三角函数讲义集

合集下载

三角函数讲义201204

三角函数讲义201204

第一章:三 角 函 数一、任意角和弧度制1、按___________方向旋转形成的角叫正角;按___________方向旋转形成的角叫负角。

象限角: 当角的顶点与坐标原点重合,角的始边与________重合,那么角的_______在第几象限,就说这个角是第几象限角,如果终边在________上,就认为这个角不属于任何象限。

所有与α终边相同的角,连同α在内,可以用式子__________来表示。

2、弧度制:︒1的角 周角的__________为︒1的角。

1弧度的角 ____________叫1弧度的角。

360o =______rad 180o =______rad ∴ ︒1=______rad 1rad=______ ∴ n o =______rad n rad=_____o3、扇形弧长与面积:扇形半径为R ,圆心角为α,弧长为l ,则l =______,面积S =________=________. 推导:二、任意角的三角函数1、设α是一个任意角,α的终边上任意一点()y x P ,,它与原点的距离0r OP ==>,那么sin α=_________,cos α=_________,tan α=________。

2、设α是一个任意角,α的终边与单位圆的交点为()y x P ,,它与原点的距离1r OP ===,那么sin α=_________,cos α=_________,tan α=________。

3、同终边角的三角函数值相等:sin(α+k2π)= _______ cos (α+2 k π)=_______tan(α+2 k π)= _______ (k 为整数,可为正整数、负整数、零)例1、若α为第一象限,则α/3为第_________象限角,若α为第二象限,则2α为第________象限角总结:例2、以下有四个命题:①小于︒90的角是锐角;②第一象限的角一定不是负角;③锐角是第一象限的角;④第二象限的角一定大于第一象限的角。

三角函数讲义

三角函数讲义

三角函数复习讲义知识要点:一、角的概念与推广:任意角的概念;角限角、终边相同的角; 二、弧度制:把长度等于半径的弧所对的圆心角叫做1弧度;弧长公式:r l α=扇形面积:S=α22121r r l =⋅三角函数线:如右图,有向线段AT 与MP OM 分别叫做α 的的正切线、正弦线、余弦线。

三、同角三角函数关系:即:平方关系、商数关系、倒数关系。

四、诱导公式:()ααπf n f '±=⎪⎭⎫⎝⎛±2 记忆:单变双不变,符号看象限。

单双:即看πn 中的n 是2π的单倍还是双倍,单倍后面三角函数名变,双不变则三角函数名不变;符号看象限:即把α看成锐角,加上2πn 终边落在第几象限则是第几象限角的符号。

五、有关三角函数单调区间的确定、最小正周期、奇偶性、对称性以及比较三角函数值的大小问题,一般先化简成单角三角函数式。

然后再求解。

六、三角函数的求值、化简、证明问题常用的方法技巧有:1、常数代换法:如:αααααα2222tan sec cot tan cos sin 1-=⋅=+= 2、配角方法:ββαα-+=)( ()βαβαα-++=)(2 22βαβαβ--+=3、降次与升次:22cos 1sin 2αα-= 22cos 1cos 22αα+= 以及这些公式的变式应用。

4、()θααα++=+sin cos sin 22b a b a (其中ab=θtan )的应用,注意θ的符号与象限。

5、常见三角不等式:(1)、若x x x x tan sin .2,0<<⎪⎭⎫⎝⎛∈则π (2)、若2cos sin 1.2,0≤+<⎪⎭⎫⎝⎛∈x x x 则π(3)、1c o s s i n ≥+x x6、常用的三角形面积公式:(1)、c b a ch bh ah S 212121===(2)、B ac A bc C ab S sin 21sin 21sin 21=== (3)、S = 七、三角函图象和性质:(1)正弦函数图象的变换:()()αωαωω+=−−−→−+=−−−→−=−−−→−=x A y x y x y x y sin sin sin sin 振幅变换平移变换横伸缩变换象关于轴对称在区间在区间在区间在区间考点一: 求三角函数的定义域、值域和最值、三角函数的性质(包括奇偶性、单调性、周期性)这类问题在选择题、填空题、解答题中出现较多,主要是考查三角的恒等变换及三角函数的基础知识。

高一数学三角函数讲义

高一数学三角函数讲义

三角函数讲义知识要点:一、角的概念与推广:任意角的概念;象限角(轴线角)、终边相同的角;二、弧度制:把长度等于半径的弧所对的圆心角叫做1弧度;弧长公式:r l α=扇形面积:S=α22121r r l =⋅三角函数线:如右图,有向线段A T与M P O M 分别叫做α 的的正切线、正弦线、余弦线。

三、三角函数的求值、化简、证明问题常用的方法技巧有:1、 常数代换法:如:αααααα2222tan sec cot tan cos sin 1-=⋅=+=2、 配角方法:ββαα-+=)(()βαβαα-++=)(222βαβαβ--+=3、 降次与升次:22cos 1sin 2αα-= 22cos 1cos 22αα+= 以及这些公式的变式应用。

4、 ()θααα++=+sin cos sin 22b a b a (其中ab=θtan )的应用,注意θ的符号与象限。

5、 常见三角不等式:(1)、若x x x x tan sin .2,0<<⎪⎭⎫⎝⎛∈则π (2)、若2cos sin 1.2,0≤+<⎪⎭⎫⎝⎛∈x x x 则π(3)、1cos sin ≥+x x 6、 常用的三角形面积公式:(1)、c b a ch bh ah S 212121===(2)、B ac A bcC ab S sin 21sin 21sin 21===(3)、S =四、三角函图象和性质:正弦函数图象的变换:()()αωαωω+=−−−→−+=−−−→−=−−−→−=x A y x y x y x y sin sin sin sin 振幅变换平移变换横伸缩变换万能公式:2tan 12tan2tan ,2tan 12tan 1cos ,2tan 12tan2sin 2222α-α=αα+α-=αα+α=α 证:2tan 12tan22cos 2sin 2cos 2sin 21sin sin 222α+α=α+ααα=α=α2tan 12tan 12cos 2sin 2sin 2cos 1cos cos 222222α+α-=α+αα-α=α=α2tan 12tan22sin 2cos 2cos 2sin 2cos sin tan 222α-α=α-ααα=αα=α例1 已知5cos 3sin cos sin 2-=θ-θθ+θ,求3c os 2θ + 4sin 2θ 的值。

