .【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看下边是一个较大的矩形,上便是一个角的矩形,故选:B .【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.(3分)若一个正比例函数的图象经过A (3,﹣6),B (m ,﹣4)两点,则m 的值为( )A .2B .8C .﹣2D .﹣8【考点】一次函数图象上点的坐标特征.【分析】运用待定系数法求得正比例函数解析式,把点B 的坐标代入所得的函数解析式,即可求出m的值.【解答】解:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选:A.【点评】本题考查了一次函数图象上点的坐标特征.解题时需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.4.(3分)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75°C.65°D.85°【考点】平行线的性质.【分析】由余角的定义求出∠3的度数,再根据平行线的性质求出∠2的度数,即可得出结论.【解答】解:∵∠1=25°,∴∠3=90°﹣∠1=90°﹣25°=65°.∵a∥b,∴∠2=∠3=65°.故选:C.【点评】本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等.5.(3分)化简:xx−y ﹣yx+y,结果正确的是()A.1 B.x2+y2x−yC.x−yx+yD.x2+y2【考点】分式的加减法.【专题】计算题;分式.【分析】原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=x2+xy−xy+y2x2−y2=x2+y2x2−y2.故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.(3分)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.33 B.6 C.32 D.21【考点】勾股定理.【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算.【解答】解:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB=AC2+BC2=32,∠CAB=45°,∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=32,∴∠CAB′=90°,∴B′C=CA2+B′A2=33,故选:A.【点评】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(3分)如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<2【考点】两条直线相交或平行问题;F8:一次函数图象上点的坐标特征.【专题】推理填空题.【分析】首先根据直线l2与x轴的交点为A(﹣2,0),求出k、b的关系;然后求出直线l1、直线l2的交点坐标,根据直线l1、直线l2的交点横坐标、纵坐标都大于0,求出k的取值范围即可.【解答】解:∵直线l2与x轴的交点为A(﹣2,0),∴﹣2k+b=0,∴y=−2x+4y=kx+2k解得x=4−2kk+2y=8kk+2∵直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)的交点在第一象限,∴4−2kk+2>08kk+2>0解得0<k<2.故选:D.【点评】此题主要考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握.8.(3分)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.3102B.3105C.105D.355【考点】相似三角形的判定与性质;LB:矩形的性质.【分析】根据S△ABE =12S矩形ABCD=3=12•AE•BF,先求出AE,再求出BF即可.【解答】解:如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE=AD2+DE2=32+12=10,∵S△ABE =12S矩形ABCD=3=12•AE•BF,∴BF=310 5.故选B.【点评】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.9.(3分)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.532C.52 D.53【考点】三角形的外接圆与外心;KH:等腰三角形的性质.【分析】连接OA、OB、OP,根据圆周角定理求得∠APB=∠C=30°,进而求得∠PAB=∠APB=30°,∠ABP=120°,根据垂径定理得到OB⊥AP,AD=PD,∠OBP=∠OBA=60°,即可求得△AOB是等边三角形,从而求得PB=OA=5,解直角三角形求得PD,即可求得PA.【解答】解:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB=32×5=532,∴AP=2PD=53,故选D.【点评】本题考查了圆周角定理、垂径定理、等边三角形的判定和性质以及解直角三角形等,作出辅助性构建等边三角形是解题的关键.10.(3分)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)【考点】二次函数的性质.【分析】先利用配方法求得点M的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可.【解答】解:y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=(x﹣m)2﹣m2﹣4.∴点M(m,﹣m2﹣4).∴点M′(﹣m,m2+4).∴m2+2m2﹣4=m2+4.解得m=±2.∵m>0,∴m=2.∴M(2,﹣8).故选C.【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M′的坐标是解题的关键.二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)在实数﹣5,﹣3,0,π,6中,最大的一个数是.【考点】实数大小比较.【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:根据实数比较大小的方法,可得π> 6>0>− 3>﹣5,故实数﹣5,− 3,0,π, 6其中最大的数是π.故答案为:π.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A .如图,在△ABC 中,BD 和CE 是△ABC 的两条角平分线.若∠A=52°,则∠1+∠2的度数为 .B. 173tan38°15′≈ .(结果精确到0.01)【考点】计算器—三角函数;25:计算器—数的开方;K7:三角形内角和定理.【分析】A :由三角形内角和得∠ABC +∠ACB=180°﹣∠A=128°,根据角平分线定义得∠1+∠2=12∠ABC +12∠ACB=12(∠ABC +∠ACB ); B :利用科学计算器计算可得.【解答】解:A 、∵∠A=52°,∴∠ABC +∠ACB=180°﹣∠A=128°,∵BD 平分∠ABC 、CE 平分∠ACB ,∴∠1=12∠ABC 、∠2=12∠ACB , 则∠1+∠2=12∠ABC +12∠ACB=12(∠ABC +∠ACB )=64°, 故答案为:64°;B 、 173tan38°15′≈2.5713×0.7883≈2.03,故答案为:2.03.【点评】本题主要考查三角形内角和定理、角平分线的定义及科学计算器的运用,熟练掌握三角形内角和定理、角平分线的定义是解题的关键.13.(3分)已知A ,B 两点分别在反比例函数y=3m x (m ≠0)和y=2m−5x (m≠52)的图象上,若点A 与点B 关于x 轴对称,则m 的值为 . 【考点】反比例函数图象上点的坐标特征;关于x 轴、y 轴对称的点的坐标.【分析】设A (a ,b ),则B (a ,﹣b ),将它们的坐标分别代入各自所在的函数解析式,通过方程来求m 的值.【解答】解:设A (a ,b ),则B (a ,﹣b ),依题意得: b =3m a −b =2m−5a, 所以3m +2m−5a =0,即5m ﹣5=0,解得m=1.故答案是:1.【点评】本题考查了反比例函数图象上点的坐标特征,关于x 轴,y 轴对称的点的坐标.根据题意得3m +2m−5a =0,即5m ﹣5=0是解题的难点.14.(3分)如图,在四边形ABCD 中,AB=AD ,∠BAD=∠BCD=90°,连接AC .若AC=6,则四边形ABCD 的面积为 .【考点】全等三角形的判定与性质.【分析】作辅助线;证明△ABM ≌△ADN ,得到AM=AN ,△ABM 与△ADN 的面积相等;求出正方形AMCN 的面积即可解决问题.【解答】解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;∵∠BAD=∠BCD=90°∴四边形AMCN为矩形,∠MAN=90°;∵∠BAD=90°,∴∠BAM=∠DAN;在△ABM与△ADN中,∠BAM=∠DAN∠AMB=∠ANDAB=AD,∴△ABM≌△ADN(AAS),∴AM=AN(设为λ);△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=6;∴2λ2=36,λ2=18,故答案为:18.【点评】本题主要考查了全等三角形的判定及其性质、正方形的判定及其性质等几何知识点的应用问题;解题的关键是作辅助线,构造全等三角形和正方形.三、解答题(本大题共11小题,共78分)15.(5分)计算:(﹣2)×6+|3﹣2|﹣(12)﹣1.【考点】二次根式的混合运算;负整数指数幂.【分析】根据二次根式的性质以及负整数指数幂的意义即可求出答案.【解答】解:原式=﹣12+2﹣3﹣2=﹣23﹣3=﹣33【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.16.(5分)解方程:x+3x−3﹣2x+3=1.【考点】解分式方程.【分析】利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.【解答】解:去分母得,(x+3)2﹣2(x﹣3)=(x﹣3)(x+3),去括号得,x2+6x+9﹣2x+6=x2﹣9,移项,系数化为1,得x=﹣6,经检验,x=﹣6是原方程的解.【点评】此题是解分式方程,主要考查了解分式方程的方法和完全平方公式,平方差公式,解本题的关键是将分式方程转化为整式方程.17.(5分)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)【考点】作图—基本作图.【分析】根据题意可知,作∠BDC的平分线交BC于点P即可.【解答】解:如图,点P即为所求.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.18.(5分)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)【考点】频数(率)分布直方图;V5:用样本估计总体;VB:扇形统计图;W4:中位数.【分析】(1)先根据A区间人数及其百分比求得总人数,再根据各区间人数之和等于总人数、百分比之和为1求得C区间人数及D区间百分比可得答案;(2)根据中位数的定义求解可得;(3)利用样本估计总体思想求解可得.【解答】解:(1)本次调查的总人数为10÷5%=200,则20~30分钟的人数为200×65%=130(人),D项目的百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人),答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(7分)如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.【考点】正方形的性质;KD:全等三角形的判定与性质.【分析】根据正方向的性质,可得∠ADF=CDE=90°,AD=CD,根据全等三角形的判定与性质,可得答案.【解答】证明:∵四边形ABCD是正方形,∴∠ADF=CDE=90°,AD=CD.∵AE=CF,∴DE=DF,在△ADF和△CDE中AD=CD∠ADF=∠CDE DF=DE,∴△ADF≌△CDE(SAS),∴∠DAF=∠DCE,在△AGE和△CGF中,∠GAE=∠GCF ∠AGE=∠CGF AE=CF,∴△AGE≌△CGF(AAS),∴AG=CG.【点评】本题考查了正方形的性质,利用全等三角形的判定与性质是解题关键,又利用了正方形的性质.20.(7分)某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x 米,再由锐角三角函数的定义即可得出结论.【解答】解:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,在Rt△MBD中,MD=x•tan23°,在Rt△MCE中,ME=x•tan24°,∵ME﹣MD=DE=BC,∴x•tan24°﹣x•tan23°=1.7﹣1,∴x=0.7tan24°−tan23°,解得x≈34(米).答:“聚贤亭”与“乡思柳”之间的距离AN的长约为34米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.21.(7分)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.【考点】一次函数的应用.【分析】(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000建立不等式,即可确定出结论.【解答】解:(1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)=7500x+68000,(2)由题意得,7500x+6800≥100000,∴x≥44 15,∵x为整数,∴李师傅种植的8个大棚中,香瓜至少种植5个大棚.【点评】此题是一次函数的应用,主要考查了一次函数的应用以及解一元一次不等式,解题的关键是:(1)根据数量关系,列出函数关系式;(2)根据题意建立不等式,是一道基础题目.22.(7分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【考点】列表法与树状图法;X4:概率公式.【分析】(1)根据题意可以得到小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率;(2)根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:(1)由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是:24=1 2,即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是1 2;(2)由题意可得,出现的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:316.【点评】本题考查列表法与树状图法、概率公式,解答本题的关键是明确题意,写出所有的可能性,利用概率的知识解答.23.(8分)如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,(1)求弦AC的长;(2)求证:BC∥PA.【考点】切线的性质.【分析】(1)连接OA,由于PA是⊙O的切线,从而可求出∠AOD=60°,由垂径定理可知:AD=DC,由锐角三角函数即可求出AC的长度.(2)由于∠AOP=60°,所以∠BOA=120°,从而由圆周角定理即可求出∠BCA=60°,从而可证明BC∥PA【解答】解:(1)连接OA,∵PA 是⊙O 的切线,∴∠PAO=90°∵∠P=30°,∴∠AOD=60°,∵AC ⊥PB ,PB 过圆心O ,∴AD=DC在Rt △ODA 中,AD=OA•sin60°=5 32∴AC=2AD=5 3(2)∵AC ⊥PB ,∠P=30°,∴∠PAC=60°,∵∠AOP=60°∴∠BOA=120°,∴∠BCA=60°,∴∠PAC=∠BCA∴BC ∥PA【点评】本题考查圆的综合问题,涉及切线的性质,解直角三角形,平行线的判定等知识,综合程度较高,属于中等题型.24.(10分)在同一直角坐标系中,抛物线C 1:y=ax 2﹣2x ﹣3与抛物线C 2:y=x 2+mx +n 关于y 轴对称,C 2与x 轴交于A 、B 两点,其中点A 在点B 的左侧.(1)求抛物线C 1,C 2的函数表达式;(2)求A 、B 两点的坐标;(3)在抛物线C 1上是否存在一点P ,在抛物线C 2上是否存在一点Q ,使得以AB 为边,且以A 、B 、P 、Q 四点为顶点的四边形是平行四边形?若存在,求出P 、Q 两点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由对称可求得a、n的值,则可求得两函数的对称轴,可求得m的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B的坐标;(3)由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P点坐标,表示出Q点坐标,代入C2的函数表达式可求得P、Q的坐标.【解答】解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=﹣3,∴C1的对称轴为x=1,∴C2的对称轴为x=﹣1,∴m=2,∴C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)在C2的函数表达式为y=x2+2x﹣3中,令y=0可得x2+2x﹣3=0,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0);(3)存在.∵AB的中点为(﹣1,0),且点P在抛物线C1上,点Q在抛物线C2上,∴AB只能为平行四边形的一边,∴PQ∥AB且PQ=AB,由(2)可知AB=1﹣(﹣3)=4,∴PQ=4,设P(t,t2﹣2t﹣3),则Q(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(﹣2,﹣3),Q(2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).【点评】本题为二次函数的综合应用,涉及待定系数法、对称的性质、函数图象与坐标轴的交点、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中由对称性质求得a、n的值是解题的关键,在(2)中注意函数图象与坐标轴的交点的求法即可,在(3)中确定出PQ的长度,设P点坐标表示出Q点的坐标是解题的关键.本题考查知识点较多,综合性较强,难度适中.25.(12分)问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m ,MB=10m ,△AMB 的面积为96m 2;过弦AB 的中点D作DE ⊥AB 交AB于点E ,又测得DE=8m . 请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)【考点】圆的综合题.【分析】(1)构建Rt △AOD 中,利用cos ∠OAD=cos30°=AD OA,可得OA 的长; (2)经过矩形对角线交点的直线将矩形面积平分,根据此结论作出PQ ,利用勾股定理进行计算即可;(3)如图3,作辅助线,先确定圆心和半径,根据勾股定理计算半径:在Rt △AOD 中,r 2=122+(r ﹣8)2,解得:r=13根据三角形面积计算高MN 的长,证明△ADC ∽△ANM ,列比例式求DC 的长,确定点O 在△AMB 内部,利用勾股定理计算OM ,则最大距离FM 的长可利用相加得出结论.【解答】解:(1)如图1,过O 作OD ⊥AC 于D ,则AD=12AC=12×12=6, ∵O 是内心,△ABC 是等边三角形,∴∠OAD=12∠BAC=12×60°=30°, 在Rt △AOD 中,cos ∠OAD=cos30°=AD OA, ∴OA=6÷ 32=4 3, 故答案为:4 3;(2)存在,如图2,连接AC 、BD 交于点O ,连接PO 并延长交BC 于Q ,则线段PQ 将矩形ABCD 的面积平分,∵点O 为矩形ABCD 的对称中心,∴CQ=AP=3,过P 作PM ⊥BC 于点,则PM=AB=12,MQ=18﹣3﹣3=12,由勾股定理得:PQ= PM 2+MQ 2= 122+122=12 2;(3)如图3,作射线ED 交AM 于点C∵AD=DB ,ED ⊥AB ,AB是劣弧, ∴AB所在圆的圆心在射线DC 上, 假设圆心为O ,半径为r ,连接OA ,则OA=r ,OD=r ﹣8,AD=12AB=12, 在Rt △AOD 中,r 2=122+(r ﹣8)2,解得:r=13,∴OD=5,过点M 作MN ⊥AB ,垂足为N ,∵S △ABM =96,AB=24,∴12AB•MN=96, 12×24×MN=96, ∴MN=8,NB=6,AN=18,∵CD ∥MN ,∴△ADC ∽△ANM ,∴DC MN =AD AN, ∴DC 8=1218, ∴DC=163, ∴OD <CD ,∴点O 在△AMB 内部,∴连接MO 并延长交AB于点F ,则MF 为草坪上的点到M 点的最大距离, ∵在AB上任取一点异于点F 的点G ,连接GO ,GM , ∴MF=OM +OF=OM +OG >MG ,即MF >MG ,过O 作OH ⊥MN ,垂足为H ,则OH=DN=6,MH=3,∴OM=MH2+OH2=32+62=35,∴MF=OM+r=35+13≈19.71(米),答:喷灌龙头的射程至少为19.71米.【点评】本题是圆的综合题,考查了三角形相似的性质和判定、勾股定理、等边三角形的性质及内心的定义、特殊的三角函数值、矩形的性质等知识,明确在特殊的四边形中将面积平分的直线一定过对角线的交点,本题的第三问比较复杂,辅助线的作出是关键,根据三角形的三角关系确定其最大射程为MF.。

