机械专业英语论文1

合集下载

机械专业类英语文章阅读

机械专业类英语文章阅读

机械专业类英语文章阅读篇一:机械专业英语作文1Mechanical engineeringEngineering Science in life are widely used, especially in mechanical engineering in the application of life is almost throughout life in all its aspects, to automobiles, aircraft, small electric fans, umbrella, all of these and related machinery. The project includes many subjects, but the mechanical engineering is one of the most important subjects, not only because of our life and itis closely related to, but with the progress of the times, people have to rely on mechanical engineering products, in automation today, machine instead of many this is the part of the human labor, improve the efficiency and save time.As a result of mechanical engineering in every aspect of life, therefore, as an engineer, be faced with a great many challenges, in addition to a solid with knowledge, but also keep pace with the times, familiar with the machinery and related software, can be very good use of software, and as a an engineer, we should try our best to design and produce and closely related to the life of the machine, and can in life play a real role, also have only such, we address and remission now social needs, therefore, the mechanical engineering in the future social development, will play the important role, especially China s case, the industry also is not very developed, machinery can be greater development space.Before the industrial revolution, machinery is mostly wood structure, wood made by hand by. The development of social economy,the demand for mechanical products. The bulk of the production increasing and precision processing technology progress, promote the mass production method ( interchangeability of parts production, professional division of labor and cooperation, water processinglines and assembly lines ) formation. Study of mechanical products in the manufacturing process, especially when used in the pollution of the environment and natural resources excessive consumption problems and their treatment measures. This is a modern mechanical engineering is an especially important task to grow with each passing day, andits importance.Application of mechanical products. This includes selection, ordering, acceptance, installation, adjustment, operation, maintenance, repair and transformation of the industrial use of machinery and complete sets of machinery and equipment, to ensurethat the mechanical products in the long-term use of reliability and economy.As a student, we are now the most important to learn professional knowledge, only in this way, can we later life and learning, to doits part.机械工程工程科学在生活中应用广泛,特别是机械工程在生活中的应用几乎就是遍布了生活中的各个方面,大到汽车、飞机,小到电风扇、雨伞,这些都和机械有关。

机械专业介绍英语作文

机械专业介绍英语作文

机械专业介绍英语作文The field of mechanical engineering is a diverse and dynamic discipline that encompasses the design, development, and implementation of a wide range of mechanical systems and devices. As a mechanical engineering student, I have had the opportunity to delve into the intricacies of this fascinating field, and I am excited to share my insights with you.At the core of mechanical engineering is the understanding and application of fundamental principles of physics, mathematics, and materials science. Mechanical engineers utilize these principles to create innovative solutions to complex problems, ranging from the design of simple machines to the development of advanced technologies that power our modern world.One of the key aspects of mechanical engineering is the design process. Mechanical engineers are responsible for conceptualizing, designing, and optimizing the performance of mechanical systems and components. This involves the use of computer-aided design (CAD) software, finite element analysis (FEA) tools, and other advanced modeling and simulation techniques to test and refine their designs.Another crucial aspect of mechanical engineering is the manufacturing and production of mechanical systems. Mechanical engineers work closely with manufacturing teams to ensure that their designs can be effectively and efficiently produced. This may involve the selection of appropriate materials, the implementation of advanced manufacturing processes, and the development of quality control measures to ensure the reliability and durability of the final product.In addition to design and manufacturing, mechanical engineers are also involved in the operation and maintenance of mechanical systems. They may be responsible for troubleshooting and repairing equipment, optimizing system performance, and developing preventive maintenance strategies to ensure the long-term reliability and efficiency of mechanical systems.One of the most exciting aspects of mechanical engineering is the opportunity to work on a wide range of applications and industries. Mechanical engineers can be found in sectors such as aerospace, automotive, energy, healthcare, and manufacturing, among others. This diversity of applications allows mechanical engineers to apply their skills and knowledge to solve complex problems and contribute to the advancement of technology and society.As a mechanical engineering student, I have had the privilege of exploring various specializations within the field. For example, I have delved into the design and analysis of thermal systems, such as heating, ventilation, and air conditioning (HVAC) systems, as well as the development of advanced energy conversion technologies, such as wind turbines and solar power systems.I have also had the opportunity to work on projects that involve the design and optimization of mechanical components, such as gears, bearings, and linkages. These projects have allowed me to apply my knowledge of materials science, solid mechanics, and dynamic systems to create innovative solutions that improve the performance and reliability of mechanical systems.In addition to technical skills, mechanical engineers must also possess strong problem-solving, critical thinking, and communication abilities. Effective collaboration with cross-functional teams, including engineers from other disciplines, as well as with clients and stakeholders, is essential for the successful completion of projects.As I look to the future, I am excited about the potential of mechanical engineering to continue driving technological advancements and contributing to the betterment of our world. With the rapid pace of innovation and the growing demand forsustainable and efficient solutions, I believe that mechanical engineering will play an increasingly important role in addressing global challenges, such as climate change, energy security, and healthcare.In conclusion, the field of mechanical engineering is a dynamic and multifaceted discipline that offers a wealth of opportunities for those who are passionate about technology, innovation, and problem-solving. As a mechanical engineering student, I am proud to be part of a profession that is at the forefront of shaping the future and improving the quality of life for people around the world.。

机械专业 英语作文

机械专业 英语作文

机械专业英语作文Title: The Role of Mechanical Engineering in Modern Society。

Mechanical engineering, as a cornerstone of modern technology, plays a pivotal role in shaping our society and advancing human civilization. From the design of intricate machinery to the development of cutting-edge technologies, the contributions of mechanical engineers are ubiquitous and indispensable. In this essay, we will delve into the significance of mechanical engineering in various aspects of contemporary society.First and foremost, mechanical engineering drives innovation and progress across industries. By harnessing principles of physics and mathematics, mechanical engineers design and optimize a wide array of products and systems, ranging from automotive vehicles to renewable energy technologies. For instance, in the automotive sector, mechanical engineers are instrumental in enhancing fuelefficiency, improving safety features, and reducing emissions through the design of lightweight materials, aerodynamic structures, and advanced propulsion systems.Moreover, mechanical engineering intersects with other disciplines to address global challenges such as climate change and sustainable development. In the quest for renewable energy sources, mechanical engineers play a pivotal role in the design and optimization of wind turbines, solar panels, and hydroelectric generators. Through innovation and research, they strive to make these technologies more efficient, affordable, and accessible, thereby facilitating the transition towards a greener and more sustainable energy landscape.Furthermore, mechanical engineering is at the forefront of technological advancements that revolutionize healthcare and improve quality of life. From the development of medical devices to the design of prosthetic limbs, mechanical engineers leverage their expertise to enhance diagnosis, treatment, and rehabilitation processes. For example, the design of robotic surgical systems enablesminimally invasive procedures with greater precision and reduced recovery times, ultimately benefiting patients and healthcare providers alike.In addition to its tangible contributions, mechanical engineering fosters interdisciplinary collaboration and fosters a culture of innovation and problem-solving. By working alongside experts from diverse fields such as materials science, computer engineering, and biomechanics, mechanical engineers tackle complex challenges and push the boundaries of what is possible. Through research, experimentation, and collaboration, they pave the way for breakthroughs that shape the future of technology and society.Furthermore, mechanical engineering education equips individuals with critical thinking skills, analytical abilities, and practical knowledge that are highly sought after in today's job market. Whether pursuing careers in aerospace, automotive, biomedical, or energy sectors, mechanical engineers are well-positioned to make meaningful contributions and drive positive change in their respectivefields. Additionally, the interdisciplinary nature of mechanical engineering enables professionals to adapt to evolving industry trends and embrace lifelong learning opportunities.In conclusion, mechanical engineering serves as a driving force behind technological innovation, sustainable development, and societal progress. From enhancing industrial processes to improving healthcare outcomes, the contributions of mechanical engineers are pervasive andfar-reaching. As we continue to confront global challenges and strive for a better future, the role of mechanical engineering in shaping our society will only become more pronounced and indispensable. Through collaboration, innovation, and a commitment to excellence, mechanical engineers will continue to push the boundaries of what is possible and create a world that is safer, healthier, and more prosperous for generations to come.。

机械类英语作文模板

机械类英语作文模板

机械类英语作文模板英文回答:Introduction。

Mechanical engineering is an incredibly vast anddiverse field that encompasses the design, development, and operation of machines. It is a highly interdisciplinaryfield that draws upon principles from physics, mathematics, and materials science to create solutions to real-world problems. Mechanical engineers play a vital role in many industries, including transportation, manufacturing, energy, and healthcare.Education and Training。

To become a mechanical engineer, a strong foundation in mathematics and science is essential. Most mechanical engineers hold a bachelor's degree in mechanicalengineering from an accredited university. Some may alsochoose to pursue a master's degree or doctorate in mechanical engineering or a related field.Career Opportunities。

Mechanical engineers are in high demand across a wide range of industries. Some of the most common job titles for mechanical engineers include:Design Engineer。