三角函数的性质讲义1.docx

三角函数的性质讲义1.docx

三角函数的性质讲义1【知识要点】、图象和性质图表解函数正弦函数余弦函数正切函数图象\ ,A.V1 V儿丿丿°, 5七<7 •1定义域R R 』H兰 + k7i、ke Z>2值域[-1,1]最大值为1,最小值为[-1,1]最大值为1,最小值为・1R无最大值,最小值周期性最小止周期为2兀最小正周期为2龙最小正周期为兀奇偶奇函数偶函数奇函数单调性TT 7T[一专+ 2刼冷+ 2切增TT3龙[-- + 2^,—+ 2^ ]减2 2[(2^-1 '兀2k兀)增[2k兀,(2k一\}n ]减伙G Z)7F 7T在(一丝+ k;z■,丝+比龙)(RwZ)上都是增函数对称性JI对称轴X = k7T + —2对称中心坐标伙龙,0),对称轴x = k兀7T对称中心坐标为伙龙+ —,0),Ljr对称屮心坐标(——,0) ,(ke Z)【性质的应用】一、求定义域例1、已知三角函数值求角(1) sinx = —(2) tanx = -1 (3) sinx> —2 2 (4) cosx> —(5) sir\x<^-(6) tanx> V32 2例3、求函数y=Jsinx-cosx 的的定义域例4、求函数y = lg(2cosx +72) + 716-x 2的定义域二、周期性例1、下列函数是否是周期函数?若是求出最小正周期(l)y = sin x ; (2)y = cos x ;例 2、设函数 f(x) = sin3兀+ | sin3% 処I/O)为 ________________例3、己知函数^ = sin 2 x + 2sinx-cosx + 3cos 2 x,求该函数的最小正周期例2、求函数 y = lg(2cosx + V2) 1 - cos 兀 2sinx-l的定义域(3)y = sin x三、奇偶性]、若 y = Asin (60r + °)为奇函数则 ____________________________________________若y = A sin (血+°)为偶函数则 ________________________________________________2^ y = Asin (cm : + °)的对称轴为 ________________ 对称中心为 ____________________ y = Acos (血+ 0)的对称轴为 ___________________ 对称中心为 ___________________ y = A tan (加+ °)的对称中心为 __________________ 无对称轴。

三角函数经典讲义全集

三角函数经典讲义全集

三角函数专题1、角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。

按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。

射线的起始位置称为始边,终止位置称为终边。

2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。

如果角的终边在坐标轴上,就认为这个角不属于任何象限。

3. 终边相同的角的表示:(1)终边与终边相同( 的终边在终边所在射线上) 2k (k Z) ,注意:相等的角的终边一定相同,终边相同的角不一定相等. 如与角1825 的终边相同,且绝对值最小的角的度数是___,合___弧度。

(答:25 ;536)(2)终边与终边共线( 的终边在终边所在直线上) k (k Z) .(3)终边与终边关于x 轴对称2k (k Z) .(4)终边与终边关于y 轴对称2k (k Z) .(5)终边与终边关于原点对称2k (k Z).(6)终边在x 轴上的角可表示为:k , k Z;终边在y 轴上的角可表示为:kk , k Z;终边在坐标轴上的角可表示为:,k Z . 如的终边与2 2 6的终边关于直线y x对称,则=____________。

(答:2k , k Z )34、与的终边关系:由“两等分各象限、一二三四”确定. 如若是第二象限角,则是第22_____象限角(答:一、三)5. 弧长公式:l | | R,扇形面积公式: 1 1 | |2S lR R ,1 弧度(1rad) 57.3 . 如已知扇形2 2AOB 的周长是6cm,该扇形的中心角是 1 弧度,求该扇形的面积。

(答:2 2cm )6、任意角的三角函数的定义:设是任意一个角,P(x, y) 是的终边上的任意一点(异于原点),它与原点的距离是y x2 2 0r x y ,那么sin ,cosr ry,tan , x 0x,cotxy( y 0) ,sec rxrx 0 ,csc y 0y。

06第六章 三角函数【讲义】

06第六章  三角函数【讲义】

第六章 三角函数一、基础知识定义1 角,一条射线绕着它的端点旋转得到的图形叫做角。

若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。

角的大小是任意的。

定义2 角度制,把一周角360等分,每一等价为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。

360度=2π弧度。

若圆心角的弧长为L ,则其弧度数的绝对值|α|=rL ,其中r 是圆的半径。

定义3 三角函数,在直角坐标平面内,把角α的顶点放在原点,始边与x 轴的正半轴重合,在角的终边上任意取一个不同于原点的点P ,设它的坐标为(x ,y ),到原点的距离为r,则正弦函数s in α=r y ,余弦函数co s α=r x ,正切函数tan α=x y ,余切函数cot α=yx,正割函数se cα=x r ,余割函数c s c α=.yr定理1 同角三角函数的基本关系式,倒数关系:tan α=αcot 1,s in α=αcsc 1,co s α=αsec 1;商数关系:tan α=αααααsin cos cot ,cos sin =;乘积关系:tan α×co s α=s in α,cot α×s in α=co s α;平方关系:s in 2α+co s 2α=1, tan 2α+1=se c 2α, cot 2α+1=c s c 2α.定理2 诱导公式(Ⅰ)s in (α+π)=-s in α, co s(π+α)=-co s α, tan (π+α)=tan α, cot (π+α)=cot α;(Ⅱ)s in (-α)=-s in α, co s(-α)=co s α, tan (-α)=-tan α, cot (-α)=cot α; (Ⅲ)s in (π-α)=s in α, co s(π-α)=-co s α, tan =(π-α)=-tan α, cot (π-α)=-cot α; (Ⅳ)s in ⎪⎭⎫⎝⎛-απ2=co s α, co s ⎪⎭⎫⎝⎛-απ2=s in α, tan ⎪⎭⎫⎝⎛-απ2=cot α(奇变偶不变,符号看象限)。

三角函数讲义

三角函数讲义

三角函数讲义任意角的三角函数及同角三角函数的关系知识点知识点一三角函数的概念1.利用单位圆定义任意角的三角函数如图,在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么:(1)y 叫做α的正弦,记作sin α,即sin α=y ;(2)x 叫做α的余弦,记作cos α,即cos α=x ;(3)y x 叫做α的正切,记作tan α,即tan α=y x(x ≠0).2.一般地,设角α终边上任意一点的坐标为(x ,y ),它与原点的距离为r ,则sin α=y r ,cos α=x r ,tan α=y x . 知识点二正弦、余弦、正切函数值在各象限的符号口诀概括为:一全正、二正弦、三正切、四余弦(如图).知识点三诱导公式一终边相同的角的同一三角函数的值相等,即:sin(α+k ·2π)=sin α,cos(α+k ·2π)=cos α,tan(α+k ·2π)=tan α,其中k ∈Z .作用:可把任意角的三角函数值问题转化为0~2π间角的三角函数值问题.体现了三角函数的周期性。

