高等代数北大版第5章习题参考答案

合集下载

北大版高等数学第五章 向量代数与空间解析几何答案 习题5.1

北大版高等数学第五章 向量代数与空间解析几何答案 习题5.1

习题5.11.,,,,,().11,,().22ABCDAB AD AC DB MA M AC DB MA AM AC ===+=-=-=-=-+ 设为一平行四边形试用表示为平行四边形对角线的交点解a b.a b a b a b a b()2.,1().211221().2M AB O OM OA OB OM OA AM OA AB OA OB OA OA OB =+=+=+=+-=+设为线段的中点,为空间中的任意一点证明证3.,,1().3221()3321(),31(),3M ABC O OM OA OB OC OM OA AM OA AD OA AB AC OA AB AC OM OB BA BC OM OC =++=+=+=+⨯+=++=++=设为三角形的重心为空间中任意一点证明证1().313,().3CA CB OM OA OB OC OM OA OB OC ++=++=++4.,1,().41(),211(),(),221().24ABCD M O OM OA OB OC OD OM OA AM OA AB AD OM OB BA AD OM OC BA DA OM OD AB DA OM OA OB OC OD =+++=+=++=++=++=++=+++ 设平行四边形的对角线交点为为空间中的任意一点证明证1,().4OM OA OB OC OD =+++2222225.?(1)()();(2)();(3)()().(1).:()().(2).:()0, 1.(3),6.==⨯=⨯======0 对于任意三个向量与判断下列各式是否成立不成立例如,不成立例如,成立都是与组成的平行六面体的有向体积利用向量证明三角形两边中点的连线平行解a,b c,a b c b c a a b a b a b c c a b a b i c =j.a b c =j,b c a =a i b j,a b a b a,b c .,112211().22DE DA AE BA ACBA AC BC =+=+=+=于第三边并且等于第三边长度之半.证2227.:(1),;(2).(1)()()()()||||0.()cos |||||||||||||AC BD AB BC BC CD AB BC BC CD BC CD AB AC AB AB AD AB AB AB AD a AB ADAB AC AB AC AB AC α=++=+-=-=+++===利用向量证明菱形的对角线互相垂直且平分顶角勾股弦定理证2,||()cos cos .|||||||||||,.a AC AD AB AD AD AB AD AD a AB ADAB AC AB AC a AC βααβαβ+++===== 与都是锐角故 22222(2)||()()||||2||||.ACAC AC AB BC AB BC AB BC AB BC AB BC ==++=++=+2222222222222222228.()()||||.()()||||cos ||||sin ||||(cos sin )||||.9..||.AB AC ABC ABC ABDC AB AC αααα⨯+=⨯+=+=+=∆=⨯证明恒等式试用向量与表示三角形的面积11的面积=的面积22证解a b a b a b a b a b a b a b a b a b222222222210.,,,()()2().()()()()()()222().=++-=+++-=+++--=-+ 给定向量记为即现设为任意向量证明证a a a a a a a.a b , :a b a b a b a b a b a b a b a b a b a a +b b +a b +a a +b b a b =a b2222222222211.,,:().:()||(||sin )||sin ||.,αα⨯≤⨯=⨯==≤=对于任意向量证明问等号成立的充分必要条件是什么?等号成立的充分必要条件是正交证22a b a b a b a b a b a ||b a ||b a ||b a b a b .。

高等代数(北大版第三版)习题答案I

高等代数(北大版第三版)习题答案I

高等代数(北大版第三版)习题答案I篇一:高等代数(北大版)第3章习题参考第三章线性方程组1.用消元法解以下线性方程组:?x1?x?1?1)?x1x1x13x25x34x413x22x32x42x2x3x4x54x2x3x4x52x2x3x4x5 x12x23x42x51x5??1?x1x23x3x43x523 2)2x?3x?4x?5x?2x?72345?139x9x6x16x2x252345?11x3?x7?0?3x1?4x2?5?x1?2x2?3x3?4x4?44x3?x2?0?x2?x3?x4??3?2x1?3x2?343)?4)?4x?11x?13x?16x?0x?3x??x?123424?1?17x?3x?x3?7x?2x?x?3x0234234??1?x1?2x2?3x3?x4?1?2x1?x2?x3?x4?1?3x1?2x2?x3?x4?13x1?2x2?2x3?3x4?25)? 6)?2x1?3x2?x3?x4?12x2x2xx15x1x2x32x4123412xxx3x4234?15x1?5x2?2x3?2解1)对方程组得增广矩阵作行初等变换,有111111000033?2?420000?1521112?3?20?1?4?2?11?1?1200101?1?11010001??110??30??3??01?011?200?0000030?5?7?10000?15?3?4?4?400?200423581200001?1?11010001?2?2? ?221?2?0? ?0?0由于rank(A)?rank(B)?4?5,因此方程组有无穷多解,其同解方程组为x1x412x1x52,?2x03x?x?0?24解得x1x2x3x4x51kk0k22k其中k为任意常数。

2)对方程组德增广矩阵作行初等变换,有112910 ??002?1?3?920?3463151632?3221??120?0725022?3?7?27120?346341110?2?5?2?1631?1 5161334512529?8?011??333033?2529??72?10??334?512529? 8001?1?3330000??01?由于rank(A)?4?rank(A)?3,因此原方程无解。

