钢结构稳定结课论文

合集下载

建筑工程中钢结构设计的稳定性原则及设计探讨3篇

建筑工程中钢结构设计的稳定性原则及设计探讨3篇

建筑工程中钢结构设计的稳定性原则及设计探讨3篇建筑工程中钢结构设计的稳定性原则及设计探讨1建筑工程中钢结构设计的稳定性原则及设计探讨近年来,钢结构作为一种新型建筑构造材料,其在建筑工程中的应用越来越广泛。

钢结构的优良性能在保证建筑质量和施工效率的同时,还大大增强了建筑的美观性和安全性。

然而,钢结构设计中存在着一种非常日益突出的问题——稳定性问题。

本文将就建筑工程中钢结构设计的稳定性原则及设计探讨进行详细探讨。

一、钢结构设计的稳定性原则(一)整体稳定性原则整体稳定性原则是指钢结构在各种荷载作用下,其整个结构要能保持相对稳定,避免出现龙卷风、震动等不稳定现象。

一般来说,整体稳定性可以通过增加抗弯刚度和抗扭刚度来保证,从而使建筑的结构稳固牢靠。

(二)构配件稳定性原则构配件稳定性原则是指在钢结构设计中,各种构件的强度和稳定性要充分考虑,避免出现局部失稳等问题。

因此,必须保证构配件在承受极限荷载时,具有良好的抗弯、抗剪、抗压、抗扭等性能,同时对悬挂式构件进行充分支撑,使其能够避免出现扭曲、侧翻等倾斜现象。

(三)局部稳定性原则局部稳定性原则是指在钢结构设计中,必须充分考虑各个支座、连接件等局部节点的稳定性,避免出现节点扭曲破坏、支座变形、连接件塑性变形等问题。

为此,必须充分考虑节点和连接件的刚度和强度,以保证整个结构的安全和稳定性。

二、钢结构设计的设计探讨(一)钢材的选用在钢结构设计中,钢材的选用是很重要的一步,因为钢材的力学性能将直接影响到结构的强度和稳定性。

因此,设计人员应在具体工程中充分考虑材料的强度、韧性、抗腐蚀性能等因素,合理选用材料,以确保结构的安全性。

(二)结构的布局在钢结构设计中,结构的布局也是一个非常重要的环节。

设计人员应该根据具体工程的要求和实际情况,选择适当的结构形式和布局方式。

在整个设计过程中,应当注意保证结构的合理分布和承重能力的均衡,以确保结构的稳定性和安全性。

(三)节点连接的设计在钢结构设计中,节点连接的设计也是非常关键的。

钢结构稳定论文

钢结构稳定论文

钢结构稳定理论稳定性是钢结构的一个突出问题, 在各类钢结构的设计中, 都会遇到稳定问题, 稳定设计是钢结构设计的重要组成部分。

钢结构的稳定设计按照设计规范的要求, 可进行合理的选材、正确的内力分析、完备的稳定验算和可靠的构造保证等。

其实正确理解和应用钢结构稳定的基本概念、研究对象、稳定类型以及分析方法等对钢结构的稳定设计也是非常重要的。

将这些内容称为概念设计, 并进行论述, 以利于钢结构的稳定设计。

1 稳定的基本概念1. 1 对稳定概念的理解由于稳定问题是要找出作用与结构内部抵抗力之间的不稳定平衡状态, 即变形开始急剧增长的状态, 从而设法避免进入该状态, 所以它是一个变形问题。

