折线形边坡稳定性计算实例
滑坡稳定性影响因素及分析
滑坡稳定性影响因素及分析滑坡是在一定的内因、外因等地质环境条件和其它因素综合作用下产生的,影响因素包括:地质条件、地形地貌、人类活动、气候及迳流条件、其它因素。
就本滑坡隐患体而言,各因素对其的影响如下:①地质条件岩土体的本身特性是影响边坡稳定性的主要因素;对岩质边坡来说主要包括软弱结构面存在与否及其强度、结构面特别是主要结构面的产状、结构面的组合关系、结构面的结合情况、渗透性、与临空面的相对关系;对土质边坡来说主要包括土体强度、软硬接触面的渗透性。
滑坡隐患体及边坡出露的地层为泥盆系佘田桥组,岩性为砂岩,受地形地貌、构造侵蚀、剥蚀及风化作用影响,第四系及土状风化物厚度变化较大;原始地形较平缓的人工切坡坡面及坡顶局部地段第四系及土状风化物厚度大。
第四系坡残积土其孔隙性大且含较多碎石,抗剪强度较低,坡度较陡时其自稳性差;中上部基岩埋藏多较浅且表部风化较强烈;整个山体岩体裂隙发育,地层及裂隙产状较杂乱(图2-1),地层产状多近坡向或与坡向小角度斜交,岩体呈碎裂结构、电阻较高,结构面结合多数差~较差,易产生松动变形。
②地形地貌因素勘查区属中低山地貌,高差较大,山脊地形坡度较陡(坡度25~30°),两侧地形陡峻(坡度40~45°),但从调查情况来看,沟谷处及外围天然斜坡未见有滑坡现象,天然条件下斜坡是稳定的;但切坡以后,山体前缘产生高陡临空面,所形成的上缓下陡地形不利于斜坡的稳定。
③人类活动因素人类工程活动破坏原有的地形地貌,使在自然条件下已经达到平衡状态的岩土体应力进行重新分布,斜坡产生变形,当岩土体中应力无法平衡时,边坡将发生失稳破坏。
就本区而言,切坡产生高陡地形,形成临空面,产生滑坡隐患的主要因素就是人类工程活动—切坡。
④气候因素勘查区多年(1971~1998年)平均降雨量为1885mm,降雨量最多的1997年为2516mm,降雨量最少的1978年为1407mm。
3~8月平均降雨量为1334.7mm,尤以5、6月为甚,降雨量达508.6mm。
平面、折线滑动法边坡稳定性计算书
平面、折线滑动法边坡稳定性计算书计算依据:1、《建筑基坑支护技术规程》JGJ120-20122、《建筑边坡工程技术规范》GB50330-20023、《建筑施工计算手册》江正荣编著一、基本参数边坡稳定计算方式折线滑动法边坡工程安全等级三级边坡边坡土体类型填土土的重度γ(KN/m3) 20土的内摩擦角φ(°)15 土的粘聚力c(kPa) 12边坡高度H(m) 11.862 边坡斜面倾角α(°)40坡顶均布荷载q(kPa) 0.2二、边坡稳定性计算计算简图滑动面参数滑动面序号滑动面倾角θi(°)滑动面对应竖向土条宽度bi(m)1 35 5.672 35 5.63 35 5.67土条面积计算:R1=(G1+qb1)cosθ1×tanφ+c×l1=(156.213+0.2×2.803)×cos(35°)×tg(15°)+12×6.922=117.474 kN/mT1=(G1+ qb1)sinθ1 =(156.213+0.2×2.803)×sin(35°)=89.922 kN/mR2=(G2+qb2)cosθ2×tanφ+c×l2=(131.759+0.2×0)×cos(35°)×tg(15°)+12×6.836=110.952 kN/mT2=(G2+ qb2)sinθ2 =(131.759+0.2×0)×sin(35°)=75.574 kN/mR3=(G3+qb3)cosθ3×tanφ+c×l3=(44.652+0.2×0)×cos(35°)×tg(15°)+12×6.922=92.865kN/mT3=(G3+ qb3)sinθ3 =(44.652+0.2×0)×sin(35°)=25.611 kN/mK s=(∑R iψiψi+1...ψn-1+R n)/(∑T iψiψi+1...ψn-1+T n),(i=1,2,3,...,n-1)第i块计算条块剩余下滑推力向第i+1计算条块的传递系数为:ψi=cos(θi-θi+1)-sin(θi-θi+1)×tanφiK s=(∑R iψiψi+1...ψn-1+R n)/(∑T iψiψi+1...ψn-1+T n)=(117.474×1×1+110.952×1+92.865)/(89.922×1×1+75.574×1+25.611)=1.681≥1.25满足要求!。
采用折线法利用EXCEL进行 边坡稳定性分析计算
Ri*∏ψi 205.09 452.25 959.64 1443.12 1821.24 2066.03 2172.66
Ti*∏ψi 156.47 508.36 1142.28 1716.64 1864.62 1697.05 1548.64
稳定性系 安全系数 数Fs
1.403
剩余下滑 力 (kN/m) 0.00 192.27 476.82 711.18 517.41 62.54 1.250 0.00 剩余下滑 力 (kN/m) 44.61 304.26 722.38 1081.07 985.37 589.43 1.250 320.97