高等代数-第5章习题及解答

高等代数-第5章习题及解答

习题 5.1解答A ⊆B A B =A A B =B 1. 设,证明:,.ααααααα∀∈A ⊆B ∈B ∴∈A B⊆A BAB ⊆AB =A∀∈A B ∈∈B A ⊆B ∈BA B ⊆B B ⊆A BAB =B证 A ,由,得 即得证A 又A 故 ,则A 或 但,因此无论那一种情形都有 此即,但 所以(B C C 2. :1)A =A B A 证明 )()();(((((((x x x x x x x x x x x x x x ∀∈∈∈∈∈∈∈⊆∈∈∈∈∈∈∈证 A (B C ),则A 且(B C )在后一情形,B 或C, 于是AB 或AC 所以AB)AC )由此得A (B C )A B)AC )反之,若A B)A C ),则AB 或AC在前一情形,A,B,因此B C 故A B C )在后一情(((((((x x x x ∈∈∈∈⊆形,A,C, 因此BC也得A BC ) 故A B)AC )AB C ) 于是AB C )=AB)AC )C C 2A B =A B A .)()()()x x x x x x x x x x x ∈∈∈∈∈∈∈∈∈∈∈∴⊆⊆ 证 若A (B C ),则A 或者BC在前一情形AB 且A C因而(A B )(AC )在后一情形B ,C ,因而AB 且AC即(A B )(A C ) A (B C )(A B )(A C )同理可证(A B )(AC )A (BC )故A (BC )=(AB )(AC )3:|,:|a b a b b f a bc d c d a ⨯⎛⎫⎛⎫→→+ ⎪ ⎪⎝⎭⎝⎭22 、问:法则g 是否为Q 到Q 的映射?单射还是双射?22(((a f f Q g g g ⨯⎛⎫⎛⎫∀∈∈⇒ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∴解 当取0时在中没有象,所以不是映射;a 0a 0 a Q,有)=a,但000012121212)=3=),而00420042g 是满射不是单射.2()(),:()|()[]f x f x f x f x Q x φϕ'→→4. 问:满足:|是否为的变换?单射还是双射?φφφ'∈∴∀∈Φ解 (f(x))=f (x)Q[x] 是变换;又f(x)Q[x],有((x))=f(x),而22(())()(())(())()()f x f x f x f x f x f x φφφϕϕϕϕϕΦ∈'≠∴∀∈=∈∴∀∈=-=-≠∴⎰x(x)=f(x)dx Q[x],又 (f(x))=(f(x)+1)=f (x),而f(x)f(x)+1是满射不是单射.又f(x)Q[x],Q[x]是变换,又f(x)Q[x],但f(x)并且-f(x)没有原象,既不是单射又不是满射.{}|01y y y A B ≤<5. 设是一切非负实数构成的集合,又=是实数且:|1x f x x→A B + 证明: 是到的一个双射.()(),1,,1,111a ba b f a f b a ba b f yy y yyy fy y y f f ∀∈=+∴=∴∀∈≤≤∴≥-⎛⎫∴∈= ⎪--⎝⎭∴ 证 A,==1+ 是A 到B 的一个单射. B 00,A,且使得 是A 到B 的满射.综上所述得,是A 到B 的一个双射.{},:11,21,32,42;1223,4,1f g A →→→→→→→→6. 设=1,2,3,4规定 :,34.,f g fg gf fg gf A 1) 说明都是的变换;2) 求和,问和是否相等?(),():11,22,32,41:12,22,33,43.f x Ag x Af g fg gf g gf ∀∈∈∈∴→→→→→→→→≠证明 (1)x A,与都是由A 到A 的映射, 从而都是A 的变换. (2)所以f,,:::A B C f A B g B C gf A C g →→→7.证明是三个非空集合,是满射,,但是单射,证明是单射.1212121212,(),()()()()()f a a f a f a f a f a f a a f a f a ∈∴∃∈==⇒=⇒==∴12121212证明:设b ,b B,且g(b )=g(b )因是满射,A,使得b b 即有g()=g()g 是单射 即b b g 是单射习题 5.2解答1. 检验以下集合对所规定的代数运算是否作成数域上F 的线性空间.{}{}{}{}()|,()|,()|0,()|0n n n ij n ij i j a i j a 1) S=A M F A =A T=A M F A =-A U=A M F 时 L=A M F 时'∈'∈∈>=∈<=∴解S ,T ,U ,L 分别对称矩阵、反对称矩阵、上三角矩阵和下三角矩阵,所以S 、T 、U 、L 都非空,又根据其相应性质知,S 、T 、U 、L 中的元素关于矩阵的加法与F 中的数与矩阵的乘法都封闭,S 、T 、U 、L 都作成数域F 上的线性空间。

高等代数(北大第三版)习题答案完整

高等代数(北大第三版)习题答案完整
P44.4 2) 结果
f ( x) = x 4 − 2 x 2 + 3 = ( x + 2) 4 − 8( x + 2)3 + 22( x + 2) 2 − 24( x + 2) + 11
3)
f ( x) = x 4 + 2ix 3 − (1 + i ) x 2 + 3 x + 7 + i
= ( x + i − i )4 + 2i ( x + i − i )3 − (1 + i )( x + i − i ) 2 − 3( x + i − i ) + 7 + i = ( x + i ) 4 − 2i( x + i)3 + (1 + i)( x + i ) 2 − 5( x + i ) + 7 + 5i
2
ε1 =
− 1 + 3i − 1 − 3i ,ε 2 = 2 2
证:设 ( f ( x ) h( x ), g ( x ) h( x )) = m( x ) 由
( f ( x ), g ( x)) h( x ) | f ( x) h( x) ∴ ( f ( x ), g ( x)) h( x ) | m( x )
设 d ( x ) = ( f ( x ), g ( x )) = u ( x ) f ( x ) + v ( x ) g ( x ).
由 12 题 ( fg , f + g ) = 1 令 g = g1 g 2 … g n
∴ 每个i, ( fi , g ) = 1 ⇒ ( f1 f1 , g ) = 1, ⇒ ( f1 f 2 f3 , g ) = 1 , ⇒ ( f1 f 2