(完整版)2017年成都市中考数学试题及答案

(完整版)2017年成都市中考数学试题及答案

Fpg成都市2017年中考數學試題一、選擇題(本大題共10小題,每小題3分,共30分)1.《九章算術》中注有“今兩算得失相反,要令正負以名之”,意思是:今有兩數若其意義相反,則分別叫做正數與負數,若氣溫為零上10℃記作+10℃,則﹣3℃表示氣溫為()A.零上3℃B.零下3℃C.零上7℃D.零下7℃2.如圖所示の幾何體是由4個大小相同の小立方體組成,其俯視圖是()A.B.C.D.3.總投資647億元の西域高鐵預計2017年11月竣工,屆時成都到西安只需3小時,上午遊武侯區,晚上看大雁塔將成為現實,用科學記數法表示647億元為()A.647×108B.6.47×109C.6.47×1010D.6.47×10114.二次根式中,xの取值範圍是()A.x≥1 B.x>1 C.x≤1 D.x<15.下列圖示中,既是軸對稱圖形,又是中心對稱圖形の是()A.B.C.D.6.下列計算正確の是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a67.學習全等三角形時,數學興趣小組設計並組織了“生活中の全等”の比賽,全班同學の比賽結果統計如下表:得分(分)60708090100人數(人)7121083則得分の眾數和中位數分別為()A.70分,70分B.80分,80分C.70分,80分D.80分,70分8.如圖,四邊形ABCD和A′B′C′D′是以點O為位似中心の位似圖形,若OA:OA′=2:3,則四邊形ABCD與四邊形A′B′C′D′の面積比為()A.4:9 B.2:5 C.2:3 D.:9.已知x=3是分式方程﹣=2の解,那麼實數kの值為()A.﹣1 B.0 C.1 D.210.在平面直角坐標系xOy中,二次函數y=ax2+bx+cの圖象如圖所示,下列說法正確の是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0 C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0二、填空題(本大題共4小題,每小題4分,共16分)11.(﹣1)0=.12.在△ABC中,∠A:∠B:∠C=2:3:4,則∠Aの度數為.13.如圖,正比例函數y1=k1x和一次函數y2=k2x+bの圖象相交於點A(2,1),當x<2時,y1y2.(填“>”或“<”).14.如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長為半徑作弧,分別交AB,AD於點M,N;②分別以M,N為圓心,以大於MNの長為半徑作弧,兩弧相交於點P;③作AP 射線,交邊CD於點Q,若DQ=2QC,BC=3,則平行四邊形ABCD周長為.三、解答題(本大題共6小題,共54分)15.(12分)(1)計算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式組:.Fpg 16.(6分)化簡求值:÷(1﹣),其中x=﹣1.17.(8分)隨著經濟の快速發展,環境問題越來越受到人們の關注,某校學生會為了解節能減排、垃圾分類知識の普及情況,隨機調查了部分學生,調查結果分為“非常瞭解”“瞭解”“瞭解較少”“不了解”四類,並將檢查結果繪製成下麵兩個統計圖.(1)本次調查の學生共有人,估計該校1200名學生中“不了解”の人數是人;(2)“非常瞭解”の4人有A1,A2兩名男生,B1,B2兩名女生,若從中隨機抽取兩人向全校做環保交流,請利用畫樹狀圖或列表の方法,求恰好抽到一男一女の概率.18.(8分)科技改變生活,手機導航極大方便了人們の出行,如圖,小明一家自駕到古鎮C遊玩,到達A地後,導航顯示車輛應沿北偏西60°方向行駛4千米至B地,再沿北偏東45°方向行駛一段距離到達古鎮C,小明發現古鎮C恰好在A地の正北方向,求B,C兩地の距離.19.(10分)如圖,在平面直角坐標系xOy中,已知正比例函數y=xの圖象與反比例函數y=の圖象交於A(a,﹣2),B兩點.(1)求反比例函數の運算式和點Bの座標;(2)P是第一象限內反比例函數圖象上一點,過點P作y軸の平行線,交直線AB於點C,連接PO,若△POCの面積為3,求點Pの座標.Fpg20.(12分)如圖,在△ABC 中,AB=AC ,以AB 為直徑作圓O ,分別交BC 於點D ,交CA の延長線於點E ,過點D 作DH ⊥AC 於點H ,連接DE 交線段OA 於點F .(1)求證:DH 是圓O の切線;(2)若A 為EH の中點,求の值;(3)若EA=EF=1,求圓O の半徑.四、填空題(本大題共5小題,每小題4分,共20分)21.如圖,數軸上點A表示の實數是.22.已知x 1,x 2是關於x の一元二次方程x 2﹣5x +a=0の兩個實數根,且x 12﹣x 22=10,則a= . 23.已知⊙O の兩條直徑AC ,BD 互相垂直,分別以AB ,BC ,CD ,DA 為直徑向外作半圓得到如圖所示の圖形,現隨機地向該圖形內擲一枚小針,記針尖落在陰影區域內の概率為P 1,針尖落在⊙O 內の概率為P 2,則= .24.在平面直角坐標系xOy 中,對於不在坐標軸上の任意一點P (x ,y ),我們把點P′(,)稱為點P の“倒影點”,直線y=﹣x +1上有兩點A ,B ,它們の倒影點A′,B′均在反比例函數y=の圖象上.若AB=2,則k= .25.如圖1,把一張正方形紙片對折得到長方形ABCD ,再沿∠ADC の平分線DE 折疊,如圖2,點C 落在點C′處,最後按圖3所示方式折疊,使點A 落在DE の中點A′處,折痕是FG ,若原正方形紙片の邊長為6cm ,則FG= cm .五、解答題(本大題共3小題,共30分)26.(8分)隨著地鐵和共用單車の發展,“地鐵+單車”已成為很多市民出行の選擇,李華從文化宮站出發,先乘坐地鐵,準備在離家較近のA ,B ,C ,D ,E 中の某一站出地鐵,再騎共用單車回家,設他出地鐵の站點與文化宮距離為x (單位:千米),乘坐地鐵の時間y 1(單位:分鐘)是關於x の一次函數,其關係如下表: 地鐵站A B C D E x (千米) 8 9 10 11.5 13 y 1(分鐘)1820222528(1)求y 1關於x の函數運算式;(2)李華騎單車の時間(單位:分鐘)也受x の影響,其關係可以用y 2=x 2﹣11x +78來描述,請問:李華應選擇在那一站出地鐵,才能使他從文化宮回到家所需の時間最短?並求出最短時間.Fpg27.(10分)問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC於點D,則D為BCの中點,∠BAD=∠BAC=60°,於是==;遷移應用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠ADE=120°,D,E,C三點在同一條直線上,連接BD.①求證:△ADB≌△AEC;②請直接寫出線段AD,BD,CD之間の等量關係式;拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內作射線BM,作點C關於BMの對稱點E,連接AE並延長交BM於點F,連接CE,CF.①證明△CEF是等邊三角形;②若AE=5,CE=2,求BFの長.28.(10分)如圖1,在平面直角坐標系xOy中,拋物線C:y=ax2+bx+c與x軸相交於A,B兩點,頂點為D(0,4),AB=4,設點F(m,0)是x軸の正半軸上一點,將拋物線C繞點F旋轉180°,得到新の拋物線C′.(1)求拋物線Cの函數運算式;(2)若拋物線C′與拋物線C在y軸の右側有兩個不同の公共點,求mの取值範圍.(3)如圖2,P是第一象限內拋物線C上一點,它到兩坐標軸の距離相等,點P在拋物線C′上の對應點P′,設M是C上の動點,N是C′上の動點,試探究四邊形PMP′N能否成為正方形?若能,求出m の值;若不能,請說明理由.Fpg2017年成都中考數學參考答案與試題解析1.B.2.C.3.C.4.A5.D.6.B.7.C.8.A.9.D10.B.二、11.1.12.40°.13.<.14.15.三、15.解:(1)原式=﹣1﹣2+2×+4=﹣1﹣2++4=3;(2),①可化簡為2x﹣7<3x﹣3,﹣x<4,x>﹣4,②可化簡為2x≤1﹣3,則x≤﹣1.不等式の解集是﹣4<x≤﹣1.16.解:÷(1﹣)=•=,∵x=﹣1,∴原式==.17.解:(1)4÷8%=50(人),1200×(1﹣40%﹣22%﹣8%)=360(人);故答案為:50,360;(2)畫樹狀圖,共有12根可能の結果,恰好抽到一男一女の結果有8個,∴P(恰好抽到一男一女の)==.18.解:過B作BD⊥AC於點D.在Rt△ABD中,AD=AB•cos∠BAD=4cos60°=4×=2(千米),BD=AB•sin∠BAD=4×=2(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=2(千米),∴BC=BD=2(千米).答:B,C兩地の距離是2千米.19.解:(1)把A(a,﹣2)代入y=x,可得a=﹣4,∴A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得k=8,∴反比例函數の運算式為y=,∵點B與點A關於原點對稱,∴B(4,2);(2)如圖所示,過P作PE⊥x軸於E,交AB於C,設P(m,),則C(m,m),∵△POCの面積為3,∴m×|m﹣|=3,解得m=2或2,∴P(2,)或(2,4).20.證明:(1)連接OD,如圖1,∵OB=OD,∴△ODB是等腰三角形,Fpg∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圓Oの切線;(2)如圖2,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵DH⊥AC,且點A是EH中點,設AE=x,EC=4x,則AC=3x,連接AD,則在⊙O中,∠ADB=90°,AD⊥BD,∵AB=AC,∴D是BCの中點,∴OD是△ABCの中位線,∴OD∥AC,OD=AC=×3x=,∵OD∥AC,∴∠E=∠ODF,在△AEF和△ODF中,∵∠E=∠ODF,∠OFD=∠AFE,∴△AEF∽△ODF,∴,∴==,∴=;(3)如圖2,設⊙Oの半徑為r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,則∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+1,∴AF=AB﹣BF=2OB﹣BF=2r﹣(1+r)=r﹣1,在△BFD和△EFA中,∵,∴△BFD∽△EFA,∴,∴=,解得:r1=,r2=(舍),綜上所述,⊙Oの半徑為.Fpg四、21..22..23..24.解:設點A(a,﹣a+1),B(b,﹣b+1)(a<b),則A′(,),B′(,),∵AB=2,∴b﹣a=2,即b=a+2.∵點A′,B′均在反比例函數y=の圖象上,∴,解得:k=﹣.故答案為:﹣.25.解:作GM⊥AC′於M,A′N⊥AD於N,AA′交EC′於K.易知MG=AB=AC′,∵GF⊥AA′,∴∠AFG+∠FAK=90°,∠MGF+∠MFG=90°,∴∠MGF=∠KAC′,∴△AKC′≌△GFM,∴GF=AK,∵AN=4.5cm,A′N=1.5cm,C′K∥A′N,∴=,∴=,∴C′K=1.5cm,在Rt△AC′K中,AK==cm,∴FG=AK=cm,故答案為.五、26.解:(1)設y1=kx+b,將(8,18),(9,20),代入得:,解得:,故y1關於xの函數運算式為:y1=2x+2;(2)設李華從文化宮回到家所需の時間為y,則y=y1+y2=2x+2+x2﹣11x+78=x2﹣9x+80,∴當x=9時,y有最小值,y min==39.5,答:李華應選擇在B站出地鐵,才能使他從文化宮回到家所需の時間最短,最短時間為39.5分鐘.27.遷移應用:①證明:如圖②∵∠BAC=∠ADE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,,∴△DAB≌△EAC,②解:結論:CD=AD+BD.理由:如圖2﹣1中,作AH⊥CD於H.∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,Fpg∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=AD+BD.拓展延伸:①證明:如圖3中,作BH⊥AE於H,連接BE.∵四邊形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等邊三角形,∴BA=BD=BC,∵E、C關於BM對稱,∴BC=BE=BD=BA,FE=FC,∴A、D、E、C四點共圓,∴∠ADC=∠AEC=120°,∴∠FEC=60°,∴△EFC是等邊三角形,②解:∵AE=5,EC=EF=2,∴AH=HE=2.5,FH=4.5,在Rt△BHF中,∵∠BHF=30°,∴=cos30°,∴BF==3.28.解:(1)由題意拋物線の頂點C(0,4),A(2,0),設拋物線の解析式為y=ax2+4,把A(2,0)代入可得a=﹣,∴拋物線Cの函數運算式為y=﹣x2+4.(2)由題意拋物線C′の頂點座標為(2m,﹣4),設拋物線C′の解析式為y=(x﹣m)2﹣4,由,消去y得到x2﹣2mx+2m2﹣8=0,由題意,拋物線C′與拋物線C在y軸の右側有兩個不同の公共點,則有,解得2<m<2,∴滿足條件のmの取值範圍為2<m<2.(3)結論:四邊形PMP′N能成為正方形.理由:1情形1,如圖,作PE⊥x軸於E,MH⊥x軸於H.由題意易知P(2,2),當△PFM是等腰直角三角形時,四邊形PMP′N是正方形,∴PF=FM,∠PFM=90°,易證△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵點M在y=﹣x2+4上,∴m﹣2=﹣(m+2)2+4,解得m=﹣3或﹣﹣3(捨棄),∴m=﹣3時,四邊形PMP′N是正方形.情形2,如圖,四邊形PMP′N是正方形,同法可得M(m﹣2,2﹣m),Fpg把M(m﹣2,2﹣m)代入y=﹣x2+4中,2﹣m=﹣(m﹣2)2+4,解得m=6或0(捨棄),∴m=6時,四邊形PMP′N是正方形.。

数学丨四川省成都市第七中学2025届高三11月期中考数学试卷及答案

数学丨四川省成都市第七中学2025届高三11月期中考数学试卷及答案

2024~2025 学年度上期高 2025届半期考试高三数学试卷考试时间:120 分钟总分:150 分注意事项:1.答卷前,考生务必将自己的姓名、班级、准考证号填写在答题卡上.2.回答选择题时,必须使用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上作答无效.5.考试结束后,请考生个人留存试卷并将答题卡交回给监考教师.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.复数i i 4321-+的虚部是( )A.51-B .5 1 C .5 2 - D .52 2.式子15tan 115tan 1-+的 值为() A.3 B .2 C .5 D .63.由正数组成的等比数列{}n a ,n S 为其前n 项和,若241a a =,37S =,则5S 等于() A.152 B.314 C.3 34 D .1 72 4.在24 3)1()1()1(+++++++n x x x 的展开式中,含2x 项的系数是() A.33+n C B .123- +n C C.133- +n C D .331+-n C 5.已知函数()f x 对x R ∀∈都有()(4)f x f x =-,且其导函数()f x '满足当2x ≠时(2)()0x f x '->,则当24a <<时,有()A.2(2)(2)(log )a f f f a << B.2(log )(2)(2)a f a f f <<C.2(log )(2)(2)a f a f f << D.2(2)(log )(2)a f f a f <<6.若向量,,abc 满足,22a b c == = ,则()()a b c b-⋅- 的最大值为()A.10B .12C . D . 7.若对R x ∈∀,函数a x x f +=2)(的函数值都不超过函数⎪⎩⎪⎨⎧≥+<+=1,21,2)(x x x x x x g 的函数值,则实数a 的取值范围是()A.2-≥a B .2≤a C.22≤≤-a D.2<a 8.在三棱柱1 1 1C B A ABC -中, 1CC CB CA ==,3 =AB ,1C 在面ABC 的投影为ABC ∆的外心,二面角1 1B CC A --为3π,该三棱柱的侧面积为() A.33 4 +B .3 7 C .3 6 D .35在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到m 50.9以上(含m 50.9)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m ):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(I)估计甲在校运动会铅球比赛中获得优秀奖的概率;(II)设X 是甲、乙、丙在校运动会铅球比赛中获优秀奖的总人数,估计X 的数学期望)(X E .17.(本小题满分15分)如图,在三棱柱11 1 ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,1 3CC =, 点,D E 分别在棱1AA 和棱1CC 上,且12,AD C E M ==为棱11A B 的中点.(I )求证:11C M B D ⊥;(II )求二面角1B B E D --的正弦值;(III )求直线AB 与平面1DB E 所成角的正弦值.椭圆)0(1:2 2 2 2>>=+b a by a x E 左焦点F 和),0(),0,(b B a A 构成一个面积为)12 (2+的F AB ∆,且22cos =∠AFB .(I )求椭圆E 的标准方程;(II )点P 是E 在三象限的点,P A 与y 轴交于M ,PB 与x 轴交于N ①求四边形ABNM 的面积;② 求PMN ∆面积最大值及相应P 点的坐标.19.(本小题满分17分)已知函数1)(2---=x ax e x f x .( 其中71828.2≈e )(I )当0=a 时,证明:0)(≥x f (II )若0>x 时,0)(>x f ,求实数a 的取值范围;(Ⅲ)记函数x xe x g x ln 21)(--=的最小值为m ,求证:)1,2023(-∈e m2024~2025 学年度上期高 2025届半期考试高三数学试卷参考答案一、单选题DABC D BCC二、多选题9.ABD 1 0.AC 1 1.BCD三、填空题12.2 00 ,1x N x ∃ ∈≤13.25)2()3( 2 2=-+-y x 14.22四、解答题15.【解】(I )21cos cos sin 32=-C C C ,12cos 212sin 23=-∴C C ,即sin(216C π-=,π<<C 0 ,262 C ππ ∴-=, 解得3π=C 。

(完整版)2017成都市中考数学试卷及答案详解

(完整版)2017成都市中考数学试卷及答案详解

2017年四川省成都市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为( )A.零上3℃B.零下3℃C.零上7℃D.零下7℃2.(3分)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.3.(3分)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6。

47×109C.6.47×1010 D.6.47×10114.(3分)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<15.(3分)下列图标中,既是轴对称图形,又是中心对称图形的是()A. B.C.D.6.(3分)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6D.(﹣a3)2=﹣a67.(3分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分) 60 70 80 90 100人数(人) 7 12 10 8 3则得分的众数和中位数分别为( )A.70分,70分B.80分,80分C.70分,80分D.80分,70分8.(3分)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:9.(3分)已知x=3是分式方程﹣=2的解,那么实数k的值为()A.﹣1 B.0 C.1 D.210.(3分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是( )A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(﹣1)0= .12.(4分)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为.13.(4分)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y 1y2.(填“>”或“<").14.(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.16.(6分)化简求值:÷(1﹣),其中x=﹣1.17.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解"四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解"的人数是人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.18.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.20.(12分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)如图,数轴上点A表示的实数是.22.(4分)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a= .23.(4分)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P,则= .224.(4分)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点",直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k= .25.(4分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG= cm.五、解答题(本大题共3小题,共30分)26.(8分)随着地铁和共享单车的发展,“地铁+单车"已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回(单位:分钟)是关家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1于x的一次函数,其关系如下表:地铁站 A B C D Ex(千米) 8 9 10 11。

2017年四川省巴中市中考数学试卷(含答案解析版)

2017年四川省巴中市中考数学试卷(含答案解析版)