知识点四三角函数的定义域正弦函数y =sin x 的定义域是R ;余弦函数y =cos x 的定义域是R ;正切函数y =tan x 的定义域是{x |x ∈R且x ≠k π+π2,k ∈Z }.知识点五三角函数线如图,设单位圆与x 轴的正半轴交于点A ,与角α的终边交于P 点.过点P 作x 轴的垂线PM ,垂足为M ,过A 作单位圆的切线交OP 的延长线(或反向延长线)于T 点.单位圆中的有向线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线.记作:sin α=MP ,cos α=OM ,tan α=AT .知识点六同角三角函数的基本关系1.同角三角函数的基本关系式(1)平方关系:sin 2α+cos 2α=1.(2)商数关系:tan α=sin αcos α (α≠k π+π2,k ∈Z ). 2.同角三角函数基本关系式的变形(1)sin 2α+cos 2α=1的变形公式:sin 2α=1-cos 2α;cos 2α=1-sin 2α.(2)tan α=sin αcos α的变形公式:sin α=cos αtan α;cos α=sin αtan α.题型一三角函数定义的应用【例1】已知θ终边上一点P (x,3)(x ≠0),且cos θ=1010x ,求sin θ,tan θ.【例2】已知角α的终边经过点P (-4a,3a )(a ≠0),求sin α,cos α,tan α的值;2.角α的终边经过点P (-b,4)且cos α=-35,则b 的值为( ) A .3 B .-3 C .±3 D .5题型二三角函数符号的判断【例1】判断下列三角函数值的符号:(1)sin 3,cos 4,tan 5;(2)sin(cos θ)(θ为第二象限角).【例2】若tan x <0,且sin x -cos x <0,则角x 的终边在() A .第一象限 B .第二象限C .第三象限D .第四象限【过关练习】1.若sin θ<0且tan θ<0,则θ是第象限的角.2.使得lg(cos αtan α)有意义的角α是第象限角.题型三诱导公式一的应用【例1】求下列各式的值:(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°;(2)sin -11π6+cos 12π5·tan 4π.【过关练习】1.求下列各式的值:(1)cos 25π3+tan -15π4;(2)sin 810°+tan 765°-cos 360°.2.sin(-1 380°)的值为( )A .-12 B.12 C .-32D.323.求下列各式的值.(1)a 2sin(-1 350°)+b 2tan 405°-2ab cos(-1 080°);(2)tan 405°-sin 450°+cos 750°.题型四利用三角函数线求角、解不等式【例1】根据下列三角函数值,作角α的终边,然后求角的取值集合:(1)cos α=12;(2)tan α=-1.【例2】利用单位圆中的三角函数线,分别确定角θ的取值范围.(1) sin θ≥32;(2)-12≤cos θ<32.【例3】当α∈0,π2时,求证:sin α<α<="">【过关练习】1.如果π4<α<π2,那么下列不等式成立的是( ) A .cos α<="" αB .tan α<="" αC .si n α<="" αD .cos α<="" α2.如图在单位圆中角α的正弦线、正切线完全正确的是( )A .正弦线PM ,正切线A ′T ′B .正弦线MP ,正切线A ′T ′C .正弦线MP ,正切线ATD .正弦线PM ,正切线AT3.在[0,2π]上,满足sin x ≥12的x 的取值范围为( ) A.0,π6 B.π6,5π6 C.π6,2π3D.5π6,π题型五求三角函数定义域【例1】求下列函数的定义域.(1)f (x )=sin x ·tan x ;(2)f (x )=lg sin x +9-x 2.【过关练习】1. 求函数f (x )=1-2cos x +lnsin x -22的定义域.2.函数y =tanx -π3的定义域为( ) A.x |x ≠π3,x ∈R B.?x |x ≠k π+π6,k ∈Z C.x |x ≠k π+5π6,k ∈Z D.x |x ≠k π-5π6,k ∈Z题型六三角函数知一求二【例1】已知cos α=-817,求sin α,tan α的值.【例2】已知tan α=2,求下列代数式的值.(1)4sin α-2cos α5cos α+3sin α;(2)14sin 2α+13sin αcos α+12cos 2α.【过关练习】1.已知tan α=43,且α是第三象限角,求sin α,cos α的值.2.已知α是第四象限角,cos α=1213,则sin α等于( ) A.513 B .-513 C.512 D .-5123.已知tan α=3,求下列各式的值. (1)3cos α-sin α3cos α+sin α;(2)2sin 2α-3sin αcos α.4.已知sin α=55,则sin 4α-cos 4α的值为( ) A .-15 B .-35 C.15 D.35题型七三角函数平方关系及其应用【例1】已知sin θ+cos θ=15,θ∈(0,π),求:(1)sin θ-cos θ;(2)sin 3θ+cos 3θ.【例2】已知sin α+cos α=m ,求sin 3α+cos 3α的值.【过关练习】1.已知sin θ、cos θ是关于x 的方程x 2-ax +a =0的两个根(a ∈R ).(1)求sin 3θ+cos 3θ的值;(2)求tan θ+1tan θ的值.2.若sin A =45,且A 是三角形的一个内角,求5sin A +815cosA -7的值.3.已知sin α+cos α=15,α∈(0,π),则tan α的值是( ) A.34 B .-34 C.43 D .-43 题型八三角函数的化简证明【例1】已知α是第三象限角,化简:1+sin α1-sin α-1-sin α1+sin α.【例2】证明三角恒等式cos α1-sin α=1+sin αcos α【例3】已知下列等式成立.(1)a sin θ-b cos θ=a 2+b 2;(2)sin 2θm 2+cos 2θn 2=1a 2+b 2.求证:a 2m 2+b 2n 2=1.【过关练习】1.若α是第三象限角,化简 1+cos α1-cos α+1-cos α1+cos α.2.求证:2sin x cos x -1cos 2x -sin 2x =tan x -1tan x +1.3.已知tan 2α=2tan 2β+1,求证:sin 2β=2sin 2α-1.课后练习【补救练习】1.若sin θcos θ>0,则θ在( )A .第一、二象限B .第一、三象限C .第一、四象限D .第二、四象限 2.已知α是第四象限角,cos α=1213,则sin α等于( ) A.513 B .-513 C.512 D .-5123.利用三角函数线比较下列各组数的大小(用“>”或“<”连接):(1)sin 23π________sin 45π;(2)cos 23π________cos 45π;(3)tan 23π________tan 45π.4.函数y =lg cos x 的定义域为________________.5.利用三角函数线,写出满足下列条件的角α的集合:(1)sin α≥22;(2)cos α≤12.6.已知角α的终边上有一点P (24k,7k ),k ≠0,求sin α,cos α,tan α的值.【巩固练习】1.已知角α的终边上一点的坐标为?sin 2π3,cos 2π3,则角α的最小正值为( ) A.5π6 B.2π3 C.5π6 D.11π62.如果3π4<θ<π,那么下列各式中正确的是( ) A .co s θ<="" θB .sin θ<="" θC .tan θ<="" θD .cos θ<="" θ3.若0<α<2π,且sin α<32,cos α>12,则角α的取值范围是( ) A .(-π3,π3) B .(0,π3) C .(5π3,2π) D .(0,π3)∪(5π3,2π) 4.已知sin θ+cos θsin θ-cos θ=2,则sin θcos θ的值是( ) A.34 B .±310 C.310 D .-3105.已知α终边经过点(3a -9,a +2),且sin α>0,cos α≤0,则a 的取值范围为.6.函数f (x )=cos 2x -sin 2x 的定义域为________________.7.化简sin 2β+cos 4β+sin 2βcos 2β的结果是.8.已知sin α=15,求cos α,tan α.9.判断下列各式的符号:(1)sin 340°cos 265°;(2)sin 4tan-23π4;(3)sin (cos θ)cos (sin θ)(θ为第二象限角).10.求证:tan θ·sin θtan θ-si n θ=1+cos θsin θ.【拔高练习】1.若sin 2x >cos 2x ,则x 的取值范围是( )A .{x |2k π-34π<="">π,k ∈Z } B .{x |2k π+π4<="">π,k ∈Z } C .{x |k π-π4<="">,k ∈Z } D .{x |k π+π4<="">π,k ∈Z } 2.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n = .3.函数y =|sin x |sin x +|cos x |cos x -2|sin x cos x |sin x cos x的值域是. 4.若α为第三象限角,则cos α1-sin 2α+2sin α1-cos 2α的值为. 5.在△ABC 中,2sin A = 3cos A ,则角A = .6.已知4sin θ-2cos θ3sin θ+5cos θ=611,求下列各式的值.(1)5cos 2θsin 2θ+2sin θcos θ-3cos 2θ; (2)1-4sin θcos θ+2cos 2θ.7.化简:1cos 2α1+tan 2α-1+sin α1-sin α(α为第二象限角).8.证明:sin α-cos α+1sin α+cos α-1=1+sin αcos α;。