(完整版)高等代数(北大版第三版)习题答案II

(完整版)高等代数(北大版第三版)习题答案II

证 1)作变换 ,即



因为 是正定矩阵,所以 是负定二次型。
2) 为正定矩阵,故 对应的 阶矩阵也是正定矩阵,由1)知
或 ,
从而





由于 是正定的,因此它的 级顺序主子式 ,从而 的秩为 。
即证 。
3.设

其中 是 的一次齐次式,证明: 的正惯性指数 ,负惯性指数 。
证 设 ,
的正惯性指数为 ,秩为 ,则存在非退化线性替换

使得

下面证明 。采用反证法。设 ,考虑线性方程组

该方程组含 个方程,小于未知量的个数 ,故它必有非零解 ,于是

上式要成立,必有
, ,
这就是说,对于 这组非零数,有
, ,
这与线性替换 的系数矩阵非退化的条件矛盾。所以

同理可证负惯性指数 ,即证。
4.设
是一对称矩阵,且 ,证明:存在 使 ,其中 表示一个级数与 相同的矩阵。
证 只要令 ,则 ,
注意到
, ,
则有

即证。
5.设 是反对称矩阵,证明: 合同于矩阵

设 的秩为 ,作非退化线性替换 将原二次型化为标准型

其中 为1或-1。由已知,必存在两个向量 使
和 ,
故标准型中的系数 不可能全为1,也不可能全为-1。不妨设有 个1, 个-1,
且 ,即

这时 与 存在三种可能:
, ,
下面仅讨论 的情形,其他类似可证。
令 , , ,
则由 可求得非零向量 使

即证。
证 采用归纳法。当 时, 合同于 ,结论成立。下面设 为非零反对称矩阵。

高等代数课件(北大版)第五章二次型§5.4

高等代数课件(北大版)第五章二次型§5.4

从而 A CC C 2 0.
注意
反之不然. 即实对称矩阵A,且 A 0, A未必正定.

A
1 0
0 1
,
A 10
但X AX x12 x22不是正定二次型.
2020/9/20§5. 4 正定二次型
4、顺序主子式、主子式 、
设矩阵 A (aij ) Rnn
a11 1) A(1,2, ,k)
因此有 X (kA)X kX AX 0. 故,kA正定.
2020/9/20§5. 4 正定二次型
(3)A正定,则存在可逆矩阵C,使 A CC ,于是 A CC C 2 0
又A* A A,1 由(1)(2)即得 A* 正定.
(4)由于 A 正定,知 Am为 n 阶可逆对称矩阵 , 当 m=2k 时, Am A2k Ak Ak ( Ak )EAk , 即,Am 与单位矩阵E合同,所以 Am正定.
一组不全为零的实数 c1,c2 , ,cn 都有
f (c1,c2 , ,cn ) 0
则称f 为正定二次型.
n
如,二次型 f ( x1, x2, , xn ) xi2 是正定的;
i 1 n1
f ( x1, x2, , xn ) xi2
i 1
2020/9/20§5. 4 正定二次型
2、正定性的判定
2 1
解: f ( x1, x2 ,
, xn )的矩阵
A
2
1
2
1
1
1
2 2
A的第k阶顺序主子式Pk
2020/9/20§5. 4 正定二次型
11
1
11 1
2 1 Pk 2 1
2 1 2
1 k1 2
2

高等代数教案 北大版 第五章

高等代数教案 北大版 第五章
教学方法与手段
讲授法 启发式




经过非退化线性替换,二次型的矩阵变成一个与之合同的矩阵.由第四章§4定理4,合同的矩阵有相同的秩,这就是说,经过非退化线性替换后,二次型矩阵的秩是不变的.标准形的矩阵是对角矩阵,而对角矩阵的秩就等于它对角线上不为零的平方项的个数.因之,在一个二次型的标准形中,系数不为零的平方项的个数是唯一确定的,与所作的非退化线性替换无关,二次型矩阵的秩有时就称为二次型的秩.
这个定理通常称为惯性定理.
定义3在实二次型 的规范形中,正平方项的个数 称为 的正惯性指数;负平方项的个数 称为 的负惯性指数;它们的差 称为 的符号差.
应该指出,虽然实二次型的标准形不是唯一的,但是由上面化成规范形的过程可以看出,标准形中系数为正的平方项的个数与规范形中正平方项的个数是一致的,因此,惯性定理也可以叙述为:实二次型的标准形中系数为正的平方项的个数是唯一的,它等于正惯性指数,而系数为负的平方项的个数就等于负惯性指数.
至于标准形中的系数,就不是唯一确定的.在一般数域内,二次型的标准形不是唯一的,而与所作的非退化线性替换有关.
下面只就复数域与实数域的情形来进一步讨论唯一性的问题.
设 是一个复系数的二次型,由本章定理1,经过一适当的非退化线性替换后, 变成标准形,不妨假定化的标准形是
.(1)
易知 就是 的矩阵的秩.因为复数总可以开平方,再作一非退化线性替换
是非退化时,由上面的关系即得
.
这也是一个线性替换,它把所得的二次型还原.这样就使我们从所得二次型的性质可以推知原来二次型的一些性质.
讨论、练习与作业
课后反思
授课内容
第二讲标准形
教学时数
2
授课类型
讲授