Ri*∏ψi 308.32 795.10 1315.49 2435.47 2593.71 2603.81
Ti*∏ψi 197.29 499.25 882.08 1643.72 1628.98 1422.73Βιβλιοθήκη 稳定性系 安全系数 数Fs
1.830
抗滑力 下滑力 Ri(kN/m Ti(kN/m ) ) 205.09 156.47 256.41 358.94 530.60 660.01 495.82 589.05 483.32 273.12 387.71 -21.25 205.46 -67.23 抗滑力 下滑力 Ri(kN/m Ti(kN/m ) ) 155.86 160.38 198.59 367.92 414.52 676.51 388.61 603.77 379.08 279.95 303.20 -21.78 158.91 -68.91
暴雨工况
条块编号 1 2 3 4 5 6 7 滑面长 滑面倾角θ 条块面积 土体重度γ L(m) (˚) As(m2) (kN/m3) 8.17 6.43 9.66 7.74 7.28 6.74 5.37 43.10 35.00 26.00 23.30 11.40 -1.20 -9.70 11.45 31.29 75.28 74.46 69.09 50.73 19.95 20.5 20.5 20.5 20.5 20.5 20.5 20.5 路面作用 条块自重+ 传递系数 路面荷载 荷载宽度 路面荷载 c(kPa) φ(˚) ψi (kN/m) (m) Q(kN/m) 234.7 15 11 0.96 641.4 15 11 0.96 1543.2 15 11 0.99 1526.4 15 11 0.94 1416.3 15 11 0.93 1040.0 15 11 0.96 409.0 15 11
《高等岩石力学》作业习题
《岩石力学》习题一、岩体分级(1)取直径为50mm 、长度为70mm 的标准岩石试件,进行径向点荷载强度试验,测得破坏时的极限荷载为4000N ,破坏瞬间加荷点未发生贯入现象。
试确定岩石的单轴抗压强度c R 。
(2)测得某中等风化花岗岩体的压缩波速s m v pm /2777=,剪切波速s m v s /1410=;已知相应岩石的压缩波速s m v pr /5067=,剪切波速s m v s /2251=,重度3/3.22m kN r =。
岩石饱和单轴抗压强度MPa R c 40=,根据《工程岩体分级标准》(GB50218-94),该岩体的基本质量级别为几级?(3)某工程岩体,已测得岩石点荷载强度指标5.2)50(=s I ,岩石的压缩波速s km /6.6,岩体的压缩波速s km /1.4,根据《工程岩体分级标准》(GB50218-94),该岩体的基本质量级别为几级?二、岩石强度(4)自地表向下的岩层依次为:表土层,厚m H 601=,容重31/20m KN =γ,内摩擦角 301=φ,泊松比3.01=μ;砂岩层,厚m H 602=,容重32/25m KN =γ,内摩擦角 452=φ,泊松比25.02=μ。
求距地表m 50及m 100处的原岩中由自重引起的水平应力。
(5)将岩石试件进行一系列单轴试验,求得抗压强度的平均值为0.23MPa ,将同样岩石在0.59 MPa 的围压下进行一系列三轴试验,求得主应力的平均值为2.24 MPa . 请你在Mohr 图上绘出代表这两种试验结果的应力圆,确定其内摩擦角及粘结力.(6)某均质岩石的强度曲线为: 30,40,tan ==+=φφστMPa c c 其中. 试求在侧向围岩应力MPa 203=σ的条件下,岩石的极限抗压强度,并求出破坏面的方位.(7)将一个岩石试件进行单轴试验,当其压应力达到27.6MPa 时即发生破坏,破坏面与最大主应力作用面的夹角为60º. 假设抗剪强度随正应力呈线性变化,试计算:①内摩擦角;②破坏面上的正应力和剪应力;③在正应力等于零的那个平面上的抗剪强度; ④在上述试验中与最大主应力作用面的夹角为30º的那个平面上的抗剪强度。
考虑地震作用工况的建筑边坡稳定性核算案例分析
考虑地震作用工况的建筑边坡稳定性核算案例分析廖昉;周康斌;郭微【摘要】The artificial slope stability of a residence in Bijie is calculated with the stability formula of the new edition Technical Code for Building Slope Engineering GB50330-2013, and the differences are analyzed between the stability principles of the new regulation and those of the old one. The adverse impacts of the base shear produced by slope buildings for big earthquake on slope stability are taken into consideration in stability calculation, and the stability factors of general conditions and seismic conditions.%该文采用新版《建筑边坡技术工程规范GB50330-2013》稳定性计算公式对贵州毕节地区某小区人工边坡进行了稳定性计算,分析了新版规范的稳定性计算的原理并比较了其与老版的差别。