机械行业英文范文

机械行业英文范文

机械行业英文范文**Mechanical Engineering: Innovation and Development**In the realm of industrial revolution, mechanical engineering stands as a pillar, driving the progress of mankind through its innovative designs and technological advancements. This discipline, which encompasses the design, manufacturing, and maintenance of mechanical systems, has been instrumental in shaping the modern world.The history of mechanical engineering is rich with groundbreaking inventions and ideas. From the simple杠杆原理 (lever principle) in ancient times to the complexinternal combustion engines of today, this field has constantly evolved, pushing the boundaries of what is possible. The Industrial Revolution, in particular, markeda significant milestone in the growth of mechanical engineering, as it led to the mass production of goods, revolutionizing the economic landscape.Today, mechanical engineering finds applications in almost every industry, from aerospace to automotive, and from construction to robotics. The design of efficientengines, precision machinery, and automated systems relies heavily on the principles and technologies developed by mechanical engineers. Furthermore, the integration of mechanical engineering with other fields, such as electronics and computer science, has led to the emergence of new areas like mechatronics, which focus on the integration of mechanical and electronic systems.Innovation is the lifeblood of mechanical engineering. Constant research and development are crucial for creating systems that are not only more efficient but also sustainable and environmentally friendly. Engineers are constantly exploring new materials, processes, and technologies to improve the performance and reliability of mechanical systems.In addition to innovation, another key aspect of mechanical engineering is the meticulous attention to detail. The design and manufacturing of mechanical systems require precise calculations and rigorous testing to ensure their safety and reliability. Mechanical engineers must have a strong understanding of physics, mathematics, andmaterials science to design systems that can withstand extreme conditions and perform optimally.The future of mechanical engineering looks bright, with new technologies and materials promising even greater advancements. The integration of artificial intelligence and robotics with mechanical systems is expected to lead to even more innovative and autonomous systems. Furthermore, the focus on sustainability and environmental conservation will continue to shape the development of mechanical engineering, leading to the creation of systems that are not only efficient but also environmentally friendly.In conclusion, mechanical engineering has been and continues to be a driving force in the industrial revolution. Its importance in driving innovation, improving efficiency, and ensuring reliability cannot be overstated. As we look towards a future filled with new challenges and opportunities, it is crucial that we continue to invest in mechanical engineering, fostering innovation and talent to create a sustainable and prosperous future.**机械工程:创新与发展**机械工程作为工业革命的支柱,通过其创新设计和技术进步推动着人类进步。

机械专业英语短文带翻译

机械专业英语短文带翻译
设计与分析
机械工程师的关键责任之一是设计与分析机械系统。这涉及使用计算机辅助设计(CAD)软件创建系统的详细三维模型,并在不同条件下模拟其性能。通过分析作用于系统组件的力、应力和振动,机械工程师可以优化设计,确保安全、可靠和高效。
Case Study: Designing an Automotive Suspension System
案例研究:汽车悬挂系统设计
例如,让我们考虑一下汽车悬挂系统的设计。悬挂系统负责在保持车辆稳定控制的同时提供平稳的行驶。机械工程师使用CAD软件设计悬挂系统的各个组件,例如弹簧、减振器和控制臂。
在完成初始设计后,工程师将使用有限元分析(FEA)软件对系统进行分析。这样可以模拟系统在不同的道路条件下(如坑洼或减速带)的行为。通过分析组件中的应力和位移,工程师可以确定潜在的设计问题,并进行必要的修改,以改善悬挂系统的性能和安全性。
For example, let's consider the design of an automotive suspension system. A suspension system is responsible for providing a smooth ride while maintaining the stability and control of the vehicle. A mechanical engineer would use CAD software to design the various components of the suspension system, such as the springs, dampers, and control arms.
After the initial design is complete, the engineer would then analyze the system using finite element analysis (FEA) software. This allows them to simulate the behavior of the system under different road conditions, such as potholes or speed bumps. By analyzing the stresses and displacements in the components, the engineer can identify potential design issues and make necessary modifications to improve the performance and safety of the suspension system.

机械制造专业英语文章

机械制造专业英语文章

三一文库()〔机械制造专业英语文章〕*篇一:机械专业英语文章中英文对照TypesofMaterials材料的类型Materialsmaybegroupedinseveralways.Scientistsoftenc lassifymaterialsbytheirstate:solid,liquid,orgas.The yalsoseparatethemintoorganic(onceliving)andinorgani c(neverliving)materials.材料可以按多种方法分类。

科学家常根据状态将材料分为:固体、液体或气体。

他们也把材料分为有机材料(曾经有生命的)和无机材料(从未有生命的)。

Forindustrialpurposes,materialsaredividedintoengine eringmaterialsornonengineeringmaterials.Engineering materialsarethoseusedinmanufactureandbecomepartsofp roducts.就工业效用而言,材料被分为工程材料和非工程材料。

那些用于加工制造并成为产品组成部分的就是工程材料。

Nonengineeringmaterialsarethechemicals,fuels,lubric ants,andothermaterialsusedinthemanufacturingprocess ,whichdonotbecomepartoftheproduct.非工程材料则是化学品、燃料、润滑剂以及其它用于加工制造过程但不成为产品组成部分的材料。

Engineeringmaterialsmaybefurthersubdividedinto:①Metal②Ceramics③Composite④Polymers,etc.工程材料还能进一步细分为:①金属材料②陶瓷材料③复合材料④聚合材料,等等。

机械工程专业前景英语作文

机械工程专业前景英语作文

机械工程专业前景英语作文【中英文实用版】The prospects for mechanical engineering as a career are as robust as the steel structures that necessitate the expertise of its professionals.With the advent of technological advancements and the increasing automation in various industries, mechanical engineers are poised to play a pivotal role in shaping the future.The demand for skilled individuals in this field continues to escalate, offering a plethora of opportunities for those passionate about mechanics, design, and innovation.机械工程专业的职业前景如同其所需的钢铁结构一般坚实。

随着技术的进步和各行各业自动化水平的提升,机械工程师在塑造未来方面发挥着至关重要的作用。

对于这个领域内熟练人才的的需求不断攀升,为那些对机械、设计和创新充满热情的人们提供了大量的机会。

The diversity of mechanical engineering is a testament to its longevity.From automotive and aerospace industries to robotics and renewable energy sectors, the applications of mechanical engineering are vast and varied.This versatility ensures that mechanical engineers remain in high demand across a wide array of job markets, providing them with a certain level of job security and career flexibility.机械工程的多样性证明了其长久的生命力。

机械类相关英语文章精选

机械类相关英语文章精选

机械类相关英语文章精选篇一:机械类英语文章What is Hydraulic?A complete hydraulic system consists of five parts, namely, power components, the implementation of components, control components, no parts and hydraulic oil. The role of dynamic components of the original motive fluid into mechanical energy to the pressure that the hydraulic system of pumps, it is to power the entire hydraulic system. The structure of the form of hydraulic pump gears are generally pump, vane pump and piston pump. Implementation of components (such as hydraulic cylinders and hydraulic motors) which is the pressure of the liquid can be converted to mechanical energy to drive the load for a straight line reciprocating movement or rotational movement. Control components (that is, the various hydraulic valves) in the hydraulic system to control and regulate the pressure of liquid, flow rate and direction. According to the different control functions, hydraulic valves can be divided into the village of force control valve, flow control valves and directional control valve. Pressure control valves are divided into benefits flow valve (safety valve), pressure relief valve, sequence valve, pressure relays, etc.; flow control valves including throttle, adjusting the valves, flow diversion valve sets, etc.; directional control valve includes a one-way valve , one-way fluid control valve, shuttle valve, valve and so on. Under the control of different ways, can be divided into the hydraulic valve control switch valve, control valve and set the value of the ratio control valve. Auxiliary components, including fuel tanks, oil filters, tubing and pipe joints, seals, pressure gauge, oil level, such as oil dollars. Hydraulic oil in the hydraulic system is the work of the energy transfer medium, there are a variety of mineral oil, emulsion oil hydraulic molding Hop categories.Hydraulic principleIt consists of two cylinders of different sizes and composition of fluid in the fluid full of water or oil. Water is called hydraulic press; the said oil-filled hydraulic machine. Each of the two liquid a sliding piston, if the increase in the small piston on the pressure of a certain value, according to Pascals law, small piston to the pressure of the pressure through the liquid passed to the large piston, piston top will go a long way to go. Based cross-sectional area of the small piston is S1, plus a small piston in the downward pressure on the F1. Thus, a small piston on the liquid pressure to P = F1/SI,Can be the same size in all directions to the transmission of liquid. By the large piston is also equivalent to the inevitable pressure P. If the large piston is the cross-sectional area S2, the pressure P on the piston in the upward pressure generated F2 = PxS2 Cross-sectional area is a small multiple of the piston cross-sectional area. From the type known to add in a small piston of a smaller force, the piston will be in great force, for which the hydraulic machine used to suppress plywood, oil, extract heavy objects, such as forging steel.History of the development of hydraulicAnd air pressure drive hydraulic fluid as the transmission is made according to the 17th century, Pascals principle of hydrostatic pressure to drive thedevelopment of an emerging technology, the United Kingdom in 1795 Joseph (Joseph Braman ,1749-1814), in London water as a medium to form hydraulic press used in industry, the birth of the worlds first hydraulic press. Media work in 1905will be replaced by oil-water and further improved.World War I (1914-1918) after the extensive application of hydraulic transmission, especially after 1920, more rapid development. Hydraulic components in the late19th century about the early 20th century, 20 years, only started to enter the formal phase of industrial production. 1925 Vickers (F. Vikers) the invention of the pressure balanced vane pump, hydraulic components for the modern industrial or hydraulic transmission of the gradual establishment of the foundation. The early 20th century Constantine (G ? Constantimsco) fluctuations of the energy carried out by passing theoretical and practical research; in 1910 on the hydraulic transmission (hydraulic coupling, hydraulic torque converter, etc.) contributions, so that these two areas of development.The Second World War (1941-1945) period, in the United States 30% of machine tool applications in the hydraulic transmission. It should be noted that the development of hydraulic transmission in Japan than Europe and the United States and other countries for nearly 20 years later. Before and after in 1955, the rapid development of Japans hydraulic drive, set up in 1956, Hydraulic Industry. Nearly20 to 30 years, the development of Japans fast hydraulic transmission, a world leader. Hydraulic transmission There are many outstanding advantages, it is widely used, such as general workers. Plastic processing industry, machinery, pressure machinery, machine tools, etc.; operating machinery engineering machinery, construction machinery, agricultural machinery, automobiles, etc.; iron and steel industry metallurgical machinery, lifting equipment, such as roller adjustment device; civil water projects with flood control the dam gates and devices, bed lifts installations, bridges and other manipulation of institutions; speed turbine power plant installations, nuclear power plants, etc.; ship deck crane (winch), the bow doors, bulkhead valves, such as the stern thruster ; special antenna technology giant with control devices, measurement buoys, movements such as rotating stage;military-industrial control devices used in artillery, ship anti-rolling devices, aircraft simulation, aircraft retractable landing gear and rudder control devices and other devices.篇二:机械类专业英语文章翻译1.Chapter 2(P31)Unit2 Cast IronsIn order to understand the fabricating characteristics of cast irons, it is necessary to become familiar with the characteristics of the metal and the various types and classifications that are available.为了理解铸铁的制造特性,它是要熟悉的金属的特性和各种可用的类型和分类One of the distinguishing features of all irons is that they have a relatively high carbon content. Steels range up to about 2% carbon. Cast irons overlap with the steels somewhat and range from about 1.5% up to 5% carbon. It is principally the form of the carbon, with is governed by thermal conditions and alloying elements,that provides various structures that may be classified into the following main type:gray cast iron; white cast iron; ductile(nodular) graphite irons;compacted(vermicular) graphite iron.所有熨斗的一个显着特点是,它们具有相对高的碳含量。