要理解稳定是一个刚度问题, 就必须清楚强度、刚度和稳定的概念。

强度表示结构中的材料或截面能够承受的最大应力或最大内力; 刚度表示抵抗变形的能力; 失稳表示结构不再能够以原来的平衡形式继续承受附加的荷载。

在临界状态, 如果构件上的荷载哪怕有微小的增加, 平衡的性质就会发生转变, 即失稳, 甚至平衡的形状都会发生变化, 即屈曲。

强度代表了截面的极限状态, 即截面的刚度达到了零, 表现为内力不增加, 变形可以增加很大。

一个超静定结构, 如果某个截面形成塑性铰, 结构还有继续承受附加荷载的能力, 直至结构中形成足够多的塑性铰, 结构变成了机构, 结构才达到了强度极限状态, 此时结构或构件的刚度也达到了为零的状态。

失稳也代表了结构或构件的极限状态, 即结构不再继续承受荷载、抵抗进一步变形的能力, 刚度达到了零。

所以稳定是一个刚度问题。

实际上, 结构是分层次的, 刚度也是分层次的,每一层次结构都会发生失稳现象。

在材料层次上,应力- 应变曲线上切线模量为零的点表示金属内部晶体结构不再能够保持原状, 通过滑移达到新的状态, 这代表微观状态的失稳, 所以材料层次的失稳是强度问题。

而结构或构件层次上的失稳表示结构或构件不再能够承受附加的荷载, 代表了结构或构件的刚度为零。

探讨钢结构的稳定性

探讨钢结构的稳定性

探讨钢结构的稳定性在现代建筑领域中,钢结构以其独特的优势占据着重要的地位。

它具有强度高、重量轻、施工速度快等优点,被广泛应用于各种大型建筑和基础设施中。

然而,钢结构的稳定性问题却是一个至关重要的考量因素,直接关系到建筑的安全和可靠性。

要理解钢结构的稳定性,首先需要明确什么是“稳定性”。

简单来说,稳定性指的是结构在受到外力作用时,保持原有平衡状态的能力。

对于钢结构而言,这意味着在承受各种荷载,如风荷载、地震荷载、自重等时,不会发生突然的变形、失稳甚至倒塌。

钢结构稳定性的影响因素众多。

材料的性能是其中的关键之一。

钢材的强度、弹性模量、屈服点等特性直接决定了其能够承受的应力大小。

如果钢材质量不过关,或者在使用过程中出现了性能退化,那么钢结构的稳定性就会受到威胁。

结构的几何形状和尺寸也是重要的影响因素。

例如,柱子的细长比过大,就容易发生弯曲失稳;梁的跨度与截面高度的比例不合理,可能导致挠度过大,影响结构的稳定性。

此外,节点的连接方式和质量也不容忽视。

节点连接不牢固或者设计不合理,会使得力的传递出现问题,从而引发局部失稳,进而影响整个结构的稳定性。

荷载的类型和大小同样对钢结构的稳定性产生重要影响。

不同类型的荷载,如风荷载、地震荷载等,作用方式和作用效果各不相同。

过大的荷载会使钢结构承受超出其承载能力的应力,导致结构失稳。

在实际工程中,必须准确地计算和分析各种荷载,以确保钢结构在设计使用年限内的稳定性。

钢结构的稳定性问题还与施工质量密切相关。

在施工过程中,如果焊接质量不过关、安装偏差过大或者防腐处理不当,都会削弱钢结构的性能,增加其失稳的风险。

例如,焊接过程中产生的残余应力可能导致局部材料性能的改变,影响结构的整体稳定性;安装偏差可能导致结构受力不均匀,从而引发失稳。

为了确保钢结构的稳定性,工程师们在设计阶段就需要进行精心的计算和分析。

他们会运用各种理论和方法,如欧拉公式、有限元分析等,来评估结构在不同工况下的稳定性。

钢结构稳定性分析

钢结构稳定性分析

钢结构稳定性分析摘要:随着我国科技技术和经济的高速发展,钢产量每年逐步的不断提高,钢结构工程在建筑行业上已是举足轻重的位置,一个钢结构的质量问题影响到了整个工程的兴衰。