在稳定性计算中考虑了坡上建筑在大震时产生的基底剪力对边坡稳定性的不利影响,得出了一般工况和地震工况的稳定性系数。
【期刊名称】《重庆建筑》【年(卷),期】2015(000)001【总页数】3页(P38-40)【关键词】稳定系数;地震工况;基底剪力;传递系数法;边坡【作者】廖昉;周康斌;郭微【作者单位】中机中联工程有限公司,重庆 400039;中机中联工程有限公司,重庆 400039;重庆市勘测院重庆市岩土工程技术研究中心,重庆 400020【正文语种】中文【中图分类】TU3550 引言新版《建筑边坡技术工程规范GB50330-2013》(本文简称《建边》)于2013年11月01日发布,2014年06月01日执行,本次规范调整边坡的稳定性计算方法,在进行折线形滑动面稳定性计算时,由老版的传递系数显式解法改为传递系数隐式解法。
第八章 边坡稳定性分析 GEO5工程设计指南
砾质粉土,硬塑 19 29 8 19 4
(kN / m 3 )
ef ()
内摩擦角
粘聚力 Cef (kPa) 饱和容重
(kN / m 3 )
材料分区
将重力式挡土墙模拟为天然容重 23.0kN / m 的刚性体。由于挡墙具有较大强度,认为边坡 滑面无法穿过重力挡墙(更多信息请见帮助文件——F1) 。若出现滑面穿过挡墙的情况,软件将给出 警告信息。
3
图 8.5 添加岩土材料 注:由于本算例验算边坡的长期稳定性,故采用岩土体强度参数的有效值( 有效 , C有效 ) 。土层节 理在本算例中不予考虑。 表 8.2 岩土材料参数 岩土材料 天然容重 含细粒土砂,密实 17.5 31.5 0 17.5 1
3
砂质粉土,硬塑 18 26.5 16 18 3
图 8.8 【工况阶段设置】界面 搜索最危险圆弧滑面(Bishop 法) 下一步,打开【分析】界面,点击②号【输入】 ,输入圆心坐标和圆弧半径确定滑动面;或者点
5
击①号【输入】 ,用鼠标直接在窗口点击输入三个点确定滑动面。 “分析方法”选择“bishop 法”,“分析 类型”设为“自动搜索”。
图 8.9 【分析】——滑动面搜索的设置 注:当边坡的岩土材料为粘性土时,有时候会出现“滑动面回转”的情况(滑面的某一部分出现反倾 的情况) ,这类滑面通常用圆弧滑动面来模拟。对于非粘性土边坡,则不会出现“滑动面回转”的情 况,且验算非粘性土边坡时除对圆弧滑动面进行验算外,还需验算折线形滑动面。 (更多信息请见帮 助文件——F1) 点击【开始分析】 ,进行边坡稳定性的验算,所得验算结果如图 8.10:
图 8.10 分析[1]得出的计算结果 注:当滑动面为圆弧时,如果用户选择“自动搜索”作为分析类型,软件会对整个边坡进行搜索,并 得到边坡内的最危险滑动面(临界滑动面) ,这种方式是非常可靠的。即使给出的初始滑面不同,通 过自动搜索得到的最终结果(最危险滑面)通常都是相同的。但是,我们建议用户在设置初始滑动面 时尽量给出一个比较合理的初始滑动面,若初始滑动面非常不合理,软件有可能搜索得到不合理的临 界滑动面。当边坡非常复杂时,为确保搜索得到的临界滑动面为整个边坡模型范围内的临界滑动面, 有一些技巧可以采用: ——建立多个分析,并按照可能的滑动面在每个分析中设置不同的初始滑动面,并搜索(例如多台阶
边坡稳定性计算书
路基边坡稳定性分析本设计任务路段中所出现的最大填方路段,在桩号K8+480 处。
该路堤边坡高31.64m,路基宽26m,需要进行边坡稳定性验算。
1.确定计算参数对本段路堤边坡的土为粘性土,根据《公路路基设计规范》(JTG D30—2004),取土的容重γ=18kN/m³,粘聚力C=20kpa。
内摩擦角=23º由上可知:填土的内摩擦系数ƒ=tan23º=0.4361。
2.荷载当量高度计算行车荷载换算高度为:h0—行车荷载换算高度;L—前后轮最大轴距,按《公路工程技术标准》(JTG B01-2003)规定对于标准车辆荷载为12.8m;Q—一辆车的重力(标准车辆荷载为550kN);N—并列车辆数,双车道N=2,单车道N=1;γ —路基填料的重度(kN/m3);B—荷载横向分布宽度,表示如下:式中:b—后轮轮距,取1.8m;m—相邻两辆车后轮的中心间距,取1.3m; d—轮胎着地宽度,取0.6m。
