非齐次线性方程组

合集下载

3.5 非齐次线性方程组

3.5 非齐次线性方程组

2.设1 (1,3,0,5)T , 2 (1,2,1,4)T , 3 (1,1,2,3)T ,
(1, a,3, b) .
T
( )a, b取何值时能用1,2,3线性表示?表示式为? 1
(2)a, b取何值时不能用1,2,3线性表示?
设 x11 x22 x33 x1 (1 , 2 , 3 ) x2 AX x 3
3.5 非齐次线性方程组有解的条件 及解的结构
复习
非齐次线性方程组Am×nX=b有解 增广矩阵(A,b)经初等行变换化得的阶梯矩阵“无尾巴”
阶梯矩阵法
一、非齐次线性方程组有解的条件 定理 非齐次线t; 秩( A) 秩( A, 秩( A,b) b)=
A 1 b, A 2 b A(1 2 ) O
• 非齐次方程组AX=b的解与其导出组AX=0的解的和是非 齐次方程组AX=b的解。
A b, A O A( ) b
2. 非齐次线性方程组的结构式通解 定理 设A是一个 m n矩阵,b是一个m维列向量,
证明: Am×n X = b 有解
秩法
x 11 + x2 2+ … + xnn = b 有解
b可由1 ,2 ,,n线性表出 秩{1,2 ,,n,b} 秩{1, 2 ,, n}
秩( A, b)
另一思路: Am×n X = b 有解
秩( A)
(A,b)经初等行变换化得的阶梯矩阵(C,d)“无尾巴”
不再是含 参数的方 程组了。
x1 x2 x3 x4 0 例2.为何值时,方程组 x1 x2 x3 3x4 1 有解? x x 2 x 3x 2 3 4 1

第三节 非齐次线性方程组

第三节 非齐次线性方程组
2
1
43 R(A)=R(B)=3 <5
4 3
方程组有
2
无穷多个解
x1
1 2Biblioteka x41 4x5
1 4

x2
3 2
x4
3 4
x5
3 4
x3
x4
1 2
x5
3 2
1
43
取x4=x5=0, 得方程组的一个特解:
*
4 3
对应齐次方程组
x1
1 2
x4
1 4
x5
的同解方程组为:
x2
3 2
x4
3 4
x5
3 x1
x2
p
x3
15 x4
3,
x1 5 x2 10 x3 12 x4 t
当p, t取何值时,方程组无解?有唯一解?
有无穷多解?在方程组有无穷多解的情
况下,求出一般解.
32
返回

1 1 2 3 1
B
1 3
3 1
6 p
1 3 15 3
1 5 10 12 t
1 1 0 2
2
3 1
(2). 当 1时,
1 1 1 1
B 0 0 0 0 . 0 0 0 0
R( A) R(B) 1.
因此方程组有无穷多个解.
(n r 3 1 2. 有两个任意常数).
26
返回
(3). 当 2 时,
1 1 2 4 B [ A,b] 0 3 3 6.
0 0 0 3
1、非齐次方程组的求解步骤
(1) 写出B,并将B化为行阶梯形;从而求出 R( A)与 R(B)以判 断是否有解;

3-6.非齐次线性方程组

3-6.非齐次线性方程组

ïï í ï
x2 x3
= =
x2
2x4 + 1 2
ïîx4 =
x4
çæ x1 ÷ö çæ 1÷ö çæ 1÷ö çæ1 2÷ö
ç ç ççè
x2 x3 x4
÷ ÷ ÷÷ø
=
k1
ç ç
ççè
1÷ 00÷÷÷ø
+
k2
ç ç
ççè
0÷ 12÷÷÷ø
+
ççççè1002÷÷÷÷ø.
(k1, k2 Î R)
例2 求解非齐次线性方程组
ú ú
êë0 0 0 0 0 k -3úû
ìx1 = x3 + x4 + 5x5 - 2

ï ïï í
x2 x3
= =
-2 x3 x3
-
2x4
-
6 x5
+
3
ï ï
x4
=
x4
ïîx5 =
x5
通解 为
é 1 ù é 1 ù é 5 ù é- 2ù
êê- 2úú
êê- 2úú
êê- 6úú
ê ê
3
ú ú
x
x = k1x1 + L + kn-rxn-r + h * .
例1 求解非齐次方程组的通解
ì ï í
x1 x1
-
x2 x2
+
x3 x3
+ -
x4 = 0 3x4 = 1
注意书写格式
ïî x1 - x2 - 2x3 + 3x4 = - 1 2
非齐次线性方程组:增广矩阵化成行阶梯形矩 阵,便可判断其是否有解.若有解,化成行最 简形矩阵,便可写出其通解;

4-3.非齐次线性方程组PPT

4-3.非齐次线性方程组PPT

1 1 2 1 1 0 0 2 4 0 0 3 t 5 1 2 3
(k1 , k2 R)
练习 k为何值时,线性方程组
x1 x2 x3 x4 x5 1 3 x1 2 x2 x3 x4 3 x5 0 x2 2 x3 2 x4 6 x5 k
有解,并在有解时求通解.