近几年中有很多钢结构工程发生重大事故的源头都是钢结构不稳定,特别是在外界条件变化巨大时,如地震,台风等自然因素,或者认为的因素,容易发生结构的失稳,导致整个建筑物摧毁,对人民的生命造成一定的威胁,并给建设单位及其各方造成严重的损失。

对此外界对加强钢结构的稳定性方面及建筑工程质量的要求有了一定的新标准新认识,致使钢结构稳定性的研究也迫在眉睫。

本论文从钢结构失稳的事故中分析钢结构失稳的种类,通过探讨得出钢结构失稳的原因,并对目前钢结构稳定性的设计思想、原则及其分析思路进行了总结,分析了钢结构稳定性问题的存在的普遍性,并针对这些问题提出了一些解决方法,为今后钢结构稳定性的设计提供正确的依据。

关键词:钢结构稳定性失稳措施优化设计1、前言钢结构工程与其他工程相比较,钢结构的优点是非常突出的,其中包括了强度较高,自重轻柔韧性好,可装配化,施工周期极短,环保建筑垃圾少,有利于可持续发展等明显有点。

所以人们对其的使用也就逐年增加。

失稳在一定的程度上别称屈曲,它是指钢结构或钢结构构件在荷载的作用下散失了原本的整体稳定性或局部稳定性,包含在承载力极限状态的范围。

因为其强度较高,以它为材料制成的构件相对比较细长,受力面积比较小,构成的构件板件宽而且较薄,因此在各种荷载的作用下重义产生失稳的状况。

以上可知,钢结构的设计稳定性的重要性远超强度的重要性,其往往对承载力起控制作用。

同时钢结构由于塑性好的特点,当结构由于抗拉强度不足以支撑而破坏时,他在破坏前有一个征兆的的表现,慢慢表现出较大的变形。

而每结构因受到压力作用稳定性不足时而破坏时,一般失稳前表现为变形很小,显示出脆性破坏先兆。

并且脆性破坏的不定性也就导致失稳破坏的可怕性。

因此本论文是一个深受探讨的问题,找到解决钢结构失稳的本质原因并通过相应措施避免问题的发生至关重要。

钢结构工程检测与加固结课论文

钢结构工程检测与加固结课论文

钢结构工程检测与加固结课论文钢结构工程事故的分析与处理摘要:本文从疲劳、失稳、锈蚀在钢结构工程设计、加工制作、安装施工、正常使用、老化阶段中会导致结构的损伤与破坏,从而造成事故。

并对事故的类型、原因进行了解剖,以及对事故的处理。

关键词:钢结构;疲劳、失稳、锈蚀、事故、分析、处理1.事故的一般原因分析设计阶段存在的问题:结构选型及设计方案不合理;计算简图不当,计算结果错误;荷载取值与受力情况不符;材料选用不妥,不能满足工程要求;结点构造不合理,造成致命缺陷;对施工阶段的特点和使用阶段的特殊要求欠考虑。

制作阶段存在的问题:不按图纸要求制作,任意修改施工图;制作尺寸偏差过大;制作工艺不良,设备落后;缺少熟练的技术工人和高素质的管理人员不能严格遵守施工及验收规范;不按照有关标准规范检查验收;存在偷工减料行为。

安装阶段存在的问题:安装顺序及工艺不当;吊装、定位、校正的方法不正确;临时支撑刚度不足,安装中的稳定性差;现场焊接及螺栓施工质量达不到设计要求防火及防腐做法不达标;存在偷工减料行为。

正常使用阶段的事故原因:使用不当引发过大地基下沉;超载使用;任意开洞、局部改造削弱了构件截面和结构整体性;生产条件改变,但未进行必要的鉴定与加固;生产操作不当,造成构件或结构损坏但未及时修复;使用条件恶劣,又不认真执行结构定期检查维修规定;不可抗力.如战争、火灾、水灾、地震等。