3. BISHOP法求稳定系数Fs基本思路:首先用软件找出稳定系数 Fs 逐渐变化的情况,找到一个圆心,经过这个滑动面的稳定系数Fs 是所选滑动面中最小的,而它左右两边所取圆心滑动面的 Fs 值都是增加,根据 Fs 值大小可以绘制Fs 值曲线。
从而确定最小Fs 值。
而用ecxel 表格计算稳定系数Fs 时,选择的3个圆心分别是软件计算 Fs 值中最小的那个圆心和它左右两边逐渐增大的圆心。
3.1 最危险圆弧圆心位置的确定(1)按4.5H 法确定滑动圆心辅助线。
由表查得β1=26°,β2 =35°及荷载换算为土柱高度h0,得G点。
a .由坡脚A 向下引竖线,在竖线上截取高度H=h+h0(h 为边坡高度,h0 为换算土层高)b.自G 点向右引水平线,在水平线上截取4.5H,得E 点。
根据两角分别自坡角和左点作直线相交于F 点,EF 的延长线即为滑动圆心辅助线。
c.连接边坡坡脚A 和顶点B,求得AB 的斜度i=1/m,据此查《路基路面工程》表4-1得β1,β2。
边坡稳定性分析中对折线滑动法的算法改进_杨孟德
边坡稳定性分析中对折线滑动法的算法改进_杨孟德126科技资讯科技资讯 SCIENCE & TECHNOLOGY INFORMATION2010NO.05SCIENCE & TECHNOLOGY INFORMATION⼯ 业 技 术1 折线滑动法简介边坡稳定性分析中,当滑动⾯为折线形时,通常使⽤的⽅法便是折线滑动法,其计算⽰意图(图1)及公式如下。
nn i n ij ji n n i n i j jiT T R R K ++=∑∏∑∏?=?=?=?=111111)()(ψψi i i i i i L C W R +??=?αtan cos ii i W T αsin ?=111tan )sin()cos(+++=i i i i i j ?ααααψAn ij n i i i j∏?=?++=1121ψψψψψ式中:i R 为第i块滑体的抗滑⼒(kN/m);i T 为第i块滑体的下滑⼒(kN/m);i ψ为第i块滑体的剩余下滑⼒传递⾄第i+1块时的传递系数;i W 为第i块滑体的单宽重量(kN/m);i α为第i块滑体的滑⾯倾⾓(°);i L 为第i块滑体的滑⾯长度(m)。
i C 为第i块滑体的滑⾯粘聚⼒(kPa);i ?为第i块滑体的滑⾯内摩擦⾓(m)。
2 折线滑动常规计算⽅法折线滑动常规计算⽅法是在AutoCAD中对每个分滑⾯先量出其滑⾯倾⾓和滑⾯长度,然后根据已有滑⾯粘聚⼒C值和内摩擦⾓?值通过Excel计算,最后输出计算结果。
此种⽅法对于多个滑⾯计算⽽⾔,将会不断重复相同操作,不仅费时费⼒,⽽且量测各参数过程中极易出错,从⽽使⼯作效率⼤为降低。
3 折线滑动法算法改进为克服以上常规折线滑动法弊端,笔者在长期⼯程实践中,结合Visual C++编程语⾔,经不断调试终实现对折线滑动算法改进,通过程序获取计算所需参数,最后将计算结果⾃动输出到Excel表格,从⽽使⼯作效率⼤⼤提⾼。
3.1Visual C++语⾔简介Visual C++语⾔是由微软公司出品的著名可视化集成开发⼯具,凭借其简单的语法、少许的关键字、可移植性强等特点⽽在编程语⾔中占据着重要地位。
边坡稳定性计算方法
图9-4 瑞典条分法
(1)土条的自 。其中γ为土的容得, 为土条的断面面积。将 沿其断面积的形心作用至圆弧滑面上并分解成垂直滑面的法向分力 和切于滑面的切向分力 ,由图 9 - 4 ( b )可知:
Fellenius 假定不计条间力的影响,就是将土条两侧的条件力的合力近似地看成大小相等、方向相反、作用在同作用面上。实际上,每一土条两侧的条间力是不平衡的,但经验表明,土条宽度不大时,在土坡稳定分析中,忽略条间力的作用对计算结果的影响不显著。
将作用在各段滑弧上的力对滑动圆心取矩,并分别将抗滑作用、下滑作用的力矩相加得出用在整个滑弧上的抗滑力矩以及滑动力矩的总和,即
将抗滑力矩与下滑力矩之比定义为土坡的稳定安全系数,即
这就是瑞典条分法稳定分析的计算公式。该法应用的时间很长,积累了丰富的工程经验,一般得到的安全系数偏低,即偏于安全,故目前仍然是工程上常用的方法。
(三)毕肖普法
从前述瑞典条分法可以看出,该方法的假定不是非常精确的,它是将不平衡的问题按极限平衡的方法来考虑并且未能考虑有效应力下的强度问题。随着土力学学科的不断发展,不少学者致力于条分法的改进。一是着重探索最危险滑位置的规律,二是对基本假定作些修改和补充。但直到毕肖普( A.N.Bishop )于 1955 年担出了安全系数新定义,条分法这五方法才发生了质的飞跃。毕肖普将边坡稳定安全系数定义为滑动面上土的抗剪强度τf 与实际产生的剪应力τ之比,即
(一)直线破裂面法
所谓直线破裂面是指边坡破坏时其破裂面近似平面,在断面近似直线。为了简化计算这类边坡稳定性分析采用直线破裂面法。能形成直线破裂面的土类包括:均质砂性土坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。
边坡稳定性计算方法
___________________________________
边坡稳定性计算