1 A 3 0 1 r2 3r1 0 0
唯一解 x1 d1 , x2 d 2 , xn d n
x1 c1r 1 xr 1 c1n xn d1 x c x c x d 2 2 r 1 r 1 2n n 2 xr crr 1 xr 1 crn xn d r 其中 xr 1 ,, xn 为自由变量,故方程组有依赖于
4-2=2个独立参量的无穷多解
1 1 0 1 1 2 0 0 1 2 1 2 . 0 0 0 0 0
所以方程组的通解为
同解方程组为 x1 x2 x4 1 2 x2 x2 2 x4 1 2 x3 x4 x4
思考题解答

2 3 1 1 1 6 1 3 1 3 B 3 1 p 15 3 1 5 10 12 t
2 3 1 1 1 4 2 2 0 2 ~ 0 4 p6 6 0 0 6 12 9 t 1
n-r 个独立参量的无穷多解.
例1 设有线性方程组

(1 ) x1 x2 x3 0, x1 (1 ) x2 x3 3, x x (1 ) x . 3 1 2
问 取何值时,此方程组 (1)无解; (2)有唯一解; (3)有无穷多解.

第三节 非齐次线性方程组 非齐次线性方程组的概念

第三节    非齐次线性方程组 非齐次线性方程组的概念

11
22
nn
问题是:非齐次线性方程组何时是有解的?如果有
解时怎样求出其所有解?
根据齐次线性方程组的不同表示方法,以及矩阵 与其行向量组、列向量组的关系,不难得知如下 等价命题:
二、非齐次线性方程组有解的条件
非齐次线性方程组有解得等价条件
(1)线性方程组 AX b 有解
(2)向量b能由向量组1, 2 ,
例 设四元非齐次线性方程组的系数矩阵的秩
为3,已知 1 , 2 , 3 是它的三个解向量,且
2
1
1
3 4
,
2
3
2. 3
5
4
求该方程组的通解。
解: 设非齐次线性方程组 Ax b
对应的齐次线性方程组 Ax 0
已知 1,2 ,3 是Ax b的解,
故有 A1 b, A2 b, A3 b 令 21 (2 3 ), 则
解:设有方程 a1 x1 a2 x2 a3 x3 a4 x4 0
a1
由题意应有:
0 3
1 2
2 1
3 0
a2 aa43
0 0
对系数矩阵施行初等行变换,有:
0 1 2 3 1 0 1 2
3 2 1 0 ~ 0 1 2
3
a1
1 0
0 1
1 2
2
3
a2 aa43
0 0
0 , 0 1
从而得到齐次线性方程组的一个基础解系
1 (2,1,1,0,0)T ,2 (2,1,0,1,0)T ,3 (6,5,0,0,1)T
齐次线性方程组通解为 c11 c22 c33 非齐次线性方程组的通解为 c11 c22 c33
其中 c1 , c2 , c3 为任意常数.

3 非齐次线性方程组

3  非齐次线性方程组
12
( k1 , k2 R ).
返回
x1 1 1 1 2 x 0 1 2 k1 k2 即 x3 2 0 x 1 0 4
例2. 求解方程组
1 / 2 0 . 1 / 2 0 ( k1 , k2 R).
0 1 1 1 1 r2 r1 0 0 2 4 1 r3 r1 0 0 1 2 1 / 2
1 1 r 3 r2 2 0
1 1 0 0
11
0
2 0
0 4 1 . 0 0 1
返回
R( A) 2,
§3 非齐次线性方程组
一、非齐次线性方程组有解的充要条件 二、非齐次线性方程组的通解结构 三、非齐次线性方程组的解法
1
返回
一、非齐次线性方程组有解的充要条件
a11 x1 a12 x2 a1n xn b1 am 1 x1 am 2 x2 amn xn bm
6
返回
二、非齐次线性方程组的通解结构
④有解, 叫相容. ④ 可写成: 相应的齐次方程组: AX = b AX = 0 ⑥ ⑦
性质3. 若1 ,2是⑥的解, 则1 2是⑦的解. 性质4. 若 是⑥的解, 是⑦的解, 则 是⑥的解. 定理: 若 是 ⑥的一个解, 则⑥的任一个解 X总可写成: X . 是⑦的解.
2
返回
则方程组④可写成:
x1 1 x2 2 xn n b
④的系数阵:

a11 A am 1
a12 am 2
a1n amn

非齐次线性方程组

非齐次线性方程组

非齐次线性方程组Ax=b一、基本理论线性方程组Ax=b 有解条件: 系数矩阵A 的秩 = 增广矩阵(A,b )的秩.非齐次线性方程组的解集结构:若x 1是Ax=b 的一个特解, N (A )表示齐次线性方程组Ax=0的解空间, 则非齐次线性方程组Ax=b 的解集为x 1+N (A ).解非齐次线性方程组的方法:通过初等行变换将增广矩阵(A,b )化为最简行阶梯矩阵(A 1,b 1), 写出对应的方程组,根据方程组写出解.二、Matlab 实现调用rref(A )将A 化为最简行阶梯矩阵, 根据对应的方程组写出解.若方程组有解, 且rank(A )=n ,即A 列满秩时, 方程组有唯一解. 此时可直接用A 左除b 求得唯一解:x=A\b .三、例子例1. 求解线性方程组1234524512345123512345343226333434222026231x x x x x x x x x x x x x x x x x x x x x x -++-=⎧⎪---=-⎪⎪-++-=⎨⎪++-=⎪-+-++=⎪⎩A=[3 -4 3 2 -1; 0 -6 0 -3 -3; 4 -3 4 2 -2; 1 1 1 0 -1; -2 6 -2 1 3]; b=[2; -3; 2; 0; 1]; A1=[A b]A1 =3 -4 3 2 -1 2 0 -6 0 -3 -3 -3 4 -3 4 2 -2 2 1 1 1 0 -1 0 -2 6 -2 1 3 1rref(A1)ans =1 0 1 0 -1 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0化为方程组32415510x x x x x x ++=-⎧⎪=⎨⎪=-⎩所以解为15233354555311000001100011010x x x x x x x x x x x x --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==++ ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭++例2. 设函数2y axbx c =++经过点(1,1), (2,2), (3,0), 求系数a , b , c .解1422930a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩输入系数矩阵A 和右端项bA=sym([1 1 1; 4 2 1; 9 3 1]); b=sym([1; 2; 0]);增广矩阵1A A1=[A b]A1 =[ 1, 1, 1, 1] [ 4, 2, 1, 2] [ 9, 3, 1, 0]利用rref 求解 R=rref(A1)R =[ 1, 0, 0, -3/2] [ 0, 1, 0, 11/2] [ 0, 0, 1, -3]即解为311,,322a b c =-==-解二判断方程组是否有解, 即系数矩阵A 的秩是否等于增广矩阵1A 的秩. rank(A)==rank(A1)ans = 1 有解.判断方程组是否有唯一解, 即系数矩阵 A 是否等于A 的列数n .[m,n]=size(A); rank(A)==nans = 1A 的秩等于列数n , 有唯一解.直接用A 左除 b 求解 x=A\bx = -3/2 11/2 -3例 3. 设三种食物中每100g 中的蛋白质、碳水化合物、脂肪的含量如下表.三种食物用量各为多少才能保证所需营养?解. 设脱脂牛奶用量为1x , 大豆面粉用量为2x , 乳清用量为3x .12312312336 51 133352 34 74450 7 1.13x x x x x x x x x ++=++=++=⎧⎪⎨⎪⎩A=[36 51 13 33; 52 34 74 45; 0 7 1.1 3]A =36.0000 51.0000 13.0000 33.0000 52.0000 34.0000 74.0000 45.0000 0 7.0000 1.1000 3.0000 R=rref(A)R =1.0000 0 0 0.2772 0 1.0000 0 0.3919 0 0 1.0000 0.2332所以脱脂牛奶的用量为27.72g ,大豆面粉的用量为39.19g ,乳清的用量为23.32g 。

非齐次线性方程组

非齐次线性方程组
10
例 判别方程组是否有解?
2x y 2z 3w 1 3x 2y z 2w 4 3x 3y 3z 3w 5
解 方程组的增广矩阵为
2 A 3
3
1 2 3
2 1 3
3 2 3
1 4 5
2
0
0
1 1 3
2 4 12
3 5 15
1 2
5
0
7 0
1 1 0
2 4 0
3 5 0
a11 a12 L
A
a21
a22
L
M
am1 am2
a1n
a2n
amn
x1
X
x
2
M
x
n
m个方程 ,
n个未知数
b1
b
b2
M
bm 3
非齐次线性方程组
a11x1a12 x 2 L a1n xn b1
a21x1a22 x 2 L a2n xn b2 ........................................
r3 r1
0
0
1 4 4
3 6 6
1 7 7
1
1
1
1 1 3
r3 r2
r2 ( 14 )
0
1
3
2
1 7
4
1
1
4
1
0
3 2
r1r2
0
1
3 2
3 4 7 4
5
4
1 4
0 0 0 0 0
R( A) R( A) 2
0 0 0 0 0 12
1
0
32
3 4
5 4

线性代数-非齐次线性方程组

线性代数-非齐次线性方程组

充分性:若r(A)=r(A|b) ,即d r+1 =0,则(*)有解。
把这 r 行的第一个非零元所对应的未知量作为 非自由未知量, 其余n r个作为自由未知量,
即可得方程组的一个解. 并令 n r 个自由未知量任意取值,
定理1更常用的描述是:
此乃第三章的 精华所在
定理1’
对n 元非齐次线性方程组 Amn x b ,
Ch3 矩阵的秩与线性方程组
第 二节
(非)齐次线性方程组
一、线性方程组有解的 判定
二、线性方程组的解法
对于m个方程n个未知数的线性方程组
a11 x1 a12 x 2 a1n x n b1 a 21 x1 a 22 x 2 a 2 n x n b2 ........................................... a x a x a x b m2 2 mn n m m1 1
解 对增广矩阵 A 进行初等变换,
r12 ( 3) 1 2 3 1 1 1 2 3 1 1 r ( 2) A 3 1 5 3 2 13 0 5 4 0 1 2 1 2 2 3 r23 ( 1) 0 5 4 0 1 0 0 2
2 当 1时,
1 1 2 A ~ 0 1 1 1 2 0 0 1 2 1 1 1 1 2 ~ 0 1 1 0 0 ( 2 ) 1 2
问取何值时, 有唯一解? 无解?有无穷多个解 ?
解一 对增广矩阵 A ( A, b) 作初等行变换,
A 1 1