2017年四川省巴中市中考数学试卷(含答案解析版)2017年四川省巴中市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项种,只有一个选项是正确的,请使用2B铅笔将答题卡上对应题号的答案标号涂黑)1.(3分)﹣2017的相反数是()A.﹣2017 B.﹣12017C.2017 D.120172.(3分)如图是由5个大小相同的正方体组成的几何体,它的俯视图是()A.B.C.D.3.(3分)我市在建的天星桥水库是以灌溉和城市供水为主的综合型水利工程,建成后,每年可向巴城供水593万立方米,将593万立方米用科学记数法表示为()立方米.A.0.593×107B.5.93×106C.5.93×102D.5.93×1074.(3分)下列说法正确的是()A.“打开电视机,正在播放体育节目”是必然事件B.了解夏季冷饮市场上冰淇淋的质量情况适合用普查C.抛掷一枚普通硬币,“这枚硬币正面朝上”,这一事件发生的概率为1 2D.甲、乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是S甲2=0.3,S乙2=0.5,则乙的射击成绩较稳定5.(3分)函数y=√3−x中自变量x的取值范围是()A.x<3 B.x≥3 C.x≤3 D.x≠36.(3分)若一个三角形三个内角的度数之比为1:2:3,则这个三角形是()A.锐角三角形 B.等边三角形 C.钝角三角形 D.直角三角形7.(3分)下列运算正确的是()A.a2•a3=a6 B.√3+√2=√5C.(a+b)2=a2+b2D.(a2)3=a68.(3分)如图,直线l1∥l2∥l3,点A、B、C分别在直线l1、l2、l3上,若∠1=72°,∠2=48°,则∠ABC=()A.24°B.120°C.96°D.132°9.(3分)若方程组{2x+y=1−3k①x+2y=2②的解满足x+y=0,则k的值为()A.﹣1 B.1 C.0 D.不能确定10.(3分)如图,A、B、C、D为圆O的四等分点,动点P从圆心O出发,沿CO→CD̂→DO 的路线做匀速运动,当点P运动到圆心O时立即停止,设运动时间为t s,∠APB 的度数为y度,则下列图象中表示y(度)与t(s)之间的函数关系最恰当的是()A. B.C. D.二、填空题(本大题共10个小题,每小题3分,共30分,将正确答案直接填在答题卡相应的位置上)11.(3分)分式方程2x−3=3x−2的解是x= .12.(3分)分解因式:a3﹣9a= .13.(3分)一组数据2,3,x,5,7的平均数是5,则这组数据的中位数是.14.(3分)若a、b、c为三角形的三边,且a、b满足√a−9+(b﹣2)2=0,第三边c为奇数,则c= .15.(3分)已知x=1是一元二次方程x2+ax+b=0的一个根,则a2+2ab+b2的值为.16.(3分)如图,E是▱ABCD边BC上一点,且AB=BE,连结AE,并延长AE与DC的延长线交于点F,∠F=70°,则∠D= 度.17.(3分)如图,在△ABC中,AD,BE是两条中线,则S△EDC :S△ABC= .18.(3分)若一个圆锥的侧面展开图是半径为12cm的半圆,则这个圆锥的底面半径是cm.19.(3分)观察下列各式:√1+13=2√13,√2+14=3√14,√3+15=4√15…请你将发现的规律用含自然数n(n≥1)的代数式表达出来.20.(3分)如图,我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,且抛物线的解析式为y=x2﹣2x﹣3,则半圆圆心M的坐标为.三、解答题(本大题共11小题,共90分,请把解答过程写在答题卡相应的位置上)21.(5分)计算:2sin60°﹣(π﹣3.14)0+|1﹣√3|+(12)﹣1.22.(5分)解不等式组{x3−1<0①x−1≤3(x+1)②,并把解集在数轴上表示出来.23.(6分)先化简,再求值:(x2−y2x2−2xy+y2﹣xx−y)÷y2x2−xy,其中x=2y(xy≠0).24.(8分)在边长为1个单位长度的正方形网格中建立如图的平面直角坐标系xOy,△ABC的顶点都在格点上,请解答下列问题:(1)将△ABC向下平移5个单位长度,画出平移后的△A1B1C1;(2)若点M是△ABC内一点,其坐标为(a,b),点M在△A1B1C1内的对应点为M1,则点M1的坐标为;(3)画出△ABC关于点O的中心对称图形△A2B2C2.25.(10分)2017年5月教育部统一组织了国家义务教育阶段质量监测考试.四川省部分小学四年级学生参加了科学测试,测试成绩评定为A 、B 、C 、D 四个等级,为了解此次科学测试成绩情况,相关部门从四川省农村、县镇、城市三类群体的学生中共抽取2000名学生的科学测试成绩进行分析,相关数据如表和图所示.等级人数 类别 A B CD农村 a 160 180 80 县镇 200 182 160 b 城市240 c 12248(注:等级A ,B ,C ,D 分别代表优秀、良好、合格、不合格)(1)请算出表中的a ,b ,c (直接填数据,不写解答过程);(2)此次抽取的2000名学生的科学测试成绩为A 等级的百分率是多少?(3)若此次在四川省抽查的所有四年级学生中农村学生共有16000人,试估计抽查的农村学生科学测试成绩为D 等级的大约有多少人?26.(8分)如图,两座建筑物AD 与BC ,其地面距离CD 为60cm ,从AD 的顶点A 测得BC 顶部B 的仰角α=30°,测得其底部C 的俯角β=45°,求建筑物BC 的高(结果保留根号)27.(6分)巴中市某楼盘准备以每平方米5000元的均价对外销售,由于有关部门关于房地产的新政策出台后,部分购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4050元的均价开盘销售,若两次下调的百分率相同,求平均每次下调的百分率.28.(10分)如图,AH是⊙O的直径,AE平分∠FAH,交⊙O于点E,过点E的直线FG⊥AF,垂足为F,B为半径OH上一点,点E、F分别在矩形ABCD的边BC 和CD上.(1)求证:直线FG是⊙O的切线;(2)若AF=12,BE=6,求FCAD的值.29.(10分)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF.(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形AECF的周长.30.(10分)如图,一次函数y=kx+b 与反比例函数y=4x(x >0)的图象交于A(m ,0),B (2,n )两点,与坐标轴分别交于M 、N 两点.(1)求一次函数的解析式;(2)根据图象直接写出kx+b ﹣4x>0中x 的取值范围;(3)求△AOB 的面积.31.(12分)如图,已知两直线l 1,l 2分别经过点A (1,0),点B (﹣3,0),且两条直线相交于y 轴的正半轴上的点C ,当点C 的坐标为(0,√3)时,恰好有l 1⊥l 2,经过点A 、B 、C 的抛物线的对称轴与l 1、l 2、x 轴分别交于点G 、E 、F ,D 为抛物线的顶点.(1)求抛物线的函数解析式;(2)试说明DG 与DE 的数量关系?并说明理由;(3)若直线l 2绕点C 旋转时,与抛物线的另一个交点为M ,当△MCG 为等腰三角形时,请直接写出点M 的坐标.2017年四川省巴中市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项种,只有一个选项是正确的,请使用2B铅笔将答题卡上对应题号的答案标号涂黑)1.(3分)(2017•巴中)﹣2017的相反数是()A.﹣2017 B.﹣12017C.2017 D.12017【考点】14:相反数.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【解答】解:﹣2017的相反数是:2017.故选:C.【点评】此题主要考查了相反数的概念,正确把握相反数的定义是解题关键.2.(3分)(2017•巴中)如图是由5个大小相同的正方体组成的几何体,它的俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个田子,故选:A.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3.(3分)(2017•巴中)我市在建的天星桥水库是以灌溉和城市供水为主的综合型水利工程,建成后,每年可向巴城供水593万立方米,将593万立方米用科学记数法表示为()立方米.A.0.593×107B.5.93×106C.5.93×102D.5.93×107【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将593万用科学记数法表示为:5.93×106.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•巴中)下列说法正确的是()A.“打开电视机,正在播放体育节目”是必然事件B.了解夏季冷饮市场上冰淇淋的质量情况适合用普查C.抛掷一枚普通硬币,“这枚硬币正面朝上”,这一事件发生的概率为1 2D.甲、乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是S甲2=0.3,S乙2=0.5,则乙的射击成绩较稳定【考点】X3:概率的意义;V2:全面调查与抽样调查;W1:算术平均数;W7:方差;X1:随机事件.【分析】分别利用概率的意义以及抽样调查的意义以及方差的意义分别分析得出答案.【解答】解:A、“打开电视机,正在播放体育节目”是随机事件,故此选项错误;B、了解夏季冷饮市场上冰淇淋的质量情况应该采用抽样调查的方式,故此选项错误;C、抛掷一枚普通硬币,“这枚硬币正面朝上”,这一事件发生的概率为12;正确;D、甲、乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是S甲2=0.3,S乙2=0.5,则甲的射击成绩较稳定,错误.故选:C.【点评】此题主要考查了概率的意义以及抽样调查的意义以及方差的意义,正确把握相关定义是解题关键.5.(3分)(2017•巴中)函数y=√3−x中自变量x的取值范围是()A.x<3 B.x≥3 C.x≤3 D.x≠3【考点】E4:函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列不等式求解即可.【解答】解:由题意得,3﹣x>0,解得x<3.故选A.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.(3分)(2017•巴中)若一个三角形三个内角的度数之比为1:2:3,则这个三角形是()A.锐角三角形 B.等边三角形 C.钝角三角形 D.直角三角形【考点】K7:三角形内角和定理.【分析】利用三角形内角和定理判断即可确定出三角形形状.【解答】解:设一份为x,三内角分别为x,2x,3x,根据内角和定理得:x+2x+3x=180°,解得:x=30°,∴三内角分别为30°,60°,90°,则这个三角形为直角三角形,故选D【点评】此题考查了三角形的内角和定理,熟练掌握三角形的内角和定理是解本题的关键.7.(3分)(2017•巴中)下列运算正确的是()A.a2•a3=a6 B.√3+√2=√5C.(a+b)2=a2+b2D.(a2)3=a6【考点】4I:整式的混合运算;78:二次根式的加减法.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a5,不符合题意;B、原式不能合并,不符合题意;C、原式=a2+2ab+b2,不符合题意;D、原式=a6,符合题意,故选D【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.8.(3分)(2017•巴中)如图,直线l1∥l2∥l3,点A、B、C分别在直线l1、l2、l3上,若∠1=72°,∠2=48°,则∠ABC=()A.24°B.120°C.96°D.132°【考点】JA:平行线的性质.【分析】根据两直线平行,同位角相等可得∠3=∠1,内错角相等可得∠4=∠2,然后根据∠ABC=∠3+∠4计算即可得解.【解答】解:∵l1∥l2∥l3,∴∠3=∠1=72°,∠4=∠2=48°,∴∠ABC=∠3+∠4=72°+48°=120°.故选:B.【点评】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.9.(3分)(2017•巴中)若方程组{2x+y=1−3k①x+2y=2②的解满足x+y=0,则k的值为()A.﹣1 B.1 C.0 D.不能确定【考点】97:二元一次方程组的解.【分析】根据等式的性质,可得答案.【解答】解:①+②,得3(x+y)=3﹣3k,由x+y=0,得3﹣3k=0,解得k=1,故选:B.【点评】本题考查了二次元一次方程组的解,利用等式的性质是解题关键.10.(3分)(2017•巴中)如图,A、B、C、D为圆O的四等分点,动点P从圆心O出发,沿CO→CD̂→DO的路线做匀速运动,当点P运动到圆心O时立即停止,设运动时间为t s,∠APB的度数为y度,则下列图象中表示y(度)与t(s)之间的函数关系最恰当的是()A. B.C.D.【考点】E7:动点问题的函数图象.【分析】根据圆周角定理以及动点移动的位置即可判断【解答】解:由于点P有一段是在CD̂上移动,此时∠APB=12∠AOB,∴此时y是定值,故图象是平行于x轴的一条线段,点P在CO上移动时,此时∠APB从90°一直减少,同理,点P在DO上移动时,此时∠APB不断增大,直至90°,故选(B)【点评】本题考查动点图象问题,解题的关键是熟练运用圆周角定理,本题属于基础中等题型.二、填空题(本大题共10个小题,每小题3分,共30分,将正确答案直接填在答题卡相应的位置上)11.(3分)(2017•巴中)分式方程2x−3=3x−2的解是x= 5 .【考点】B3:解分式方程.【分析】直接去分母进而解分式方程进而得出答案.【解答】解:∵2x−3=3x−2,去分母得:2(x﹣2)=3(x﹣3),解得:x=5,检验:当x=5时,(x﹣3)(x﹣2)≠0,故x=5是原方程的根.故答案为:5.【点评】此题主要考查了解分式方程,正确掌握解分式方程的方法是解题关键.12.(3分)(2017•巴中)分解因式:a3﹣9a= a(a+3)(a﹣3).【考点】55:提公因式法与公式法的综合运用.【分析】本题应先提出公因式a,再运用平方差公式分解.【解答】解:a3﹣9a=a(a2﹣32)=a(a+3)(a﹣3).【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.(3分)(2017•巴中)一组数据2,3,x,5,7的平均数是5,则这组数据的中位数是 5 .【考点】W4:中位数;W1:算术平均数.【分析】求出x的值,然后将数据按照从小到大依次排列即可求出中位数.【解答】解:x=5×5﹣2﹣3﹣5﹣7=8,这组数据为2,3,5,7,8,故中位数为5.【点评】本题考查了中位数、平均数,将数据从小到大依次排列是解题的关键.14.(3分)(2017•巴中)若a、b、c为三角形的三边,且a、b满足√a−9+(b﹣2)2=0,第三边c为奇数,则c= 9 .【考点】K6:三角形三边关系;1F:非负数的性质:偶次方;23:非负数的性质:算术平方根.【分析】先根据非负数的性质求出a和b的值,再根据三角形三边关系求出c 的取值范围,进而求出c的值.【解答】解:∵a、b满足√a−9+(b﹣2)2=0,∴a=9,b=2,∵a、b、c为三角形的三边,∴7<c<11,∵第三边c为奇数,∴c=9,故答案为9.【点评】本题主要考查了三角形三边关系以及非负数的性质,解题的关键是求出a和b的值,此题难度不大.15.(3分)(2017•巴中)已知x=1是一元二次方程x2+ax+b=0的一个根,则a2+2ab+b2的值为 1 .【考点】A3:一元二次方程的解.【分析】由x=1是一元二次方程x2+ax+b=0的一个根,可得1+a+b=0,推出a+b=﹣1,可得a2+2ab+b2=(a+b)2=1.【解答】解:∵x=1是一元二次方程x2+ax+b=0的一个根,∴1+a+b=0,∴a+b=﹣1,∴a2+2ab+b2=(a+b)2=1.故答案为1.【点评】本题考查一元二次方程的解,完全平方公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.(3分)(2017•巴中)如图,E是▱ABCD边BC上一点,且AB=BE,连结AE,并延长AE与DC的延长线交于点F,∠F=70°,则∠D= 40 度.【考点】L5:平行四边形的性质.【分析】利用平行四边形的性质以及平行线的性质得出∠1=∠2,进而得出其度数,利用平行四边形对角相等得出即可.【解答】解:如图所示,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠1=∠F=70°.∵AB=BE,∴∠1=∠3=70°,∴∠B=40°,∴∠D=40°.故答案是:40.【点评】此题主要考查了平行四边形的性质以及平行线的性质等知识,熟练应用平行四边形的性质得出是解题关键.17.(3分)(2017•巴中)如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC :S △ABC = 1:4 .【考点】K3:三角形的面积.【分析】利用三角中位线的性质得出DE =∥12AB ,进而求出即可.【解答】解:∵在△ABC 中,AD ,BE 是两条中线,∴DE =∥12AB ,∴S △CED S △ABC =14, 故答案为:1:4.【点评】此题主要考查了三角形中位线的性质以及相似三角形的性质,得出DE =∥12AB 是解题关键.18.(3分)(2017•巴中)若一个圆锥的侧面展开图是半径为12cm的半圆,则这个圆锥的底面半径是 6 cm.【考点】MP:圆锥的计算.【分析】设该圆锥的底面半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2πr=π•12,然后解一次方程即可.【解答】解:设该圆锥的底面半径为r,根据题意得2πr=π•12,解得r=6(cm).故答案为6.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.19.(3分)(2017•巴中)观察下列各式:√1+13=2√13,√2+14=3√14,√3+15=4√15…请你将发现的规律用含自然数n(n≥1)的代数式表达出来√n+1n+2=(n+1)√1n+2(n≥1).【考点】37:规律型:数字的变化类.【分析】观察分析可得:√1+11+2=(1+1)√11+2;√2+12+2=(2+1)√12+2;…则将此题规律用含自然数n(n≥1)的等式表示出来【解答】解:∵√1+11+2=(1+1)√11+2;√2+12+2=(2+1)√12+2;∴√n +1n+2=(n+1)√1n+2(n ≥1). 故答案为:√n +1n+2=(n+1)√1n+2(n ≥1). 【点评】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.本题的关键是根据数据的规律得到√n +1n+2=(n+1)√1n+2(n ≥1).20.(3分)(2017•巴中)如图,我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,点A 、B 、C 、D 分别是“蛋圆”与坐标轴的交点,AB 为半圆的直径,且抛物线的解析式为y=x 2﹣2x ﹣3,则半圆圆心M 的坐标为 (1,0) .【考点】HA :抛物线与x 轴的交点.【分析】直接求出抛物线与x 轴的交点,进而得出其中点位置.【解答】解:当y=0时,0=x 2﹣2x ﹣3,解得:x 1=﹣1,x 2=3,故A (﹣1,0),B (3,0),则AB的中点为:(1,0).故答案为:(1,0).【点评】此题主要考查了抛物线与x轴的交点,正确得出A,B点坐标是解题关键.三、解答题(本大题共11小题,共90分,请把解答过程写在答题卡相应的位置上)21.(5分)(2017•巴中)计算:2sin60°﹣(π﹣3.14)0+|1﹣√3|+(12)﹣1.【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义化简即可得到结果.【解答】解:原式=√3﹣1+√3﹣1+2=2√3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(5分)(2017•巴中)解不等式组{x3−1<0①x−1≤3(x+1)②,并把解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:{x3−1<0①x−1≤3(x+1)②,解不等式①得,x<3,解不等式②得,x≥﹣2,所以,不等式组的解集是﹣2≤x<3在数轴上表示如下:【点评】本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.23.(6分)(2017•巴中)先化简,再求值:(x2−y2x2−2xy+y2﹣xx−y)÷y2x2−xy,其中x=2y(xy≠0).【考点】6D:分式的化简求值.【分析】根据分式的减法和除法可以化简题目中的式子,然后将x=2y代入即可解答本题.【解答】解:(x2−y2x2−2xy+y2﹣xx−y)÷y2x2−xy=x2−y2−x(x−y)(x−y)2⋅x(x−y)y2=x2−y2−x2+xy(x−y)2⋅x(x−y)y2=y(x−y)(x−y)2⋅x(x−y)y2=x y ,当x=2y时,原式=2yy=2.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的计算方法.24.(8分)(2017•巴中)在边长为1个单位长度的正方形网格中建立如图的平面直角坐标系xOy,△ABC的顶点都在格点上,请解答下列问题:(1)将△ABC向下平移5个单位长度,画出平移后的△A1B1C1;(2)若点M是△ABC内一点,其坐标为(a,b),点M在△A1B1C1内的对应点为M1,则点M1的坐标为(a,b﹣5);(3)画出△ABC关于点O的中心对称图形△A2B2C2.【考点】R8:作图﹣旋转变换;Q4:作图﹣平移变换.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用平移规律进而得出答案;(3)直接利用关于点对称的性质得出对应点位置进而得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)∵点M是△ABC内一点,其坐标为(a,b),点M在△A1B1C1内的对应点为M1,∴点M1的坐标为:(a,b﹣5);故答案为:(a,b﹣5);(3)如图所示:△A2B2C2,即为所求.【点评】此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键.25.(10分)(2017•巴中)2017年5月教育部统一组织了国家义务教育阶段质量监测考试.四川省部分小学四年级学生参加了科学测试,测试成绩评定为A、B、C、D四个等级,为了解此次科学测试成绩情况,相关部门从四川省农村、县镇、城市三类群体的学生中共抽取2000名学生的科学测试成绩进行分析,相关数据如表和图所示.A B C D等级人数类别农村a16018080县镇200182160b城市240c12248(注:等级A,B,C,D分别代表优秀、良好、合格、不合格)(1)请算出表中的a,b,c(直接填数据,不写解答过程);(2)此次抽取的2000名学生的科学测试成绩为A等级的百分率是多少?(3)若此次在四川省抽查的所有四年级学生中农村学生共有16000人,试估计抽查的农村学生科学测试成绩为D等级的大约有多少人?【考点】VB:扇形统计图;V5:用样本估计总体;VA:统计表.【分析】(1)分别求出农村、县镇、城市三类群体的学生的总人数,结合表格中的数据即可解决问题;(2)根据百分率的定义计算即可.(3)用样本估计总体的思想解决问题;【解答】解:(1)a=2000×30%﹣180﹣160﹣80=180,b=2000×30%﹣200﹣182﹣160=58,c=2000×40%﹣240﹣122﹣48=190.(2)A等级的百分率=180+200+2402000×100%=31%.答:此次抽取的2000名学生的科学测试成绩为A等级的百分率是31%.(3)估计抽查的农村学生科学测试成绩为D等级的大约有80800×16000=1600(人),答:估计抽查的农村学生科学测试成绩为D等级的大约有1600人.【点评】本题考查扇形统计图、统计表、样本估计总体、百分率等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.26.(8分)(2017•巴中)如图,两座建筑物AD与BC,其地面距离CD为60cm,从AD的顶点A测得BC顶部B的仰角α=30°,测得其底部C的俯角β=45°,求建筑物BC的高(结果保留根号)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】由题意得AE⊥BC,AE=CD=60,然后在Rt△ACE和Rt△AEB中解答.【解答】解:由题意得AE⊥BC,AE=CD=60,在Rt△ACE中,∠β=45°,AE=60°,tan45°=CE 60,∴CE=60×1=60,在Rt△AEB中,∠α=30°,AE=60,tan30°=BE 60,∴BE=60×√33=20√3,∴BC=BE+CE=(60+20√3)m.答:建筑物BC的高为(60+20√3)m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,解决问题的关键是抽象出直角三角形,然后解直角三角形.27.(6分)(2017•巴中)巴中市某楼盘准备以每平方米5000元的均价对外销售,由于有关部门关于房地产的新政策出台后,部分购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4050元的均价开盘销售,若两次下调的百分率相同,求平均每次下调的百分率.【考点】AD:一元二次方程的应用.【分析】设平均每次下调的百分率为x,根据调价前后的价格,即可得出关于x的一元二次方程,解之取小于1的正值即可得出结论.【解答】解:设平均每次下调的百分率为x,根据题意得:5000(1﹣x)2=4050,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:平均每次下调的百分率为10%.【点评】本题考查了一元二次方程的应用,根据调价前后的价格,列出关于x 的一元二次方程是解题的关键.28.(10分)(2017•巴中)如图,AH是⊙O的直径,AE平分∠FAH,交⊙O于点E,过点E的直线FG⊥AF,垂足为F,B为半径OH上一点,点E、F分别在矩形ABCD的边BC和CD上.(1)求证:直线FG是⊙O的切线;(2)若AF=12,BE=6,求FCAD的值.【考点】S9:相似三角形的判定与性质;LB:矩形的性质;ME:切线的判定与性质.【分析】(1)连接OE,证明FG是⊙O的切线,只要证明∠OEF=90°即可;(2)先根据角平分线的性质得出EF=BE=6,再证明△ADF∽△FCE,根据相似三角形对应边成比例得出FCAD=EFAF=12.【解答】(1)证明:如图,连接OE,∵OA=OE,∴∠EAO=∠AEO,∵AE平分∠FAH,∴∠EAO=∠FAE,∴∠FAE=∠AEO,∴AF∥OE,∴∠AFE+∠OEF=180°,∵AF⊥GF,∴∠AFE=∠OEF=90°,∴OE⊥GF,∵点E在圆上,OE是半径,∴GF是⊙O的切线;(2)解:∵四边形ABCD是矩形,∴EB⊥AB,∵EF⊥AF,AE平分∠FAH,∴EF=BE=6,又∵四边形ABCD是矩形,∴∠D=∠C=90°,∴∠DAF+∠AFD=90°,又∵AF⊥FG,∴∠AFG=90°,∴∠AFD+∠CFE=90°,∴∠DAF=∠CFE,又∵∠D=∠C,∴△ADF∽△FCE,∴FCAD =EF AF,又∵AF=12,EF=6,∴FCAD =612=12.【点评】本题考查的是切线的判定,解决本题的关键是要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.也考查了相似三角形的判定与性质,矩形的性质.29.(10分)(2017•巴中)如图,在矩形ABCD中,对角线AC的垂直平分线EF 分别交AD、AC、BC于点E、O、F,连接CE和AF.(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形AECF的周长.【考点】LB:矩形的性质;KG:线段垂直平分线的性质;LA:菱形的判定与性质.【分析】(1)根据ASA推出:△AEO≌△CFO;根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC即可推出四边形是菱形;(2)根据线段垂直平分线性质得出AF=CF,设AF=x,推出AF=CF=x,BF=3﹣x,在Rt△ABF中,由勾股定理得出方程62+(8﹣x)2=x2,求出即可.【解答】(1)证明:∵EF是AC的垂直平分线,∴AO=OC,∠AOE=∠COF=90°,∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO,在△AEO和△CFO中,{∠EAO =∠FCOAO =CO∠AOE =∠COF ,∴△AEO ≌△CFO (ASA );∴OE=OF又∵OA=OC ,∴四边形AECF 是平行四边形,又∵EF ⊥AC∴平行四边形AECF 是菱形;(2)解:设AF=x ,∵EF 是AC 的垂直平分线,∴AF=CF=x ,BF=8﹣x ,在Rt △ABF 中,由勾股定理得:AB 2+BF 2=AF 2,42+(8﹣x )2=x 2,解得 x=5.∴AF=5,∴菱形AECF 的周长为20.【点评】本题考查了勾股定理,矩形性质,平行四边形的判定,菱形的判定,全等三角形的性质和判定,平行线的性质等知识点的综合运用,用了方程思想.30.(10分)(2017•巴中)如图,一次函数y=kx+b 与反比例函数y=4x(x >0)的图象交于A (m ,0),B (2,n )两点,与坐标轴分别交于M 、N 两点.(1)求一次函数的解析式;(2)根据图象直接写出kx+b ﹣4x >0中x 的取值范围;(3)求△AOB 的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)将点A 、点B 的坐标分别代入解析式即可求出m 、n 的值,从而求出两点坐标;(2)由图直接解答;(3)将△AOB 的面积转化为S △AON ﹣S △BON 的面积即可.【解答】解:(1)∵点A 在反比例函数y=4x 上,∴4m=4,解得m=1,∴点A 的坐标为(1,4),又∵点B 也在反比例函数y=4x 上,∴42=n ,解得n=2,∴点B 的坐标为(2,2),又∵点A 、B 在y=kx+b 的图象上,∴{k +b =42k +b =2,解得{k =−2b =6,∴一次函数的解析式为y=﹣2x+6.(2)x 的取值范围为1<x <2;(3)∵直线y=﹣2x+6与x 轴的交点为N ,∴点N 的坐标为(3,0),S △AOB =S △AON ﹣S △BON =12×3×4﹣12×3×2=3.【点评】本题考查了反比例函数与一次函数的交点问题,数形结合是解题的关键.31.(12分)(2017•巴中)如图,已知两直线l 1,l 2分别经过点A (1,0),点B (﹣3,0),且两条直线相交于y 轴的正半轴上的点C ,当点C 的坐标为(0,√3)时,恰好有l 1⊥l 2,经过点A 、B 、C 的抛物线的对称轴与l 1、l 2、x 轴分别交于点G 、E 、F ,D 为抛物线的顶点.(1)求抛物线的函数解析式;(2)试说明DG 与DE 的数量关系?并说明理由;(3)若直线l 2绕点C 旋转时,与抛物线的另一个交点为M ,当△MCG 为等腰三角形时,请直接写出点M 的坐标.【考点】HF :二次函数综合题.【分析】(1)设抛物线的函数解析式为y=ax 2+bx+c .将点A 、B 、C 的坐标代入,得到关于a 、b 、c 的方程组,解方程求出a 、b 、c 的值,进而得到抛物线的解析式;(2)利用待定系数法分别求出直线l 1、直线l 2的解析式,再求出G 、D 、E 的坐标,计算得出DG=DE=2√33;(3)当△MCG 为等腰三角形时,分三种情况:①GM=GC ;②CM=CG ;③MC=MG .【解答】解:(1)设抛物线的函数解析式为y=ax 2+bx+c .。