煤炭系统规定
边坡岩体可能处于相对静止状态,或者处于极限平衡状态,或者处于运动状态。处于相对静止状态的边坡是稳定的;处于运动状态的边坡岩体称为滑坡体,边坡岩体的运动过程称为滑坡。
在进行稳定性计算时,通常将滑体分为若干条块(可以用竖直界面划分,也可以用倾斜界面划分)。
双折滑面
任意曲面
____________________
____________________
边坡岩体被纵横交错的地质断裂面切割,由这些断裂面形成的滑面,往往不是平面或圆弧等规则形状的,而是具某一曲折形状。
楔形体滑坡的E. Hoek图解法
楔形体滑坡的E. Hoek图解法
楔体的稳定系数为:
根据测得的角度,求出楔体的几何形状参数: 如果Ca=Cb=C、φa=φb=φ,又没有水的情况下:
用赤平极射投影定量地分析边坡的稳定性的方法称为球投影法。
基本知识 摩擦锥 摩擦圆 广义摩擦锥 裂隙组的摩擦圆 平面滑坡分析 折面滑坡分析 楔体滑坡分析
_____________________________________________________________________________________________________________
_______________________________________________________________________________________
曲折滑面滑坡的稳定性计算
________________定性计算1
(整理)边坡稳定性计算
1、一号边坡稳定计算------------------------------------------------------------------------ 计算项目: 1、一号边坡稳定计算------------------------------------------------------------------------ [计算简图][控制参数]:采用规范: 建筑边坡工程技术规范(50330--2002)计算目标: 安全系数计算滑裂面形状: 圆弧滑动法不考虑地震[坡面信息]坡面线段数 6坡面线号水平投影(m) 竖直投影(m) 超载数1 15.000 10.000 02 2.000 0.000 03 15.000 10.000 04 2.000 0.000 05 10.500 7.000 06 15.000 1.000 0[土层信息]上部土层数 1层号定位重度饱和重度层顶线孔隙水压高(m) (kN/m3) (kN/m3) 倾角(度) 力系数1 27.000 19.000 20.000 0.000 ---层号粘聚力内摩擦角水下粘聚水下内摩(kPa) (度) 力(kPa) 擦角(度)1 10.000 28.000 10.000 25.000层号十字板τ 强度增十字板τ水强度增长系(kPa) 长系数下值(kPa) 数水下值1 --- --- --- ---================================================================下部土层数 1层号定位重度饱和重度层顶线孔隙水压高(m) (kN/m3) (kN/m3) 倾角(度) 力系数深(m) (kN/m3) (kN/m3) 倾角(度) 系数1 10.000 19.000 20.000 0.000 ---层号粘聚力内摩擦角水下粘聚水下内摩(kPa) (度) 力(kPa) 擦角(度)1 10.000 28.000 10.000 25.000层号十字板τ 强度增十字板τ水强度增长系(kPa) 长系数下值(kPa) 数水下值1 --- --- --- ---不考虑水的作用[筋带信息]采用锚杆锚杆道数: 13筋带力调整系数: 1.000筋带号距地面水平间距总长度倾角材料抗拉锚固段锚固段粘结强法向力发高度(m) (m) (m) (度) 力(kN) 长度(m) 周长(m) 度(kPa) 挥系数1 1.00 3.00 3.00 25.00 100.00 3.00 0.31 60.00 0.002 3.00 3.00 3.00 25.00 147.00 3.00 0.31 60.00 0.503 5.00 3.00 3.00 25.00 147.00 3.00 0.31 60.00 0.504 7.00 3.00 3.00 25.00 147.00 3.00 0.31 60.00 0.505 9.00 3.00 3.00 25.00 147.00 3.00 0.31 60.00 0.506 11.00 3.00 3.00 25.00 147.00 3.00 0.31 60.00 0.507 13.00 3.00 3.00 25.00 147.00 3.00 0.31 60.00 0.508 15.00 3.00 3.00 25.00 147.00 3.00 0.31 60.00 0.509 17.00 3.00 3.00 25.00 147.00 3.00 