[专题]北大版高等数学第五章向量代数与空间解析几何答案习题53.docx

[专题]北大版高等数学第五章向量代数与空间解析几何答案习题53.docx

习题5・31•指出下列平面位置的特点:(1)5x - 3z +1 = 0(2)x + 2y - 7z = 0(3)y + 5 = 0(4)2),- 9z = 0(5)x-y-5 = 0(6)x = 0. 解⑴平行于屛由.⑵过原点.⑶平行于平面.⑷ 过兀轴.(5)平行于z轴•⑹0〃平面.2.求下列各平面的方程:⑴平行于y轴且通过点(1,-5,1)和(3,2,-2);(2)平行于O私平面且通过点(5,2,-8);(3)垂直于平面兀-4y + 5z = 1且通过点(-2,7,3)及(0,0,0);⑷垂直于Oyz平面且通过点(5,-4,3)及(-2,1,8).1j k解⑴—(0 ,l,0),* = (2,7,-3),n= 0 1 0 =(-3,0,-2).27-3_3O_1)_2(Z_1)=0,3JC +2Z_5=0.⑵y = 2.i j k(3)a = (1,-4,5), 6 = (-2,7,3),n = 1 -4 5 = (-47,-13,-1).-2 7 347x+13y+ 1 = 0.i j k(4)“ = (1,0,0),〃 = (-7,5,5),〃= 1 0 0 =(0,-5,5) = 5(0, -1,1).-7 5 5_(y + 4) + (z_3) = 0,y_z + 7 = 0.3.求通过点A(2,4,8), B(-3,1,5)及C(6,—2,7)的平面方程.解 a = (一5, —3,—3),〃 = (4,-6,-1).i j kn= -5 -3 -3 =(-15,-17,42),4 -6 -1一15(兀一2) —17(y — 4) + 42(z — 8) = 0,15x + 17y —42z + 238 = 0.4.设一平而在各坐标轴上的截距都不等于零并相等,且过点(5, -7, 4),求此平而的方程.解—+ —+ — = 1, —H—+ — = l,a = 2, x + y + z — 2 = 0.a, a a a a a5已知两点4(2,-1,-2)及〃(8,7,5),求过B且与线段AB垂直的平面.解〃 =(6, & 7).6(x-8) + 8(y-7) + 7(z-5) = 0,6x + 8y + 7z-139 = 0.6.求过点(2,0, -3)且与2兀-2y + 4z + 7 = 0,3x+y-2z + 5二0垂直的平面方程.i j k解 n= 2 -24 =(0,16,8) = 8(0,2,l).2y + (z + 3) = 0,y + z + 3 = 0. 3 1 -27.求通过兀轴且与平面9兀-4y-2z + 3 = 0垂直的平面方程. 解 By + Cz=0,—4B —2C = 0,取B = 1,C = —2,y —2z = 0.8•求通过直纟划:{;;工:二5地:仁鳥平行的平面方程. i j ki j k 解a = 1 0 2 = (-6,1,3), 6 = 1 -1 0= (1,1,1), 0 3-10 1 -1 i j kn - -6 13 =(-2,9,-7).用z ()= 0代入厶的方程,得x° =4,>\} =-8/3.1 1 1 -2(x-4) + 9(^ + 8/3)-7(z) = 0,-2x + 9y-7z + 32 = 0.x = 3r + 89.求直线厶:* +彳=•' +1 = __与直线/ :< y = f + l 的交点坐标,3 24 _ 小, z = + 6并求通过此两直线的平面方程.解求两条直线交点坐标:3r + 8 + 3 / + 1 + 1 2/ + 6 —2 \\ t t A 163 24 3 2 23 i j kn= 3 2 4 = (0,6, -3) = 3(0,2, -l).2(y +1) - (z - 2) = 0,2y - z + 4 = 0.3 1 2 10•求通过两直线厶=^ = 凹和厶:土 = □=三的平面方程. 1 2 -1 1 -4 2 -2i j k解 两直线平行•平面过点(1,-1,-1)和(-2,2,0).川=2 — 1 1 = (—4,—5,3).-33 1一4(兀一 l)-5(y + l) + 3(z + l) = 0,-4x — 5y + 3z + 2 = 0.11证明两直线厶:口和是异面直线*-121 - 0 1 -2证首先,两直线的方向向量(-1,2,1)和(0,1,-2)不平行.x 二 _2l 2< y 二1+t —―二匕〜 力+ 3J = 5』= 0,矛盾.故两直线无公共点.-1 2 1 X Q = 一& 儿=一一牛交点(一8占弓)两-直线不平行,又无交点,故是异面直线. 12.将下列直线方程化为标准方程及参数方程:[2x+y-z + l = 0 [x-3z + 5 = 0(1* ⑵彳[3x - y + 2z - 8 = 0; [y - 2z + 8 = 0.i j k解(1)〃= 2 1 -1 =(1,-7,-5).3-12V — 7 + 1 = 0⑴中令兀0=0,{ 解Z得儿=6,Zo=7・-y+ 2z-8 = 0;标准方程—q・1 -7 -5x = t参数方程:< y = 6-lt,-oo <t < +oo.z = l-5ti j k(2)(1加=1 0 -3 =(3,2,1).0 1 -2⑵中令z° = 0,直接得x° = -5, y Q = -8.标准方程出二凹二工3 2 1x ——5 + 3t参数方程:* >' = -8 + 2r,-co<t < +oo.z = t13•求通过点(32-5)及乂轴的平面与平面3x-y-7z + 9 = 0的交线方程・ ■I j k解地第一个平面的法向量〃二1 0 0 =(0,5,2), 3 2 -5平面方程5y + 2z = 0.直线方程严+ 2*°[3 兀-y-7z + 9 = 0.i j k直线的方向向量a =0 5 2 =(一336-15) = 3(-112-5)・3 -1 -7直线方程:r 匕14 •当D 为何值时,直线产? £弓与0z 轴相交?[x + 4y-z + D = 0解直线F :y + 2z-6弓与Oz 轴相交O 存在(0,0,勺)在此直线上,[x + 4y-z + £> = 0f2z o -6 = O <=> < u> £> =知=3. Ho+o=o15.试求通过直线人:£一2":弓并与直线Z. = 2平行的平面方程.[3y — z + 8 = 0 *•匕 _y + 6 = 0i J k解厶的方向向&a = 1 0 -2 =(6丄3).0 3-1i J 平面的法向量/i =6 1 1 1 Q 在的方程中令z ()二0得X 。