2023年成都市中考数学试卷及答案

2023年成都市中考数学试卷及答案

2023年成都市中考数学试题A 卷(共100分) 第I 卷(选择题,共32分)一、选择题(本大题共有8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1. 在3,7-,0,19四个数中,最大的数是( ) A. 3B. 7-C. 0D.192. 将数据3000亿用科学记数法表示为( ) A. 8310⨯B. 9310⨯C. 10310⨯D. 11310⨯3. 下列计算正确的是( ) A. 22(3)9x x -=- B. 27512x x x +=C. 22(3)69x x x -=-+D. 22(2)(2)4x y x y x y -+=+4. 近年来,随着环境治理的不断深入,成都已构建起“青山绿道蓝网”生态格局.如今空气质量越来越好,杜甫那句“窗含西岭千秋雪”已成为市民阳台外一道靓丽的风景.下面是成都市今年三月份某五天的空气质量指数(AQI ):33,27,34,40,26,则这组数据的中位数是( ) A. 26B. 27C. 33D. 345. 如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AC BD =B. OA OC =C. AC BD ⊥D. ADC BCD ∠=∠ 6. 学校积极开设种植类劳动教育课.某班决定每位学生随机抽取一张卡片来确定自己的种植项目,老师提供6张背面完全相同的卡片,其中蔬菜类有4张,正面分别印有白菜、辣椒、豇豆、茄子图案;水果类有2张,正面分别印有草莓、西瓜图案,每个图案对应该种植项目.把这6张卡片背面朝上洗匀,小明随机抽取一张,他恰好抽中水果类卡片的概率是( )A.12B.13C.14D.167. 《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目:今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,则可列方程为( )A. 1( 4.5)12x x +=- B.1( 4.5)12x x +=+ C. 1(1) 4.52x x +=-D. 1(1) 4.52x x -=+8. 如图,二次函数26y ax x =+-的图象与x 轴交于(3,0)A -,B 两点,下列说法正确的是( )A. 抛物线的对称轴为直线1x =B. 抛物线的顶点坐标为1,62⎛⎫-- ⎪⎝⎭C. A ,B 两点之间的距离为5D. 当1x <-时,y 的值随x 值的增大而增大第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9. 因式分解:m 2﹣3m =__________.10. 若点()()123,y ,1,A B y --都在反比例函数6y x=的图象上,则1y _______2y (填“>”或“<”).11. 如图,已知ABC DEF ≌△△,点B ,E ,C ,F 依次在同一条直线上.若85BC CE ==,,则CF 的长为___________.12. 在平面直角坐标系xOy 中,点()5,1P -关于y 轴对称的点的坐标是___________. 13. 如图,在ABC ∆中,D 是边AB 上一点,按以下步骤作图:①以点A 为圆心,以适当长为半径作弧,分别交AB ,AC 于点M ,N ;①以点D 为圆心,以AM 长为半径作弧,交DB 于点M ';①以点M '为圆心,以MN 长为半径作弧,在BAC ∠内部交前面的弧于点N ':①过点N '作射线DN '交BC 于点E .若BDE ∆与四边形ACED 的面积比为4:21,则BECE的值为___________.三、解答题(本大题共5个小题,共48分)14. (12sin 45(π3)2|︒--︒+.(2)解不等式组:()2254113x x x x ⎧+-≤⎪⎨+>-⎪⎩①② 15. 文明是一座城市的名片,更是一座城市的底蕴.成都市某学校于细微处着眼,于贴心处落地,积极组织师生参加“创建全国文明典范城市志愿者服务”活动,其服务项目有“清洁卫生”“敬老服务”“文明宣传”“交通劝导”,每名参加志愿者服务的师生只参加其中一项.为了解各项目参与情况,该校随机调查了参加志愿者服务的部分师生,将调查结果绘制成如下两幅不完整的统计图.根据统计图信息,解答下列问题:(1)本次调查的师生共有___________人,请补全条形统计图; (2)在扇形统计图中,求“敬老服务”对应的圆心角度数:(3)该校共有1500名师生,若有80%的师生参加志愿者服务,请你估计参加“文明宣传”项目的师生人数.16. 为建设美好公园社区,增强民众生活幸福感,某社区服务中心在文化活动室墙外安装避阳篷,便于社区居民休憩.如图,在侧面示意图中,遮阳篷AB 长为5米,与水平面的夹角为16︒,且靠墙端离地高BC 为4米,当太阳光线AD 与地面CE 的夹角为45︒时,求阴影CD 的长.(结果精确到0.1米;参考数据:sin160.28,cos160.96,tan160.29︒≈︒≈︒≈)17. 如图,以ABC ∆的边AC 为直径作O ,交BC 边于点D ,过点C 作CE AB ∥交O 于点E ,连接AD DE ,,B ADE ∠=∠.(1)求证:AC BC =;(2)若tan 23B CD ==,,求AB 和DE 的长.18. 如图,在平面直角坐标系xOy 中,直线5y x =-+与y 轴交于点A ,与反比例函数k y x=的图象的一个交点为(,4)B a ,过点B 作AB 的垂线l .(1)求点A 的坐标及反比例函数的表达式;(2)若点C 在直线l 上,且ABC ∆的面积为5,求点C 的坐标;(3)P 是直线l 上一点,连接P A ,以P 为位似中心画PDE ∆,使它与PAB ∆位似,相似比为m .若点D ,E 恰好都落在反比例函数图象上,求点P 的坐标及m 的值.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19. 若23320ab b --=,则代数式22221ab b a b a a b⎛⎫---÷ ⎪⎝⎭的值为___________. 20. 一个几何体由几个大小相同的小立方块搭成,它的主视图和俯视图如图所示,则搭成这个几何体的小立方块最多有___________个.21. 为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是10米,从A 到B 有一笔直的栏杆,圆心O 到栏杆AB 的距离是5米,观众在阴影区域里观看演出,如果每平方米可以坐3名观众,那么最多可容纳___________名观众同时观看演出.(π取 1.73)22. 如图,在Rt ABC △中,90ABC ∠=︒,CD 平分ACB ∠交AB 于点D ,过D 作DE BC ∥交AC 于点E ,将DEC ∆沿DE 折叠得到DEF ∆,DF 交AC 于点G .若73AG GE =,则tan A =__________.23. 定义:如果一个正整数能表示为两个正整数m ,n 的平方差,且1m n ->,则称这个正整数为“智慧优数”.例如,221653=-,16就是一个智慧优数,可以利用22()()m n m n m n -=+-进行研究.若将智慧优数从小到大排列,则第3个智慧优数是________;第23个智慧优数是________.二、解答题(本大题共3个小题,共30分)24. 2023年7月28日至8月8日,第31届世界大学生运动会将在成都举行.“当好东道主,热情迎嘉宾”,成都某知名小吃店计划购买A ,B 两种食材制作小吃.已知购买1千克A 种食材和1千克B 种食材共需68元,购买5千克A 种食材和3千克B 种食材共需280元. (1)求A ,B 两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A 种食材千克数不少于B 种食材千克数的2倍,当A ,B 两种食材分别购买多少千克时,总费用最少?并求出最少总费用. 25. 如图,在平面直角坐标系xOy 中,已知抛物线2y ax c =+经过点3(4,)P -,与y 轴交于点(0,1)A ,直线(0)y kx k =≠与抛物线交于B ,C 两点.(1)求抛物线的函数表达式;(2)若ABP ∆是以AB 为腰的等腰三角形,求点B 的坐标;(3)过点(0,)M m 作y 轴的垂线,交直线AB 于点D ,交直线AC 于点E .试探究:是否存在常数m ,使得OD OE ⊥始终成立?若存在,求出m 的值;若不存在,请说明理由. 26. 探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究. 在Rt ABC △中,90,C AC BC ∠=︒=,D 是AB 边上一点,且1AD BD n=(n 为正整数).E 是AC 边上的动点,过点D 作DE 的垂线交直线BC 于点F .【初步感知】(1)如图1,当1n =时,兴趣小组探究得出结论:2AE BF AB +=,请写出证明过程. 【深入探究】(2)①如图2,当2n =,且点F 在线段BC 上时,试探究线段AE BF AB ,,之间的数量关系,请写出结论并证明;①请通过类比、归纳、猜想,探究出线段AE BF AB ,,之间数量关系的一般结论(直接写出结论,不必证明) 【拓展运用】(3)如图3,连接EF ,设EF 的中点为M .若AB =求点E 从点A 运动到点C 的过程中,点M 运动的路径长(用含n 的代数式表示).2023年成都市中考数学试题答案A 卷(共100分)一、选择题.1. A2. D3. C4. C5. B6. B7. A8. C二、填空题.9. ()3m m - 10. > 11. 3 12. ()5,1-- 13.23解:根据作图可得BDE A ∠=∠ ①DE AC ∥ ①BDE BAC ∽△△①BDE 与四边形ACED 的面积比为4:21①24214BDC BACS BE SBC ⎛⎫== ⎪+⎝⎭①25BE BC = ①BE CE 23= 故答案为:23.三、解答题.14. (1)3 (2)41x -<≤15. (1)300,图见解析 (2)144︒ (3)360人 【小问1详解】解:依题意,本次调查的师生共有6020%300÷=人 ①“文明宣传”的人数为300601203090---=(人) 补全统计图,如图所示故答案为:300. 【小问2详解】在扇形统计图中,求“敬老服务”对应的圆心角度数为360120430014⨯︒=︒ 【小问3详解】估计参加“文明宣传”项目的师生人数为90150080%360300⨯⨯=(人). 16. 2.2米解:如图所示,过点A 作AG BC ⊥于点G ,AF CE ⊥于点F ,则四边形AFCG 是矩形依题意, 16BAG ∠=︒,5AB =(米)在Rt ABG △中,sin 5sin1650.28 1.4GB AB BAG =⨯∠=⨯︒≈⨯=(米)cos1650.96 4.8AG AB =⨯︒≈⨯=(米),则 4.8CF AG ==(米)①4BC =(米)①4 1.4 2.6AF CG BC BG ==-=-=(米) ①45ADF ∠=︒① 2.6DF AF ==(米)① 4.8 2.6 2.2CD CF DF =-=-=(米). 17. (1)略(2)AB =DE =【小问2详解】 解:设BD x =AC 是O 的直径90ADC ADB ∴∠=∠=︒tan 2B =2ADBD∴=,即2AD x = 根据(1)中的结论,可得3AC BC BD DC x ==+=+ 根据勾股定理,可得222AD DC AC +=,即()()222233x x +=+ 解得12x =,20x =(舍去)2BD ∴=,4=AD根据勾股定理,可得AB =; 如图,过点E 作DC 的垂线段,交DC 的延长线于点FCB CA =1802ACB B ∴∠=︒-∠(1)中已证明B ACE ∠=∠180ECF ACB ACE B ∴∠=︒-∠-∠=∠EF CF ⊥tan tan 2ECF B ∴∠=∠=,即2EF CF= 90B BAD ∠+∠=︒,90ADE EDF ∠+∠=︒,B ADE ∠=∠BAD EDF ∴∠=∠9090DEF EDF BAD B ∴∠=︒-∠=︒-∠=∠2DF EF∴= 设CF a =,则3DF DC CF a =+=+2EF a ∴= 可得方程322a a+=,解得1a = 2EF ∴=,4DF =根据勾股定理,可得DE =18. (1)点A 的坐标为(0,5),反比例函数的表达式为4y x =(2)点C 的坐标为(6,9)或(4,1)--(3)点P 的坐标为111,44⎛⎫- ⎪⎝⎭;m 的值为3 【小问1详解】解:令0x =,则55y x =-+=①点A 的坐标为(0,5)将点(,4)B a 代入5y x =-+得:45a =-+解得:1a =①(1,4)B将点(1,4)B 代入k y x =得:41k = 解得:4k =①反比例函数的表达式为4y x=; 【小问2详解】解:设直线l 于y 轴交于点M ,直线5y x =-+与x 轴得交点为N令50y x =-+=解得:5x =①(5,0)N①5OA ON ==又①90AON ∠=︒①45OAN ∠=︒①(0,5)A ,(1,4)B①AB ==又①直线l 是AB 的垂线即90ABM ∠=︒,45OAN ∠=︒①AB BM ==2AM ==①()0,3M设直线l 得解析式是:11y k x b =+将点()0,3M ,点(1,4)B 代入11y k x b =+得:11143k b b +=⎧⎨=⎩ 解得:1143k b =⎧⎨=⎩ ①直线l 的解析式是:3y x ,设点C 的坐标是()3t t +, ①1121522ABC B C S AM x x t △,(,B C x x 分别代表点B 与点C 的横坐标) 解得: 4t =-或6当4t =-时,31t +=-;当6t =时,39t +=①点C 的坐标为(6,9)或(4,1)--.【小问3详解】①位似图形的对应点与位似中心三点共线①点B 的对应点也在直线l 上,不妨设为点E ,则点A 的对应点是点D①点E 是直线l 与双曲线4y x=的另一个交点 将直线l 与双曲线的解析式联立得:43y x y x ⎧=⎪⎨⎪=+⎩解得:14x y =⎧⎨=⎩或41x y =-⎧⎨=-⎩ ①()4,1E --画出图形如下:又①D PAB P E △∽△①D PAB P E ∠=∠①AB DE ∥①直线AB 与直线DE 的解析式中的一次项系数相等设直线DE 的解析式是:2y x b =-+将点()4,1E --代入2y x b =-+得:()214b -=--+解得:25b =-①直线DE 的解析式是:=5y x --①点D 也在双曲线4y x=上 ①点D 是直线DE 与双曲线4y x =的另一个交点 将直线DE 与双曲线的解析式联立得:45y x y x ⎧=⎪⎨⎪=--⎩ 解得:14x y =-⎧⎨=-⎩或41x y =-⎧⎨=-⎩ ①()1,4D --设直线AD 的解析式是:33y k x b =+将点(0,5)A ,()1,4D --代入33y k x b =+得:33345k b b -+=-⎧⎨=⎩解得:1195k b =⎧⎨=⎩ ①直线AD 的解析式是:95y x =+又将直线AD 的解析式与直线l 的解析式联立得:953y x y x =+⎧⎨=+⎩解得:14114x y ⎧=-⎪⎪⎨⎪=⎪⎩①点P 的坐标为111,44⎛⎫- ⎪⎝⎭①BP ==EP ==①3EP m BP==. B 卷(共50分)一、填空题. 19. 23解:22221ab b a b a a b⎛⎫---÷ ⎪⎝⎭ 22222a b a ab b a a b ⎛⎫-+=⨯ ⎪-⎝⎭()222a b a b a a b⨯--= 2ab b =-23320ab b --=2332ab b ∴-=223ab b ∴-= 故原式的值为23 故答案为:23. 20. 6 解:根据主视图和俯视图可得第一列最多2个,第二列最多1个小正方形,如图所示①搭成这个几何体的小立方块最多有22116+++=故答案为:6.21. 184解:如图,过点O 作AB 的垂线段,交AB 于点C圆心O 到栏杆AB 的距离是5米5OC ∴=米OC AB ⊥1sin2OC OBC OB ∴∠==,22AB BC AC ====米 30OBC ∴∠=︒OA OB =1802120AOB OAB ∴∠=︒-∠=︒∴可容纳的观众=阴影部分面积()21201333105184.253602AOB AOB S S π︒⎛⎫⨯=⨯-=⨯⨯⨯-⨯≈ ⎪︒⎝⎭△扇形(人) ∴最多可容纳184名观众同时观看演出故答案为:184.22.解:如图所示,过点G 作GM DE ⊥于M①CD 平分ACB ∠交AB 于点D ,DE BC ∥①12∠=∠,23∠∠=①13∠=∠①ED EC =①折叠①3=4∠∠①14∠=∠又①DGE CGD ∠=∠①DGE CGD ∽ ①DG GE CG DG= ①2DG GE GC =⨯①90ABC ∠=︒,DE BC ∥,则AD DE ⊥①AD GM ∥ ①AG DM GE ME=,MGE A ∠=∠ ①73DM ME AG GE == 设3,7GE AG ==,3EM n =,则7DM n =,则10EC DE n ==①2DG GE GC =⨯①()23310930DG n n =⨯+=+ 在Rt DGM △中,222GM DG DM =-在Rt GME △中,222GM GE EM =-①2222DG DM GE EM -=-即()()222930733n n n +-=- 解得:34n =①94EM =,3GE =则4GM ===①9tan tan ME A EGM MG =∠===故答案为:7. 23. ①. 15 ①. 57解:依题意, 当3m =,1n =,则第1个一个智慧优数为22318-=当4m =,2n =,则第2个智慧优数为224214-=当4m =,1n =,则第3个智慧优数为224115-=当5m =,3n =,则第5个智慧优数为225316-=当5m =,2n =,则第6个智慧优数为225221-=当5m =,1n =,则第7个智慧优数为225324-=……6m =时有4个智慧优数,同理7m =时有5个,8m =时有6个12345621+++++=第22个智慧优数,当9m =时,7n =,第22个智慧优数为2297814932-=-=第23个智慧优数为9,6m n ==时,2296813657-=-=故答案为:15,57.二、解答题.24. (1)A 种食材单价是每千克38元,B 种食材单价是每千克30元(2)A 种食材购买24千克,B 种食材购买12千克时,总费用最少,为1272元【小问1详解】解:设A 种食材的单价为a 元,B 种食材的单价为b 元,根据题意得6853280a b a b +=⎧⎨+=⎩ 解得:3830a b =⎧⎨=⎩答:A 种食材的单价为38元,B 种食材的单价为30元;【小问2详解】解:设A 种食材购买x 千克,则B 种食材购买()36x -千克,根据题意()236x x ≤-解得:24x ≤设总费用为y 元,根据题意,()38303681080y x x x =+-=+①80>,y 随x 的增大而增大①当24x =时,y 最小①最少总费用为82410801272⨯+=(元).25. (1)2114y x =-+ (2)点B 的坐标为(4,3)--或(25----或(25-+-+ (3)存在,m 的值为2或23【小问1详解】解:①抛物线2y ax c =+经过点3(4,)P -,与y 轴交于点(0,1)A ①1631a c c +=-⎧⎨=⎩,解得141a c ⎧=-⎪⎨⎪=⎩ ①抛物线的函数表达式为2114y x =-+;【小问2详解】 解:设21,14B t t ⎛⎫-+ ⎪⎝⎭根据题意,ABP 是以AB 为腰的等腰三角形,有两种情况:当AB AP =时,点B 和点P 关于y 轴对称①()4,3P -,①()4,3B --;当AB BP =时,则22AB BP =①()()2222221101141344t t t t ⎛⎫⎛⎫-+-+-=-+-++ ⎪ ⎪⎝⎭⎝⎭ 整理,得24160t t +-=解得12t =--22t =-+当2t =--时,2114t -+(212154=-⨯--+=--则(25B ----当2t =-+,2114t -+(212154=-⨯-++=-+则(25B -+-+综上,满足题意的点B 的坐标为(4,3)--或(25----或(25-+-+;【小问3详解】解:存在常数m ,使得OD OE ⊥.根据题意,画出图形如下图设抛物线2114y x =-+与直线(0)y kx k =≠的交点坐标为(),B a ka ,(),C b kb 由2114y x kx =-+=得2440x kx +-= ①4a b k +=-,4ab =-;设直线AB 的表达式为y px q =+则1ap q ka q +=⎧⎨=⎩,解得11ka p a q -⎧=⎪⎨⎪=⎩ ①直线AB 的表达式为11ka y x a-=+ 令y m =,由11ka y x m a -=+=得()11a m x ka -=- ①()1,1a m D m ka -⎛⎫ ⎪-⎝⎭同理,可得直线AC 的表达式为11kb y x b -=+,则()1,1b m E m kb -⎛⎫ ⎪-⎝⎭过E 作EQ x ⊥轴于Q ,过D 作DN x ⊥轴于N则90EQO OND ∠=∠=︒,EQ ND m ==,()11b m QO kb -=--,()11a m ON ka -=- 若OD OE ⊥,则90EOD ∠=︒①90QEO QOE DON QOE ∠+∠=∠+∠=︒①QEO DON ∠=∠①EQO OND ∽①EQ QO ON ND= 则()()1111b m m kb a m mka ---=-- 整理,得()()()22111m ka kb ab m --=--即()()22211m abk k a b ab m ⎡⎤-++=--⎣⎦ 将4a b k +=-,4ab =-代入,得()()222244141mk k m -++=- 即()2241m m =-,则()21m m =-或()21m m =--解得12m =,223m = 综上,存在常数m ,使得OD OE ⊥,m 的值为2或23. 26. (1)见解析(2)①123AE BF AB +=,证明过程略 ①当点F 在射线BC 上时,11AE BF AB n n +=+,当点F 在CB 延长线上时1AE BF AB n -= (3证明:如图,连接CD当1n =时,1AD BD=,即AD BD = 90,C AC BC ∠=︒=∴45A B ∠=∠=︒,CD AB ⊥,1452FCD ACB ∠=∠=︒ CD AD ∴=,AB =,即2BC AB = DE FD ⊥90ADE EDC FDC EDC ∴∠+∠=∠+∠=︒CDF ADE ∠=∠∴在ADE ∆与CDF ∆中ADE CDF DA DCDAE DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA ADE CDF ∴≌AE CF ∴=2BC CF BF AE BF AB ∴=+=+=; 【小问2详解】①123AE BF AB += 证明:如图,过BD 的中点G 作BC 的平行线,交DF 于点J ,交AC 于点H当2n =时,12AD DB =,即2AD DB =G 是DB 的中点AD DG ∴=,23AG AB =HG BC ∥90AHG C ∴∠=∠=︒,45HGA B ∠=∠=︒45A ∠=︒∴AHG 是等腰直角三角形,且DJG DBF △∽△12JG DG FB DB ∴==根据(1)中的结论可得2AE JG AG +=1223AE JG AE FB AG AB AB ∴+=+===;故线段AE BF AB ,,之间的数量关系为123AE BF AB +=; ①解:当点F 在射线BC 上时 如图,在DB 上取一点G 使得AD DG =,过G 作BC 的平行线,交DF 于点J ,交AC 于点H同①,可得2AE JG AG += 1AD BD n =,AD DG = 1DG BD n ∴=,21AG AB n =+ 同①可得1JG DG FB DB n==121AE JG AE FB AG AB AB n n ∴+=+===+即线段AE BF AB ,,之间数量关系为11AE BF AB n n +=+; 当点F 在CB 延长线上时如图,在DB 上取一点G 使得AD DG =,过G 作BC 的平行线,交DF 于点J ,交AC 于点H ,连接HD同(1)中原理,可证明()ASA DHE DGJ △≌△可得2AE GJ AG -= 1AD BD n =,AD DG = 1DG BD n ∴=,21AG AB n =+ 同①可得1JG DG FB DB n==121AE JG AE FB AG AB AB n n ∴-=-===+即线段AE BF AB ,,之间数量关系为11AE BF AB n n -=+综上所述,当点F 在射线BC 上时,11AE BF AB n n +=+;当点F 在CB 延长线上时,11AE BF AB n n -=+; 【小问3详解】 解:如图,当1E 与A 重合时,取11E F 的中点1M ,当2E 与C 重合时,取22E F 的中点2M .可得M 的轨迹长度即为12M M 的长度.如图,以点D 为原点,1DF 为y 轴,DB 为x 轴建立平面直角坐标系,过点2E 作AB 的垂线段,交AB 于点G ,过点2F 作AB 的垂线段,交AB 于点H .12AD AB DB n ==1AD n ∴=+,1DB n =+11E n ⎛⎫∴- ⎪ ⎪+⎝⎭145F BD ∠=︒1F D BD ∴=1F ⎛∴ ⎝⎭1M 是11E F 的中点1M ⎛∴ ⎝⎭12GB GC AB ===1DG DB BG n ∴=-=+21E n ⎛∴ +⎝根据(2)中的结论221AE BF AB n -=2222211n n BF n AE AB n n ⎛⎫-∴=-= ⎪ ⎪++⎝⎭22221BH F H BF n ∴===+DH DB BH ∴=+=22,1F n ⎫∴-⎪⎪+⎭2222M n ⎛+∴ +⎝⎭12M M ∴=。