1

5-2非齐次线性方程组

5-2非齐次线性方程组

思考题
设A是m 3矩阵,且RA 1.如果非齐次线性
方程组Ax
b的三个解向量1 ,2
,

3

1
0
1
1 2 2, 2 3 1, 3 1 0
3
1
1
求Ax b的通解.
思考题解答
解 A是m 3矩阵, R( A) 1, Ax 0的基础解系中含有3 1 2个线性
故得基础解系
1 2 1 2
1
1
,
0
0
0 1
2
0
,
1
0
2 3
3
0
.
0
1
求特解

x3
x4
x5
0, 得x1
9, 2
x2
23 . 2
所以方程组的通解为
1 2 1 2
0 1
2 9 2 3 23 2
x
k1
1
k2
0
k3
0
0
.
0 0 0 0
xr1 1 0
0

xr 2
0
,
1
,
,
0
.
xn 0 0
1

x1
b11
,
b12
,
,
b1 ,n r
,
xr br1 br2
br
,nr
b11
b12
b1 ,n r

br
1
1 1 ,
2
br
2
0 ,
x1 2 x2
x2 x3
x3 2x4
x4 x5 6x5
7 23

2-3工程数学非齐次线性方程组

2-3工程数学非齐次线性方程组
14
x1 = x2 + x4 在对应的齐次线性方程 组 中,取 x3 = 2x4 x2 1 0 = 及 x4 0 1
x1 1 1 则 = 及 x 0 2 3 得对应的齐次线性方程 组的基础解系 1 1 1 0 ξ1 = , ξ 2 = 0 2 0 1
9
例1 求解方程组
x1 − 2 x2 + 3 x3 − x4 = 1, 3 x1 − x2 + 5 x3 − 3 x4 = 2, 2 x + x + 2 x − 2 x = 3. 1 2 3 4
解 对增广矩阵 B施行初等行变换
1 − 2 3 − 1 1 B = 3 − 1 5 − 3 2 2 1 2 − 2 3
系,∗是方程组A X = b的一个特解,则 η X = K1ξ1 + K 2 ξ 2 + L + K n − r ξ n − r + η ,

K1 , K 2 , L, K n为任意实数. 的通解.
是方程组 A X = b
6
根据以上定理可知,当方程组( 根据以上定理可知,当方程组(2.3.1)有解时,它 )有解时, 有唯一解的充要条件是其导出组只有零解; 有唯一解的充要条件是其导出组只有零解;它有无 穷多组解的充要条件是其导出组( 穷多组解的充要条件是其导出组(2.2.1)有无穷多 ) 组解。 组解。
第三节
非齐次线性方程组
一、解的判定和解的结构 二、用初等行变换求线性方程组的通解
1
一、非齐次线性方程组有解的判定条件
对非齐次线性方程组

非齐次线性方程组

非齐次线性方程组

x5为任意实数 .
返回
n元非齐次线性方程组Ax = b解的存在性
方程组无解 R( A) R( A, b) 方程组有解 R( A) R( A, b)
方程组有唯一解 R( A) R( A, b) n 方程组有无穷多组解 R( A) R( A, b) n
返回
二、非齐次线性方程组的通解结构
④有解, 叫相容.
④ 可写成:
AX = b

相应的齐次方程组: AX = 0

性质3. 若1,2是⑥的解,则1 2是⑦的解.
性质4. 若 是⑥的解, 是⑦的解,
则 是⑥的解.
定理:若 是 ⑥的一个解, 则⑥的任一个解
返回
下面四种提法可互为充要条件:
(1). 方程组④有解.
(2). b 可由1, , n 线性表示.
(3). 向量组1, , n与 向量组1, , n ,b等价.
(4). R(A) = R(B) .
显然
显然
证明: (1) (2) (3).
(4) 1, , n的秩 1, , n ,b的秩.
R(A)=R(B).
返回
(4) 1, , n的秩 1, , n ,b的秩.
设秩同为 r,
1, , r 是1, , n 的一个最大无关组. 1, , r ,b 线性相关, 否则与秩为 r 矛盾! 1, , r也是 1, , n,b的一个最大无关组.
1, ,n与1, ,n,b等价. 证毕.
定理二. (非齐次线性方程组④有解的判别定理)
(iii) 令这 n–r 个自由未知量分别为基本单位向量1,L ,nr ,
可得相应的 n–r 个基础解系 1 , ,nr ; (iv) 写出通解 k11 k22 L knr nr ,其中k1, k2,L , knr为任意实数