关于机械类的工作英语作文

关于机械类的工作英语作文

关于机械类的工作英语作文Title: Exploring the World of Mechanical Engineering。

In today's rapidly evolving technological landscape, mechanical engineering stands as a cornerstone discipline driving innovation across various industries. From designing efficient machines to optimizing complex systems, mechanical engineers play a pivotal role in shaping the future of technology. In this essay, we delve into the multifaceted world of mechanical engineering and exploreits diverse applications.Introduction to Mechanical Engineering:Mechanical engineering encompasses a broad spectrum of activities, ranging from the conception and design of mechanical systems to their manufacturing, operation, and maintenance. It draws upon principles of physics, mathematics, and materials science to solve real-world problems and create tangible solutions.Applications in Industry:One of the primary domains where mechanical engineering finds extensive application is in the industrial sector. Engineers in this field are involved in designing machinery for manufacturing processes, ensuring optimal efficiency and productivity. From automated assembly lines to precision machining tools, mechanical engineers strive to enhance production capabilities while minimizing costs and environmental impact.Automotive Engineering:The automotive industry represents another arena where mechanical engineering expertise is indispensable. Engineers work on developing vehicles that are not onlyfuel-efficient but also safe and reliable. They are responsible for designing various components such as engines, transmissions, chassis, and suspension systems,all of which contribute to the performance and durability of automobiles.Aerospace and Defense:In the aerospace and defense sectors, mechanical engineers play a critical role in the design and development of aircraft, spacecraft, missiles, and other aerospace systems. They tackle challenges related to aerodynamics, propulsion, structural integrity, and thermal management to ensure the safety and functionality of these high-performance machines.Renewable Energy:As the world shifts towards sustainable energy sources, mechanical engineers are at the forefront of developing renewable energy technologies. They work on the design and optimization of wind turbines, solar panels, hydroelectric generators, and other systems aimed at harnessing clean and renewable sources of power. By improving the efficiency and reliability of these energy systems, mechanical engineers contribute to mitigating climate change and reducing dependence on fossil fuels.Biomedical Engineering:In recent years, there has been a growing intersection between mechanical engineering and biomedicine. Mechanical engineers collaborate with medical professionals to design innovative medical devices, prosthetics, and implants that enhance the quality of life for patients. Their expertise in materials science and biomechanics enables them to create cutting-edge solutions for healthcare challenges.Research and Development:Research and development (R&D) represent another integral aspect of mechanical engineering. Engineers engage in exploratory research to push the boundaries of technological innovation, whether it's developing advanced materials, exploring new manufacturing techniques, or refining computational models for predictive analysis. R&D efforts drive continuous improvement and evolution within the field of mechanical engineering.Conclusion:In conclusion, mechanical engineering is a dynamic and diverse field that spans numerous industries and applications. Whether it's designing next-generation machinery, optimizing energy systems, or advancing medical technology, mechanical engineers are at the forefront of innovation. By leveraging their expertise in science, mathematics, and technology, they address complex challenges and shape the future of engineering. As the world continues to evolve, the role of mechanical engineering will remain pivotal in driving progress and prosperity.。

机械类的英文作文

机械类的英文作文

机械类的英文作文Title: The Evolution of Mechanical Engineering。

Mechanical engineering, often referred to as the backbone of engineering disciplines, has undergonesignificant evolution over the years. From ancient times to the modern era, the field has seen remarkable advancements, shaping the way we live, work, and interact with technology. In this essay, we'll delve into the journey of mechanical engineering, exploring its historical roots, key innovations, and future prospects.The origins of mechanical engineering can be tracedback to ancient civilizations such as Mesopotamia, Egypt, and China. In these early societies, rudimentary machines like pulleys, levers, and wheels were developed to aid in agricultural, construction, and transportation activities. These innovations laid the foundation for moresophisticated mechanical systems in the centuries to come.During the Renaissance period, mechanical engineering experienced a resurgence as scholars and inventors soughtto understand and harness the principles of mechanics. Visionaries like Leonardo da Vinci conceptualized intricate machines and mechanisms, contributing to the expansion of knowledge in the field. The invention of the printing press by Johannes Gutenberg in the 15th century marked a pivotal moment, revolutionizing communication and paving the wayfor the Industrial Revolution.The 18th and 19th centuries witnessed unprecedented progress in mechanical engineering, driven by theIndustrial Revolution. Innovations such as the steam engine, textile machinery, and machine tools transformed industries and spurred economic growth. Engineers like James Watt, George Stephenson, and Eli Whitney became household namesfor their contributions to mechanical innovation.The 20th century brought about further advancements in mechanical engineering, propelled by rapidindustrialization and technological breakthroughs. The development of the internal combustion enginerevolutionized transportation, leading to the proliferation of automobiles, airplanes, and ships. Meanwhile, the fields of robotics, aerospace engineering, and materials science emerged, pushing the boundaries of what was possible in mechanical design and manufacturing.In recent decades, the advent of digital technology has revolutionized mechanical engineering once again. Computer-aided design (CAD) software has enabled engineers to create intricate designs with unprecedented precision and efficiency. Simulation tools allow for virtual testing and optimization of mechanical systems, reducing the need for costly physical prototypes. Furthermore, the integration of sensors and actuators has enabled the development of smart, interconnected devices that can adapt to changing conditions in real-time.Looking ahead, the future of mechanical engineering holds immense promise and challenges. As society grapples with issues such as climate change, resource scarcity, and urbanization, mechanical engineers will play a crucial role in developing sustainable solutions. From renewable energytechnologies to advanced manufacturing processes, the opportunities for innovation are vast.In conclusion, the evolution of mechanical engineering is a testament to human ingenuity and perseverance. From humble beginnings to the forefront of technological innovation, the field has continually pushed the boundaries of what is possible. As we stand on the brink of a new era, the principles of mechanical engineering will continue to shape the world around us, driving progress and improving the quality of life for generations to come.。

有关机械专业的英语作文

有关机械专业的英语作文

有关机械专业的英语作文Mechanical engineering is a field of engineering that deals with the design, construction, and maintenance of machines and systems. It is one of the oldest and broadest engineering disciplines and has a significant impact on modern society.To become a successful mechanical engineer, one must have a strong foundation in mathematics, physics, and science. It is also important to have good problem-solving skills and be able to think creatively. A mechanical engineer should be able to design, test, and analyze mechanical systems and components.One important skill for a mechanical engineer is computer-aided design (CAD). CAD software allows engineers to create and modify designs quickly and accurately. It also enables them to simulate and test designs before they are built. This helps reduce errors and save time and resources.Another important skill for mechanical engineers is knowledge of materials. Different materials have differentproperties, and it is important to choose the right material for each component of a machine or system. Mechanical engineers must also be aware of the impact of their designs on the environment and society.Mechanical engineers work in a variety of industries, including automotive, aerospace, and manufacturing. They may design engines, turbines, robots, or other mechanical systems. They may also work on improving existing systems or developing new technologies.One challenge that mechanical engineers face is keeping up with the latest technological advancements. New materials, manufacturing processes, and design techniques are constantly being developed, and it is important for mechanical engineers to stay current with these changes.Another challenge is designing for sustainability. As the world becomes more aware of the impact of human activities on the environment, mechanical engineers must find ways to reduce the carbon footprint of their designs. This may involve designing more efficient systems, using renewable energy sources, or finding ways to recycle or reuse materials.In conclusion, mechanical engineering is a diverse and challenging field that requires a strong foundation in math, physics, and science, as well as critical thinking and problem-solving skills. Mechanical engineers play a vital role in designing and maintaining the machines and systems that make modern life possible. As technology continues to advance and society becomes more aware of the impact of human activities on the environment, mechanical engineers will need to adapt and innovate to meet new challenges.。