三角函数完美讲义

三角函数完美讲义

三角函数完美讲义
1.引言
三角函数是高中数学的重要知识点之一,也是解决几何和物理
问题的基础。

本讲义旨在提供一个完整且简明易懂的三角函数讲解,帮助学生更好地理解和应用三角函数的概念和性质。

2.基本概念
研究前提:了解直角三角形和基本三角比的概念
三角函数定义:正弦、余弦和正切的定义及图示
三角恒等式:介绍常见的三角恒等式及其证明方法
3.三角函数图像
正弦函数图像:介绍正弦函数的周期、振幅、相位和对称性
余弦函数图像:介绍余弦函数的周期、振幅、相位和对称性
正切函数图像:介绍正切函数的周期、渐近线和对称性
4.三角函数性质
基本性质:介绍正弦、余弦和正切函数的定义域、值域和奇偶性
三角函数的推导:从直角三角形的角度推导三角函数的值
5.三角函数应用
角度的测量单位:介绍弧度制和度制的转换关系
三角函数应用举例:解决实际问题时如何运用三角函数
三角函数的相关性:介绍三角函数之间的关系,如和差公式和倍角公式
6.总结
本讲义通过简明易懂的语言和清晰明了的图示,全面介绍了三角函数的基本知识和应用。

希望学生能够通过本讲义的研究,更加深入地理解和掌握三角函数,为日后的高中数学研究和实际应用打下坚实的基础。

以上是《三角函数完美讲义》的框架概述,具体内容请根据需要进行补充。

希望对您有所帮助!。

(完整word版)三角函数专题讲义

(完整word版)三角函数专题讲义

三角函数专题一、核心知识点归纳:1、正弦函数、余弦函数和正切函数的图象与性质:sin y x =cos y x =tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =; 当22x k ππ=-()k ∈Z 时,min 1y =-. 当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数 偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦ ()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+ ()k ∈Z 上是减函数. 在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称中心对称中心函 数 性 质2。

正、余弦定理:在ABC ∆中有: ①正弦定理:2sin sin sin a b cR A B C===(R 为ABC ∆外接圆半径) 2sin 2sin 2sin a R A b R B c R C =⎧⎪=⎨⎪=⎩⇒ sin 2sin 2sin 2a A Rb B Rc C R⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩注意变形应用 ②面积公式:111sin sin sin 222ABC S abs C ac B bc A ∆=== ③余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C ⎧=+-⎪=+-⎨⎪=+-⎩ ⇒ 222222222cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩二、方法总结:1.三角函数恒等变形的基本策略。

高考三角函数辅导讲义

高考三角函数辅导讲义

三角函数诱导公式例1:利用诱导公式求三角函数的值 (1)10sin()3π-;)(2)29sin()6π;(3)20sin()3π- 例2:化简3sin()tan()2sin()πααππα++- 高效作业,技能备考1、0cos35a =,则0sin 55= ; 2、cos()3π-的值为 ;0sin(855)-= ;3、95cos()cos()22x x ππ++-= ; 1 .设cos(π+α)=32,(π<α<32π),那么cos(2π-α)的值是( ) A .-12 B.32 C .-32D.122 .cos(2013)π-的值为 ( )A . 12 B. 1-C .D. 03 .sin 585的值为 ( )A .2-B.2 C .2- D. 24 .已知sin()cos(2)()cos()tan f παπααπαα--=--,则31()3f π-的值为 ( )A .12 B. 13- C .12- D. 135 .化简95cos()cos()22x x ππ++-= ; 6 .化简sin(5)cos()cos(8)23sin()sin(4)2πθπθπθπθθπ-⋅------;7 .已知2cos()63πα-=,则2sin()3πα-= ; 同角的三角函数(1)1cos sin 22=α+α (2)α=ααtan cos sin 例1:(1)已知3sin 5α=-,且α在第三象限,求cos α和tan α;(2)(2010全国)若0cos(80)k -=,那么0tan100= ;例2:已知tan 2α=,求值(1)224sin 3sin cos 5cos αααα--;(2)22222sin 3cos 4sin 9cos αααα--例3:若cos(2)3πα-=,且(,0)2πα∈-,则sin()πα-= ;高效作业,技能备考1 .已知tan 2α=,则sin 3cos sin cos αααα-+的值为 ( )A .53- B. 13- C .53 D. 132 .已知3cos()25πα+=,且3(,)22ππα∈,则tan α=( ) A .43 B. 34 C .34- D. 34±3.已知5cos 13α=-,且α是第二象限的角,则tan (2)πα=-= ;4.(2011全国)3(,)2παπ∈,tan 2α=,则cos α= ; 5.若4sin 5θ=-,tan 0θ>则cos θ= ;6 .3cos()cos()02πθπθ-++=,21cos sin 22θθ+= ;7 .1tan 3α=-,则11sin cos αα=- ; 8 .求证:cos 1sin 1sin cos x xx x+=-9、已知tan()2,tan 3αββ+==,则3sin(2)2πα+= ;三角函数的图像与性质问题三角函数sin()y A x ωϕ=+图像例1:(1)已知函数sin()y A x ωϕ=+(0ω>,2πϕ<)的部分图像如图所示,则 ( ) A.1,6πωϕ==B. 1,6πωϕ==-C. 2,6πωϕ==D. 2,6πωϕ==-(2)已知函数已知函数()cos()f x A x ωϕ=+的图象如图所示,2()23f π=-,则(0)f =( )(A )23-(B)- 12 (C) 23 (D) 12图(1) 图(2) 高效作业,技能备考 1.函数sin()(,,y A x A ωϕωϕ=+为常数,0,0)A ω>>在闭区间[,0]π-上的图象如图所示,则ω=2. (2011江苏)函数sin()y A x ωϕ=+(A 、ω、ϕ是常数,0,0A ω>>的部分图象如图所示,则(0)f = ;图1 图23.(2011全国大纲)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .94.(2012天津) 将函数()sin f x x ω=(其中ω>0)的图像向右平移4π个单位长度,所得图像经过点3(,0)4π,则ω的最小值是 A.13 B. 1 C. 53D. 2 三角函数的值域和最值例题:求函数sin (0)2cos x y x x π-=<<-的最小值。