4.3非齐次线性方程组

4.3非齐次线性方程组

(k1,k2∈R)
x1 − 2 x 2 + 3 x 3 − x4 = 1 例2 求解方程组 3 x1 − x 2 + 5 x 3 − 3 x4 = 2 2 x + x + 2 x − 2 x = 3 2 3 4 1
1 3 解: B = 2 1 − 2 ~ 0 5 − 0 0
方程组(1)的系数阵 方程组 的系数阵: 的系数阵
a11 ⋯ A= a m 1
a11 ⋯ B= a m 1
a12 ⋯ a1n ⋯ ⋯ ⋯ =(β1,β2,⋅⋅⋅ βn) ⋅⋅⋅, ⋅⋅⋅ a m 2 ⋯ a mn
a12 ⋯ ⋯ a1n ⋯ ⋯ b1 ⋯ =(β1,β2,⋅⋅⋅ βn,b) ⋅⋅⋅, ⋅⋅⋅ bn
方程组(1)的增广阵 方程组 的增广阵: 的增广阵
a m 2 ⋯ a mn
方程组(1)有解 ⋅⋅⋅,x 方程组 有解x1,x2,⋅⋅⋅ n 有解 ⋅⋅⋅ 存在一组数x ⋅⋅⋅,x ⋅⋅⋅+x ⇔存在一组数 1,x2,⋅⋅⋅ n,使x1β1+⋅⋅⋅ nβn=b ⋅⋅⋅ 使 ⋅⋅⋅ ⋅⋅⋅, ⇔b可由β1,⋅⋅⋅ βn线性表示 可由 ⋅⋅⋅ 下面四种提法可互为充要条件: 下面四种提法可互为充要条件 1° 方程组 有解 有解. ° 方程组(1)有解 2° b可由β1,⋅⋅⋅ βn线性表示 ⋅⋅⋅, ° 可由 ⋅⋅⋅ 3° 向量组β1,⋅⋅⋅ βn与向量组β1,β2,⋅⋅⋅ βn,b等价 ⋅⋅⋅, ⋅⋅⋅, ° ⋅⋅⋅ ⋅⋅⋅ 等价 4° R(A)=R(B) ° 定理二 非齐次线性方程组(1)有解 有解⇔ 非齐次线性方程组 有解⇔R(A)=R(B)
1 λ 1 ~ 0 λ − 1 1 − λ − 0 1 − λ 1 − λ2

《非齐次线性方程组》课件

《非齐次线性方程组》课件
《非齐次线性方程组 》ppt课件
目录
CONTENTS
• 非齐次线性方程组的基本概念 • 非齐次线性方程组的解法 • 非齐次线性方程组的特解和通解 • 非齐次线性方程组的解的结构 • 非齐次线性方程组的应用
01 非齐次线性方程组的基本 概念
非齐次线性方程组的定义
总结词
非齐次线性方程组是由至少一个 常数项不为0的线性方程组成的方 程组。
考虑方程组$begin{cases}x + y = 1 x - y = 3end{cases}$,解为$x = 2, y = -1$和$x = -1, y = 2$,线性组合如$0.5x_1 + 0.5x_2 = 0.5(2,-1) + 0.5(-1,2) = (0.5,0.5)$也是该 方程组的解。
特解的求解方法
特解的求解方法通常包括代入法、消元法等。代入法是将方程组的某个方程代入其他方程,消元后得到一个或多 个方程,再求解得到特解。消元法则是通过消元过程将原方程组化为一个等价的单一方程,再求解得到特解。
通解的概念和求解方法
通解的概念
通解是非齐次线性方程组中满足方程组的所有解的集合。它通常表示为某个常数向量的线性组合。
在研究热传导问题时,非齐次线性方 程组可以用来描述温度随时间和空间 的变化规律。
波动方程
在研究波动现象时,如声波、电磁波 等,非齐次线性方程组可以用来描述 波的传播和变化规律。
在经济问题中的应用
供需平衡
非齐次线性方程组可以用来描述 市场经济中的供需关系,如商品
的价格和销售量之间的关系。
投资组合优化
02 非齐次线性方程组的解法
消元法
总结词
消元法的核心是通过消元过程将非齐次线性方程组转化为 齐次线性方程组,从而求解。

4-4非齐次线性方程组解

4-4非齐次线性方程组解

1 0 2 , 2 1
于是所求通解为
x1 1 1 1 2 x2 1 0 0 x 3 c1 0 c 2 2 1 2 , (c1 , c 2 R ). 0 1 0 x4
x1 x 2 x4 1 2 , x 3 2 x4 1 2 . 1 取 x 2 x4 0, 则 x1 x 3 , 即得方程组的一个特解 2 1 2 0 . 12 0 x1 x 2 x 4 , 在对应的齐次线性方程 组 中, 取 2 x4 x3
3 1 1 2 0 0 0 0 0 0 0 0
1 1 1 2 0 1 0 0 0 0 0 2
2 1 方程组*有无穷多解,通解为 X k 1 2 . 1 0 可由1 , 2 , 3表示为 2k 11 k 2 2 k 3 , k为任意实数.
法2:利用Cramer法则
k 1 1 2 D 3 2 k ( k 1)( k 3) 0 1
当 D 0 时,即 k 1 且 k 3 时,方程组有唯一解。 当k
1 1 1 5 1 0 1 3 ( A, b) 3 2 1 13 0 1 2 2 0 1 2 2 0 0 0 0
的秩相等.
四、思考与练习
思考题:
1 2 0 3 4 7 1 10 已知1 , 2 ,1 , , 0 1 1 b 2 3 a 4 问: ( 1 )a , b取何值, 不能1 , 2 , 3由线性表示 ( 2 )a , b取何值, 能由1 , 2 , 3唯一线性表示 ; ( 3 )a , b取何值, 能由1 , 2 , 3线性表示但不唯一, 并写出表示式