高等代数课件(北大版)第五章二次型§5.2

高等代数课件(北大版)第五章二次型§5.2

2020/9/20§5.2 标准形
数学与计算科学学院再令Fra bibliotekz1 z2
y1 y2
y3

y1 y2
z1 z2
z3
z3 y3
y3 z3
即,
y1 1
y2 y3
0 0
0 1 0
1 z1
0 1
z2 z3
则 f ( x1, x2 , , xn ) 2z12 2z22 2z32 8z2z3
1 0
1 0
0 1
2 0 2 情形1)
2020/9/20§5.2
0 2 标2准形4
04 数学与计算科学学院
1 0 1

C2
0 0
1 0
0 1
,
1 0 0 2 0 2 1 0 1
A2
C2 A1C2
0 1
1 0
0 1
0 2
2 4
4 0
0 0
1 0
0 1
2 0 0
0 0
2 4
4 2
情形1)
1 0 0
2020/9/20§5.2 标准形
数学与计算科学学院
二、合同的变换法
1. 定义:合同变换是指下列三种变换
(1)互换矩阵的 i, j 两行,再互 换矩阵的 i, j 两列; i (2)以数 k(k 0 ) 乘矩阵的第 i 行;再以数 k 乘
z3
c32
y2
c33
y3
zn
cn2 y2
cn3 y3
c2n yn c3n yn cnn yn
使它变成平方和 d2z22 d3z32
dnzn2
于是,非退化线性替换
z1 y1

《高等代数》各章习题+参考答案 期末复习用

《高等代数》各章习题+参考答案 期末复习用

1A = 1000 ,B = 0001 ,|A +B |=1,|A |=0,|B |=0.|A +B |=|A |+|B |.2A = 0100,A 2=0,A =0.3A (E +A )=E A 4A = 0100 ,B = 1000,AB =0,rank (A )=1,rank (B )=1,A,B 2.1B 2A 3C 4A 5D 6B 7B 8C 9D 10A 11D 12A 13C 14D 15D 16B 17C 18C 19C 20D 21C 22C 23D 24C 25C 26A 27A 28A 1−135,93m ×s,n k =1a jk b ki 4 1b 0001612012001a n1a 20···00...···············000 (1)910411(−1)mn ab12213I n2单元练习:线性方程组部分一、填空题 每空 1分,共 10分1.非齐次线性方程组 AZ = b (A 为 m ×n 矩阵)有唯一解的的充分必要条件是____________。

2.n +1 个 n 维向量,组成的向量组为线性 ____________ 向量组。

3.设向量组 3 2 1 , ,a a a 线性无关,则常数 l , m 满足____________时,向量组 3 1 2 3 1 2 , , a a a a a a -- - m l 线性无关。

4.设 n 阶矩阵 A 的各行元素之和均为零, 且 r (A ) = n -1则 Ax = 0 的通解为________。

5.若向量组 3 2 1 , , a a a 线性无关,则向量组 3 1 2 3 1 2 , , a a a a a a + + + ____________。

高等代数(北大版第三版)习题答案

高等代数(北大版第三版)习题答案

高等代数(北大*第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章 —矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第一部分,其他请搜索,谢谢!第一章 多项式1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。

解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。

2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。

解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当⎩⎨⎧=-=++0012m q m p 时有q px x mx x ++-+32|1。

2)类似可得⎩⎨⎧=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。

综上所诉,当⎩⎨⎧+==10q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。

3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。

解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。

4.把()f x 表示成0x x -的方幂和,即表成2010200()()...()n n c c x x c x x c x x +-+-++-+的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。

高等代数北大版习题参考答案

高等代数北大版习题参考答案

第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x =α, ),,,(21n y y y =β,在nR 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间;2) 求单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。

解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =,(2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4)∑='A =ji j i ij y x a ,),(αααα,由于A 是正定矩阵,因此∑ji j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。

2)设单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()( i j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n n n a a a a a a a a a212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ =ij a ,),,2,1,(n j i =, 因此有B A =。

4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设: 1) )2,3,1,2(=α, )1,2,2,1(-=β, 2) )3,2,2,1(=α, )1,5,1,3(-=β, 3))2,1,1,1(=α, )0,1,2,3(-=β。

北大版高等数学第五章 向量代数与空间解析几何答案 习题52.

北大版高等数学第五章 向量代数与空间解析几何答案 习题52.