关于机械制造的英语文章

关于机械制造的英语文章

三一文库()〔关于机械制造的英语文章〕*篇一:机械专业英语作文1MechanicalengineeringEngineeringScienceinlifearewidelyused,especiallyinm echanicalengineeringintheapplicationoflifeisalmostt hroughoutlifeinallitsaspects,toautomobiles,aircraft ,smallelectricfans,umbrella,alloftheseandrelatedmac hinery.Theprojectincludesmanysubjects,butthemechani calengineeringisoneofthemostimportantsubjects,noton lybecauseofourlifeanditiscloselyrelatedto,butwithth eprogressofthetimes,peoplehavetorelyonmechanicaleng ineeringproducts,inautomationtoday,machineinsteadof manythisisthepartofthehumanlabor,improvetheefficien cyandsavetime.Asaresultofmechanicalengineeringineveryaspectoflife,therefore,asanengineer,befacedwithagreatmanychalle nges,inadditiontoasolidwithknowledge,butalsokeeppac ewiththetimes,familiarwiththemachineryandrelatedsof tware,canbeverygooduseofsoftware,andasaanengineer,w eshouldtryourbesttodesignandproduceandcloselyrelate dtothelifeofthemachine,andcaninlifeplayarealrole,al sohaveonlysuch,weaddressandremissionnowsocialneeds, therefore,themechanicalengineeringinthefuturesocial development,willplaytheimportantrole,especiallyChin ascase,theindustryalsoisnotverydeveloped,machineryc anbegreaterdevelopmentspace.Beforetheindustrialrevolution,machineryismostlywood structure,woodmadebyhandby.Thedevelopmentofsocialec onomy,thedemandformechanicalproducts.Thebulkofthepr oductionincreasingandprecisionprocessingtechnologyp rogress,promotethemassproductionmethod(interchangea bilityofpartsproduction,professionaldivisionoflabor andcooperation,waterprocessinglinesandassemblylines )formation.Studyofmechanicalproductsinthemanufactur ingprocess,especiallywhenusedinthepollutionoftheenv ironmentandnaturalresourcesexcessiveconsumptionproblemsandtheirtreatmentmeasures.Thisisamodernmechanic alengineeringisanespeciallyimportanttasktogrowwithe achpassingday,anditsimportance.Applicationofmechani calproducts.Thisincludesselection,ordering,acceptan ce,installation,adjustment,operation,maintenance,re pairandtransformationoftheindustrialuseofmachinerya ndcompletesetsofmachineryandequipment,toensurethatt hemechanicalproductsinthelong-termuseofreliabilitya ndeconomy.Asastudent,wearenowthemostimportanttolearnprofessio nalknowledge,onlyinthisway,canwelaterlifeandlearnin g,todoitspart.机械工程工程科学在生活中应用广泛,特别是机械工程在生活中的应用几乎就是遍布了生活中的各个方面,大到汽车、飞机,小到电风扇、雨伞,这些都和机械有关。

谈谈你对机械专业的认识英文作文

谈谈你对机械专业的认识英文作文

谈谈你对机械专业的认识英文作文Mechanical engineering is a branch of engineering that deals with the design, manufacturing, and maintenance of mechanical systems. It is one of the oldest and broadest engineering disciplines, dating back to the Industrial Revolution.Mechanical engineers are involved in a wide range of activities, from designing and building machines to developing new materials and technologies. They work in many industries, including aerospace, automotive, energy, healthcare, and manufacturing.One of the key skills of a mechanical engineer is problem-solving. They must be able to identify problems, analyze data, and develop solutions that are efficient, effective, and safe. They use advanced computer software to design and analyze systems, and they work with other engineers and technicians to build and test prototypes.Mechanical engineers must also be knowledgeable about materials and manufacturing processes. They need to understand the properties of different materials and howthey can be shaped and formed into useful products. They must also be familiar with various manufacturing techniques, such as machining, casting, and molding.In addition to technical skills, mechanical engineers must also possess strong communication and teamwork skills. They often work in interdisciplinary teams with other engineers, scientists, and designers. They must be able to communicate complex ideas and technical information to non-technical stakeholders, such as managers and customers.There are many sub-disciplines within mechanical engineering, including:1. Aerospace engineering - the design and development of aircraft, spacecraft, and related systems.2. Automotive engineering - the design and developmentof cars, trucks, and other vehicles.3. Energy engineering - the design and development of energy systems, such as power plants, renewable energy technologies, and energy storage systems.4. Medical engineering - the design and development of medical devices and equipment, such as prosthetics and medical imaging systems.5. Manufacturing engineering - the design and development of manufacturing processes and systems.6. Robotics and automation engineering - the design and development of robots and automated systems for manufacturing, healthcare, and other applications.Overall, mechanical engineering is a challenging and rewarding field that offers many opportunities for growth and innovation. It requires a combination of technical knowledge, problem-solving skills, and communication and teamwork abilities. As technology continues to advance, mechanical engineers will play a crucial role in shaping the future of our world.。