[1]。

2。

钢结构的疲劳破坏事故在反复交变荷载的作用下,在应力水平远低于钢材的极限抗拉强度甚至屈服点的情况下发生的钢结构或构件的破坏现象,称为疲劳破坏。

疲劳破坏与钢材的静力强度和最大静力荷载并无明显关系,而主要与应力幅、应力循环次数和构造细节有关。

因此,必须从构造细节出发,尽可能地减小应力集中,从而改善结构构件的疲劳性能。

在设计过程中,应选用优质钢材,减少材质缺陷;采取合理的构造做法,避免焊缝集中,减少截面突变;在制作、安装过程中,应使缺陷、残余应力的影响减小到最低程度,尽量避免产生附加应力集中;对焊缝进行修补,以缓解因缺陷产生的应力集中。

钢结构稳定设计相关问题论文

钢结构稳定设计相关问题论文

浅析钢结构稳定设计的相关问题【摘要】为更好的满足现代建筑工程的发展需要,提高建筑质量和更好的符合节能降耗建设的发展要求,轻型钢结构以其独特的优势性已逐步成为现代建筑工程中的主要设计与施工的首选。

下面本文将结合作者多年的工作实践经验,对钢结构的稳定设计进行简单的论述。

【关键词】钢结构;稳定性;设计随着国家综合实力的不断增强,各种相关性的工程建设均已逐步展开,但是在建筑工程快速发展的过程中,各种设计、施工、质量等问题也随之而逐步的暴露出来,钢结构的失稳现象便是其中之一。

下面文章将从钢结构稳定设计的基本概念、失稳分类、稳定性设计原则和特点等方面对其进行简要的分析研究。

1 钢结构稳定设计的基本概念1.1 钢结构的强度与稳定所谓的钢结构强度属于应力范围问题,主要是指结构组件在其稳定平衡状态下由荷载所引起地最大应力是否超过建筑材料的极限强度。

钢制材料的特性是决顶其极限强度的关键因素。

稳定问题则与强度问题不同,它主要是指外荷载与结构内部抵抗力间的不稳定平衡状态,即变形开始急剧增长的状态,从而设法避免进入该状态,因此,它是一个变形问题。

轴压柱,由于失稳,侧向挠度使柱中增加数量很大的弯矩,因而柱子的破坏荷载可以远远低于它的轴压强度。

显然,轴压强度不是柱子破坏的主要原因。

1.2 钢结构的失稳1.2.1 受弯构件中梁在最大刚度平面内受弯的梁远在钢材到达屈服强度前就可能因出现水平位移而扭曲破坏,梁的这种破坏被称之为整体失稳。

1.2.2 受弯构件中组合梁大多是选用高而薄的腹板来增大截面的惯性矩与底抗矩,同时也多选用宽而薄的翼缘来提高梁的稳定性,如钢板过薄,梁腹板的高厚比或是翼缘的宽厚比大到一定的程度时,腹板或受压翼缘在没有达到强度限值就发生波浪形的屈曲,使梁失去了局部稳定。

它是使钢结构早期破坏的因素。

1.2.3 受力构件中,截面塑性发展到一定程度构件突然而被压坏,压弯构件失去稳定。

而压弯构件的计算则要同时考虑平面内的稳定性与平面外的稳定性。

钢框架稳定论文

钢框架稳定论文

摘要随着我国国民经济的发展,钢框架结构得到了越来越广泛的应用。

对于高层钢结构,本文主要指高层钢框架结构的稳定性,应从框架的整体稳定方面入手进行分析,然而现行的设计方法是计算长度系数法即通过控制框架柱的稳定性来间接控制钢框架的稳定性。