习题5.21.(,,),,,,.||,||,2.(1,2,1),(3,0,1),(2,1,2),,,,(3,0,1)(1,2,1)(4,2xy z xy yz O x y z x y z Oxy Oyz d d d d z d x d x A B C AB BA AC BC AB =======-===--=-写出点分别到轴轴轴平面平面以及原点的距离已知三点求的坐标与模.解解,0),||20|(4,2,0)(4,2,0)25,(2,1,2)(1,2,1)(3,1,1),||11,(2,1,2)(3,0,1)(1,1,1),|| 3.3.(3,2,2),(1,3,2),(8,6,2),132(9,6,6)2AB BA AB AC AC BC BC ===-=--=-=-=--=-==--=-==-==---+a b c a b +c =1112(2,6,4)(4,3,1)(11,9,1).4.(2,5,1),(1,2,7),,.2,7).(2,5,)(1,2,7)(21,5,2,7),70,7.5.,(,,)(k k xy k k k k k k k k k A B x y z x ︒︒---+-=-==-+=-+=+-=+-++==-设分别求出沿和方向的单位向量并求常数使与平面平行1设两点的坐标分别为和解a b a b ,a b a b a b 22111222121212,,),,.111()((,,)(,,))(,,).2226.(1,2,3),(5,2,1),(1)23(2)(3)cos ,.(1)2366(2)12.(2)1(3)cos y zA B C OC OA OB x y z xy z x x y yz z =+=+=+++=-=-<>⨯-=-求连线中点的坐标设求解解a b a b a i a b a b =a b =a i = .2222,|||7.||1,||3,||2,|/3,?17|()()||||||2()11942(3),23333,cos ||||π<>======+⊥+=+=++=++++==+++⨯+==设求解a b a b |a b a b c a b +c |=a c <a,b >=<b,c >=a b +c |a b +c a b +c a b c a b +b c a c b c b c b c =<b,c >=b c .6π<b,c >=22228.||2,||6,,()()||||4360,1/3.k k k k k k k k ==⊥--=-=-==±设试求常数使解a b a +b a b.a +b a b a b 9.(1,2,1),(1,1,3),(2,5,3)(1)(2)(3)()(4)()(5)().(1)121(5,2,1),113(2)253(3,0,2).01121(3)()11323.(4)()5212532=-=-=-⨯⨯⨯⨯⨯⨯⨯⨯-=---⨯-=-⨯-=-⨯⨯---解a b c a b c j a b c a b c a b c ijka b =i j kc j =ijka b c =a b c =(1,13,21).53(5)113(12,9,7),()121(23,19,15).2531297=---⨯-=-⨯⨯=-=-----i jk i j kb c =a b c10.,(2,1,0)(0,1,2),,.(2,1,0)(0,1,2)(2,0,2),(0,1,2)(2,1,0)(2,2,2).cos ,|ABCD AB AD AC BD AC AB AD BD AD AB AC BD AC BD AC ==-<>=+=+-==-=--=--<>=在平行四边形中求两对角线的夹角解00,,.2||||||||||5,,,.2AC BD BD AC BD AB AD ABCD AC BD ππ==<>===<>=平行四边形为菱形故两对角线的夹角解二|11.(3,4,1),(2,3,0),(3,5,1),.(1,1,1)(1,1,1),(0,1,0),111(1,0,1),01012A B C ABC AB AC AB AC ABC =---=-=⨯==-=已知三点求三角形的面积三角形的面积解i j k12.(3,4,5),(1,2,2)(9,14,16).345(,,)1220,,9141613.|1,||5,3,|.344cos ,,sin ,,|||||sin ,15 4.||||555======-⨯-<>==<>=⨯=<>=⨯⨯=证明向量和是共面的因为故和是共面的.已知|求||证解a b c a b c a b c a =b a b =a b a b a b a b a b a b a b a b14.cos ,cos ,cos ,,(1)cos 0,cos 0,cos 0;(2)cos cos 0,cos 0;(3)cos cos cos .(1)(2)115.||,2x z αβγαβγαβγαβγπαβγ=≠≠==≠==-===设向量的方向余弦在下列各情况下指出的方向特征与轴垂直是沿轴的的向量.(3)与三个轴的夹角相等,都是设的三个方向角满足求的坐标解a a .a .a a a aa 22222222cos 21,(2cos 1) 1.1cos ,2(21)1,4211,2(21)0,0,.2cos 0,,(0,0,213cos ,cos ,.(1,1,0).24416.,(75)(3),(4)(72),co x x x x x x x x x αααααπααππααα+=+-==+-=-+=-=========-⊥+-⊥-设为两非零向量且求22解2cos 2cos .a a =ab ,a b a b a b a b 2222222222s ,.(75)(3)0,7||15||16||||cos ,0,(4)(72)0,7||8||30||||cos ,0.||||1516cos ,7,||||||||830cos ,7.||||716730||1516||83<>-+=-+<--=+-<⎧-+<-⎪⎪⎨⎪-<-⎪⎩---=--解a b a b a b a b a b a b >=a b a b a b a b a b >=b b a b >=a a b b a b >=a a b a ||1,1||157871cos ,.15162830==---<==--b a a b >。