线性代数 非齐次方程组

线性代数 非齐次方程组

⎪⎩4x1 + 5x2 − 5x3 = −1
不再是含参数 的方程组了。
a
=

4 5
时,方程组为⎪⎪⎪⎪⎪⎨⎧4−2xx1451+x−1545−x2xx−22
=
⎜ ⎜
a22
⎟ ⎟
⎜⎜⎝ am2 ⎟⎟⎠
⎜⎛ a1n ⎟⎞
αn
=
⎜ a2n ⎜
⎟ ⎟
⎜⎜⎝ amn ⎟⎟⎠
⎜⎛ b1 ⎟⎞
β
=
⎜ b2 ⎜
⎟ ⎟
⎜⎜⎝ bm ⎟⎟⎠
x1α1 + x2α2 + + xnαn = β
方程组的向量方程
即 (α 1 ,α 2 ,
⎛ x1 ⎞

n
)
⎜ ⎜ ⎜
x2
⎟ ⎟ ⎟
其中 η* 是n 元非齐次线性方程组(1)的一个特解,ξ1, ξ2 , , ξn−r
是对应的齐次线性方程组的一个基础解系,k1,k2, ,kn−r为任意常数.
(3) 当 r(A) ≠ r(A) 时,方程组(1)无解.
例 设A为m×n矩阵,AX=0为AX=b的导出组,则
1) 当 AX=0 仅有零解时,AX=b 有唯一解 2) 当 AX=b 有唯一解时,AX=0 仅有零解 3) 当 AX=0 有非零解时,AX=b 有无穷多解 4) 当 AX=b 无解时,AX=0 仅有零解
通解。
注意什么?
补充
含参数的方程组
在求解方程组之前,要先确定参数值。——这是准则。
而参数值的确定,要依据有解的条件即:r( A) = r( A)
一般而言,有两种方法确定参数值。一种是行列式法,另一种是
初等变换法。
例3 解

3-3 非齐次线性方程组

3-3 非齐次线性方程组
第三节
非齐次线性方程组
一、有解的判定
m × n非齐次线性方程组的一般形式: a 11 x 1 a 12 x 2 a 1 n x n b1 a x a x a x b 21 1 22 2 2n n 2 a m 1 x 1 a m 2 x 2 a m n x n bm
~ 当 1 且 2时, A ~
~ r ( A) r ( A) 3 有唯一解 1 1 2 4 ~ ~ r ( A) 2 r ( A) 3 当 2时,A ~ 0 1 1 2 0 0 0 1 无解 ~ 1 1 1 1 ~ r ( A) r ( A) 1 3 当 1 时, A ~ 0 0 0 0 有无穷多解 0 0 0 0

A 1 1 1

1
1 1
1 2
2

由Cramer法则可得: 当 1 且 2时,有唯一解 而当 1或 2 时,只能用秩来判断解的情况.
b1 1 b1 行变换 ~ ··· ~ b k 1 0 bm 记为 B c
O
b1 n bkn 0
c1 ck ck 1 0
若c k 1
若ck 1
~ 0,即r ( A) r ( A),
11 2t 3 5 1 t 3 2 2 3

11 2t 3 5 1 x2 t 3 2 x3 t x1 2 x4 3
x1 11 / 3 2 x 5 / 3 1 / 2 2 t , x 通解: 0 1 x3 x4 2 / 3 0

第4章4.3 非齐次线性方程组

第4章4.3  非齐次线性方程组
1 A ~ 0 0
R( A) 2 R( A) 4
1 2 0.5 0.5 1 1 1 2 ~ 0 0 0 1 0 0 0
1 1 0 0.5 1 0
02
0
原方程组有无穷多个解, 它同解于
x 1 0 .5 x 2 0 .5 x 3 0 .5 x4 0 x 1 0 .5 0 .5 x 2 0 .5 x 3
二元一次方程组的解情况
1 1 1 1 1 1 1 0 1 ~ ~ 1、 只有一个解 A 0 1 2 0 1 2 1 2 3 x y 1 x y 1 x 1 R( A) 2 R( A) y 2 x 2y 3 y 2 1 1 1 1 1 1 ~ 2、有无穷多个解 A 0 0 0 2 2 2 R( A) 1 R( A) 2 x y 1 x y 1 x 1 K K 为任何实数 2x 2y 2 x 1 y y K 1 1 1 1 1 1 A 3、无解 ~ 2 2 3 0 0 1 x y 1 x y 1 R( A) 1 R( A) 3 2x 2y 3 01
交于一点, 则矩阵
a 1 b1 a 1 b1 c 1 A a 2 b2 与 B a 2 b2 c 2 a 3 b3 a 3 b 3 c 3 的秩满足 a 1 b 1 c 1 2 A a 2 b2 c a 3 b3 c 3
128页7
λ取何值时, 方程组有解?