2024年四川成都中考数学卷试题真题及答案详解

2024年四川成都中考数学卷试题真题及答案详解

2024年四川省成都市中考数学A卷(共100分)第I卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.-5的绝对值是()A.5B.-5C.—D.—552.如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是()3.下列计算正确的是()A.(3x)2=3/B.3x+3y=6xyC.(x+y)2=x2+y2D.(x+2)(x—2)=x2—44.在平面直角坐标系xQy中,点尸(1,T)关于原点对称的点的坐标是()A.(-1,T)B.(-1,4)C.(1,4)D.(11)5.为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村&T、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是()A.53B.55C.58D.646.如图,在矩形ABCD中,对角线AC与时相交于点。

,则下列结论一定正确的是()A.AB^ADB.AC1BDC.AC=BDD.ZACB=ZACD7.中国古代数学著作《九章算术》中记载了这样一个题目:今有共买避,人出半,盈四;人出少半,不足三.问人数,琏价各几何?其大意是:今有人合伙买琏石,每人出!钱,会多出4钱;每人出!钱,又差了 3钱.问人数,琏价各是多少?设人数为x,琏价为 >,则可列方程组为(i+4I i y = —% + 3〔3y = -x-42y=—x+33y = -x-421 c y = -x-33y = —x + 421 c y = —x-338.如图,在YABCD 中,按以下步骤作图:①以点3为圆心,以适当长为半径作弧,分别交B4, 于点M, N ;②分别以M, N 为圆心,以大于!枷的长为半径作弧,两弧在ZABC 内交于点。

;③作射线B0,交AD 于点E,交CQ 延长线于点若CD = 3, DE = 2,下列结论错误的是()C. DE = DF B. BC=5八 BE 5D.----=—EF 3第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9. 若秫,〃为实数,且(m+4)2+V^-5 =0,贝0(m + n )2的值为.1 310. 分式方程一=一的解是—.x-2 x11. 如图,在扇形A08中,OA = 6, ZAOB = 120°,则AB 的长为12. 盒中有尤枚黑棋和》枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,QX 如果它是黑棋的概率是则一的值为_____.8 y13. 如图,在平面直角坐标系xQy 中,已知A (3,0), 8(0,2),过点3作》轴的垂线/, P 为直线/上一动点,连接FO,PA,则PO+PA的最小值为A x三、解答题(本大题共5个小题,共48分)14.(1)计算:而+2sin60。