高一数学必修4三角函数的定义讲义

高一数学必修4三角函数的定义讲义

三角函数的定义知识梳理1、任意角三角函数的定义(1)单位圆:在直角坐标系中,以原点O 为圆心,以单位长度为半径的圆称为单位圆. (2)单位圆中任意角的三角函数的定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么y 叫做α的正弦,记作sin α,即sin α=y ;x 叫做α的余弦,记作cos α,即cos α=x ;y x 叫做α的正切,记作tan α,即tan α=yx (x ≠0).2、三角函数正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,它们统称为三角函数.3、三角函数的定义域三角函数 定义域 sin α R cos α Rtan α⎩⎨⎧⎭⎬⎫α⎪⎪α≠π2+k π,k ∈Z 4、三角函数值的符号5、终边相同的角的同一三角函数的值(1)终边相同的角的同一三角函数的值相等.(2)公式:sin(α+k ·2π)=sin_α,cos(α+k ·2π)=cos_α,tan(α+k ·2π)=tan_α,其中k ∈Z .例题精讲题型一、三角函数的定义及应用例1、(1)若角α的终边经过点P (5,-12),则sin α=________,cos α=________,tan α=________. (2)已知角α的终边落在直线3x +y =0上,求sin α,cos α,tan α的值.利用三角函数的定义求值的策略(1)已知角α的终边在直线上求α的三角函数值时,常用的解题方法有以下两种:法一:先利用直线与单位圆相交,求出交点坐标,然后利用三角函数的定义求出相应的三角函数值. 法二:注意到角的终边为射线,所以应分两种情况来处理,取射线上任一点坐标(a ,b ),则对应角的正弦值sinα=b a 2+b 2,余弦值cos α=a a 2+b 2,正切值tan α=ba .(2)当角的终边上的点的坐标以参数的形式给出时,要根据问题的实际情况对参数进行分类讨论.变式训练已知角α的终边过点P (12,a ),且tan α=512,求sin α+cos α的值.题型二、三角函数值符号的运用例2、(1)若sin αtan α<0,且cos αtan α<0,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角(2)判断下列各式的符号:①sin 105°·cos 230°; ②cos 3·tan ⎝⎛⎭⎫-2π3.三角函数值的符号规律(1)当角θ为第一象限角时,sin θ>0,cos θ>0或sin θ>0,tan θ>0或cos θ>0,tan θ>0,反之也成立; (2)当角θ为第二象限角时,sin θ>0,cos θ<0或sin θ>0,tan θ<0或cos θ<0,tan θ<0,反之也成立; (3)当角θ为第三象限角时,sin θ<0,cos θ<0或sin θ<0,tan θ>0或cos θ<0,tan θ>0,反之也成立; (4)当角θ为第四象限角时,sin θ<0,cos θ>0或sin θ<0,tan θ<0或cos θ>0,tan θ<0,反之也成立.变式训练若sin 2α>0,且cos α<0,试确定α终边所在的象限.题型三、诱导公式一的应用例3、计算下列各式的值:(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°; (2)sin ⎝⎛⎭⎫-11π6+cos 12π5·tan 4π.变式训练求下列各式的值:(1)sin 25π3+tan ⎝⎛⎭⎫-15π4; (2)sin 810°+cos 360°-tan 1 125°.课堂小测1、若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( )A .锐角三角形B .钝角三角形C .直角三角形D .以上三种情况都可能2、若角α的终边过点(2sin 30°,-2cos 30°),则sin α的值等于( )A.12 B .-12 C .-32 D .-33 3、sin ⎝⎛⎭⎫-196π=________. 4、已知角θ的顶点为坐标原点,始边为x 轴的非负半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________.5、化简下列各式:(1)a cos 180°+b sin 90°+c tan 0°; (2)p 2cos 360°+q 2sin 450°-2pq cos 0°; (3)a 2sin π2-b 2cos π+ab sin 2π-ab cos 3π2.同步练习1、25πsin6等于( )A .12 B .2 C .12- D .2-2、若角α的终边经过点34,55P ⎛⎫- ⎪⎝⎭,则sin tan αα⋅=( )A .1615 B .1615- C .1516D .1516- 3、利用余弦线比较cos1,πcos 3,cos 1.5的大小关系是( ) A .πcos1cos cos1.53<< B .πcos1cos1.5cos 3<< C .πcos1coscos1.53>> D .πcos1.5cos1cos 3>> 4、如图,在单位圆中角α的正弦线、正切线完全正确的是( ) A .正弦线PM ,正切线A T '' B .正弦线MP ,正切线A T '' C .正弦线MP ,正切线ATD .正弦线PM ,正切线AT5、角α的终边经过点(),4P b -且3cos 5α=-,则b 的值为( ) A .3 B .3- C .3± D .5 6、已知x 为终边不在坐标轴上的角,则函数()|sin |cos |tan |sin |cos |tan x x x x f x x x=++的值域是( ) A .{}3,1,1,3-- B .{}3,1-- C .{}1,3 D .{}1,3- 7、在[]0,2π上,满足3sin 2x ≥的x 的取值范围为( ) A .π0,3⎡⎤⎢⎥⎣⎦B .π2π,33⎡⎤⎢⎥⎣⎦ C .π2π,63⎡⎤⎢⎥⎣⎦ D .5π,π6⎡⎤⎢⎥⎣⎦8、若θ为第一象限角,则能确定为正值的是 ( ) A .sin2θB .cos2θC .tan2θD .cos 2θ9、已知α的终边经过点()36,2a a -+,且sin 0,cos 0,αα>≤则α的取值范围为________.10、若角α的终边与直线3y x =重合且sin 0α<,又(),P m n 是α终边上一点,且10OP =,则m n -=_____. 11、已知点()sin cos ,tan P ααα-在第一象限,则在[]0,2π内α的取值范围为__________. 12、(1)23π17πcos tan 34⎛⎫-+ ⎪⎝⎭; (2)sin 630tan 1 125tan 765cos 540︒+︒+︒+︒.13、当π0,2α⎛⎫∈ ⎪⎝⎭时,求证:sin tan ααα<<.14、已知角α的终边落在直线2y x =上,求sin α,cos α,tan α的值.。