2 x 1 x 2 x 3 2 x1 2 x 2 x 3 x x 2 x 2 3 1 2

非齐次线性方程组

非齐次线性方程组

3.3 非齐次线性方程组3.3.1问λ 取何值时方程组1212122(4)70(2)2302560x x x x x x λλλ+-+=⎧⎪-++=⎨⎪++-=⎩有唯一解、无穷多个解、无解?并在有无穷多个解时求出其通解。

解:由于系数矩阵不是方阵,故只能使用初等行变换法。

22472562230112565686022A λλλλλλλλλ⎡⎤⎢⎥---⎡⎤⎢⎥⎢⎥=------⎢⎥⎢⎥⎢⎥⎢⎥---+⎣⎦⎢⎥⎣⎦① 当1λ=-时,2571115022000A -⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦,由()()2r A r A ==,知方程组有唯一解。

由 11011150111000A ⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ 知唯一截为12111511x x ⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦② 当1λ≠-时,256011(1)(12)002A λλλ⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦,则若1λ=,则由()()2r A r A ==知有唯一解1251x x -⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦;若12λ=,则由()()2r A r A ==知也有唯一解121;21x x ⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦若1λ≠且12λ≠,则由()23()r A r A =≠=知方程组无解。

3.3.2 选择题(1)设A =1100011000111001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,1234a a b a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,Ax b =有解的充分必要条件为( D )。

(A )1234a a a a === (B )12341a a a a ==== (C )12340a a a a +++= (D )12340a a a a -+-=(2)非齐次线性方程组Ax b =,对应的导出组方程组0Ax =,则( D )正确。

(A ) 若0Ax =仅有零解,则Ax b =有唯一解 (B ) 若0Ax =有非零解,则Ax b =有无穷多组解 (C ) 若Ax b =有无穷多组解,则0Ax =仅有零解 (D ) 若Ax b =有无穷多组解,则0Ax =有非零解3.3.2设123,,a a a 是互不相同的常数,证明下面的方程组无解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0 1 − 1 − 1 1 → 0 0 1 − 2 1/ 2 0 0 0 0 λ + 1/ 2
1 ⇒ λ = − 时,r ( A ) = r ( A),方程组有解。 2
问题:此题能用行列式法求解吗? 问题:此题能用行列式法求解吗? 不能!
两个关于方程组的问题: 两个关于方程组的问题:
1.设四元非齐次方程组AX = B的系数矩阵A的秩为3, ( 3, 5) η1,η 2,η3是它的三个特解,且η1 = 2,4, T ,
η 2 + η3 = 1, 3, ,求AX = B的通解。 ( 2,4)
T
由题设,基础解系只含一个解向量,可取为 ξ = 2η1 − (η 2 + η ) = (2,4, T − 1, 3, T = (3,4,5,6)T , 2 3, 5) ( 2,4) ∴通解为η1 + kξ . (详见参考书第82页。)
2.向量的单位化
1
β = ( b1, b 2 , L , b n )
α
α =
1
α
α =1
1
α
α为单位向量。
二、向量的夹角:自学。 三、向量的正交性:
1.定义2. 若(α,β ) 0, 则称向量 α 与β 正交。 = 2.定义3. 如果 m个n维非零向量 α1 , α 2 , L , α m 两两正交,
通解为 η ∗ + k1ξ1 + k 2ξ 2 + L + k n − rξ n − r
例1:求解方程组
1 1 0 → 0 2 0 1 0 5 M − 3 1 → 0 − 1 3 M − 2 → 0 0 0 0 M 0 0
系数矩阵
(1)
L a1n x1 b1 L a2n x2 b2 L M X = M B= M x b L a mn n m
方程组的 矩阵形式
AX = B
AX = O
非齐次 方程组的 导出组
( = 即满足 α i,α j ) 0, (i ≠ j ) 则称向量组 α1 , α 2 , L , α m为正交向量组, 简称为正交组。
e1 = (1,0, L ,0), e2 = (0,1, L ,0), L , en = (0,0, L ,1).
为正交向量组。也称为单位正交组或标准正交组。
3.正交向量组的性质 正交向量组的性质 定理: 定理 设α1 , α 2 , L , α m为正交向量组, 则α1 , α 2 , L , α m
x1 = x2 + x4 + 1 / 2 x3 = 2 x4 + 1 / 2
r ( A ) = r ( A) 有解
x1 1 1 x2 1 0 x1 = x2 + x4 = , ⇒ = , x 0 2 x 0 1 4 3 x3 = 2x4 基础解系为: 1 = (1,1,0,0) T ξ 2 = (1,0,2,1) T ξ
通解为η + k1ξ1 + k 2ξ 2
非齐次方程组的求解步骤

1.写出A ,并将A 化为Байду номын сангаас形阵;从而求出 r ( A)与 r ( A )以判 如何确定? 如何确定? 断是否有解 ;
2.在有解时,进一步将 A 化为行最简形,确定真未知量与 自由未知量,并写出同解方程组; 3.先令自由未知量为零, 求出真未知量的值,从 而求出特
同解方程组为
1 2 −1 M A = 2 3 1 M 4 7 −1 M
x1 + 2 x2 − x3 = 1 2 x1 + 3x2 + x3 = 0 4 x + 7 x − x = 2 2 3 1
r ( A ) = r ( A) 有解
2 −1 M 1 1 2 − 1 M 1 − 1 3 M − 2 → 0 − 1 3 M − 2 0 0 0 M 0 − 1 3 M − 2 0 5 M − 3 1 − 3M 2 0 0 M 0
2 x1 + x2 − x3 = 1 a = 1时,方程组为 x1 − x2 + x3 = 2 4 x + 5 x − 5 x = −1 2 3 1
不再是含参数 的方程组了。 的方程组了。
4 2 x1 − 5 x2 − x3 = 1 4 a = − 时,方程组为 − 4 x − x + x = 2 1 2 3 5 5 4 x1 + 5 x2 − 5 x3 = −1
引 a11 a12 进 a 21 a 22 向 α1 = M α 2 = M 量 a a