为了考虑变形对内力的影响,我国新的《钢结构设计规范》(GB50017-2003)对钢框架结构的内力分析进行了修正。

该规范第一次提出对系数η>0.1的钢框架结构进行二阶弹性分析,并建议在二阶弹性分析时,应在每层柱顶施加附加的假想水平荷载,考虑结构和杆件的各种缺陷对内力的影响。

本文对理想钢框架的极限承载力和变形进行了理论分析简单的概述,并详细介绍了钢框架稳定和设计方法,包括钢框架结构的弹性和弹塑性阶段出的计算方法。

关键词:钢框架,稳定,弹性分析,弹塑性分析,非线性分析目录摘要 (1)1.钢框架基本概念 (4)1.1 有侧移刚架和无侧移刚架的概念 (4)1.2 侧向柔性结构和侧向刚性结构 (5)1.3 有侧移失稳和无侧移失稳的判断 (5)2.钢框架稳定分析和设计方法 (6)2.1 钢框架承载力弹性分析 (6)2.1.1 一阶弹性分析和二阶弹性分析 (6)2.1.2 现行规范推荐的计算方法 (8)2.1.3 现行规范推荐的近似二阶分析 (11)2.2钢框架承载力弹塑性分析 (13)2.2.1最简单框架的承载力 (13)2.2.2 实用二阶弹塑性分析方法……………………………………………1错误!未定义书签。

3.高层钢结构整体稳定非线性分析的国内外研究现状 (18)3.1现在主要分析方法综述 (18)3.2 影响钢结构稳定性的因素 (19)3.3现有研究方法存在的问题及研究方法 (20)4.钢结构发展研究展望 (20)小组总结 (21)参考文献 (22)钢框架的稳定研究高层钢框架结构具有很多优越性,主要有以下几个方面[1]:钢结构自重轻;钢结构材料强度高;钢结构施工速度快;高层建筑管道很多,如果采钢结构,可以在梁上开孔用以穿越管道;在梁高相同的情况下,钢结构的开间可以比混凝土结构的开间大50%,从而可使建筑布置灵活;钢结构的延性比钢筋混凝土结构好;由于钢结构比混凝土结构重量轻,更易采用TMD、TLD等结构振动控制措施,提高结构的抗风、抗震能力:钢结构由于在工厂加工制作,所以精度高、质量有保证,与混凝土结构现场施工相比,更易符合结构设计要求;高层建筑在建造过程中,由于业主要求的变化,变更设计经常发生,采用钢结构则较易配合结构设计要求;钢结构为干式施工,可避免混凝土湿式施工所造成的环境污染;混凝土结构建筑拆除后,混凝土不能再使用,只能当作废料处理而影响环境。