(word完整版)高中数学专题系列三角函数讲义

(word完整版)高中数学专题系列三角函数讲义

(word完整版)⾼中数学专题系列三⾓函数讲义§1.1.1、任意⾓1、正⾓、负⾓、零⾓、象限⾓的概念.2、与⾓α终边相同的⾓的集合:{}Z k k ∈+=,2παββ.§1.1.2、弧度制1、把长度等于半径长的弧所对的圆⼼⾓叫做1弧度的⾓.2、 rl =α. 3、弧长公式:R R n l απ==180. 4、扇形⾯积公式:lR R n S 213602==π. §1.2.1、任意⾓的三⾓函数1、设α是⼀个任意⾓,它的终边与单位圆交于点()y x P ,,那么:xyx y ===αααtan ,cos ,sin 2、设点(),A x y为⾓α终边上任意⼀点,那么:(设r =sin y r α=,cos x r α=,tan yxα=,cot x y α=3、αsin ,αcos ,αtan 在四个象限的符号和三⾓函数线的画法.正弦线:MP; 余弦线:OM; 正切线:AT5、特殊⾓0°,30°45°,60°,90°,180°,270等的三⾓函数值.§1.2.21、平⽅关系:1cos sin 22=+αα 2、商数关系:αααcos sin tan =. 3、倒数关系:tan cot 1αα=§1.3、三⾓函数的诱导公式(概括为Z k ∈)§1.4.1、正弦、余弦函数的图象和性质1、记住正弦、余弦函数图象:2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最⼤最⼩值、对称轴、对称中⼼、奇偶性、单调性、周期性.3、会⽤五点法作图.sin y x =在[0,2]x π∈上的五个关键点为: 30010-12022ππππ(,)(,,)(,,)(,,)(,,).y=tanx3π2ππ2-3π2-π-π2oyxy=cotx 3π2ππ22π-π-π2o yx图表归纳:正弦、余弦、正切函数的图像及其性质x y sin =x y cos =x y tan =图象定义域 RR},2|{Z k k x x ∈+≠ππ值域[-1,1][-1,1]R最值max min 2,122,12x k k Z y x k k Z y ππππ=+∈==-∈=-时,时,max min 2,12,1x k k Z y x k k Z y πππ=∈==+∈=-时,时,⽆周期性π2=T π2=Tπ=T奇偶性奇偶奇单调性Z k ∈在[2,2]22k k ππππ-+上单调递增在3[2,2]22k k ππππ++上单调递减在[2,2]k k πππ-上单调递增在[2,2]k k πππ+上单调递减在(,)22k k ππππ-+上单调递增对称性 Z k ∈对称轴⽅程:2x k ππ=+对称中⼼(,0)k π对称轴⽅程:x k π= 对称中⼼(,0)2k ππ+⽆对称轴对称中⼼,0)(2k π§1.4.3、正切函数的图象与性质1、记住正切函数的图象2、记住余切函数的图象:3、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中⼼、奇偶性、单调性、周期性.§1.5、函数()?ω+=x A y sin 的图象 1、对于函数:()()sin 0,0y A x B A ωφω=++>>有:振幅A ,周期2T πω=,初相?,相位?ω+x ,频率πω21==Tf .2、能够讲出函数x y sin =的图象与()sin y A x B ω?=++的图象之间的平移伸缩变换关系.3、三⾓函数的周期,对称轴和对称中⼼函数sin()y x ω?=+,x ∈R 及函数cos()y x ω?=+,x ∈R(A,ω,?为常数,且A ≠0)的周期2|| T πω=;函数tan()y x ω?=+,,2x k k Z ππ≠+∈(A,ω,?为常数,且A ≠0)的周期||T πω=. 对于sin()y A x ω?=+和cos()y A x ω?=+来说,对称中⼼与零点相联系,对称轴与最值点联系. 求函数sin()y A x ω?=+图像的对称轴与对称中⼼,只需令()2x k k Z πω?π+=+∈与()x k k Z ω?π+=∈解出x 即可.余弦函数可与正弦函数类⽐可得.4、由图像确定三⾓函数的解析式利⽤图像特征:max min 2A =,max min2y y B +=. ω要根据周期来求,?要⽤图像的关键点来求.§1.6、三⾓函数模型的简单应⽤(要求熟悉课本例题.)§3.1.1、两⾓差的余弦公式§3.1.2、两⾓和与差的正弦、余弦、正切公式 1、()βαβαβαsin cos cos sin sin +=+ 2、()βαβαβαsin cos cos sin sin -=- 3、()βαβαβαsin sin cos cos cos -=+ 4、()βαβαβαsin sin cos cos cos +=- 5、()tan tan 1tan tan tan αβαβαβ+-+=.6、()tan tan 1tan tan tan αβαβαβ-+-=.§3.1.3、⼆倍⾓的正弦、余弦、正切公式1、αααcos sin 22sin =,2、ααα22sin cos 2cos -=变形: 12sin cos sin 2ααα=. 1cos 22-=αα2sin 21-=.升幂公式:221cos 22cos 1cos 22sin αααα+=-= 降幂公式:221cos (1cos 2)21sin (1cos 2)2αααα=+=-3、ααα2tan 1tan 22tan -=. 4、sin 21cos 2tan 1cos 2sin 2ααααα-==+ §3.2、简单的三⾓恒等变换1、注意正切化弦、平⽅降次.2、辅助⾓公式)sin(cos sin 22?++=+=x b a x b x a y (其中辅助⾓?所在象限由点(,)a b 的象限决定,tan b a=).解三⾓形1、正弦定理:R CcB A 2sin sin sin ===. (其中R 为ABC ?外接圆的半径) 2sin ,2sin ,2sin ;a R A b R B c R C ?===sin ,sin ,sin ;222a b c A B C R R R=== ::sin :sin :sin .a b c A B C ?=⽤途:⑴已知三⾓形两⾓和任⼀边,求其它元素;⑵已知三⾓形两边和其中⼀边的对⾓,求其它元素。

三角函数讲义模板

三角函数讲义模板
2 ,则 y 的值是 3

2.已知 的终边过点 (3x 9, x 2) ,且 cos ≤0, sin 0 ,则 x 3.若 0


2
,则 ,sin , tan 从大到小的次序为

1 3 4.若 tan , ( , ) ,则 sin 2 2
O
M
A
x
知识点五:同角三角函数的基本关系式: (1)平方关系: 知识点六:三角函数诱导公式
2k
; (2)倒数关系:
; (3)商数关系:
.