0.31 60.00 0.5010 19.00 3.00 3.00 25.00 147.00 3.00 0.31 60.00 0.5011 21.00 3.00 3.00 25.00 147.00 3.00 0.31 60.00 0.5012 23.00 3.00 3.00 25.00 147.00 3.00 0.31 60.00 0.5013 25.00 3.00 3.00 25.00 147.00 3.00 0.31 60.00 0.50[计算条件]圆弧稳定分析方法: Bishop法土条重切向分力与滑动方向反向时: 当下滑力对待稳定计算目标: 自动搜索最危险滑裂面条分法的土条宽度: 2.000(m)搜索时的圆心步长: 2.000(m)搜索时的半径步长: 1.000(m)------------------------------------------------------------------------计算结果:------------------------------------------------------------------------[计算结果图]最不利滑动面:滑动圆心 = (-8.960,72.800)(m)滑动半径 = 73.349(m)滑动安全系数 = 1.25≥1.25,符合《建筑边坡工程技术规范(GB50330-2002)》二级边坡安全要求。
综合楼折线滑动法边坡稳定性
折线滑动法边坡稳定性设计计算书依据《建筑边坡工程技术规范》(GB 50330-2013)一. 参数信息具有导向性结构的土质边坡,滑动面一般近似折线形。
黄土边坡成折线形滑动,是折线滑动面的一例。
一般性粘土基础边坡,如果边坡土层内有固定的软弱面,或者土质的 c 与φ值有显著差别,且土层的层面成直线或近似直线,整个边坡的滑动面将成折线形。
(如图)边坡工程安全等级:三级边坡(1.25);边坡稳定计算方法:水平力法;19.00kN/m3;边坡土体内聚力为:23.80kPa;边坡土体内摩擦角:10.40°;5.00m;55.00°;边坡顶部均布荷载:12.00kN/m2。
二. 折线滑动法计算边坡稳定性如图所示的边坡,其边坡的最小稳定系数出现在三段折线的滑动面上;计算时,按土质条件将边坡分为三层,则整个土坡稳定系数 K ,可表示如下:式中:Q i——第 i 块土块滑动面上的滑动力;ωi——第 i 块土块滑动面倾角;φi——第 i 块土块土体内摩擦角;c i——第 i 块土块内聚力;l i——第 i 块土块滑动面长度。
如果土质比较均匀,或取有关指标的加权平均值,则可得稳定系数 K 的简化式为a 与b 为引用函数,等于式中: c ——边坡土体的内聚力;γ——边坡土体容重;Ωi——第 i 块土块的面积。
选定最危险滑动面,对不同的边坡结构参数,可得到 a 和 b 的简化公式为式中: n ——边坡率(α=arctg(1/n));φ——边坡土体内摩擦角;ηa——边坡高度的影响系数;ηb——边坡高度的影响系数。
坡高 H 影响系数表--------------------------------------------------------------------------------- H(m) ηaηb H(m) ηaηb1 1.8209 60.80212 1.6374 29.36553 1.5388 19.18414 1.4725 14.18265 1.4230 11.22026 1.3838 9.26537 1.3515 7.8807 8 1.3241 6.84979 1.3004 6.0529 10 1.2796 5.419011 1.2611 4.9029 12 1.2444 4.474813 1.2292 4.1141 14 1.2153 3.806115 1.2026 3.5402 16 1.1907 3.308217 1.1797 3.1042 18 1.1694 2.923419 1.1598 2.7620 20 1.1507 2.617221 1.1421 2.4865 22 1.1340 2.368023 1.1263 2.2600 24 1.1190 2.161225 1.1120 2.0705 26 1.1054 1.987027 1.0990 1.9098 28 1.0929 1.838229 1.0870 1.7717 30 1.0814 1.7098--------------------------------------------------------------------------------- 对于坡高为5.00的边坡,查上表可得到ηa=1.4230,ηb=11.2202,所以可求得:a = (0.49 - 0.2×(1/0.70) + 0.02×10.40) × 1.4230 = 0.59b = (0.1 - 0.03×(1/0.70)) × 11.2202 = 0.64此时的边坡稳定系数 K 为:K = 0.59 + (23.80/19.00)×0.64 = 1.390;此边坡稳定系数 K min≥ 1.25,满足边坡稳定性要求!。