钢结构毕业论文范文

钢结构毕业论文范文

钢结构毕业论文范文摘要:本篇毕业论文主要探讨了钢结构在建筑领域中的应用。

目前,随着科技的发展和城市化进程的加快,钢结构在建筑领域中的应用越来越广泛。

通过对现有文献和案例的研究,我们发现钢结构具有重量轻、强度高、施工快捷等优点。

在论文的后半部分,我们还详细讨论了钢结构的设计、施工过程和监控技术。

这些都有助于读者更加深入地了解钢结构在建筑中的应用。

关键词:钢结构,建筑,轻型,强度,施工,监控引言:钢结构作为建筑领域中一种重要的结构形式,由于其具有优良的性能和适应性,被广泛应用于各种建筑类型中。

它的应用不仅能够提高建筑的稳定性和安全性,还能够减少建筑物的自重,提高使用空间的灵活性。

随着城市化进程的加快,以及对建筑效能和施工时间的要求日益提高,钢结构的应用前景越来越广阔。

一、钢结构的特点及应用优势钢结构具有重量轻、强度高、施工快捷等特点,因此在建筑领域中有着广泛的应用。

相对于传统的混凝土结构,钢结构更加适合创造大跨度的建筑形式,提供更大的使用空间。

另外,钢结构还能够适应各种气候环境和地理条件,具有较高的抗震性能和耐用性。

二、钢结构的设计原则钢结构设计的关键在于确定结构的荷载和边界条件,合理选取结构材料和构件,并进行合理的构造设计。

另外,设计时还需要考虑结构的抗震性能、防火性能和变形控制等因素。

三、钢结构的施工过程钢结构的施工过程包括了预制、安装和焊接等环节。

在预制过程中,需要制作好各个构件,并进行检查和验收。

在安装过程中,需要确保各构件之间的连接牢固,同时采取安全措施,保证工人的安全。

在焊接过程中,需要严格控制焊接参数,确保焊缝质量达到要求。

四、钢结构的监控技术对于钢结构的监控,主要是对结构的安全性进行评估和监测。

通过使用传感器和监测仪器,可以实时监测结构的受力情况和变形情况。

一旦发现问题,可以及时采取措施进行修复。

结论:钢结构作为一种优良的结构形式,在建筑领域中应用广泛,并且有着明显的优势。

通过合理的设计、施工过程和监控技术,可以确保钢结构的安全性和稳定性。

建筑钢结构稳定设计[论文]

建筑钢结构稳定设计[论文]

试论建筑钢结构的稳定设计摘要随着建筑类经济快速的发展,工业建筑应用钢结构的越来越多。

防止结构失稳,是钢结构设计中应充分注意的问题。

本文阐述了钢结构的特性及在建筑上的应用,并对其稳定性的设计进行分析,根据设计经验进行总结,为后续设计施工提供技术支持。

关键词刚结构稳定性设计中图分类号:s611 文献标识码:a工业建筑钢结构的稳定问题在设计中,设计人员应该注重结构构件的稳定性能,以免在设计过程中发生不必要的失稳损失;其次,随着新型结构的出现,设计人员对其性能认识的不足,从而导致构件的失稳,就这个问题阐述了新型结构现存的问题,并且针对问题论述了产生的原因。

1建筑钢结构的稳定性设计钢结构的稳定性设计、在各种类型的钢结构中,由于结构失稳造成的伤亡事故时有发生、为了更好地保证钢结构稳定设计中构件不失稳定,保证工程质量及使用安全,有必要对钢结构的稳定性设计进行详细探讨。

1.1钢结构稳定性的概念钢结构强度小或失稳都会造成结构破坏,但是强度与稳定的概念并不相同、钢结构的强度是一个应力问题,指结构或者单个构件在稳定平衡状态下由荷载引起的最大应力(或内力)是否超过建筑材料的极限强度、钢材以其屈服点作为极限强度、而稳定是一个变形问题,构件所受外部荷载与结构内部抵抗力间是不稳定的,关键是找出这一不稳定的平衡状态,避免变形急剧增长而发生失稳破坏。

1.2钢结构稳定性设计要点(1)钢结构布置必须从体系和各组成部分的稳定性要求整体考虑,目前钢结构大多是按照平面体系进行设计,如桁架和框架、保证平面结构不出现平面外失稳,要求平面结构构件的平面稳定计算需与结构布置相一致,如增加必要的支撑构件等。

(2)实用计算方法所依据的简图与结构计算简图保持一致,中层或多层框架结构设计框架稳定分析通常是省略的,只进行框架柱的稳定计算,由于框架各柱的杆件稳定计算的常用力法、稳定参数等是依据一定的简化典型情况或假设者得出的,因此设计者要能保证所有的条件符合假设时才能应用。

探讨钢结构的稳定性

探讨钢结构的稳定性

探讨钢结构的稳定性【摘要】从新中国成立到现在,我国对于钢铁工业的发展就是非常重视的,如今,钢结构已经成为大部分行业不可或缺的施工材料了,文章对讨钢结构的稳定性进行探讨,具有一定的借鉴意义。

【关键词】钢结构;稳定性前言文章对钢结构稳定性的定义进行了介绍,对钢结构的稳定性进行分析,通过分析,并结合自身实践经验和相关理论知识,对加强钢结构稳定性施工的质量控制措施进行了探讨。