机械专业论文中英文对照

机械专业论文中英文对照

机械专业论文中英文对照第一篇:机械专业论文中英文对照Gearbox Noise Correlation with Transmission Error and Influence of Bearing PreloadABSTRACT The five appended papers all deal with gearbox noise and vibration.The first paper presents a review of previously published literature on gearbox noise and vibration.The second paper describes a test rig that was specially designed and built for noise testing of gears.Finite element analysis was used to predict the dynamic properties of the test rig, and experimental modal analysis of the gearbox housing was used to verify the theoretical predictions of natural frequencies.In the third paper, the influence of gear finishing method and gear deviations on gearbox noise is investigated in what is primarily an experimental study.Eleven test gear pairs were manufactured using three different finishing methods.Transmission error, which is considered to be an important excitation mechanism for gear noise, was measured as well as predicted.The test rig was used to measure gearbox noise and vibration for the different test gear pairs.The measured noise and vibration levels were compared with the predicted and measured transmission error.Most of the experimental results can be interpreted in terms of measured and predicted transmission error.However, it does not seem possible to identify one single parameter,such as measured peak-to-peak transmission error, that can be directly related to measured noise and vibration.The measurements also show that disassembly and reassembly of the gearbox with the same gear pair can change the levels of measured noise and vibration considerably.This finding indicates that other factors besides the gears affect gearnoise.In the fourth paper, the influence of bearing endplay or preload on gearbox noise and vibration is investigated.Vibration measurements were carried out at torque levels of 140 Nm and 400Nm, with 0.15 mm and 0 mm bearing endplay, and with 0.15 mm bearing preload.The results show that the bearing endplay and preloadinfluence the gearbox vibrations.With preloaded bearings, the vibrations increase at speeds over 2000 rpm and decrease at speeds below 2000 rpm, compared with bearings with endplay.Finite element simulations show the same tendencies as the measurements.The fifth paper describes how gearbox noise is reduced by optimizing the gear geometry for decreased transmission error.Robustness with respect to gear deviations and varying torque is considered in order to find a gear geometry giving low noise in an appropriate torque range despite deviations from the nominal geometry due to manufacturing tolerances.Static and dynamic transmission error, noise, and housing vibrations were measured.The correlation between dynamic transmission error, housing vibrations and noise was investigated in speed sweeps from 500 to 2500 rpm at constant torque.No correlation was found between dynamic transmission error and noise.Static loaded transmission error seems to be correlated with the ability of the gear pair to excite vibration in the gearbox dynamic system.Keywords: gear, gearbox, noise, vibration, transmission error, bearing preload.ACKNOWLEDGEMENTS This work was carried out at Volvo Construction Equipment in Eskilstuna and at the Department of Machine Design at the Royal Institute of Technology(KTH)in Stockholm.The work was initiated by Professor Jack Samuelsson(Volvo and KTH), Professor SörenAndersson(KTH), and rs Bråthe(Volvo).The financial support of the Swedish Foundation for Strategic Research and the Swedish Agency for Innovation Systems –VINNOVA –is gratefully acknowledged.Volvo Construction Equipment is acknowledged for giving me the opportunity to devote time to this work.Professor Sören Andersson is gratefully acknowledged for excellent guidance and encouragement.I also wish to express my appreciation to my colleagues at the Department of Machine Design, and especially to Dr.Ulf Sellgren for performing simulations and contributing to the writing of Paper D, and Dr.Stefan Björklund for performing surface finish measurements.The contributions to Paper C by Dr.Mikael Pärssinen are highly appreciated.All contributionsto this work by colleagues at Volvo are gratefully appreciated.1 INTRODUCTION 1.1 Background Noise is increasingly considered an environmental issue.This belief is reflected in demands for lower noise levels in many areas of society, including the working environment.Employees spend a lot of time in this environment and noise can lead not only to hearing impairment but also to decreased ability to concentrate, resulting in decreased productivity and an increased risk of accidents.Quality, too, has become increasingly important.The quality of a product can be defined as its ability to fulfill customers’ demands.These demands often change over time, and the best competitors in the market will set the standard.Noise concerns are also expressed in relation to construction machinery such as wheel loaders and articulated haulers.The gearbox is sometimes the dominant source of noise in these machines.Even if the gear noise is not the loudest source, its pure high frequency tone is easily distinguished from other noise sources and is oftenperceived as unpleasant.The noise creates an impression of poor quality.In order not to be heard, gear noise must be at least 15 dB lower than other noise sources, such as engine noise.1.2 Gear noise This dissertation deals with the kind of gearbox noise that is generated by gears under load.This noise is often referred to as “gear whine” and consists mainly of pure tones at high frequencies corresponding to the gear mesh frequency and multiples thereof, which are known as harmonics.A tone with the same frequency as the gear mesh frequency is designated the gear mesh harmonic, a tone with a frequency twice the gear mesh frequency is designated the second harmonic, and so on.The term “gear mesh harmonics” refers to all multiples of the gear mesh frequency.Transmission error(TE)is considered an important excitation mechanism for gear whine.Welbourn [1] defines transmission error as “the difference between the actual position of the output gear and the position it would occupy if the gear drive were perfectly conjugate.” Transmission error may be expressed as angular displacement or as linear displacement at the pitch point.Transmission error is caused by deflections, geometric errors, and geometric modifications.In addition to gear whine, other possible noise-generating mechanisms in gearboxes include gear rattle from gears running against each other without load, and noise generated by bearings.In the case of automatic gearboxes, noise can also be generated by internal oil pumps and by clutches.None of these mechanisms are dealt with in this work, and from now on “gear noise” or “gearbox noise” refers to “gear whine”.MackAldener [2] describes the noise generation process from a gearbox as consisting of three parts: excitation, transmission, and radiation.The origin of the noise is the gearmesh, in which vibrations are created(excitation), mainly due to transmission error.The vibrations are transmitted via the gears, shafts, and bearings to the housing(transmission).The housing vibrates, creating pressure variations in the surrounding air that are perceived as noise(radiation).Gear noise can be affected by changing any one of these three mechanisms.This dissertation deals mainly with excitation, but transmission is also discussed in the section of the literature survey concerning dynamic models, and in the modal analysis of the test gearbox in Paper B.Transmission of vibrations is also investigated in Paper D, which deals with the influence of bearing endplay or preload on gearbox noise.Differences in bearing preload influence a bearing’s dynamic properties like stiffness and damping.These properties also affect the vibration of the gearbox housing.1.3 Objective The objective of this dissertation is to contribute to knowledge about gearbox noise.The following specific areas will be the focus of this study: 1.The influence of gear finishing method and gear modifications and errors on noise and vibration from a gearbox.2.The correlation between gear deviations, predicted transmission error, measured transmission error, and gearbox noise.3.The influence of bearing preload on gearbox noise.4.Optimization of gear geometry for low transmission error, taking into consideration robustness with respect to torque and manufacturing tolerances.2 AN INDUSTRIAL APPLICATION −TRANSMISSION NOISE REDUCTION 2.1 Introduction This section briefly describes the activities involved in reducing gear noise from a wheel loader transmission.The aim is to show how the optimization of the gear geometry described in Paper E is used in an industrial application.The author was project manager for the “noise work team” and performed the gearoptimization.One of the requirements when developing a new automatic power transmission for a wheel loader was improving the transmission gear noise.The existing power transmission was known to be noisy.When driving at high speed in fourth gear, a high frequency gear-whine could be heard.Thus there were now demands for improved sound quality.The transmission is a typical wheel loader power transmission, consisting of a torque converter, a gearbox with four forward speeds and four reverse speeds, and a dropbox partly integrated with the gearbox.The dropbox is a chain of four gears transferring the powerto the output shaft.The gears are engaged by wet multi-disc clutches actuated by the transmission hydraulic and control system.2.2 Gear noise target for the new transmission Experience has shown that the high frequency gear noise should be at least 15 dB below other noise sources such as the engine in order not to be perceived as disturbing or unpleasant.Measurements showed that if the gear noise could be decreased by 10 dB, this criterion should be satisfied with some margin.Frequency analysis of the noise measured in the driver's cab showed that the dominant noise from the transmission originated from the dropbox gears.The goal for transmission noise was thus formulated as follows: “The gear noise(sound pressure level)from the dropbox gears in the transmission should be decreased by 10 dB compared to the existing transmission in order not to be perceived as unpleasant.It was assumed that it would be necessary to make changes to both the gears and the transmission housing in order to decrease the gear noise sound pressure level by 10 dB.2.3 Noise and vibration measurements In order to establish a reference for the new transmission, noise and vibration were measured for the existing transmission.Thetransmission is driven by the same type of diesel engine used in a wheel loader.The engine and transmission are attached to the stand using the same rubber mounts that are used in a wheel loader in order to make the installation as similar as possible to the installation in a wheel loader.The output shaft is braked using an electrical brake.2.4 Optimization of gears Noise-optimized dropbox gears were designed by choosing macro-and microgeometries giving lower transmission error than the original(reference)gears.The gear geometry was chosen to yield a low transmission error for the relevant torque range, while also taking into consideration variations in the microgeometry due to manufacturing tolerances.The optimization of one gear pair is described in more detail in Paper E.Transmission error is considered an important excitation mechanism for gear whine.Welbourn [1] defines it as “the difference between the actual position of the output gear and the position it would occupy if the gear drive were perfectly conjugate.” In this project the aim was to reduce the maximum predicted transmission error amplitude at gear mesh frequency(first harmonic of gear mesh frequency)to less than 50% of the value for the reference gear pair.The first harmonic of transmission error is the amplitude of the part of the total transmission error that varies with a frequency equal to the gear mesh frequency.A torque range of 100 to 500 Nm was chosen because this is the torque interval in which the gear pair generates noise in its design application.According to Welbourn [1], a 50% reduction in transmission error can be expected to reduce gearbox noise by 6 dB(sound pressure level, SPL).Transmission error was calculated using the LDP software(Load Distribution Program)developed atthe Gear Laboratory at Ohio State University [3].The “optimization” was not strictly mathematical.The design was optimized by calculating the transmission error for different geometries, and then choosing a geometry that seemed to be a good compromise, considering not only the transmission error, but also factors such asstrength, losses, weight, cost, axial forces on bearings, and manufacturing.When choosing microgeometric modifications and tolerances, it is important to take manufacturing options and cost into consideration.The goal was to use the same finishing method for the optimized gears as for the reference gears, namely grinding using a KAPP VAS 531 and CBN-coated grinding wheels.For a specific torque and gear macrogeometry, it is possible to define a gear microgeometry that minimizes transmission error.For example, at no load, if there are no pitch errors and no other geometrical deviations, the shape of the gear teeth should be true involute, without modifications like tip relief or involute crowning.For a specific torque, the geometry of the gear should be designed in such a way that it compensates for the differences in deflection related to stiffness variations in the gear mesh.However, even if it is possible to define the optimal gear microgeometry, it may not be possible to manufacture it, given the limitations of gear machining.Consideration must also be given to how to specify the gear geometry in drawings and how to measure the gear in an inspection machine.In many applications there is also a torque range over which the transmission error should be minimized.Given that manufacturing tolerances are inevitable, and that a demand for smaller tolerances leads to higher manufacturing costs, it is important that gears be robust.In other words, the important characteristics, in this case transmissionerror, must not vary much when the torque is varied or when the microgeometry of the gear teeth varies due to manufacturing tolerances.LDP [3] was used to calculate the transmission error for the reference and optimized gear pair at different torque levels.The robustness function in LDP was used to analyze the sensitivity to deviations due to manufacturing tolerances.The “min, max, level” method involves assigning three levels to each parameter.2.5 Optimization of transmission housing Finite element analysis was used to optimize the transmission housing.The optimization was not performed in a strictly mathematical way, but was done by calculating the vibration of the housing for different geometries and then choosing a geometry that seemed to be a good compromise.Vibration was not the sole consideration, also weight, cost, available space, and casting were considered.A simplified shell element model was used for the optimization to decrease computational time.This model was checked against a more detailed solid element model of the housing to ensure that the simplification had not changed the dynamic properties too much.Experimental modal analysis was also used to find the natural frequencies of the real transmission housing and to ensure that the model did not deviate too much from the real housing.Gears shafts and bearings were modeled as point masses and beams.The model was excited at the bearing positions by applying forces in the frequency range from 1000 to 3000 Hz.The force amplitude was chosen as 10% of the static load from the gears.This choice could be justified because only relative differences are of interest, not absolute values.The finite element analysis was performed by Torbjörn Johansen at Volvo Technology.The author’s contribution was the evaluation of the results of differenthousing geometries.A number of measuring points were chosen in areas with high vibration velocities.At each measuring point the vibration response due to the excitation was evaluated as a power spectral density(PSD)graph.The goal of the housing redesign was to decrease the vibrations at all measuring points in the frequency range 1000 to 3000 Hz.2.6 Results of the noise measurements The noise and vibration measurements described in section 2.3 were performed after optimizing the gears and transmission housing.The total sound power level decreased by 4 dB.2.7 Discussion and conclusions It seems to be possible to decrease the gear noise from a transmission bydecreasing the static loaded transmission error and/or optimizing the housing.In the present study, it is impossible to say how much of the decrease is due to the gear optimization and how much to the housing optimization.Answering this question would have required at least one more noise measurement, but time and cost issues precluded this.It would also have been interesting to perform the noise measurements on a number of transmissions, both before and after optimizing the gears and housing, in order to determine the scatter of the noise of the transmissions.Even though the goal of decreasing the gear noise by 10 dB was not reached, the goal of reducing the gear noise in the wheel loader cab to 15 dB below the overall noise was achieved.Thus the noise optimization was successful.3 SUMMARY OF APPENDED PAPERS 3.1 Paper A: Gear Noise and Vibration – A Literature Survey This paper presents an overview of the literature on gear noise and vibration.It is divided into three sections dealing with transmission error, dynamic models, and noise and vibration measurement.Transmission error is an important excitation mechanism for gear noise and vibration.It isdefined as “the differen ce between the actual position of the output gear and the position it would occupy if the gear drive were perfectly conjugate” [1].The literature survey revealed that while most authors agree that transmission error is an important excitation mechanism for gear noise and vibration, it is not the only one.Other possible time-varying noise excitation mechanisms include friction and bending moment.Noise produced by these mechanisms may be of the same order of magnitude as that produced by transmission error, at least in the case of gears with low transmission error [4].The second section of the paper deals with dynamic modeling of gearboxes.Dynamic models are often used to predict gear-induced vibrations and investigate the effect of changes to the gears, shafts, bearings, and housing.The literature survey revealed that dynamic models of a system consisting of gears, shafts, bearings, and gearbox casing can be useful in understanding and predicting the dynamic behavior of a gearbox.Forrelatively simple gear systems, lumped parameter dynamic models with springs, masses, and viscous damping can be used.For more complex models that include such elements as the gearbox housing, finite element modeling is often used.The third section of the paper deals with noise and vibration measurement and signal analysis, which are used when experimentally investigating gear noise.The survey shows that these are useful tools in experimental investigation of gear noise because gears create noise at specific frequencies related to the number of teeth and the rotational speed of the gear.3.2 Paper B: Gear Test Rig for Noise and Vibration Testing of Cylindrical Gears Paper B describes a test rig for noise testing of gears.The rig is of the recirculating power type and consists of two identical gearboxes,connected to each other with two universal joint shafts.Torque is applied by tilting one of the gearboxes around one of its axles.This tilting is made possible by bearings between the gearbox and the supporting brackets.A hydraulic cylinder creates the tilting force.Finite element analysis was used to predict the natural frequencies and mode shapes for individual components and for the complete gearbox.Experimental modal analysis was carried out on the gearbox housing, and the results showed that the FE predictions agree with the measured frequencies(error less than 10%).The FE model of the complete gearbox was also used in a harmonic response analysis.A sinusoidal force was applied in the gear mesh and the corresponding vibration amplitude at a point on the gearbox housing was predicted.3.3 Paper C: A Study of Gear Noise and Vibration Paper C reports on an experimental investigation of the influence of gear finishing methods and gear deviations on gearbox noise and vibration.Test gears were manufactured using three different finishing methods and with different gear tooth modifications and deviations.T able3.3.1 gives an overview of the test gear pairs.The surface finishes and geometries of the gear tooth flanks were measured.Transmission error was measured using a single flank gear tester.LDP software from Ohio State University was used for transmission error computations.The test rig described in Paper B was used to measure gearbox noise and vibration for the different test gear pairs.The measurements showed that disassembly and reassembly of the gearbox with the same gear pair might change the levels of measured noise and vibration.The rebuild variation was sometimes of the same order of magnitude as the differences between different tested gear pairs, indicating that other factors besides the gears affect gear noise.In a study of theinfluence of gear design on noise, Oswald et al.[5] reported rebuild variations of the same order of magnitude.Different gear finishing methods produce different surface finishes and structures, as well as different geometries and deviations of the gear tooth flanks, all of which influence the transmission error and thus the noise level from a gearbox.Most of the experimental results can be explained in terms of measured and computed transmission error.The relationship between predicted peak-to-peak transmission error and measured noise at a torque level of 500 Nm is shown in Figure 3.3.1.There appears to be a strong correlation between computed transmission error and noise for all cases except gear pair K.However, this correlation breaks down in Figure 3.3.2, which shows the relationship between predicted peak to peak transmission error and measured noise at a torque level of 140 Nm.The final conclusion is that it may not be possible to identify a single parameter, such as peak-to-peak transmission error, that can be directly related to measured noise and vibration.3.4 Paper D: Gearbox Noise and Vibration −Influence of Bearing Preload The influence of bearing endplay or preload on gearbox noise and vibrations is investigated in Paper D.Measurements were carried out on a test gearbox consisting of a helical gear pair, shafts, tapered roller bearings, and a housing.Vibration measurements were carried out at torque levels of 140 Nm and 400 Nm with 0.15 mm and 0 mm bearing endplay and with 0.15 mm bearing preload.The results shows that the bearing endplay or preload influence gearbox pared with bearingswith endplay, preloaded bearings show an increase in vibrations at speeds over 2000 rpm and a decrease at speeds below 2000 rpm.Figure 3.4.1 is a typical result showing theinfluence of bearing preload on gearbox housing vibration.After the first measurement, the gearbox was not disassembled or removed from the test rig.Only the bearing preload/endplay was changed from 0 mm endplay/preload to 0.15 mm preload.Therefore the differences between the two measurements are solely due to different bearing preload.FE simulations performed by Sellgren and Åkerblom [6]show the same trend as the measurements here.For the test gearbox, it seems that bearing preload, compared with endplay, decreased the vibrations at speeds below 2000 rpm and increased vibrations at speeds over 2000 rpm, at least at a torque level of 140 Nm.3.5 Paper E: Gear Geometry for Reduced and Robust Transmission Error and Gearbox Noise In Paper E, gearbox noise is reduced by optimization of gear geometry for decreased transmission error.The optimization was not performed strictly mathematically.It was done by calculating the transmission error for different geometries and then choosing a geometry that seemed to be a good compromise considering not only the transmission error, but also other important characteristics.Robustness with respect to gear deviations and varying torque was considered in order to find gear geometry with low transmission error in the appropriate torque range despite deviations from the nominal geometry due to manufacturing tolerances.Static and dynamic transmission error as well as noise and housing vibrations were measured.The correlation between dynamic transmission error, housing vibrations, and noise was investigated in a speed sweep from 500 to 2500 rpm at constant torque.No correlation was found between dynamic transmission error and noise.4 DISCUSSION AND CONCLUSIONS Static loaded transmission error seems tobe strongly correlated to gearbox noise.Dynamic transmission error does not seem to be correlated to gearbox noise in speed 第二篇:机械专业英语词汇中英文对照机床 machine tool金属工艺学 technology of metals刀具 cutter摩擦 friction联结link传动 drive/transmission轴 shaft弹性 elasticity频率特性 frequency characteristic误差 error响应 response定位 allocation机床夹具 jig动力学 dynamic运动学 kinematic静力学static分析力学analyse mechanics拉伸pulling压缩hitting剪切shear扭转 twist弯曲应力 bending stress强度 intensity三相交流电three-phase AC磁路magnetic circles变压器transformer异步电动机asynchronous motor几何形状geometrical精度precision正弦形的 sinusoid交流电路 AC circuit机械加工余量 machining allowance变形力 deforming force变形 deformation应力 stress硬度 rigidity热处理 heat treatment退火anneal正火normalizing脱碳decarburization渗碳carburization电路 circuit半导体元件 semiconductor element反馈 feedback发生器 generator直流电源 DC electrical source门电路 gate circuit逻辑代数 logic algebra外圆磨削 external grinding内圆磨削 internal grinding平面磨削 plane grinding变速箱 gearbox离合器 clutch绞孔 fraising绞刀reamer螺纹加工 thread processing螺钉 screw铣削 mill铣刀 milling cutter功率 power工件 workpiece齿轮加工 gear mechining齿轮 gear主运动 main movement主运动方向 direction of main movement进给方向 direction of feed进给运动 feed movement合成进给运动resultant movement of feed合成切削运动resultant movement of cutting合成切削运动方向 direction of resultantmovement of cutting切削深度 cutting depth前刀面 rake face 刀尖nose of tool前角rake angle后角clearance angle龙门刨削planing主轴 spindle主轴箱 headstock卡盘 chuck加工中心 machining center车刀 lathe tool车床 lathe钻削镗削 bore车削 turning磨床 grinder基准 benchmark钳工 locksmith 锻 forge压模 stamping焊 weld拉床 broaching machine拉孔 broaching装配 assembling铸造found流体动力学fluid dynamics流体力学fluid mechanics加工machining液压 hydraulic pressure切线 tangent机电一体化 mechanotronics mechanical-electrical integration 气压 air pressure pneumatic pressure稳定性 stability介质 medium液压驱动泵 fluid clutch液压泵 hydraulic pump阀门 valve失效 invalidation强度 intensity载荷 load应力 stress安全系数safty factor可靠性reliability螺纹thread螺旋helix 键 spline销 pin滚动轴承 rolling bearing滑动轴承 sliding bearing弹簧 spring 制动器 arrester brake十字结联轴节 crosshead联轴器 coupling 链 chain皮带 strap精加工 finish machining粗加工 rough machining变速箱体 gearbox casing腐蚀 rust氧化 oxidation磨损 wear耐用度 durability随机信号random signal离散信号discrete signal超声传感器ultrasonic sensor第三篇:机械专业论文中英文摘要摘要本文主要论述了基于PLC的钢管打捆机控制系统的设计思路和设计过程。