边坡稳定分析与计算例题
边坡工程计算例题1. Consider the infinite slope shown in figure.(1) Determine the factor of safety against sliding along the soil-rock interface given H = 2.4m.(2) What height, H , will give a factor of safety, F s , of 2 against sliding along the soil-rock interface?Solution ⑴ Equation is βφββt a nt a n t a n c o s 2+⋅⋅⋅=H r C F s ,Given βφ,,,,H r CWe have 24.1=s F (2) Equation is βββφt a n c o s )t a n t a n (2⋅⋅-⋅=s F r CH ,Given βφ,,,,s F r C We have m H 11.1=2. A cut is to be made in a soil that has 316.5/kN m γ=,229/c kN m =, and 15φ=︒. The side of the cut slope will make an angle of 45°with the horizontal. What depth of the cut slope will have a factor of safety,S FS , of 3? Solution We are given 15φ=︒ and229/c kN m =.If 3C FS =, thenC FS and FS φshould both be equal to 3. We havec dc FS c =Or2299.67/3d C S c c c kN m FS FS ==== Similarly,tan tan dFS φφφ=tan tan tan15tan 3d s FS FS φφφφ=== Or1tan15tan 5.13d φ-⎡⎤==︒⎢⎥⎣⎦Substituting the preceding values of d c and d φinto equation gives()()4sin cos 49.67sin 45cos5.17.11cos 16.51cos 45 5.1d d d c H m βφγβφ⎡⎤⎡⎤⨯==≈⎢⎥⎢⎥----⎣⎦⎣⎦3.某滑坡的滑面为折线,其断面和力学参数如图和表所示,拟设计抗滑结构物,取安全系数为1.05,计算作用在抗滑结构物上的滑坡推力P 3。
折线型滑坡稳定系数计算
折线型滑坡稳定系数计算===================================================================== 原始条件:()滑动体重度= 19.800(kN/m3)滑动体饱和重度= 21.600(kN/m3)安全系数= 1.000考虑动水压力和浮托力, 滑体土的孔隙度 = 0.000考虑承压水的浮托力, 承压水水头高 = 0.000(m)考虑坡面外的静水压力的作用考虑地震力,地震烈度为7度地震力计算综合系数 = 0.250地震力计算重要性系数 = 1.000坡面线段数: 9, 起始点标高 205.000(m)段号投影Dx(m) 投影Dy(m) 附加力数1 10.000 -4.000 02 50.000 -10.000 03 50.000 -20.000 04 30.000 0.000 05 0.001 -10.000 06 60.000 0.000 07 0.001 -5.000 08 30.000 0.000 09 10.000 -5.000 0水面线段数: 1, 起始点标高 0.000(m)段号投影Dx(m) 投影Dy(m)1 0.000 0.000滑动面线段数: 5, 起始点标高 205.000(m)段号投影Dx(m) 投影Dy(m) 粘聚力(kPa) 摩擦角(度)1 20.000 -15.000 40.000 19.0002 40.000 -5.000 40.000 19.0003 80.000 -30.000 40.000 19.0004 60.000 -5.000 36.000 17.0005 40.000 -3.000 36.000 17.000计算目标:按指定滑面计算推力--------------------------------------------------------------第 1 块滑体上块传递推力 = 0.000(kN) 推力角度 = 0.000(度)本块滑面粘聚力 = 36.000(kPa) 滑面摩擦角 = 17.000(度)本块总面积 = 275.018(m2) 