北京大学数学系《高等代数》(第3版)笔记和课后习题(含考研真题)详解-第五章至第六章【圣才出品】

北京大学数学系《高等代数》(第3版)笔记和课后习题(含考研真题)详解-第五章至第六章【圣才出品】

第5章二次型5.1复习笔记一、二次型及其矩阵表示1.二次型定义设P是一数域,一个系数在数域P中的x1,x2,…,x n的二次齐次多项式称为数域P上的一个n元二次型,或简称二次型.2.线性替换与二次型矩阵(1)线性替换定义设x1,…,x n;y1,…,y n是两组文字,系数在数域P中的一组关系式称为由x1,…,x n到y1,…,y n的一个线性代替,或简称线性替换.如果系数行列式,那么线性替换就称为非退化的.(2)二次型的矩阵令由于所以二次型可以写成其中的系数排成一个n×n 矩阵它就称为二次型的矩阵,因为a ij =a ji ,i,j=1,…,n,所以A=A'二次型的矩阵都是对称的.3.合同矩阵(1)定义数域P 上n×n 矩阵A ,B 称为合同的,如果有数域P 上可逆的n×n 矩阵C ,使B C AC¢=(2)性质①反身性:A=E'AE ;②对称性:由B=C'AC 即得A=(C -1)'BC -1;③传递性:由A 1=C 1'AC 1和A 2=C 2'A 1C 2即得经过非退化的线性替换,新二次型的矩阵与原二次型的矩阵是合同的.二、标准形1.定义数域P 上任意一个二次型都可以经过非退化的线性替换变成平方和2221122n nd x d x d x +++ 的形式,该形式就称为的一个标准形.注意:二次型的标准型不是唯一的,而与所作的非退化线性替换有关.2.定理在数域P 上,任意一个对称矩阵都合同于一对角矩阵.即对于任意一个对称矩阵A 都可以找到一个可逆矩阵C,使C AC ¢成对角矩阵,并且该对角矩阵的值就是对应的标准形式的系数.三、唯一性1.基本概念(1)二次型的秩在一个二次型的标准形中,系数不为零的平方项的个数是唯一确定的,与所作的非退化线性替换无关,二次型矩阵的秩有时就称为二次型的秩.(2)复二次型的规范性设f(x1,x2,…,x n)是一个复系数的二次型.经过一适当的非退化线性替换后,f(x1,x2,…,x n)变成标准形,不妨假定它的标准形是易知r就是f(x1,x2,…,x n)的矩阵的秩.因为复数总可以开平方,我们再作一非退化线性替换(1)就变成称为复二次型f(x1,x2,…,x n)的规范形.结论:任意一个复系数的二次型,经过一适当的非退化线性替换可以变成规范形,且规范形是唯一的.即任一复数的对称矩阵合同于一个形式为的对角矩阵.从而有,两个复数对称矩阵合同的充分必要条件是它们的秩相等.(3)实二次型的规范形设f(x1,x2,…,x n)是一实系数的二次型,经过某一个非退化线性替换,再适当排列文字的次序,可使f(x1,x2,…,x n)变成标准形其中d i>0,i=1,…,r;r是f(x1,x2,…,x n)的矩阵的秩.因为在实数域中,正实数总可以开平方,所以再作一非退化线性替换(4)就变成(6)称为实二次型f(x1,x2,…,x n)的规范形.结论:任意一个实数域上的二次型,经过一适当的非退化线性替换可以变成规范形,且规范形是唯一的.2.惯性定理设实二次型f(x1,x2,…,x n)经过非退化线性替换X=BY化成规范形而经过非退化线性替换X=CZ也化成规范形则p=q.另一种表述:实二次型的标准形中系数为正的平方项的个数是唯一确定的,它等于正惯性指数,而系数为负的平方项的个数就等于负惯性指数.3.惯性指数在实二次型f(x1,x2,…,x n)的规范形中,(1)正惯性指数:正平方项的个数p;(2)负惯性指数:负平方项的个数r-p;(3)符号差:p-(r-p)=2p-r.该定义对于矩阵也是适合的.四、正定二次型1.定义实二次型,f(x1,x2,…,x n)称为正定的,如果对于任意一组不全为零的实数c1,c2,…,c n都有f(c1,c2,…,c n)>0.2.常用的判别条件(1)n元实二次型f(x1,x2,…,x n)是正定的充分必要条件是它的正惯性指数等于。

高等代数(北大版)第5章习题参考答案

高等代数(北大版)第5章习题参考答案

第五章 二次型1.用非退化线性替换化下列二次型为标准形,并利用矩阵验算所得结果。

1)323121224x x x x x x ++-;2)23322221214422x x x x x x x ++++; 3)32312122216223x x x x x x x x -+--;4)423243418228x x x x x x x x +++; 5)434232413121x x x x x x x x x x x x +++++;6)4342324131212422212222442x x x x x x x x x x x x x x x ++++++++; 7)43322124232221222x x x x x x x x x x ++++++。

解 1)已知 ()323121321224,,x x x x x x x x x f ++-=, 先作非退化线性替换⎪⎩⎪⎨⎧=-=+=33212211yx y y x y y x (1)则()312221321444,,y y y y x x x f ++-=2223233121444y y y y y y ++-+-=()222333142y y y y ++--=, 再作非退化线性替换⎪⎪⎩⎪⎪⎨⎧==+=33223112121zy z y z z y (2)则原二次型的标准形为()2322213214,,z z z x x x f ++-=,最后将(2)代入(1),可得非退化线性替换为⎪⎪⎪⎩⎪⎪⎪⎨⎧=+-=++=333212321121212121z x z z z x z z z x (3)于是相应的替换矩阵为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=100211212102110001021021100011011T , 且有⎪⎪⎪⎭⎫ ⎝⎛-='100040001AT T 。

2)已知()=321,,x x x f 23322221214422x x x x x x x ++++,由配方法可得()()()233222222121321442,,x x x x x x x x x x x f +++++=()()2322212x x x x +++=,于是可令⎪⎩⎪⎨⎧=+=+=333222112xy x x y x x y ,则原二次型的标准形为()2221321,,y y x x x f +=,且非退化线性替换为⎪⎩⎪⎨⎧=-=+-=33322321122yx y y x y y y x ,相应的替换矩阵为⎪⎪⎪⎭⎫⎝⎛--=100210211T ,且有⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--='000010001100210211420221011122011001AT T 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 二次型1.用非退化线性替换化下列二次型为标准形,并利用矩阵验算所得结果。

1)323121224x x x x x x ++-;2)23322221214422x x x x x x x ++++; 3)32312122216223x x x x x x x x -+--;4)423243418228x x x x x x x x +++; 5)434232413121x x x x x x x x x x x x +++++;6)4342324131212422212222442x x x x x x x x x x x x x x x ++++++++; 7)43322124232221222x x x x x x x x x x ++++++。

解 1)已知 ()323121321224,,x x x x x x x x x f ++-=, 先作非退化线性替换⎪⎩⎪⎨⎧=-=+=33212211yx y y x y y x (1)则()312221321444,,y y y y x x x f ++-=2223233121444y y y y y y ++-+-=()222333142y y y y ++--=, 再作非退化线性替换⎪⎪⎩⎪⎪⎨⎧==+=33223112121zy z y z z y (2)则原二次型的标准形为()2322213214,,z z z x x x f ++-=,最后将(2)代入(1),可得非退化线性替换为⎪⎪⎪⎩⎪⎪⎪⎨⎧=+-=++=333212321121212121z x z z z x z z z x (3)于是相应的替换矩阵为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=100211212102110001021021100011011T , 且有⎪⎪⎪⎭⎫ ⎝⎛-='100040001AT T 。