关于机械英语作文

关于机械英语作文

关于机械英语作文机械(Mechanical)是一个广泛应用于工程领域的学科,涉及到机械结构、动力传递、热力学、材料科学等多个方面。

下面是一篇关于机械的英语作文:Title: The Importance of Mechanical Engineering Introduction:Mechanical engineering plays a crucial role in our modern society. It is a branch of engineering that focuses on the design, analysis, manufacturing, and maintenance of mechanical systems. This field has contributed significantly to the development of various industries, including transportation, aerospace, energy, and manufacturing.Body Paragraphs:1. Design and Innovation:Mechanical engineers are responsible for designing and developing new products and systems. They use their knowledge of physics, mathematics, and materials science to create innovative solutions. Whether it's designing cars, aircraft, or advanced robots, mechanical engineers ensure that these products are efficient, safe, and reliable.2. Manufacturing and Production:Mechanical engineering also involves the manufacturingprocess. Engineers work closely with production teams to optimize production methods, improve efficiency, and reduce costs. They develop manufacturing processes, select appropriate materials, and design tools and equipment required for mass production.3. Energy and Sustainability:In an era of increasing concern for sustainability, mechanical engineers play a vital role in developing renewable energy sources and energy-efficient systems. They work on projects related to solar power, wind turbines, and hydroelectricity. By improving energy conversion and storage technologies, they contribute to the global effort towards a greener future.4. Research and Development:Mechanical engineering is an ever-evolving field that requires continuous research and development. Engineers are constantly exploring new technologies, materials, and techniques to enhance the performance and functionality of mechanical systems. Their research contributes to advancements in areas such as robotics, automation, and nanotechnology.Conclusion:In conclusion, mechanical engineering is a diverse and dynamicfield that impacts various aspects of our daily lives. From transportation to energy production, mechanical engineers are the driving force behind technological advancements. Their expertise and innovation continue to shape our world and improve the quality of life for everyone.。