浸水部分面积 = 0.000(m2)本块总重 = 5445.350(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)本块动水压力 = 0.000(kN)本块水浮托力 = 0.000(kN)本块地震力 = 136.134(kN)本块承压水浮托力 = 0.000(kN)有效的滑动面长度 = 40.112(m)下滑力 = 271.123(kN)滑床反力 R= 5430.099(kN) 滑面抗滑力 = 1660.148(kN) 粘聚力抗滑力 =1444.044(kN) --------------------------本块剩余下滑力 = -3375.315(kN)本块下滑力角度 = -4.289(度)第 2 块滑体上块传递推力 = 0.000(kN) 推力角度 = -4.289(度)本块滑面粘聚力 = 36.000(kPa) 滑面摩擦角 = 17.000(度)本块总面积 = 510.005(m2) 浸水部分面积 = 0.000(m2)本块总重 = 10098.104(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)本块动水压力 = 0.000(kN)本块水浮托力 = 0.000(kN)本块地震力 = 252.453(kN)本块承压水浮托力 = 0.000(kN)有效的滑动面长度 = 60.208(m)下滑力 = 586.150(kN)滑床反力 R= 10063.223(kN) 滑面抗滑力 = 3076.636(kN) 粘聚力抗滑力=2167.487(kN)--------------------------本块剩余下滑力 = -4657.973(kN)本块下滑力角度 = -4.764(度)第 3 块滑体上块传递推力 = 0.000(kN) 推力角度 = -4.764(度)本块滑面粘聚力 = 40.000(kPa) 滑面摩擦角 = 19.000(度)本块总面积 = 580.000(m2) 浸水部分面积 = 0.000(m2)本块总重 = 11484.000(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)本块动水压力 = 0.000(kN)本块水浮托力 = 0.000(kN)本块地震力 = 287.100(kN)本块承压水浮托力 = 0.000(kN)有效的滑动面长度 = 85.440(m)下滑力 = 3745.203(kN)滑床反力 R= 10752.804(kN) 滑面抗滑力 = 3702.487(kN) 粘聚力抗滑力=3417.601(kN)--------------------------本块剩余下滑力 = -6405.114(kN)本块下滑力角度 = -20.556(度)第 4 块滑体上块传递推力 = 0.000(kN) 推力角度 = -20.556(度)本块滑面粘聚力 = 40.000(kPa) 滑面摩擦角 = 19.000(度)本块总面积 = 300.000(m2) 浸水部分面积 = 0.000(m2)本块总重 = 5940.000(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)本块动水压力 = 0.000(kN)本块水浮托力 = 0.000(kN)本块地震力 = 148.500(kN)本块承压水浮托力 = 0.000(kN)有效的滑动面长度 = 40.311(m)下滑力 = 588.266(kN)滑床反力 R= 5894.131(kN) 滑面抗滑力 = 2029.512(kN) 粘聚力抗滑力 =1612.451(kN) --------------------------本块剩余下滑力 = -3053.697(kN)本块下滑力角度 = -7.125(度)第 5 块滑体上块传递推力 = 0.000(kN) 推力角度 = -7.125(度)本块滑面粘聚力 = 40.000(kPa) 滑面摩擦角 = 19.000(度)本块总面积 = 80.000(m2) 浸水部分面积 = 0.000(m2)本块总重 = 1584.000(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)本块动水压力 = 0.000(kN)本块水浮托力 = 0.000(kN)本块地震力 = 39.600(kN)本块承压水浮托力 = 0.000(kN)有效的滑动面长度 = 25.000(m)下滑力 = 910.800(kN)滑床反力 R= 1267.200(kN) 滑面抗滑力 = 436.332(kN) 粘聚力抗滑力 =1000.000(kN) --------------------------本块剩余下滑力 = -525.532(kN)本块下滑力角度 = -16.870(度)K=(滑面抗滑力+粘聚力抗滑力)/下滑力=(436.332+1000)/(910.8)=1.58三峡库区滑坡稳定性计算中的常用方法。