2017年四川省成都市武侯区中考数学一诊试卷

2017年四川省成都市武侯区中考数学一诊试卷

2017年四川省成都市武侯区中考数学一诊试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)在实数﹣2、0、2、3中,绝对值最小的实数是()A.﹣2B.0C.2D.32.(3分)在下面四个几何体中,俯视图是三角形的是()A.B.C.D.3.(3分)未来3到5年时间里,双流县将全力推进“四改六治理”各项工作,预计将完成130万平方米老住宅小区综合整治工作,130万这个数用科学记数法可表示为()A.1.3×105B.1.3×106C.13×105D.13×106 4.(3分)下列计算正确的是()A.x+x2=x3B.2x+3x=5x C.(x2)3=x5D.x6÷x3=x2 5.(3分)如图,把一块直角三角板的30°角的顶点放在直尺的一边上,若∠2=100°,则∠1的度数为()A.40°B.80°C.50°D.45°6.(3分)已知点A(﹣3,y1)和B(﹣2,y2)都在直线y=上,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.大小不确定7.(3分)分式方程=1的解为()A.x=1B.x=﹣1C.x=﹣2D.x=﹣38.(3分)某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是()动时间(小时)3 3.54 4.5人数1121A.中位数是4,平均数是3.75B.众数是4,平均数是3.75C.中位数是4,平均数是3.8D.众数是2,平均数是3.89.(3分)若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为()A.x1=0,x2=4B.x1=1,x2=5C.x1=1,x2=﹣5D.x1=﹣1,x2=510.(3分)如图,正六边形ABCDEF内接于⊙O,⊙O的半径为1,则的长为()A.B.C.D.π二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)分解因式:a2b﹣b=.12.(4分)如图,△OAB绕点O逆时针旋转80°到△OCD的位置,已知∠AOB=45°,则∠AOD等于度.13.(4分)已知反比例函数y=的图象过点A(﹣2,1),若点B(m1,n1)、C (m2,n2)页在该反比例函数图象上,且m1<m2<0,比较n1n2(填“<”、“>”或“=”).14.(4分)如图,边长为1的小正方形网格中,⊙O的半径为1,点O及点A、B、C、E都在格点上,则∠AED的正弦值是.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:﹣(2017﹣π)0+(﹣)﹣3﹣6tan30°(2)已知关于x的一元二次方程x2﹣(m﹣3)x+m2=0有实数根,求实数m 的取值范围.16.(6分)先化简,再求值:÷(a+2﹣),其中a2+3a﹣1=0.17.(8分)如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,求山高AD是多少?(结果保留整数,测角仪忽略不计,参考数据≈1.414,≈1.73)18.(8分)有四张形状、大小和质地相同的卡片A、B、C、D,正面分别写有一个正多边形,把四张卡片洗匀后正面朝下放在桌面上,从中随机抽取一张(不放回),接着再随机抽取一张.(1)请你用画树形图或列表的方法列举出可能出现的所有结果(用A、B、C、D 表示);(2)如果在(1)中各种结果被选中的可能性相同,求两次抽取的正多边形对称轴条数之和为奇数的概率.19.(10分)如图,一次函数y=kx+b(k<0)与反比例函数y=的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1)(1)求反比例函数的解析式;(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.20.(10分)如图,AC是⊙O的直径,弦BE⊥AC于H,F为⊙O上的一点,过F 的直线与AC延长线交于点D,与BE的延长线交于点M,连接AF交BM于G,且MF=MG.(1)求证:MD为⊙O的切线;(2)若MD∥AB,写出FG、EG、MF之间的关系,并说明理由;(3)在(2)的条件下,若cosM=,FD=6,求AG的长.四、填空题(每小题4分,共20分)21.(4分)某学校计划开设A、B、C、D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门,为了了解各门课程的选修人数.现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有人.22.(4分)一元二次方程x2﹣5x﹣4=0的两根为x1和x2,则x12+5x2+3=.23.(4分)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE 沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为.24.(4分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2),点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当四边形CDBF 的面积最大时,E点的坐标为.25.(4分)如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=2,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为.五、解答题(共3小题,共30分)26.(8分)某文具店经销甲、乙两种不同的笔记本,已知;两种笔记本的进价之和为10元,每个笔记本的利润均为1元,小王同学买4本甲种笔记本和3本乙种笔记本共用了43元.(1)甲、乙两种笔记本的进价分别是多少元?(2)该文具店购入这两种笔记本共60本,花费不超过295元,并且购买甲种笔记本的数量大于乙种笔记本数量的,则问该文具店有哪几种购买方案?(3)店主经统计发现平均每天可售出甲种笔记本300本和乙种笔记本150本.如果两种笔记本的售价各提高1元,则每天将少售出50本甲种笔记本和40本乙种笔记本.为使每天获取的利润更多,店主决定把两种笔记本的价格都提高x元,在不考虑其他因素的条件下,当x定为多少时,才能使该文具店每天销售甲、乙笔记本获取的利润最大?27.(10分)(1)如图1,将直角的顶点E放在正方形ABCD的对角线AC上,使角的一边交CD于点F,另一边交CB货其延长线于点G,求证:EF=EG.(2)如图2,将(1)中的“正方形ABCD”改为“矩形ABCD”,其他条件不变,若AB=m、BC=n,求的值.(3)如图3,将直角顶点E放在矩形ABCD的对角线交点,EF、EG分别交CD、CB于点F、G,且EC平分∠FEG.若AB=6,BC=10,求EG、EF的长.28.(12分)如图,抛物线C1:y=﹣(x+3)2与x,y轴分别相交于点A,B,将抛物线C1沿对称轴向上平移,记平移后的抛物线为C2,抛物线C2的顶点是D,与y轴交于点C,射线DC与x轴相交于点E,(1)求A,B点的坐标;(2)当CE:CD=1:2时,求此时抛物线C2的顶点坐标;(3)若四边形ABCD是菱形.①此时抛物线C2的解析式;②点F在抛物线C2的对称轴上,且点F在第三象限,点M在抛物线C2上,点P是坐标平面内一点,是否存在以A,F,P,M为顶点的四边形与菱形ABCD相似,并且这个菱形以A为顶点的角是钝角,若存在求出点F的坐标,若不存在请说明理由.2017年四川省成都市武侯区中考数学一诊试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)在实数﹣2、0、2、3中,绝对值最小的实数是()A.﹣2B.0C.2D.3【分析】先求得各数的绝对值,然后再进行判断即可.【解答】解:∵|﹣2|=2,|0|=0,|2|=2,|3|=3,∴绝对值最小的实数是0.故选:B.【点评】本题主要考查的是绝对值的性质、比较实数的大小,熟练掌握绝对值的性质是解题的关键.2.(3分)在下面四个几何体中,俯视图是三角形的是()A.B.C.D.【分析】根据从上面看到的图形是俯视图,可得答案.【解答】解:从上面看A是圆,B是三角形,C是圆,D是正方形,故选:B.【点评】本题考查了简单组合体的三视图,从上面看到的图形是俯视图.3.(3分)未来3到5年时间里,双流县将全力推进“四改六治理”各项工作,预计将完成130万平方米老住宅小区综合整治工作,130万这个数用科学记数法可表示为()A.1.3×105B.1.3×106C.13×105D.13×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将130万用科学记数法表示为1.3×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)下列计算正确的是()A.x+x2=x3B.2x+3x=5x C.(x2)3=x5D.x6÷x3=x2【分析】根据同底数幂的乘法,可判断A,根据合并同类项,可判断B,根据幂的乘方,可判断C,根据同底数幂的除法,可判断D.【解答】解:A、不是同底数幂的乘法,指数不能相加,故A错误;B、系数相加字母部分不变,故B正确;C、底数不变指数相乘,故C错误;D、底数不变指数相减,故D错误;故选:B.【点评】本题考查了幂的运算,根据法则计算是解题关键.5.(3分)如图,把一块直角三角板的30°角的顶点放在直尺的一边上,若∠2=100°,则∠1的度数为()A.40°B.80°C.50°D.45°【分析】根据平行线的性质和平角的定义即可得到结论.【解答】解:∵a∥b,∴∠3=∠2=100°,∴∠1=180°﹣100°﹣30°=50°,故选:C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.6.(3分)已知点A(﹣3,y1)和B(﹣2,y2)都在直线y=上,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.大小不确定【分析】先根据一次函数的解析式判断出函数的增减性,再根据﹣3<﹣2即可得出结论.【解答】解:∵一次函数y=﹣x﹣1中,k=﹣<0,∴y随x的增大而减小,∵﹣3<﹣2,∴y1>y2.故选:A.【点评】本题考查的是一次函数图象上点的坐标特点,先根据题意判断出一次函数的增减性是解答此题的关键7.(3分)分式方程=1的解为()A.x=1B.x=﹣1C.x=﹣2D.x=﹣3【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x=x﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的解,故选:D.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8.(3分)某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是()动时间(小时)3 3.54 4.5人数1121A.中位数是4,平均数是3.75B.众数是4,平均数是3.75C.中位数是4,平均数是3.8D.众数是2,平均数是3.8【分析】根据众数、平均数和中位数的概念求解.【解答】解:这组数据中4出现的次数最多,众数为4,∵共有5个人,∴第3个人的劳动时间为中位数,故中位数为:4,平均数为:=3.8.故选:C.【点评】本题考查了众数、中位数及加权平均数的知识,解题的关键是了解有关的定义,难度不大.9.(3分)若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为()A.x1=0,x2=4B.x1=1,x2=5C.x1=1,x2=﹣5D.x1=﹣1,x2=5【分析】根据对称轴方程﹣=2,得b=﹣4,解x2﹣4x=5即可.【解答】解:∵对称轴是经过点(2,0)且平行于y轴的直线,∴﹣=2,解得:b=﹣4,解方程x2﹣4x=5,解得x1=﹣1,x2=5,故选:D.【点评】本题主要考查二次函数的对称轴和二次函数与一元二次方程的关系,难度不大.10.(3分)如图,正六边形ABCDEF内接于⊙O,⊙O的半径为1,则的长为()A.B.C.D.π【分析】连接OA,OB,求出圆心角∠AOB的度数,再利用弧长公式解答即可.【解答】解:连接OA,OB,∵多边形ABCDEF为正六边形,∴∠AOB=360°×=60°,∴的长==,故选:B.【点评】本题考查了正多边形和圆的位置关系以及弧长公式的运用,此题将扇形的弧长公式与多边形的性质相结合,构思巧妙,利用了正六边形的性质,是一道好题.二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)分解因式:a2b﹣b=b(a+1)(a﹣1).【分析】首先提取公因式b,进而利用平方差公式分解因式得出答案.【解答】解:a2b﹣b=b(a2﹣1)=b(a+1)(a﹣1).故答案为:b(a+1)(a﹣1).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确运用平方差公式是解题关键.12.(4分)如图,△OAB绕点O逆时针旋转80°到△OCD的位置,已知∠AOB=45°,则∠AOD等于35度.【分析】根据旋转的意义,找到旋转角∠BOD;再根据角相互间的和差关系即可求出∠AOD的度数.【解答】解:∵△OAB绕点O逆时针旋转80°到△OCD的位置,∴∠BOD=80°,∵∠AOB=45°,则∠AOD=80°﹣45°=35°.故填35.【点评】本题考查了图形的旋转变化,学生主要要看清是顺时针还是逆时针旋转,旋转多少度,难度不大,但易错.注意∠AOD=∠BOD﹣∠AOB.13.(4分)已知反比例函数y=的图象过点A(﹣2,1),若点B(m1,n1)、C (m2,n2)页在该反比例函数图象上,且m1<m2<0,比较n1<n2(填“<”、“>”或“=”).【分析】先把A(﹣2,1)代入y=,得到k=﹣2,再根据反比例函数的图象性质:当k<0时,在每一象限内,y随x的增大而增大求解即可.【解答】解:∵反比例函数y=的图象过点A(﹣2,1),∴k=﹣2×1=﹣2,∵k<0,∴在每一象限内,y随x的增大而增大,而B(m1,n1)、C(m2,n2)在该反比例函数图象上,且m1<m2<0,∴n1<n2.故答案为<.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求函数的解析式,反比例函数的图象性质,掌握性质是解题的关键.14.(4分)如图,边长为1的小正方形网格中,⊙O的半径为1,点O及点A、B、C、E都在格点上,则∠AED的正弦值是.【分析】根据同弧所对的圆周角相等得到∠ABC=∠AED,在直角三角形ABC中,利用锐角三角函数定义求出sin∠ABC的值,即为sin∠AED的值.【解答】解:∵∠AED与∠ABC都对,∴∠AED=∠ABC,在Rt△ABC中,AB=2,AC=1,根据勾股定理得:BC=,则sin∠AED=sin∠ABC==,故答案是:.【点评】本题主要考查了圆周角定理、锐角三角函数的定义.解答网格中的角的三角函数值时,一般是将所求的角与直角三角形中的等角联系起来,通过解直角三角形中的三角函数值来解答问题.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:﹣(2017﹣π)0+(﹣)﹣3﹣6tan30°(2)已知关于x的一元二次方程x2﹣(m﹣3)x+m2=0有实数根,求实数m 的取值范围.【分析】(1)将=3、(2017﹣π)0=1、(﹣)﹣3=﹣8、tan30°=代入原式,计算后即可得出结论;(2)根据方程的系数结合根的判别式,即可得出△=﹣6m+9≥0,解之即可得出结论.【解答】解:(1)原式=3﹣1﹣8﹣6×=﹣9.(2)∵方程x2﹣(m﹣3)x+m2=0有实数根,∴△=[﹣(m﹣3)]2﹣4×1×m2=﹣6m+9≥0,解得:m≤.∴实数m的取值范围为m≤.【点评】本题考查了根的判别式、零指数幂、负整数指数幂以及特殊角的三角函数值,解题的关键是:(1)找出=3、(2017﹣π)0=1、(﹣)﹣3=﹣8、tan30°=;(2)根据方程的系数结合根的判别式,找出△=﹣6m+9≥0.16.(6分)先化简,再求值:÷(a+2﹣),其中a2+3a﹣1=0.【分析】首先通分,并根据同分母分式的加法法则,化简小括号内的算式;然后计根据分式的除法化成最简结果,再把a2+3a﹣1=0变形代入化简后的式子,求出化简后式子的值即可.【解答】解:÷(a+2﹣)===,∵a2+3a﹣1=0,∴a2+3a=1,∴3a2+9a=3,故原式=.【点评】此题主要考查了分式的化简求值问题,要熟练掌握,解答此题的关键是要明确:先把分式化简后,再把分式中未知数对应的值代入求出分式的值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母能约分要约分.17.(8分)如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,求山高AD是多少?(结果保留整数,测角仪忽略不计,参考数据≈1.414,≈1.73)【分析】设AD=xm,在Rt△ACD中,根据正切的概念用x表示出CD,在Rt△ABD 中,根据正切的概念列出方程求出x的值即可.【解答】解:由题意得,∠ABD=30°,∠ACD=45°,BC=100m,设AD=xm,在Rt△ACD中,∵tan∠ACD=,∴CD=AD=x,∴BD=BC+CD=x+100,在Rt△ABD中,∵tan∠ABD=,∴x=(x+100),∴x=50(+1)≈137米,答:山高AD约为137米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.18.(8分)有四张形状、大小和质地相同的卡片A、B、C、D,正面分别写有一个正多边形,把四张卡片洗匀后正面朝下放在桌面上,从中随机抽取一张(不放回),接着再随机抽取一张.(1)请你用画树形图或列表的方法列举出可能出现的所有结果(用A、B、C、D 表示);(2)如果在(1)中各种结果被选中的可能性相同,求两次抽取的正多边形对称轴条数之和为奇数的概率.【分析】(1)列出图表即可得到所有的可能情况;(2)根据轴对称的定义确定两次抽取的正多边形对称轴条数之和为奇数的结果,然后根据概率公式列式计算即可得解.【解答】解:(1)列表得:B C DAA BA CA DAB AB CB DBC AC BC DCD AD BD CD所有出现的结果共有12种;(2)∵两次抽取的正多边形对称轴条数之和为奇数的情况有8种,∴P==.(两次抽取的正多边形对称轴条数之和为奇数)【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.19.(10分)如图,一次函数y=kx+b(k<0)与反比例函数y=的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1)(1)求反比例函数的解析式;(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.【分析】(1)由点A的坐标结合反比例函数系数k的几何意义,即可求出m的值;(2)设点B的坐标为(n,),将一次函数解析式代入反比例函数解析式中,利用根与系数的关系可找出n、k的关系,由三角形的面积公式可表示出来b、n的关系,再由点A在一次函数图象上,可找出k、b的关系,联立3个等式为方程组,解方程组即可得出结论.【解答】解:(1)∵点A(4,1)在反比例函数y=的图象上,∴m=4×1=4,∴反比例函数的解析式为y=.(2)∵点B在反比例函数y=的图象上,∴设点B的坐标为(n,).将y=kx+b代入y=中,得:kx+b=,整理得:kx2+bx﹣4=0,∴4n=﹣,即nk=﹣1①.令y=kx+b中x=0,则y=b,即点C的坐标为(0,b),=bn=3,∴S△BOC∴bn=6②.∵点A(4,1)在一次函数y=kx+b的图象上,∴1=4k+b③.联立①②③成方程组,即,解得:,∴该一次函数的解析式为y=﹣x+3.【点评】本题考查了反比例函数与一次函数交点的问题、反比例函数系数k的几何意义、三角形的面积公式以及根与系数的关系,解题的关键是:(1)利用反比例函数系数k的几何意义求出m的值;(2)根据各关系量找出关于k、b、n的三元一次方程组.本题属于中档题,难度不大,但考到的知识点较多,解决该题型题目时,综合根与系数的关系、三角形的面积公式以及一次函数上点的坐标特征得出方程组是关键.20.(10分)如图,AC是⊙O的直径,弦BE⊥AC于H,F为⊙O上的一点,过F 的直线与AC延长线交于点D,与BE的延长线交于点M,连接AF交BM于G,且MF=MG.(1)求证:MD为⊙O的切线;(2)若MD∥AB,写出FG、EG、MF之间的关系,并说明理由;(3)在(2)的条件下,若cosM=,FD=6,求AG的长.【分析】(1)根据已知条件得到∠MFG=∠MGF=∠AGB,连接FO,根据等腰三角形的性质得到∠AFH=∠GAH,得到∠MFO=90°,于是得到结论;(2)根据平行线的性质得到∠M=∠B,连接EF,根据相似三角形的性质即可得到结论;(3)设AH=3k,AB=5k,HB=4k,连接OB,根据已知条件得到FO=8=OB=OA,求得OH=8﹣3k根据勾股定理列方程得到k=,根据等腰三角形的性质得到AB=GB=5k,于是得到结论.【解答】(1)证明:∵MF=MG,∴∠MFG=∠MGF=∠AGB,连接FO,∵OF=AO,∴∠AGH=∠GAH=90°,∴∠MFO=90°,∴MD为⊙O的切线;(2)解:FG2=EG•MF,理由:∵MD∥AB,∴∠M=∠B,连接EF,∵∠EFG=∠B,∴∠M=∠EFG,∵∠MGF=∠FGE,∴△MGF∽△FGE,∴,即FG2=MF•EG;(3)解:∵∠M=∠B,cosM=,∴设AH=3k,AB=5k,HB=4k,连接OB,∵∠FOD=∠M,FD=6,∴FO=8=OB=OA,∴OH=8﹣3k,∵OH2+HB2=OB2,∴(4k)2+(8﹣3k)2=82,解得:k=,∵MG∥AB,∴∠MFG=∠BAF,∴∠BGA=∠BAG,∴AB=GB=5k,∴GH=k,∴AG=k,∴AG=.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了等腰三角形的性质、相似三角形的判定与性质和锐角三角函数的定义.四、填空题(每小题4分,共20分)21.(4分)某学校计划开设A、B、C、D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门,为了了解各门课程的选修人数.现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有240人.【分析】根据样本的数据,可得样本C占样本的比例,根据样本的比例,可C 占总体的比例,根据总人数乘以C占得比例,可得答案.【解答】解:C占样本的比例,C占总体的比例是,选修C课程的学生有1200×=240(人),故答案为:240.【点评】本题考查了用样本估计总体,先求出样本所占的比例,估计总体中所占的比例.22.(4分)一元二次方程x2﹣5x﹣4=0的两根为x1和x2,则x12+5x2+3=32.【分析】根据根与系数的关系即可求出答案.【解答】解:由根与系数的关系可知:x1+x2=5,∵x12﹣5x1=4,∴x12+5x2+3=x12﹣5x1+5x1+5x2+3=4+5×5+3=32故答案为:32【点评】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.23.(4分)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE 沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为或.【分析】连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.【解答】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.在Rt△END′中,设ED′=a,①当MD′=3时,AM=7﹣3=4,D′N=5﹣3=2,EN=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,AM=7﹣4=3,D′N=5﹣4=1,EN=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.故答案为:或.【点评】本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.24.(4分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2),点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当四边形CDBF 的面积最大时,E点的坐标为(2,1).【分析】由于四边形CDBF的面积等于△CDB的面积与△BCF的面积之和,当四边形CDBF的面积最大时,即△BCF最大,设点E的坐标为(x,y),利用点E 的坐标表示出△BCF的面积即可求出点E的坐标.【解答】解:过点E作EG⊥x轴于点G,交抛物线于F,将A(﹣1,0),C(0,2)代入y=﹣x2+mx+n解得:∴抛物线的解析式为:y=﹣x2+x+2令y=0代入y=﹣x2+x+2,∴0=﹣x2+x+2解得:x=﹣1或x=4∴B(4,0)∴OB=4设直线BC的解析式为y=kx+b,把B(4,0)和C(0,2)代入y=kx+b∴解得:∴直线BC的解析式为:y=﹣x+2,设E的坐标为:(x,﹣x+2)∴F(x,﹣x2+x+2)∴EF=﹣x2+x+2﹣(﹣x+2)=﹣x2+2x,∴△BCF的面积为:EF•OB=2(﹣x2+2x)=﹣x2+4x=﹣(x﹣2)2+4四边形CDBF的面积最大时,只需要△BCF的面积最大即可,∴当x=2时,△BCF的面积可取得最大值,此时E的坐标为(2,1)【点评】本题考查二次函数的综合问题,解题的关键是求出△BCF的面积的表达式,本题属于中等题型.25.(4分)如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=2,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为﹣1.【分析】连结AE,如图1,先根据等腰直角三角形的性质得到AB=AC=2,再根据圆周角定理,由AD为直径得到∠AED=90°,接着由∠AEB=90°得到点E在以AB为直径的⊙O上,于是当点O、E、C共线时,CE最小,如图2,在Rt△AOC 中利用勾股定理计算出OC=,从而得到CE的最小值为﹣1.【解答】解:连结AE,如图1,∵∠BAC=90°,AB=AC,BC=2,∴AB=AC=2,∵AD为直径,∴∠AED=90°,∴∠AEB=90°,∴点E在以AB为直径的⊙O上,∵⊙O的半径为1,连接OE,OC,∴OE=AB=1在Rt△AOC中,∵OA=2,AC=4,∴OC==,由于OC=,OE=1是定值,点E在线段OC上时,CE最小,如图2,∴CE=OC﹣OE=﹣1,即线段CE长度的最小值为﹣1.故答案为﹣1.【点评】本题考查了等腰直角三角形的性质,圆的有关知识,勾股定理计算线段的长,解决本题的关键是确定E点运动的规律,从而把问题转化为圆外一点到圆上一点的最短距离问题.五、解答题(共3小题,共30分)26.(8分)某文具店经销甲、乙两种不同的笔记本,已知;两种笔记本的进价之和为10元,每个笔记本的利润均为1元,小王同学买4本甲种笔记本和3本乙种笔记本共用了43元.(1)甲、乙两种笔记本的进价分别是多少元?(2)该文具店购入这两种笔记本共60本,花费不超过295元,并且购买甲种笔记本的数量大于乙种笔记本数量的,则问该文具店有哪几种购买方案?(3)店主经统计发现平均每天可售出甲种笔记本300本和乙种笔记本150本.如果两种笔记本的售价各提高1元,则每天将少售出50本甲种笔记本和40本乙种笔记本.为使每天获取的利润更多,店主决定把两种笔记本的价格都提高x元,在不考虑其他因素的条件下,当x定为多少时,才能使该文具店每天销售甲、乙笔记本获取的利润最大?【分析】(1)设甲种笔记本的进价为m元/本,则乙种笔记本的进价为(10﹣m)元/本,根据总价=单价×数量,即可得出关于m的一元一次方程,解之即可得出结论;(2)设购入甲种笔记本n本,则购入乙种笔记本(60﹣n)本,根据“花费不超过295元,并且购买甲种笔记本的数量大于乙种笔记本数量的”,即可得出关于n的一元一次不等式组,解之即可得出n的取值范围,再结合n为正整数,即可得出各购入方案;(3)设把两种笔记本的价格都提高x元的总利润为w元,根据总利润=单本利润×销售数量,即可得出w关于x的函数关系式,利用配方法结合二次函数的性质即可解决最值问题.【解答】解:(1)设甲种笔记本的进价为m元/本,则乙种笔记本的进价为(10﹣m)元/本,根据题意得:4(m+1)+3(10﹣m+1)=43,解得:m=6,∴10﹣m=4.答:甲种笔记本的进价为6元/本,乙种笔记本的进价为4元/本.(2)设购入甲种笔记本n本,则购入乙种笔记本(60﹣n)本,根据题意得:,解得:24<n≤27.5.∵n为正整数,∴m=25、26、27,∴共有三种购入方案:方案一、购入甲种笔记本25本,乙种笔记本35本;方案二、购入甲种笔记本26本,乙种笔记本34本;方案三、购入甲种笔记本27本,乙种笔记本33本.(3)设把两种笔记本的价格都提高x元的总利润为w元,根据题意得:w=(1+x)(300﹣50x)+(1+x)(150﹣40x)=﹣90(x﹣2)2+810,∵在w=﹣90(x﹣2)2+810中,a=﹣90<0,∴当x=2时,w取最大值,最大值为810.答:当x定为2元时,才能使该文具店每天销售甲、乙笔记本获取的利润最大,最大利润为810元.【点评】本题考查了一元一次方程的应用、二次函数的应用、二次函数的性质以及一元一次不等式组的应用,解题的关键是:(1)根据总价=单价×数量,列出关于m的一元一次方程;(2)找准等量关系,列出关于n的一元一次不等式组;(3)根据总利润=单本利润×销售数量,找出w关于x的函数关系式.27.(10分)(1)如图1,将直角的顶点E放在正方形ABCD的对角线AC上,使角的一边交CD于点F,另一边交CB货其延长线于点G,求证:EF=EG.(2)如图2,将(1)中的“正方形ABCD”改为“矩形ABCD”,其他条件不变,若AB=m、BC=n,求的值.(3)如图3,将直角顶点E放在矩形ABCD的对角线交点,EF、EG分别交CD、CB于点F、G,且EC平分∠FEG.若AB=6,BC=10,求EG、EF的长.【分析】(1)作EH⊥BC于H,EI⊥CD于I,证明△GEH≌△FEI,根据全等三角形的性质证明;(2)证明△GEH∽△FEI,△CEH∽△CAB,根据相似三角形的性质计算;(3)作GM⊥EC于M,FN⊥EC于N,根据相似三角形的性质、等腰直角三角形的性质计算.【解答】(1)证明:如图1,作EH⊥BC于H,EI⊥CD于I,∵∠GEF=90°,∠HEI=90°,∴∠GEH=∠FEI,∵CA平分∠BCD,EH⊥BC,EI⊥CD,∴EH=EI,在△GEH和△FEI中,。