机械类英文论文

机械类英文论文

Manufacturing Technology Facing the 21st Century1.Agile ManufacturingRapid, severe, and uncertain change is the most unsettling market reality that companies and people must cope with today. New products, even whole markets, appear, mutate and disappear within shorter and shorter periods of time. The pace of innovation continues to quicken, and the direction of innovation is often unpredictable. Product variety has proliferated to a bewildering degree (Seiko markets 3000 different watches; Philips sells more than 800 color TV models). Agility is a comprehensive response to the challenges posed by a business environment dominated by change and uncertainty.For a company, to be agile is to be capable of operating profitably in a competitive environment of continually and unpredictably changing customer opportunities.For an individual, to be agile is to be capable of contributing to the bottom line of a company that is constantly reorganizing its human and technological resources in response to unpredictably changing customer opportunities.But marketplace change is only one dimension of the competitive pressures that companies and people are experiencing today. At a deeper level, we are changing from a competitive environment in which mass-market products and services were standardized, long-lived, information-poor and exchanged in one-time transactions to an environment in which companies compete globally with niche market products and services that are individualized, short-lived, information-rich, and exchanged on an ongoing basis with customers.Only those companies that respond to the deeper structural changes taking place in the commercial competition will be able to make sense of and profit from --the superficially chaotic changes occurring at the level of the marketplace. A more complete definition of agility, then, is that it is a comprehensive response to the business challenges of profiting from rapidly changing and continually fragmenting global markets for high quality, high performance, customer configured goods and services.Agility is, in the end, about making money in and from a turbulent, intensely competitive business environment.2.A New Manufacturing StrategyReforms introduced by companies since the early 1980s to improve their competitiveness just-in-time logistics, the quality movement, "lean" manufacturing--have been tactical responses to marketplace pressures. These reforms aim to improve how companies are doing what they are already doing. Although these efforts are appropriate and valuable, they reflectan acceptance of the status quo, rather than a recognition of the need to confront a new competitive reality, one that challenges what companies ought to be doing, not just how they can do a better job of what they are already doing.As a matter of fact, most companies have adopted a succession of tactical initiatives without anchoring the rationale for their implementation in new ends that mandate fundamental changes, true paradigm shifts in how those companies operate. The result is that, in company after company, managerial reforms has invariably set in. however. Innovative tactics will always be short-lived unless they are embedded in comprehensive organizational change that is in turn anchored in new strategic goals.Agility challenges the prevailing modes of organization, management, production, and competitiveness. It is explicitly strategic rather than tactical, taking no established practices for granted. Agile competition demands that the processes that support the creation, production, and distribution of goods and services be centered on the customer-perceived value of products. This is very different from building a customer-centered company. Enhancing the satisfaction that a customer experiences in dealing with a company adds value and can improve focus and even efficiency. But customer-centered operations are fully consistent with the mass -production mode. Centering a company on product lines that enrich customers products whose prices are determined by the value that customers perceive those products to have for themmoves beyond the traditional mass-production system, however efficient it may be.Successful agile companies, therefore, know a great deal about individual customers and interact with them routinely and intensively. Neither knowledge of individual customers nor interaction on this level was relevant to mass-production-era competitors. As suppliers of standardized, Uniform goods and services, mass-production-era competitors relied on market surveys that created an abstraction: the "average" or "typical" customer. However, individuality could not be accommodated in a mass -production competitive environment.By contrast, offering individualized products not a bewildering list of options and models but a choice of ordering a product configured by the vendor to the particular requirements of individual customers is the feature of agile competition.Success entails formulating customer-value-based business strategies for competing in the highest-value-added markets, that is, in what are today the most profitable, and the most competitive markets.Iteration. Just like the automotive industry, manufacturers often put new product models into market. With RP&M technology, it is possible to go through multiple design iterations within a short time and substantially reduce the model development time.3. Design EngineeringVisualization. Conceptual models are very important in product design. Designers use CAD to generate computer representations of their design concepts. However, no matter how well engineers can interpret blue prints and how excellent Some errors may still escape from the review of engineers and designers. The touch of the physical objects can reveal unanticipated problems and sometimes spark a better design. With RP&M, the prototype of a complex part can be built in short time, therefore engineers can evaluate a design very quickly.Verification and optimization. Improving product quality is always a important issue of manufacturing. With the traditional method, developing of prototypes to validate or optimize a design is often time consuming and costly. In contrast, an RP&M prototype can be produced quickly without substantial tooling and labour cost. Consequently, the verification of design concepts becomes simple: the product quality can be improved within the limited time frame and with affordable cost. Iteration. Just like the automotive industry, manufacturers often put new product models into market. With RP&M technology, it is possible to go through multiple design iterations within a short time and substantially reduce the model development time. 4.ManufacturingWe can use the RP&M prototype for producibility studies. By providing a physical product at an earlier design stage, we can speed up process planning and tooling design. In addition,by accurately describing complex geometry, the prototype can help reduce problems in interpreting the blue prints on the shop floor. Another application is tooling development for moulds. The prototypes can also be used as master patterns for castings.Polyurethane bicycle tyres have gained popularity in recent yeas. A Calgary tyre manufacturing company is manufacturing such tyres using casting methods. In order to produce moulds for casting,a master tyre pattern must be first developed.The master pattern is used to produce a temporary mould that produces a number of casting patterns.These casting patterns are then used to make the final moulds. After the moulds are manufactured, these patterns are also destroyed. However, the master pattern is preserved and it can be used again to produce casting moulds. The entire process including design, pattern development and mould manufacturing takes 6--8 weeks to produce a set of moulds.In order to reduce lead time and economically produce moulds, we have developed a computer-integrated design and manufacturing system and the rapid production technique of complex patterns. The traditional method of making the master patterns uses machines to cut the initial rough shapes of the tyre patterns and complete other features by machining, then manually finishes the tread patterns. Because of the complexity of tread patterns of bicycle tyres, it usually takes days to make such patterns and the quality is also a problem, especially the consistency of the treadpatterns.According to the description of Cubital Ltd. , the machine can produce models with 0.1% (or 0. 002") dimensional accuracy in x,y and z directions. Cubital's CAD interface accepts both industry-standard STL files and Universal files developed by Structural Dynamics Research Corp. (SDRC); the latter allows precise curve-fitting techniques to be used. 5.ConclusionsProduct features, quality, cost and time to market are important factors for a manufacturer to remain competitive. Rapid prototyping systems offer the opportunities to make products faster, and usually at lower costs than using conventional methods. Since RP&M can substantially reduce the product development cycle time, more and more businesses are taking advantage of the speed at which product design generated by computers can be converted into accurate models that can be held, viewed, studied, tested, and compared.everal new and promising rapid prototyping manufacturing techniques were discussed.They are all based on material deposition layer by layer.Each of them has particular features in terms of accuracy, material variety and the cost of the machine. Some present problems and research issues were also discussed.This is a rapid development area. Capacities and the potential of rapid prototyping technologies have attracted a wide range of industries to invest technologies.It is espected that greater effort is needed for research and development of those technologies so that they will be widely used in product-oriented manufacturing industries.要求:英文翻译内容:1组合机床总体设计方案2组合机床的总体设计——(三图一卡)3组合机床主轴箱设计4钻孔专用夹具设计参考资料:机械设计手册组合机床设计。