2k

2


2

3 2
3 2
sin cos tan
k 三角函数诱导公式( )的本质是:奇变偶不变(对 k 而言,指 k 取奇数或偶数) , 2
tan sin cos , cot . cos sin
2、两角和、差公式: sin( ) sin cos cos sin
cos( ) cos cos sin sin
tan( )
tan tan 1 tan tan
中小学 1 对 1 课外辅导专家
2.若 f ( n) sin
n ,则 f (1) f (3) f (5) f (7) f (9) f (11) ________. 6
3.已知 0, 2π ,且点 P (sin cos , tan ) 在第一象限,则 的取值范围为
4、降次升幂公式: 1 cos a 1 cos a sin 2 a cos 2 a 2 2 2 3 5 , , 的 sin,cos,tan 的值。以及在各个象限内,正弦,余弦,正切之 5、 0, , , , , 6 4 3 2 3 4 6 间的﹢和﹣ 基本问题和解题方法: 1、sin,cos 中与

(word完整版)高中数学专题系列三角函数讲义.doc

(word完整版)高中数学专题系列三角函数讲义.doc

素诚教育高中数学素质、诚实SCE 金牌数学专题系列专题:三角函数§1.1.1、任意角1、正角、负角、零角、象限角的概念.2、与角终边相同的角的集合:2k , k Z .§1.1.2、弧度制1、把长度等于半径长的弧所对的圆心角叫做 1 弧度的角 .2、l. r3、弧长公式:l n R R . 4 、扇形面积公式:S n R21lR .180 360 2 § 1.2.1、任意角的三角函数1,那么:sin y, cos x, tany、设是一个任意角,它的终边与单位圆交于点P x, yx 2、设点A x , y 为角终边上任意一点,那么:(设 r x2 y2)sin y x y x , cos , tanx, cotr r y3、sin , cos , tan 在四个象限的符号和三角函数线的画法.y正弦线: MP; 余弦线: OM; 正切线: ATTPO M A x5、特殊角 0°, 30° 45°, 60°, 90°, 180°, 270 等的三角函数值 .0 6 4 3 2 2 3 323 4 2sincostan§ 1.2.2、同角三角函数的基本关系式1、平方关系:sin2 cos2 12、商数关系:tan sin .3、倒数关系:tan cot1cos§ 1.3 、三角函数的诱导公式(概括为 “奇变偶不变,符号看象限”k Z )1、 诱导公式一 :2、 诱导公式二 :sin 2k sin ,sin sin , cos 2k cos , (其中: k Z )cos cos ,tan2ktan .tantan .3、诱导公式三 :4、诱导公式四 :sin sin ,sin sin ,cos cos, cos cos,tantan .tantan .5、诱导公式五 :6、诱导公式六 :sin2cos ,sincos ,2cos2sin .cossin .2§ 1.4.1 、正弦、余弦函数的图象和性质y=sinxyy=cosxy3 73 7-5 -2 1-5-2 1222-3 2-23 2-4-7-3 -2 -3 -o 2 5 34x-4-7-2 -3o 2 54x22-1 2222 -1 221、记住正弦、余弦函数图象:2、能够对照图象讲出正弦、余弦函数的相关性质: 定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性.3、会用 五点法作图 .y sin x 在 x [0, 2 ] 上的五个关键点为: (0,0)(,,1)(, ,0)(,3,-1)(,2 ,0).2 2图表归纳:正弦、余弦、正切函数的图像及其性质y sin x y cosx y tan x 图象定义域R值域[-1,1]x 2k , k Z时, y max 1最值 2x 2k , k Z 时, y min 12周期性T 2奇偶性奇单调性在[2k , 2k ] 上单调递增2 2k Z 在 [2k,2k 3] 上单调递减2 2对称性对称轴方程:x kk Z 2对称中心 (k , 0)§ 1.4.3 、正切函数的图象与性质yy=cotx-- o 321、记住正 2 2 22、记住余3、能够对照偶性、单调性、周期性.R { x | x k , k Z }2[-1,1] Rx 2k , k Z时, y max 1无x 2k , k Z时, y min1T 2 T偶奇在 [2 k ,2 k ] 上单调递增在(k , k ) 上单调递2 2在[2 k ,2 k] 上单调递减增对称轴方程:x k 无对称轴对称中心 ( k , 0) 对称中心 (k,0)2 2yy=tanxx3 -- 2o 3x- 2 2 2图象切函数的切函数的图象:图象讲出正切函数的相关性质:定义域、值域、对称中心、奇§ 1.5 、函数 y A sin x 的图象1、对于函数:y Asin xB A 0,有:振幅 A2 ,初相 ,相位 x,频率 fT 2.,周期 T12、能够讲出函数 y sin x 的图象与y AsinxB 的图象之间的平移伸缩变换关系 .① 先平移后伸缩:② 先伸缩后平移:y sin x 平移 || 个单位(左加右减)横坐标不变纵坐标变为原来的 A 倍y sin xy sin x横坐标不变y A sin x纵坐标变为原来的 A 倍y Asin x纵坐标不变y Asin x横坐标变为原来的| 1| 倍纵坐标不变y Asin x横坐标变为原来的 | 1|倍平移 |B | 个单位y Asin x B平移个单位(左加右减)平移 |B| 个单位 y Asin xy Asin x B(上加下减)(上加下减)3、三角函数的周期,对称轴和对称中心函数 y sin( x) ,x ∈ R 及函数 y cos( x), x ∈ R(A, , 为常数,且2 ;A ≠ 0) 的周期 T||函数 ytan( x) , xk,kZ (A, ω , 为常数,且 A ≠ 0) 的周期 T.2| |对于 y A sin( x ) 和 y Acos( x ) 来说, 对称中心与零点相联系,对称轴与最值点联系.求 函 数 yAsin(x) 图 像 的 对 称 轴 与 对 称 中 心 , 只 需 令 xk(k Z ) 与 x k (k Z )2解出 x 即可 . 余弦函数可与正弦函数类比可得 .4、由图像确定三角函数的解析式利用图像特征: Aymaxymin ,Bymaxymin.22要根据周期来求 ,要用图像的关键点来求 .§ 1.6 、三角函数模型的简单应用(要求熟悉课本例题 . )§ 3.1.1 、两角差的余弦公式 记住 15°的三角函数值:sincostan6 26 2231244§3.1.2 、两角和与差的正弦、余弦、正切公式 1、 sin sin cos cos sin2、 sin sincoscos sin3、 cos cos cos sin sin4、 cos cos cossin sin5、 tantan tan .1 tan tan6、 tantan tan.1 tan tan§ 3.1.3 、二倍角的正弦、余弦、正切公式1、 sin 22 sin cos ,2、 cos2cos 2sin 2 变形 : sincos1sin 2 .2 cos 2 121 2 sin 2.升幂公式:1 cos2 2cos 21cos22sin 2cos 21 (1 cos2 )降幂公式:2sin 21(1 cos 2 )23、 tan 22 tan . 4sin 21 cos2 1 tan2、 tan1 cos2sin 2§ 3.2 、简单的三角恒等变换 1、 注意 正切化弦、平方降次 . 2、辅助角公式y a sin x b cos xa 2b 2 sin( x ) ( 其 中 辅 助 角所 在 象 限 由 点 ( a, b) 的 象 限 决定 , tanb).a解三角形1、正弦定理:a b c 2R .sin A sin B sin C(其中 R 为 ABC 外接圆的半径)a2R sin A,b 2R sin B,c 2R sin C ; sin Aa ,sin B b,sin C c ;2R2R2Ra :b :c sin A :sin B :sin C.用途:⑴已知三角形两角和任一边,求其它元素;⑵已知三角形两边和其中一边的对角,求其它元素。