2017-2018学年四川省成都市青羊区九年级上期末数学试卷(含答案解析)

2017-2018学年四川省成都市青羊区九年级上期末数学试卷(含答案解析)

2017-2018学年四川省成都市青羊区九年级(上)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.cos30°=()A.B.C.D.2.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A.B.C.D.3.下列说法正确的是()A.对角线相等的四边形是矩形B.有两边及一角对应相等的两个三角形全等C.对角线互相垂直的矩形是正方形D.平分弦的直径垂直于弦4.某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为()A.50(1+x)2=60B.50(1+x)2=120C.50+50(1+x)+50(1+x)2=120D.50(1+x)+50(1+x)2=1205.函数y=自变量x的取值范围是()A.x≥3B.x≤3C.x>3D.x<36.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为()A.40°B.50°C.65°D.75°7.对于抛物线y=(x﹣1)2+2的说法错误的是()A.抛物线的开口向上B.抛物线的顶点坐标是(1,2)C.抛物线与x轴无交点D.当x<1时,y随x的增大而增大8.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y 轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是()A.4B.﹣4C.8D.﹣89.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁10.如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是()A.2DE=3MN B.3DE=2MN C.3∠A=2∠F D.2∠A=3∠F二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“小于3”的概率为12.如图,已知斜坡AB的坡度为1:3.若坡长AB=10m,则坡高BC=m.13.如图,在▱ABCD中,∠C=43°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为.14.如图,AB和DE是直立在地面上的两根立柱,AB=5米,某一时刻AB在阳光下的投影BC =3米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:(﹣1)2017﹣()﹣2•sin60°+|3﹣|(2)解方程:2(x﹣2)2=x2﹣416.(6分)如图,在Rt△ABC中,∠ACB=90°,D为AB中点,AE∥CD,CE∥AB.(1)试判断四边形ADCE的形状,并证明你的结论.(2)连接BE,若∠BAC=30°,CE=1,求BE的长.17.(8分)据新浪网调查,在第十二届全国人大二中全会后,全国网民对政府工作报告关注度非常高,大家关注的网民们关注的热点话题分别有:消费、教育、环保、反腐、及其它共五类,且关注五类热点问题的网民的人数所占百分比如图l所示,关注该五类热点问题网民的人数的不完整条形统计如图2所示,请根据图中信息解答下列问题.(1)求出图l中关注“反腐”类问题的网民所占百分比x的值,并将图2中的不完整的条形统计图补充完整;(2)为了深入探讨政府工作报告,新浪网邀请成都市5名网民代表甲、乙、丙、丁、戊做客新浪访谈,且一次访谈只选2名代表,请你用列表法或画树状图的方法,求出一次所选代表恰好是甲和乙的概率.18.(8分)如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A到达点B时,它经过了200m,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面夹角∠β=42°,求缆车从点A到点D垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)19.(10分)如图,在平面直角坐标系中,直线l与x轴相交于点M(3,0),与y轴相交于点N(0,4),点A为MN的中点,反比例函数y=(x>0)的图象过点A.(1)求直线l和反比例函数的解析式;(2)在函数y=(k>0)的图象上取异于点A的一点C,作CB⊥x轴于点B,连接OC交直线l于点P,若△ONP的面积是△OBC面积的3倍,求点P的坐标.20.(10分)如图1,等腰△ABC中,AC=BC,点O在AB边上,以O为圆心的圆经过点C,交AB边于点D,EF为⊙O的直径,EF⊥BC于点G,且D是的中点.(1)求证:AC是⊙O的切线;(2)如图2,延长CB交⊙O于点H,连接HD交OE于点P,连接CF,求证:CF=DO+OP;(3)在(2)的条件下,连接CD,若tan∠HDC=,CG=4,求OP的长.一、填空题(每小题4分,共20分)21.已知关于x的一元二次方程x2﹣mx+2m﹣1=0的两根x1、x2满足x12+x22=14,则m=22.如图,由点P(14,1),A(a,0),B(0,a)(0<a<14)确定的△PAB的面积为18,则a的值为.23.如图,在直角坐标系中,⊙A的圆心的坐标为(﹣2,0),半径为2,点P为直线y=﹣x+6上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是.24.如图,已知△ABC、△DCE、△FEG、△HGI是4个全等的等腰三角形,底边BC、CE、EG、GI在同一直线上,且AB=2,BC=1,连接AI,交FG于点Q,则QI=.25.如图,已知正方形纸片ABCD的边是⊙O半径的4倍,点O是正方形ABCD的中心,将纸片保持图示方式折叠,使EA1恰好与⊙O相切于点A1,则tan∠A1EF的值为.二、解答题(共30分)26.(8分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.27.(10分)如图,已知一个三角形纸片ACB ,其中∠ACB =90°,AC =8,BC =6,E 、F 分别是AC 、AB 边上的点,连接EF .(1)如图1,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF =4S △EDF ,求ED 的长;(2)如图2,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且使MF ∥CA .①试判断四边形AEMF 的形状,并证明你的结论; ②求EF 的长;(3)如图3,若FE 的延长线与BC 的延长线交于点N ,CN =2,CE =,求的值.28.(12分)如图,直线y =﹣2x +3与x 轴交于点C ,与y 轴交于点B ,抛物线y =ax 2+x +c 经过B 、C 两点. (1)求抛物线的解析式;(2)如图,点E 是直线BC 上方抛物线上的一动点,当△BEC 面积最大时,请求出点E 的坐标和△BEC 面积的最大值?(3)在(2)的结论下,过点E 作y 轴的平行线交直线BC 于点M ,连接AM ,点Q 是抛物线对称轴上的动点,在抛物线上是否存在点P ,使得以P 、Q 、A 、M 为顶点的四边形是平行四边形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.2017-2018学年四川省成都市青羊区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.cos30°=()A.B.C.D.【分析】直接根据cos30°=解答即可.【解答】解:由特殊角的三角函数值可知,cos30°=.故选:B.【点评】本题考查的是特殊角的三角函数,只要熟记cos30°=便可轻松解答.2.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可.【解答】解:从左面可看到一个长方形和上面一个长方形.故选:A.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.下列说法正确的是()A.对角线相等的四边形是矩形B.有两边及一角对应相等的两个三角形全等C.对角线互相垂直的矩形是正方形D.平分弦的直径垂直于弦【分析】根据各知识点利用排除法求解.【解答】解:A、对角线相等的平行四边形是矩形,错误;B、有两边及夹角对应相等的两个三角形全等,错误;C、对角线互相垂直的矩形是正方形,正确;D、两条直径一定互相平分,但是不一定垂直,错误;故选:C.【点评】此题主要考查全等三角形的判定、正方形的判定、矩形的判定、垂径定理,关键是根据知识点进行判断.4.某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为()A.50(1+x)2=60B.50(1+x)2=120C.50+50(1+x)+50(1+x)2=120D.50(1+x)+50(1+x)2=120【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设二、三月份每月的平均增长率为x,根据“计划二、三月份共生产120台”,即可列出方程.【解答】解:设二、三月份每月的平均增长率为x,则二月份生产机器为:50(1+x),三月份生产机器为:50(1+x)2;又知二、三月份共生产120台;所以,可列方程:50(1+x)+50(1+x)2=120.故选:D.【点评】本题可根据增长率的一般规律找到关键描述语,列出方程;平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.5.函数y=自变量x的取值范围是()A.x≥3B.x≤3C.x>3D.x<3【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式求解.【解答】解:根据题意得:3﹣x>0,解得x<3.故选D.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.6.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为()A.40°B.50°C.65°D.75°【分析】根据切线的性质可判断∠OBA=90°,再由∠BAO=40°可得出∠O=50°,在等腰△OBC中求出∠OCB即可.【解答】解:∵AB是⊙O的切线,B为切点,∴OB⊥AB,即∠OBA=90°,∵∠BAO=40°,∴∠O=50°,∵OB=OC(都是半径),∴∠OCB=(180°﹣∠O)=65°.故选:C.【点评】本题考查了切线的性质,解答本题的关键在判断出∠OBA为直角,△OBC是等腰三角形,难度一般.7.对于抛物线y=(x﹣1)2+2的说法错误的是()A.抛物线的开口向上B.抛物线的顶点坐标是(1,2)C.抛物线与x轴无交点D.当x<1时,y随x的增大而增大【分析】根据二次函数的性质,二次函数的顶点式即可判断;【解答】解:∵a=1>0,∴抛物线开口向上,∵二次函数为y=a(x﹣h)2+k顶点坐标是(h,k),∴二次函数y=(x﹣1)2+2的图象的顶点坐标是(1,2),∵抛物线顶点(1,2),开口向上,∴抛物线与x轴没有交点,故A、B、C正确故选:D.【点评】此题考查了二次函数的性质,二次函数为y=a(x﹣h)2+k顶点坐标是(h,k),解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y 轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是()A.4B.﹣4C.8D.﹣8【分析】连结OA,如图,利用三角形面积公式得到S△OAB =S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB =S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8.故选:D.【点评】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.9.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选:A.【点评】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.10.如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是()A.2DE=3MN B.3DE=2MN C.3∠A=2∠F D.2∠A=3∠F【分析】位似是特殊的相似,相似图形对应边的比相等.【解答】解:∵正五边形FGHMN和正五边形ABCDE位似,∴DE:MN=AB:FG=2:3,∴3DE=2MN.故选:B.【点评】本题考查的是位似变换.位似变换的两个图形相似.根据相似多边形对应边成比例得DE:MN=2:3.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“小于3”的概率为【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【解答】解:根据题意可得:标号小于3有1,2,两个球,共3个球,从中随机摸出一个小球,其标号小于3的概率为是:.故答案为:.【点评】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.12.如图,已知斜坡AB的坡度为1:3.若坡长AB=10m,则坡高BC=m.【分析】设BC=xm,根据坡度的概念求出AC,根据勾股定理计算即可.【解答】解:设BC=xm,∵斜坡AB的坡度为1:3,∴AC=3x,由勾股定理得,x2+(3x)2=102,解得,x=,故答案为:.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度的概念、灵活运用勾股定理是解题的关键.13.如图,在▱ABCD中,∠C=43°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为47°.【分析】由平行四边形的对角相等可得∠A=43°,根据直角三角形的两个锐角互余得到∠AED =47°,再利用对顶角相等即可求解.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C=43°.∵DF⊥AD,∴∠ADE=90°,∴∠AED=90°﹣43°=47°,∴∠BEF=∠AED=47°.故答案是:47°.【点评】本题考查了平行四边形的性质,直角三角形两锐角互余的性质,对顶角相等的性质,利用平行四边形的对角相等得出∠A=43°是解题的关键.14.如图,AB和DE是直立在地面上的两根立柱,AB=5米,某一时刻AB在阳光下的投影BC =3米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为10m.【分析】根据平行的性质可知△ABC∽△DEF,利用相似三角形对应边成比例即可求出DE的长.【解答】解:如图,在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,∵△ABC∽△DEF,AB=5m,BC=3m,EF=6m∴=∴∴DE=10(m)故答案为10m.【点评】本题通过投影的知识结合图形相似的性质巧妙地求出灯泡离地面的距离,是平行投影性质在实际生活中的应用.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:(﹣1)2017﹣()﹣2•sin60°+|3﹣|(2)解方程:2(x﹣2)2=x2﹣4【分析】(1)根据实数的运算解答即可;(2)根据因式分解法解答即可.【解答】解:(1)原式==﹣4;(2)2(x﹣2)2=x2﹣4(x﹣2)(2x﹣4﹣x﹣2)=0(x﹣2)(x﹣6)=0解得:x1=2,x2=6.【点评】(1)考查了特殊三角函数值;(2)本题考查了解一元二次方程的方法,因式分解法是解一元二次方程的一种简便方法,要会灵活运用.当化简后不能用分解因式的方法即可考虑求根公式法,此法适用于任何一元二次方程.16.(6分)如图,在Rt△ABC中,∠ACB=90°,D为AB中点,AE∥CD,CE∥AB.(1)试判断四边形ADCE的形状,并证明你的结论.(2)连接BE,若∠BAC=30°,CE=1,求BE的长.【分析】(1)先证明四边形ADCE是平行四边形,再由直角三角形斜边上的中线性质,得出CD=AB=AD,即可得出四边形ADCE为菱形;(2)依据∠ABC=60°,DB=DC,可得△BCD是等边三角形,依据∠BAE=60°,∠ABE=30°,可得△ABE是直角三角形,最后根据CE=1=AE,即可得到BE的长.【解答】解:(1)∵AE∥CD,CE∥AB,∴四边形ADCE是平行四边形,∵∠ACB=90°,D为AB的中点,∴CD=AB=AD,∴四边形ADCE为菱形;(2)∵∠BAC=30°,四边形ADCE为菱形,∴∠BAE=60°=∠DCE,又∵∠ACB=90°,∴∠DBC=60°,而DB=DC,∴△BCD是等边三角形,∴∠DCB=60°,∴∠BCE=120°,又∵BC=CD=CE,∴∠CBE=30°,∴∠ABE=30°,∴△ABE中,∠AEB=90°,又∵AE=CE=1,∴AB=2,∴BE==.【点评】本题主要考查了菱形的判定与性质、平行四边形的判定、直角三角形斜边上的中线性质;熟练掌握菱形的判定与性质,证明四边形ADCE是菱形是解决问题的关键.解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.17.(8分)据新浪网调查,在第十二届全国人大二中全会后,全国网民对政府工作报告关注度非常高,大家关注的网民们关注的热点话题分别有:消费、教育、环保、反腐、及其它共五类,且关注五类热点问题的网民的人数所占百分比如图l所示,关注该五类热点问题网民的人数的不完整条形统计如图2所示,请根据图中信息解答下列问题.(1)求出图l中关注“反腐”类问题的网民所占百分比x的值,并将图2中的不完整的条形统计图补充完整;(2)为了深入探讨政府工作报告,新浪网邀请成都市5名网民代表甲、乙、丙、丁、戊做客新浪访谈,且一次访谈只选2名代表,请你用列表法或画树状图的方法,求出一次所选代表恰好是甲和乙的概率.【分析】(1)根据单位“1”,求出反腐占的百分比,得到x的值;根据环保人数除以占的百分比得到总人数,求出教育与反腐及其他的人数,补全条形统计图即可;(2)画出树状图列出所有等可能结果,找到一次所选代表恰好是甲和乙的结果数,再利用概率公式求解可得.【解答】解:(1)1﹣15%﹣30%﹣25%﹣10%=20%,所以x=20,总人数为:140÷10%=1400(人)关注教育问题网民的人数1400×25%=350(人),关注反腐问题网民的人数1400×20%=280(人),关注其它问题网民的人数1400×15%=210(人),如图2,补全条形统计图,(2)画树状图如下:由树状图可知共有20种等可能结果,其中一次所选代表恰好是甲和乙的有2种结果,所以一次所选代表恰好是甲和乙的概率为=.【点评】本题主要考查了条形统计图,扇形统计图及列表法与树状图法,解题的关键是读懂题意,从统计图上获得信息数据来解决问题.18.(8分)如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A到达点B时,它经过了200m,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面夹角∠β=42°,求缆车从点A到点D垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)【分析】本题要求的实际是BC和DF的长度,已知了AB、BD都是200米,可在Rt△ABC和Rt△BFD中用α、β的正切函数求出BC、DF的长.【解答】解:Rt△ABC中,斜边AB=200米,∠α=16°,BC=AB•sinα=200×sin16°≈54(m),Rt△BDF中,斜边BD=200米,∠β=42°,DF=BD•sinβ=200×sin42°≈132,因此缆车垂直上升的距离应该是BC+DF=186(米).答:缆车垂直上升了186米.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题,锐角三角函数的定义,结合图形理解题意是解决问题的关键.19.(10分)如图,在平面直角坐标系中,直线l 与x 轴相交于点M (3,0),与y 轴相交于点N (0,4),点A 为MN 的中点,反比例函数y =(x >0)的图象过点A . (1)求直线l 和反比例函数的解析式;(2)在函数y =(k >0)的图象上取异于点A 的一点C ,作CB ⊥x 轴于点B ,连接OC 交直线l 于点P ,若△ONP 的面积是△OBC 面积的3倍,求点P 的坐标.【分析】(1)根据点M 、N 的坐标利用待定系数法可求出直线l 的解析式,根据点A 为线段MN 的中点可得出点A 的坐标,根据点A 的坐标利用待定系数法可求出反比例函数解析式;(2)根据反比例函数系数k 的几何意义可求出S △OBC 的面积,设点P 的坐标为(a ,﹣ a +4),根据三角形的面积公式结合S △ONP 的面积即可求出a 值,进而即可得出点P 的坐标. 【解答】解:(1)设直线l 的解析式为y =mx +n (m ≠0), 将(3,0)、(0,4)代入y =mx +n ,得,解得:,∴直线l 的解析式为y =﹣x +4. ∵点A 为线段MN 的中点,∴点A 的坐标为(,2).将A (,2)代入y =,得k =×2=3,∴反比例函数解析式为y =;(2)∵S △OBC =|k |=,∴S △ONP =3S △OBC =.∵点N(0,4),∴ON=4.设点P的坐标为(a,﹣a+4),则a>0,=ON•a=2a,∴S△ONP∴a=,则﹣a+4=﹣×+4=1,∴点P的坐标为(,1).【点评】本题考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式以及一次函数图象上点的坐标特征,根据点的坐标利用待定系数法求出函数解析式是解题的关键.20.(10分)如图1,等腰△ABC中,AC=BC,点O在AB边上,以O为圆心的圆经过点C,交AB边于点D,EF为⊙O的直径,EF⊥BC于点G,且D是的中点.(1)求证:AC是⊙O的切线;(2)如图2,延长CB交⊙O于点H,连接HD交OE于点P,连接CF,求证:CF=DO+OP;(3)在(2)的条件下,连接CD,若tan∠HDC=,CG=4,求OP的长.【分析】(1)如图1中,先判断出∠A+∠BOF=90°,再判断出∠COD=∠EOD=∠BOF,即可得出∠A+∠COD=90°;(2)如图2中,连接OC,首先证明FC=FH,再证明点K在以F为圆心FC为半径的圆上即可解决问题;(3)先求出CH=2CG=8,进而用tan∠CMH==tan∠HDC=,得出,求出MH=,进而CM=,即可得出OD=OF=,再求出OG=MH=,进而得出FG=OF ﹣OG=3,再根据勾股定理得,CF=5,借助(2)的结论即可得出结论.【解答】(1)证明:如图1中,连接OC.∵OF⊥BC,∴∠B+∠BOF=90°,∵AC=BC,∴∠A+∠B=90°,∴∠A+∠BOF=90°,∵点D是的中点,∴,∴∠COD=∠EOD=∠BOF,∴∠A+∠COD=90°,∴∠ACO=9°,∴OC⊥AC,∴AC是⊙O的切线,(2)证明:如图2中,连接OC,∵EF⊥HC,∴CG=GH,∴EF垂直平分HC,∴FC=FH,∵∠CFP=∠COE,∵∠COD=∠DOE,∴∠CFP=∠COD,∵∠CHP=∠COD,∴∠CHP=∠CFP,∴点P在以F为圆心FC为半径的圆上,∴FC=FP=FH,∵DO=OF,∴DO+OP=OF+OP=FP=CF,即CF=OP+DO;(3)解:如图3,连接CO并延长交⊙O于M,连接MH,∴∠∠CMH=∠CDH,∠CHM=90°,∵OF⊥CH于G,∴CH=2CG=8,在Rt△CHM中,tan∠CMH==tan∠HDC=,∴,∴MH=,∴CM==,∴OD=OF=∵∠CGO=∠CHM=90°,∴OG∥MH,∵OC=OM,∴OG=MH=,∴FG=OF﹣OG=3,在Rt△CGF中,根据勾股定理得,CF==5,由(2)知,OP=CF﹣OD=5﹣=.【点评】本题考查了圆的综合知识及勾股定理的应用、相似三角形的判定和性质的应用等知识,综合性强,难度较大,能够正确的作出辅助线是解答本题的关键.一、填空题(每小题4分,共20分)21.已知关于x的一元二次方程x2﹣mx+2m﹣1=0的两根x1、x2满足x12+x22=14,则m=﹣2【分析】由根与系数的关系可用m表示出x1+x2和x1x2的值,利用条件可得到关于m的方程,则可求得m的值,再代入方程进行判断求解.【解答】解:∵关于x的一元二次方程x2﹣mx+2m﹣1=0的两根是x1、x2,∴x1+x2=m,x1x2=2m﹣1,∴x12+x22=(x1+x2)2﹣2x1x2=m2﹣2(2m﹣1),∵x12+x22=14,∴m2﹣2(2m﹣1)=14,解得m=6或m=﹣2,当m=6时,方程为x2﹣6x+11=0,此时△=(﹣6)2﹣4×11=36﹣44=﹣8<0,不合题意,舍去,∴m=﹣2,故答案为:﹣2.