机械类英语论文及翻译

机械类英语论文及翻译

附录一:Mechanical DesignLiqingyu zhangjiaMachinery manufacturing equipment designAbstractA machine is a combination of mechanisms and other components which transforms, transmits. Examples are engines, turbines, vehicles, hoists, printing presses, washing machines, and movie cameras. Many of the principles and methods of design that apply to machines also apply to manufactured articles that are not true machines. The term "mechanical design" is used in a broader sense than "machine design" to include their design. the motion and structural aspects and the provisions for retention and enclosure are considerations in mechanical design. Applications occur in the field of mechanical engineering, and in other engineering fields as well, all of which require mechanical devices, such as switches, cams, valves, vessels, and mixers.Keywords: Mechanical Design ;Rules for Design ;Design ProcessThe Design ProcessDesigning starts with a need real.Existing apparatus may need improvements in durability, efficiency, weight, speed, or cost. New apparatus may be needed to perform a function previously done by men, such as computation, assembly, or servicing. With the objective wholly or partly.In the design preliminary stage, should allow to design the personnel fully to display the creativity, not each kind of restraint. Even if has had many impractical ideas, also can in the design early time, namely in front of the plan blueprint is corrected. Only then, only then does not send to stops up the innovation the mentality. Usually, must propose several sets of design proposals, then perform the comparison. Has the possibility very much in the plan which finally designated, has used certain not in plan some ideas which accepts.When the general shape and a few dimensions of the several components become apparent, analysis can begin in earnest. The analysis will have as its objective satisfactory or superior performance, plus safety and durability with minimum weight, and a competitive cost. Optimum proportions and dimensions will be sought for each critically loaded section, together with a balance between the strengths of the several components. Materials and their treatment will be chosen. These important objectives can be attained only by analysis based upon the principles of mechanics, such as those of static for reaction forces and for the optimum utilization of friction; of dynamics for inertia, acceleration, and energy; of elasticity and strength of materials for stress and deflection; of physical behavior of materials; and of fluid mechanics for lubrication and hydrodynamic drives. The analyses may be made by the same engineer who conceived the arrangement of mechanisms, or, in a large company, they may be made by a separate analysis division or research group. Design is a reiterative and cooperative process, whether done formally or informally, and the analyst can contribute to phases other than his own. Product design requires much research and development. Many Concepts of an idea must be studied, tried, and then either used or discarded. Although the content ofeach engineering problem is unique, the designers follow the similar process to solve the problems.Product liability suits designers and forced in material selection, using the best program. In the process of material, the most common problems for five (a) don't understand or not use about the latest application materials to the best information, (b) failed to foresee and consider the reasonable use material may (such as possible, designers should further forecast and consider due to improper use products. In recent years, many products liability in litigation, the use of products and hurt the plaintiff accused manufacturer, and won the decision), (c) of the materials used all or some of the data, data, especially when the uncertainty long-term performance data is so, (d) quality control method is not suitable and unproven, (e) by some completely incompetent persons choose materials.Through to the above five questions analysis, may obtain these questions is does not have the sufficient reason existence the conclusion. May for avoid these questions to these questions research analyses the appearance indicating the direction. Although uses the best choice of material method not to be able to avoid having the product responsibility lawsuit, designs the personnel and the industry carries on the choice of material according to the suitable procedure, may greatly reduce the lawsuit the quantity. May see from the above discussion, the choice material people should to the material nature, the characteristic and the processing method have comprehensive and the basic understanding.Finally, a design based upon function, and a prototype may be built. If its tests are satisfactory, the initial design will undergo certain modifications that enable it to be manufactured in quantity at a lower cost. During subsequent years of manufacture and service, the design is likely to undergo changes as new ideas are conceived or as further analyses based upon tests and experience indicate alterations. Sales appeal.Some Rules for DesignIn this section it is suggested that, applied with a creative attitude, analyses can lead to important improvements and to the conception and perfection of alternate, perhaps more functional, economical,and durable products.To stimulate creative thought, the following rules are suggested for the designer and analyst. The first six rules are particularly applicable for the analyst.1. A creative use of need of physical properties and control process.2. Recognize functional loads and their significance.3. Anticipate unintentional loads.4. Devise more favorable loading conditions.5. Provide for favorable stress distribution and stiffness with minimum weight.6. Use basic equations to proportion and optimize dimensions.7. Choose materials for a combination of properties.8. Select carefully, stock and integral components.9. Modify a functional design to fit the manufacturing process and reduce cost.10. Provide for accurate location and noninterference of parts in assembly. Machinery design covers the following contents.1. Provides an introduction to the design process , problem formulation ,safety factors.2. Reviews the material properties and static and dynamic loading analysis , Including beam , vibration and impact loading.3. Reviews the fundamentals of stress and defection analysis.4. Introduces fatigue-failure theory with the emphasis on stress-life approaches to high-cycle fatigue design, which is commonly used in the design of rotation machinery.5.Discusses thoroughly the phenomena of wear mechanisms, surface contact stresses ,and surface fatigue.6.Investigates shaft design using the fatigue-analysis techniques.7.Discusses fluid-film and rolling-element bearing theory and application8.Gives a thorough introduction to the kinematics, design and stress analysis of spur gears , and a simple introduction to helical ,bevel ,and worm gearing.9.Discusses spring design including compression ,extension and torsion springs.10.Deals with screws and fasteners including power screw and preload fasteners.11.Introduces the design and specification of disk and drum clutches and brakes. Machine DesignThe complete design of a machine is a complex process. The machine design is a creative work. Project engineer not only must have the creativity in the work, but also must in aspect and so on mechanical drawing, kinematics, engineerig material, materials mechanics and machine manufacture technology has the deep elementary knowledge. One of the first steps in the design of any product is to select the material from which each part is to be made. Numerous materials are available to today's designers. The function of the product, its appearance, the cost of the material, and the cost of fabrication are important in making a selection. A careful evaluation of the properties of a. material must be made prior to any calculations.Careful calculations are necessary to ensure the validity of a design. In case of any part failures, it is desirable to know what was done in originally designing the defective components. The checking of calculations (and drawing dimensions) is of utmost importance. The misplacement of one decimal point can ruin an otherwise acceptable project. All aspects of design work should be checked and rechecked.The computer is a tool helpful to mechanical designers to lighten tedious calculations, and provide extended analysis of available data. Interactive systems, based on computer capabilities, have made possible the concepts of computer aided design (CAD) and computer-aided manufacturing (CAM). How does the psychologist frequently discuss causes the machine which the people adapts them to operate. Designs personnel''s basic responsibility is diligently causes the machine to adapt the people. This certainly is not an easy work, because certainly does not have to all people to say in fact all is the most superior operating area and the operating process. Another important question, project engineer must be able to carry on the exchange and the consultation with other concerned personnel. In the initial stage, designs the personnel to have to carry on the exchange and the consultation on the preliminary design with the administrative personnel, and is approved. This generally is through the oral discussion, the schematic diagram and the writing material carries on.If front sues, the machine design goal is the production can meet the human need the product. The invention, the discovery and technical knowledge itself certainly not necessarily can bring the advantage to the humanity, only has when they are applied can produce on the product the benefit. Thus, should realize to carries on before the design in a specific product, must first determine whether the people do need this kind of product Must regard as the machine design is the machine design personnel carries on using creative ability the product design, the system analysis and a formulation product manufacture technology good opportunity. Grasps the project elementary knowledge to have to memorize some data and the formula is more important than. The merely service data and the formula is insufficient to the completely decision which makes in a good design needs. On the other hand, should be earnest precisely carries on all operations. For example, even if places wrong a decimal point position, also can cause the correct design to turn wrongly.A good design personnel should dare to propose the new idea, moreover is willing to undertake the certain risk, when the new method is not suitable, use original method. Therefore, designs the personnel to have to have to have the patience, because spends the time and the endeavor certainly cannot guarantee brings successfully. A brand-new design, the request screen abandons obsoletely many, knows very well the method for the people. Because many person of conservativeness, does this certainly is not an easy matter. A mechanical designer should unceasingly explore the improvement existing product the method, should earnestly choose originally, the process confirmation principle of design in this process, with has not unified it after the confirmation new idea.机械设计李庆余, 张佳.机械制造装备设计摘要机器是由机械装置和其它组件组成的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Application and development of mechanical dynamicsBeginning of the 21st century, the development of dexterous manipulator, walking robots, machine tool, removable optical instrument platform, train, automobile active chassis as the representative of the intelligent electronic products will be one goal of China's machinery industry. Such mechanical and electrical products with innovative materials, structural lightweight, mobile, intelligent and high, resulting in a material nonlinearity, complex geometric nonlinear dynamics, nonlinear control with lag. These issues will be studied mechanical dynamics in the field of frontier in the early 21st century.First the contents of the mechanical dynamics:Any mechanical, while in the presence of motion, will be subject to the force. In the study Machinery and mechanical force generated by the movement in motion when the mechanical dynamics, and mechanical design and improvement of science from the perspective of the interaction force and movement. Detailed mechanical dynamics research can be divided into the following six:(1)At a known external force, required to have identified the true movement of the inertial parameters of the mechanical system; analysis of interaction between the various components of the mechanical motion; research institutions and balance theory and method of the rotary member; mechanical vibration analysis; and institutional analysis and synthesis, and so on.(2)Analysis of the interaction between the various components of the mechanical movement. Size and variation of the structural design of these forces is deputy campaign, the carrying capacity of supporting and component analysis and the choice of a reasonable basis for lubrication method. After obtaining the mechanical movement of the real force of inertia can be calculated for each member, and then based on Alembert principle determined by statics interaction between components. researching the institutional balance and the revolving member of theories andmethods.For rigid rotor balancing existing mature technologies and methods: both the theory and methods need further research to work flexible rotor speed approaches or exceeds the balance of the natural frequency of the rotor itself.(3)Relationship between balance and distribution of mechanical energy during operation. These include: mechanical efficiency calculations and analysis; theory and design governor; flywheel applications and design.Analysis of mechanical vibration is one of the basic elements of mechanical dynamics. It has developed into a content-rich, self-contained discipline.(4)Organizations and agencies comprehensive analysis of the general structure and motion mechanism is concerned, but with the improvement of the mechanical speed of operation, mechanical dynamics analysis and synthesis of high-speed has become an indispensable element when institutions.Second the mechanical dynamics of classification:Mechanical dynamics analysis process, according to their different functions can be divided into two types of problems:(1) Dynamics inverse problem: Given the state of motion and resistance mechanism (moment), the solution should be applied to the counterweight (balanced torque) on the driving member, and a variety of anti-vice campaign force, which is known campaign, seeking power.(2) The positive dynamics of the problem: Given the machine's input force (torque) and the resistance variation, the time to solve the movement of the machine, which is a known force, seeking movement.Third, the mechanical dynamics in modern mechanical systemsFrom the analysis, simulation to design and control, mechanical dynamics in the study area continues to expand, the formation of a number of branches, such as: machine tool dynamics, vehicle dynamics, rotor dynamics, robot dynamics, elastic body dynamics and soon on.(1) Machine DynamicsFor precision machine tools, the machining accuracy is important as an indicator, and the machine vibration is seriously undermined the machining accuracy. Complexexcitation force generated during cutting, gear transmission system, such as rolling bearings is the internal vibration source machine. Research machine dynamics are: the machine power source analysis, dynamic modeling and vibration machine vibration analysis and dynamic design of the machine.(2) Vehicle DynamicsWith high speed, safety and comfort of the vehicle becomes very important. And there were many unique dynamics, such as: Vibration wheels on the rails with a taper will lead serpentine movement of the train, it will stimulate the lateral movement of the vehicle; high-speed train on the rate of movement of the curve in the region when the major issues involved in vehicle safety; to improve the comfort of the car, when the latest research trends active vibration control of the frame, and the movement that inspire every moment according to the road, ready to adjust the parameters of the vibration system components, it is always in optimum damping condition.(3) Rotor dynamicsSteam turbines, generators, motors, centrifuges and other rotating machinery, the main rotor of their work. In order to improve the efficiency and capacity of the machine, increasing the speed of such mechanical. Suppress the vibration of the rotor system when key issues. Especially for large turbine generator rotor damage due to vibration caused by the national economy will result in significant losses. 1980s, China's two 200,000 ten million Turbine claiming the minor axis vibration caused serious incidents. Rotor dynamics and vibration of the rotor support system and countermeasures. It vibration of the shaft and the shaft early as the basis, but the operating speed turbine generator shaft exceeds the critical speed, but also contains a more complex and more vibration, thus forming an important branch of mechanical dynamics.(4) Robot dynamics1960s, robotics born and developed rapidly, it is the body, mechanical electronics, computer science and information science from a multidisciplinary frontier. A variety of industrial robots has become increasingly widely used in paint, handling, welding and assembly of industrial production line, all kinds of special robots are used inmarine exploration, outer space exploration and other fields. Robots learn to become a branch of the agency agency science hyperactive. In order to improve the speed of the robot, high-speed, flexible robot has emerged. The complexity of the robot mechanism far more than the general planar mechanisms, and must consider the dynamics of the robot control.Machine dynamics, vehicle, rotor and robots, which focuses on this type of machinery personality problems. The various types of machinery are included with institutions of various types of machinery and systems are a prime mover, transmission and composition of the working machine. Therefore, institutional dynamics and dynamics of mechanical systems in a variety of mechanical dynamics of the common problems.Fourth mechanical dynamics of the FutureA mechanical development of modern significant feature is that automatic adjustment and control devices are increasingly becoming an integral part of the machinery. Mechanical dynamics of the study has been extended to include the different characteristics of the power machine and control and regulation devices, including the entire mechanical systems, control theory has infiltrated into the field of mechanical dynamics.In some mechanical design, mechanical dynamics of change has made quality. Various simulation methods and testing theories and methods of movement and dynamic parameters, is increasingly becoming an important means of mechanical dynamics studies.。

相关文档
最新文档