2)已知()=321,,x x x f 23322221214422x x x x x x x ++++,由配方法可得()()()233222222121321442,,x x x x x x x x x x x f +++++=()()2322212x x x x +++=,于是可令⎪⎩⎪⎨⎧=+=+=333222112xy x x y x x y ,则原二次型的标准形为()2221321,,y y x x x f +=,且非退化线性替换为⎪⎩⎪⎨⎧=-=+-=33322321122yx y y x y y y x ,相应的替换矩阵为⎪⎪⎪⎭⎫⎝⎛--=100210211T ,且有⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--='000010001100210211420221011122011001AT T 。

(3)已知()32312122213216223,,x x x x x x x x x x x f -+--=,由配方法可得()()()23322223223231212132144222,,x x x x x x x x x x x x x x x x f ++-++-+-=()()23223212x x x x x +---=,于是可令⎪⎩⎪⎨⎧=+=+-=3332232112xy x x y x x x y ,则原二次型的标准形为()2221321,,y y x x x f -=,且非退化线性替换为⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-+=33322321121212321y x y y x y y y x ,相应的替换矩阵为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=100212123211T , 且有⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛-----⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--='00001000110021210232110313*********302121001AT T 。

(4)已知()4232432143218228,,,x x x x x x x x x x x x f +++=,先作非退化线性替换⎪⎪⎩⎪⎪⎨⎧===+=443322411y x y x y x y y x ,则()4232432441432182288,,,y y y y y y y y y x x x x f ++++=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+++=232132142481212181212128y y y y y y y y32232128121218y y y y y +⎪⎭⎫ ⎝⎛++-3223212432124128121218y y y y y y y y y +⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛+++=,再作非退化线性替换⎪⎪⎩⎪⎪⎨⎧=-=+==4432332211z y z z y z z y z y ,则()2321243214321434528385218,,,⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛+++=z z z z z z z x x x x f232222z z -+,再令⎪⎪⎪⎩⎪⎪⎪⎨⎧+++===++=43214332232118385214345z z z z w z w z w x x z w ,则原二次型的标准形为()4321,,,x x x x f 242322218222w w w w +-+-=,且非退化线性替换为⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=-=+=+--=4143233224321121434521w w x w w x w w x w w w w x ,相应的替换矩阵为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----=10021011001101434521T , 且有⎪⎪⎪⎪⎪⎭⎫⎝⎛--='800002000020002AT T 。

(5)已知()4321,,,x x x x f 434232413121x x x x x x x x x x x x +++++=, 先作非退化线性替换⎪⎪⎩⎪⎪⎨⎧===+=4433222112y x y x y x y y x ,则()4321,,,x x x x f 4342413231222122222y y y y y y y y y y y y y ++++++=()2124243243214321y y y y y y y y --⎪⎭⎫ ⎝⎛+-+++=,再作非退化线性替换⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+++==44433432121121y z y y z y y y y z y z , 即⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--+-==4443343212112121zy zz y z z z z y z y ,则原二次型的标准形为()4321,,,x x x x f 2423222143z z z z --+-=, 且非退化线性替换为⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-=--+-=--+=444334321243211212121z x z z x z z z z x z z z z x ,相应的替换矩阵为⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛------=1000211002111121111T , 且有⎪⎪⎪⎪⎪⎭⎫⎝⎛---='4300001000010001AT T 。

(6)已知()4321,,,x x x x f 4131212422212442x x x x x x x x x +++++=434232222x x x x x x +++, 由配方法可得()4321,,,x x x x f ()()[]243243212122222x x x x x x x x ++++++=()43423224222432222222x x x x x x x x x x x +++++++-()()243243224321212123222x x x x x x x x x ++⎪⎭⎫ ⎝⎛++-+++=,于是可令⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=+++=44433432243211212322x y x x y x x x y x x x x y , 则原二次型的标准形为232221212y y y f +-=, 且非退化线性替换为⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=+-=-+-=44433432243211232y x y y x y y y x y y y y x , 故替换矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛----=10001100123101121T , 且有⎪⎪⎪⎪⎪⎭⎫⎝⎛-='00000210000200001AT T 。

(7)已知()4321,,,x x x x f 43322124232221222x x x x x x x x x x ++++++=,由配方法可得()4321,,,x x x x f ()()[]24433123131222222x x x x x x x x x x x ++-++++= ()()2324432331232122x x x x x x x x x x -+++-++= ()()2121233124323212x x x x x x x x x x +---++++=()()()231243232121x x x x x x x x +-+++++=,于是可令⎪⎪⎩⎪⎪⎨+=+=++=3144333212x x y x x y x x x y ,则原二次型的标准形为24222221y y y y f -++=, 且非退化线性替换为⎪⎪⎩⎪⎪⎨⎧-+=+-=-==431441342211y y y x y y x y y x y x ,相应的替换矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛---=1101100110100001T ,且有⎪⎪⎪⎪⎪⎭⎫⎝⎛-='1000010000100001AT T 。

(Ⅱ)把上述二次型进一步化为规范形,分实系数、复系数两种情形;并写出所作的非退化线性替换。

解 1)已求得二次型()321,,x x x f 323121224x x x x x x ++-= 的标准形为23222134y y y f ++-=,且非退化线性替换为⎪⎪⎪⎩⎪⎪⎪⎨⎧=+-=++=333212321121212121y x y y y x y y y x ,(1) 在实数域上,若作非退化线性替换⎪⎪⎩⎪⎪⎨==13223121z y z y ,可得二次型的规范形为232221z z z f -+=。

(2) 在复数域上,若作非退化线性替换⎪⎪⎩⎪⎪⎨⎧===13221121z y z y iz y ,可得二次型的规范形为232221z z z f ++=。

2)已求得二次型()321,,x x x f 23322221214422x x x x x x x ++++=的标准形为2221y y f +=, 且非退化线性替换为⎪⎩⎪⎨⎧=-=+-=33322321122yx y y x y y y x ,故该非退化线性替换已将原二次型化为实数域上的规范形和复数域上的规范形 2221y y f +=。

相关文档
最新文档