【点评】本题主要考查根与系数的关系,掌握一元二次方程的两根之和等于﹣、两根之积等于是解题的关键.22.如图,由点P(14,1),A(a,0),B(0,a)(0<a<14)确定的△PAB的面积为18,则a 的值为 3或12 .【分析】当0<a <14时,作PD ⊥x 轴于点D ,由P (14,1),A (a ,0),B (0,a )就可以表示出△ABP 的面积,建立关于a 的方程求出其解即可. 【解答】解:当0<a <14时, 如图,作PD ⊥x 轴于点D ,∵P (14,1),A (a ,0),B (0,a ), ∴PD =1,OD =14,OA =a ,OB =a ,∴S △PAB =S 梯形OBPD ﹣S △OAB ﹣S △ADP =×14(a +1)﹣a 2﹣×1×(14﹣a )=18, 解得:a 1=3,a 2=12; 故答案为:3或12【点评】本题考查了坐标与图形的性质,三角形的面积公式的运用,梯形的面积公式的运用,点的坐标的运用,解答时运用三角形和梯形的面积建立方程求解是关键.23.如图,在直角坐标系中,⊙A 的圆心的坐标为(﹣2,0),半径为2,点P 为直线y =﹣x +6上的动点,过点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是 4.【分析】连接AP,PQ,当AP最小时,PQ最小,当AP⊥直线y=﹣x+6时,PQ最小,根据全等三角形的性质得到AP=6,根据勾股定理即可得到结论.【解答】解:如图,作AP⊥直线y=﹣x+6,垂足为P,作⊙A的切线PQ,切点为Q,此时切线长PQ最小,∵A的坐标为(﹣2,0),设直线与x轴,y轴分别交于B,C,∴B(0,6),C(8,0),∴OB=6,AC=,10,∴BC==10,∴AC=BC,在△APC与△BOC中,,∴△APC≌△BOC,∴AP=OB=6,∴PQ==4.故答案为4【点评】本题主要考查切线的性质,掌握过切点的半径与切线垂直是解题的关键,用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.24.如图,已知△ABC、△DCE、△FEG、△HGI是4个全等的等腰三角形,底边BC、CE、EG、GI在同一直线上,且AB=2,BC=1,连接AI,交FG于点Q,则QI=.【分析】由题意得出BC=1,BI=4,则=,再由∠ABI=∠ABC,得△ABI∽△CBA,根据相似三角形的性质得=,求出AI,根据全等三角形性质得到∠ACB=∠FGE,于是得到AC∥FG,得到比例式==,即可得到结果.【解答】解:∵△ABC、△DCE、△FEG是三个全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=4BC=4,∴==,=,∴=,∵∠ABI=∠ABC,∴△ABI∽△CBA;∴=,∵AB=AC,∴AI=BI=4;∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故答案为:.【点评】本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解AB∥CD∥EF,AC∥DE∥FG是解题的关键.25.如图,已知正方形纸片ABCD的边是⊙O半径的4倍,点O是正方形ABCD的中心,将纸片保持图示方式折叠,使EA1恰好与⊙O相切于点A1,则tan∠A1EF的值为.【分析】在RT△FMO中利用勾股定理得出AF与r的关系,设r=6a,则x=7a,AM=MO=12a,FM=5a,AF=FA1=7a,利用A1N∥OM得到求出AN,NA1,再证明∠1=∠2即可解决问题.【解答】解:如图,连接AA1,EO,作OM⊥AB,A1N⊥AB,垂足分别为M、N.设⊙O的半径为r,则AM=MO=2r,设AF=FA1=x,在RT△FMO中,∵FO2=FM2+MO2,∴(r+x)2=(2r﹣x)2+(2r)2,∴7r=6x,设r=6a则x=7a,AM=MO=12a,FM=5a,AF=FA1=7a,∵A1N∥OM,∴,∴,∴A1N=a,FN=a,AN=a,∵∠1+∠4=90°,∠4+∠3=90°,∠2=∠3,∴∠1=∠3=∠2,∴tan∠2=tan∠1==.故答案为.【点评】本题考查正方形的性质、圆的有关知识、勾股定理,平行线分线段成比例定理等知识,用设未知数列方程的数学思想是解决问题的关键. 二、解答题(共30分)26.(8分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:(1)求y 与x 之间的函数表达式;(2)设商品每天的总利润为W (元),则当售价x 定为多少元时,厂商每天能获得最大利润?最大利润是多少?(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由. 【分析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况.(3)求得W =1350时x 的值,再根据二次函数的性质求得W ≥1350时x 的取值范围,继而根据“每千克售价不低于成本且不高于80元”得出答案. 【解答】解:(1)设y =kx +b , 将(50,100)、(60,80)代入,得:,解得:, ∴y =﹣2x +200 (40≤x ≤80);(2)W =(x ﹣40)(﹣2x +200) =﹣2x 2+280x ﹣8000 =﹣2(x ﹣70)2+1800,∴当x =70时,W 取得最大值为1800,答:售价为70元时获得最大利润,最大利润是1800元.(3)当W =1350时,得:﹣2x 2+280x ﹣8000=1350, 解得:x =55或x =85, ∵该抛物线的开口向下,所以当55≤x ≤85时,W ≥1350,又∵每千克售价不低于成本,且不高于80元,即40≤x ≤80, ∴该商品每千克售价的取值范围是55≤x ≤80.【点评】本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及二次函数的性质.27.(10分)如图,已知一个三角形纸片ACB ,其中∠ACB =90°,AC =8,BC =6,E 、F 分别是AC 、AB 边上的点,连接EF .(1)如图1,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF =4S △EDF ,求ED 的长;(2)如图2,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且使MF ∥CA .①试判断四边形AEMF 的形状,并证明你的结论; ②求EF 的长;(3)如图3,若FE 的延长线与BC 的延长线交于点N ,CN =2,CE =,求的值.【分析】(1)先利用折叠的性质得到EF ⊥AB ,△AEF ≌△DEF ,则S △AEF =S △DEF ,则易得S △ABC =5S △AEF ,再证明Rt △AEF ∽Rt △ABC ,然后根据相似三角形的性质得到两个三角形面积比和AB ,AE 的关系,再利用勾股定理求出AB 即可得到AE 的长;(2)首先判断四边形AEMF 为菱形;再连结AM 交EF 于点O ,设AE =x ,则EM =x ,CE =8﹣x ,先证明△CME ∽△CBA 得到关于x 的比例式,解出x 后计算出CM 的值,再利用勾股定理计算出AM ,然后根据菱形的面积公式计算EF ;(3)作FH ⊥BC 于H ,先证明△NCE ∽△NFH ,利用相似比得到,设FH =4x ,NH =7x ,则CH =7x ﹣2,BH =6﹣(7x ﹣2)=8﹣7x ,再证明△BFH ∽△BAC ,利用相似比可计算出x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年四川省成都市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃2.(3分)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.3.(3分)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×10114.(3分)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<15.(3分)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a67.(3分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分60708090100(分)人数(人)7121083则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分8.(3分)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:9.(3分)已知x=3是分式方程﹣=2的解,那么实数k的值为()A.﹣1 B.0 C.1 D.210.(3分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0D.abc>0,b2﹣4ac<0二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(﹣1)0=.12.(4分)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为.13.(4分)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A (2,1),当x<2时,y1y2.(填“>”或“<”).14.(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.16.(6分)化简求值:÷(1﹣),其中x=﹣1.17.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.18.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.20.(12分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC 于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA 于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)如图,数轴上点A表示的实数是.22.(4分)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.23.(4分)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.24.(4分)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=.25.(4分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC 的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG= cm.五、解答题(本大题共3小题,共30分)26.(8分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站A B C D E891011.513 x(千米)1820222528 y1(分钟)(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.27.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.28.(10分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x 轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.2017年四川省成都市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.2.(3分)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.【解答】解:从上边看一层三个小正方形,故选:C.3.(3分)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×1011【解答】解:647亿=647 0000 0000=6.47×1010,故选:C.4.(3分)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<1【解答】解:由题意可知:x﹣1≥0,∴x≥1,故选(A)5.(3分)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.6.(3分)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a6【解答】解:A.a5+a5=2a5,所以此选项错误;B.a7÷a=a6,所以此选项正确;C.a3•a2=a5,所以此选项错误;D.(﹣a3)2=a6,所以此选项错误;故选B.7.(3分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60708090100人数(人)7121083则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分【解答】解:70分的有12人,人数最多,故众数为70分;处于中间位置的数为第20、21两个数,都为80分,中位数为80分.故选:C.8.(3分)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∴DA:D′A′=OA:OA′=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:()2=,故选:A.9.(3分)已知x=3是分式方程﹣=2的解,那么实数k的值为()A.﹣1 B.0 C.1 D.2【解答】解:将x=3代入﹣=2,∴解得:k=2,故选(D)10.(3分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0D.abc>0,b2﹣4ac<0【解答】解:根据二次函数的图象知:抛物线开口向上,则a>0;抛物线的对称轴在y轴右侧,则x=﹣>0,即b<0;抛物线交y轴于负半轴,则c<0;∴abc>0,∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故选B.二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(﹣1)0=1.【解答】解:(﹣1)0=1.故答案为:1.12.(4分)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为40°.【解答】解:∵∠A:∠B:∠C=2:3:4,∴设∠A=2x,∠B=3x,∠C=4x,∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得:x=20°,∴∠A的度数为:40°.故答案为:40°.13.(4分)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A (2,1),当x<2时,y1<y2.(填“>”或“<”).【解答】解:由图象知,当x<2时,y2的图象在y1上右,∴y1<y2.故答案为:<.14.(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为15.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.【解答】解:(1)原式=﹣1﹣2+2×+4=﹣1﹣2++4=3;(2),①可化简为2x﹣7<3x﹣3,﹣x<4,x>﹣4,②可化简为2x≤1﹣3,则x≤﹣1.不等式的解集是﹣4<x≤﹣1.16.(6分)化简求值:÷(1﹣),其中x=﹣1.【解答】解:÷(1﹣)=•=,∵x=﹣1,∴原式==.17.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有50人,估计该校1200名学生中“不了解”的人数是360人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.【解答】解:(1)4÷8%=50(人),1200×(1﹣40%﹣22%﹣8%)=360(人);故答案为:50,360;(2)画树状图,共有12根可能的结果,恰好抽到一男一女的结果有8个,∴P(恰好抽到一男一女的)==.18.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.【解答】解:过B作BD⊥AC于点D.在Rt△ABD中,AD=AB•cos∠BAD=4cos60°=4×=2(千米),BD=AB•sin∠BAD=4×=2(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=2(千米),∴BC=BD=2(千米).答:B,C两地的距离是2千米.19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.【解答】解:(1)把A(a,﹣2)代入y=x,可得a=﹣4,∴A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得k=8,∴反比例函数的表达式为y=,∵点B与点A关于原点对称,∴B(4,2);(2)如图所示,过P作PE⊥x轴于E,交AB于C,设P(m,),则C(m,m),∵△POC的面积为3,∴m×|m﹣|=3,解得m=2或2,∴P(2,)或(2,4).20.(12分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC 于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA 于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.【解答】证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)如图2,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵DH⊥AC,且点A是EH中点,设AE=x,EC=4x,则AC=3x,连接AD,则在⊙O中,∠ADB=90°,AD⊥BD,∵AB=AC,∴D是BC的中点,∴OD是△ABC的中位线,∴OD∥AC,OD=AC=×3x=,∵OD∥AC,∴∠E=∠ODF,在△AEF和△ODF中,∵∠E=∠ODF,∠OFD=∠AFE,∴△AEF∽△ODF,∴,∴==,∴=;(3)如图2,设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+1,∴AF=AB﹣BF=2OB﹣BF=2r﹣(1+r)=r﹣1,在△BFD和△EFA中,∵,∴△BFD∽△EFA,∴,∴=,解得:r1=,r2=(舍),综上所述,⊙O的半径为.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)如图,数轴上点A表示的实数是﹣1.【解答】解:由图形可得:﹣1到A的距离为=,则数轴上点A表示的实数是:﹣1.故答案为:﹣1.22.(4分)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.【解答】解:由两根关系,得根x1+x2=5,x1•x2=a,由x12﹣x22=10得(x1+x2)(x1﹣x2)=10,若x1+x2=5,即x1﹣x2=2,∴(x1﹣x2)2=(x1+x2)2﹣4x1•x2=25﹣4a=4,∴a=,故答案为:.23.(4分)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.【解答】解:设⊙O的半径为1,则AD=,=π,故S圆O阴影部分面积为:π×2+×﹣π=2,则P1=,P2=,故=.故答案为:.24.(4分)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=﹣.【解答】解:设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),∵AB===(b﹣a)=2,∴b﹣a=2,即b=a+2.∵点A′,B′均在反比例函数y=的图象上,∴,解得:k=﹣.故答案为:﹣.25.(4分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC 的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.【解答】解:作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,∵GF⊥AA′,∴∠AFG+∠FAK=90°,∠MGF+∠MFG=90°,∴∠MGF=∠KAC′,∴△AKC′≌△GFM,∴GF=AK,∵AN=4.5cm,A′N=1.5cm,C′K∥A′N,∴=,∴=,∴C′K=1cm,在Rt△AC′K中,AK==cm,∴FG=AK=cm,故答案为.五、解答题(本大题共3小题,共30分)26.(8分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:A B C D E地铁站891011.513 x(千米)1820222528 y1(分钟)(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.【解答】解:(1)设y1=kx+b,将(8,18),(9,20),代入得:,解得:,故y1关于x的函数表达式为:y1=2x+2;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=2x+2+x2﹣11x+78=x2﹣9x+80,∴当x=9时,y有最小值,y min==39.5,答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.27.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.【解答】迁移应用:①证明:如图②∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,,∴△DAB≌△EAC,②解:结论:CD=AD+BD.理由:如图2﹣1中,作AH⊥CD于H.∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=AD+BD.拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,∴BC=BE=BD=BA,FE=FC,∴A、D、E、C四点共圆,∴∠ADC=∠AEC=120°,∴∠FEC=60°,∴△EFC是等边三角形,②解:∵AE=5,EC=EF=2,∴AH=HE=2.5,FH=4.5,在Rt△BHF中,∵∠BFH=30°,∴=cos30°,∴BF==3.28.(10分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x 轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.【解答】解:(1)由题意抛物线的顶点C(0,4),A(﹣2,0),设抛物线的解析式为y=ax2+4,把A(﹣2,0)代入可得a=﹣,∴抛物线C的函数表达式为y=﹣x2+4.(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为y=(x﹣2m)2﹣4,由,消去y得到x2﹣2mx+2m2﹣8=0,由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有,解得2<m<2,∴满足条件的m的取值范围为2<m<2.(3)结论:四边形PMP′N能成为正方形.理由:1情形1,如图,作PE⊥x轴于E,MH⊥x轴于H.由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,∴PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵点M在y=﹣x2+4上,∴m﹣2=﹣(m+2)2+4,解得m=﹣3或﹣﹣3(舍弃),∴m=﹣3时,四边形PMP′N是正方形.情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),把M(m﹣2,2﹣m)代入y=﹣x2+4中,2﹣m=﹣(m﹣2)2+4,解得m=6或0(舍弃),∴m=6时,四边形PMP′N是正方形.综上,四边形PMP′N能成为正方形,m=﹣3或6.。

相关文档
最新文档