m1
L

m2
a1n a2n αn = M a mn
b1 b2 β = M b m
1 − 1 − 1 1 0 1 − 1 0 − 1 1/ 2 → 0 0 1 − 2 1/ 2 → 0 0 1 − 2 1/ 2 0 0 0 0 0 0 0 0 0 0
同解方程组为
x2 = x4 = 0 ⇒ x1 = x3 = 1 / 2 特解为 η ∗ = (1 / 2, 0, 1 / 2, 0)T
x1 = −5 x3 − 3 x 2 = 3 x3 + 2
x1 = −3 ∴ 特解为η ∗ = (−3,2,0)T x3 = 0, ⇒ x2 = 2 x1 = −5 x3 = 1, ⇒ x2 = 3
通解为 η ∗
ξ = (−5,3,1)T 所以 基础解系为
+ kξ
x1α1 + x2α 2 + L + xnα n = β
方程组(1)有解 ⇔
方程组的向量方程
非齐次线性方程组的有解判定
β 可由α1 , α 2 , L , α n 线性表示 ⇔ A = (α1 , α 2 , L , α n , β ), r ( A) = r ( A )
A = (α1 , α 2 , L , α n , β )称为方程组(1)的增广矩阵.
2.设α1 = (1,3,0,5)T , α 2 = (1,2,1,4)T , α 3 = (1,1,2,3)T ,
β = (1, a,3, b) .
T
(1)a, b取何值时β能用α1,α 2,α 3线性表示?表示式为?
(2)a, b取何值时β不能用α1,α 2,α 3线性表示?
设β = x1α1 + x2α 2 + x3α 3 x1 ⇒ β = (α1 , α 2 , α 3 ) x2 = AX x 3
解η ;再给自由未知量取值 ,以求出基础解系;并 写出 通解。

注意什么? 注意什么?
补充
含参数的方程组
在求解方程组之前,要先确定参数值。——这是准则。 而参数值的确定,要依据有解的条件即: ( A ) = r ( A) r 一般而言,有两种方法确定参数值。 一种是行列式法,另一种是 初等变换法。 2 x1 + ax2 − x3 = 1 例1.a为何值时,方程组 ax1 − x2 + x3 = 2 无解?有惟一解? 4 x + 5 x − 5 x = −1 2 3 1 无穷多解?并在有解时求其解。
线性无关。
回忆:如何证明一组向量线性无关?
证:
设k1α1 + k 2α 2 + L + k mα m = O ⇒ (α i , k1α1 + k 2α 2 + L + k mα m ) = (α i , O ) = 0 ⇒ k1 (α i , α1 ) + k 2 (α i , α 2 ) + L + k m (α i , α m ) = 0 ( = Q α1 , α 2 , L , α m为正交向量组, 则 α i,α j ) 0, (i ≠ j ) ∴ k i (α i , α i ) = 0 由于 α i ≠ O , 即 (α i , α i ) ≠ 0 ⇒ k i = 0 ( i =1,2,···,m )
1 1 1 x1 3 2 1 A = (α1 , α 2 , α 3 ) = , X = x2 0 1 2 x 3 5 4 3 a, b取何值时β能用α1,α 2,α 3线性表示转化为方程
组AX = β是否有解的问题。 (详见参考书第82页。)
则非齐次方程组(1)的通解为 出组的基础解系, η ∗ + k1ξ1 + k 2ξ 2 + L + k n − rξ n − r k1 , k 2 , L , k n − r为任意常数,r = r ( A).
)有惟一解; 推论: 推论: (i ) r ( A) = r ( A ) = n时,方程组(1 (ii ) r ( A) = r ( A ) < n时,方程组(1)有无穷多解,其 (iii ) r ( A) ≠ r ( A )时,方程组(1)无解。
解:
2 a − 1 = 10 + 4a − 5a 2 a − 1 A = a −1 1 ⇒ A = a −1 1 − 4 − 10 + 5a 2 4 5 − 5 4 5 − 5 = 5a 2 − a − 4 4 A = 0 ⇒ a = 1, a = − ∴ a ≠ 1且a ≠ − 4 时,方程组有惟一解。 5 5
向量组的正交性
一、向量的内积: 1.定义1:设有向量 α = ( a 1, a 2 , L , a n )
a1b1 + a 2 b2 + L + an bn 称为向量 α 与 β 的内积,记为( α, β )。 (α,β )= a1b1 + a 2 b2 + L + an bn (i ) (α,β ) αβ T (ii ) (α,β )(β,α ) = = (iii ) (kα , β ) k (α,β ) = α , kβ ) = ( (iv ) (α + β , γ ) (α,γ ) + β , γ ) = ( 2 2 2 2 = (v ) (α,α ) a1 + a 2 + L + a n = α
相关文档
最新文档