1第一章 三角函数辅导讲义

1第一章 三角函数辅导讲义

第1讲 任意角、弧度制及任意角的三角函数【复习指导】从近几年的高考试题看,这部分的高考试题大多为教材例题或习题的变形与创新,因此学中要立足基础,抓好对部分概念的理解. 【知识梳理】 1.任意角 (1)角的概念的推广①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. (2)终边相同的角终边与角α相同的角可写成α+k ·360°(k ∈Z). (3)弧度制①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=lr ,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制,比值lr 与所取的r 的大小无关,仅与角的大小有关. ④弧度与角度的换算:360°=2π弧度;180°=π弧度. ⑤弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P (x ,y ),它与原点的距离为r (r >0),那么角α的正弦、余弦、正切分别是:sin α=y r ,cos α=x r ,tan α=yx ,它们都是以角为自变量,以比值为函数值的函数. 3.三角函数线设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M ,则点M 是点P 在x 轴上的正射影.由三角函数的定义知,点P 的坐标为(cos_α,sin_α),即P (cos_α,sin_α),其中cos α=OM ,sin α=MP ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tan α=AT .我们把有向线段OM 、MP 、AT 叫做α的余弦线、正弦线、正切线.三角函数线有向线段MP 为正弦线有向线段OM 为余弦线有向线段AT 为正切线【学海提示】 一条规律三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦. (2)终边落在x 轴上的角的集合{β|β=kπ,k ∈Z};终边落在y 轴上的角的集合,2k k Z πββπ⎧⎫=+∈⎨⎬⎩⎭;终边落在坐标轴上的角的集合可以表示为,2k k Z πββ⎧⎫=∈⎨⎬⎩⎭两个技巧(1)在利用三角函数定义时,点P 可取终边上任一点,如有可能则取终边与单位圆的交点,|OP |=r 一定是正值.(2)在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧. 三个注意(1)注意易混概念的区别:第一象限角、锐角、小于90°的角是概念不同的三类角,第一类是象限角,第二类、第三类是区间角.(2)角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.(3)注意熟记0°~360°间特殊角的弧度表示,以方便解题.【题型分类解析】【题型一】 角的集合表示及象限角的判定(1)相等的角终边一定相同,但终边相同的角却不一定相等,终边相同的角有无数个,它们之间相差360°的整数倍.(2)角的集合的表示形式不是唯一的,如:终边在y 轴非正半轴上的角的集合可以表示为2,2x x k k Z ππ⎧⎫=-∈⎨⎬⎩⎭,也可以表示为32,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭例1 (1)写出终边在直线y =3x 上的角的集合;(2)若角θ的终边与6π7角的终边相同,求在[0,2π)内终边与θ3角的终边相同的角;(3)已知角α是第二象限角,试确定2α、α2所在的象限.【训练1】(1)角α与角β的终边互为反向延长线,则( ).A .α=-βB .α=180°+βC .α=k ·360°+β(k ∈Z)D .α=k ·360°±180°+β(k ∈Z) (2)已知0°<θ<360°,且θ角的7倍角的终边和θ角终边重合,求θ.(3)已知集合A ={第一象限角},B ={锐角},C ={小于90°的角},下列四个命题:①A =B =C ②A ⊂C ③C ⊂A ④A ∩C =B ,其中正确的命题个数为 ; (4)若角α是第三象限角,则2α角的终边在 ,2α角的终边在 .【题型二】 三角函数的定义任意角的三角函数值仅与角α的终边位置有关,而与角α终边上点P 的位置无关.若角α已经给出,则无论点P 选择在α终边上的什么位置,角α的三角函数值都是确定的. 例2 已知角θ的终边经过点P (-3,m )(m ≠0)且sin θ=24m ,试判断角θ所在的象限,并求cos θ和tan θ的值. 【训练2】(1)试写出所有终边在直线x y 3-=上的角的集合并指出上述集合中-1800~1800之间的角. (2)角α的终边上一点)3,(a a -,则=+ααsin 2cos 。

高一三角函数教师讲义

高一三角函数教师讲义

三角函数的概念1.一1.1任意角和弧度制⎪⎩⎪⎨⎧零角负角:顺时针防线旋转正角:逆时针方向旋转任意角..12.象限角:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。

如果角的终边在坐标轴上,就认为这个角不属于任何象限。

3.. ①与α(0°≤α<360°)终边相同的角的集合:{}Z k k ∈+⨯=,360|αββ ②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180| ββ ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180| ββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180|ββ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:Z k k ∈-=,βα360 ⑧若角α与角β的终边关于y 轴对称,则α与角β的关系:Z k k ∈-+=,βα 180360 ⑨若角α与角β的终边在一条直线上,则α与角β的关系:Z k k ∈+=,βα180 ⑩角α与角β的终边互相垂直,则α与角β的关系:Z k k ∈++=,90180βα 4. 弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。

360度=2π弧度。

若圆心角所对的弧长为l ,则其弧度数的绝对值|rl=α,其中r 是圆的半径。

5. 弧度与角度互换公式: 1rad =(π180)°≈57.30° 1°=180π注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 6.. 第一象限的角:⎭⎬⎫⎩⎨⎧∈+<<Z k k k ,222|ππαπα 锐角:⎭⎬⎫⎩⎨⎧<<20|παα ; 小于o90的角:⎭⎬⎫⎩⎨⎧<2|παα(包括负角和零角) 7. 弧长公式:||l R α= 扇形面积公式:211||22S lR R α==§1.2任意角的三角函数1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin ,cos y x r rαα==,()tan ,0yx xα=≠ 三角函数值只与角的大小有关,而与终边上点P2.. 三角函数线正弦线:MP; 余弦线:OM; 正切线:3.三角函数在各象限的符号:+ + - + - - - + sin α cos α tan α4. 同角三角函数的基本关系式:(1)平方关系:22221sin cos 1,1tan cos αααα+=+=(2)商数关系:sin tan cos ααα=(用于切化弦) ※平方关系一般为隐含条件,直接运用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档