二、钢结构稳定性的定义1.强度与稳定的区别:稳定计算是在结构变形后的几何形状和位置上进行计算的。

稳定主要是找出外部荷载与结构内部抵抗力间不稳定的平衡状态,即变形开始急剧增长而需设法避免进入的状态,因此它是一个变形问题。

强度是指结构或者单个构件在稳定平衡状态下由荷载所引起的最大应力(或内力)是否超过建筑材料的极限强度,因此它是一个应力问题。

2.钢结构失稳是一个过程,是一个整体行为,和构件刚度有关,和轴心拉力作用无关。

即轴心拉杆不需要进行稳定计算,压弯杆需要进行稳定验算。

失稳可分为分支点失稳、极值点失稳。

3.分支点失稳也是有平衡分岔的问题,完善直杆在轴心受压的失稳以及平板在中心面受压的失稳都归属于这一类。

4.极值点失稳也是没有平衡分岔的问题,由建筑钢材做成的偏心受压构件,当塑性发展到一定程度后的极值点失稳都归属于这一类。

三、钢结构的稳定性分析1.稳定及失稳的含义和稳定相关的问题主要是找出外荷载与结构内部抵抗力间的不稳定平衡状态,即变形开始急剧增长的状态,之后设法防止进入该状态,所以从某种意义上讲,这属于一个变形问题。

失稳也被称为屈曲,是指钢结构或构件失去了整体的或局部的稳定性,一般在承载力极限状态范围之内。

另外,若对构件或板件因受压、受弯或受剪等产生的受压区域处理不当,钢结构可能会出现整体失稳或局部失稳的现象。

尽管钢结构在失稳前的变形量可能看起来微乎其微,但突然的失稳会使其因几何形状急剧变化而丧失抗压力,进而导致结构物整体塌落。

2.研究钢结构稳定性的方法(1)平衡法,亦即中性平衡法或静力平衡法,也就是根据已发生了微量变形后的钢结构的受力条件建立平衡微分方程,然后对其进行求解的方法,这是求解结构稳定极限荷载的最基本方法。

《钢结构稳定理论》结课论文

《钢结构稳定理论》结课论文

1111111111学院《钢结构稳定理论》课程论文论文题目:钢结构稳定性问题概述任课教师:111姓名:111专业:111学号:钢结构稳定性问题概述摘要:本文阐述了钢结构稳定设计的基本概念,包括钢结构失稳的类型、钢结构稳定计算的影响因素、稳定与强度的区别、稳定设计的原则和稳定设计的特点,提出了钢结构体系稳定性研究中存在的问题,以便于帮助设计人员更好地完成钢结构的稳定设计。

关键词:钢结构;钢结构稳定;钢结构设计;失稳1.概述与传统的钢筋混凝土结构相比,钢结构具有减少工程成本、提高抗震强度、节省空间等优点。

高强度钢材的使用,施工技术的发展以及电子计算机的应用使钢结构体系的发展和广泛应用成为可能。

钢结构日益发展的同时钢结构设计存在的问题也日益增多,稳定性是一个突出问题。

现代工程史上不乏因失稳而造成的钢结构事故,其中影响最大的是1907年加拿大魁北克一座大桥在施工中破坏,9000吨钢结构全部坠入河中,桥上施工的人员75人遇难。

破坏是由于悬臂的受压下弦失稳造成的。

而美国哈特福特城的体育馆网架结构,平面92m×110m,突然于1978年破坏而落地,破坏起因可能是压杆屈曲。

以及1988年加拿大一停车场的屋盖结构塌落,1985年土耳其某体育场看台屋盖塌落,这两次事故都和没有设置适当的支撑有关。

在我国1988年也曾发生l3.2×l7.99m网架因腹杆稳定位不足而在施工过程中塌落的事故。

从上可以看出,钢结构中的稳定问题是钢结构设计中以待解决的主要问题,一旦出现了钢结构的失稳事故,不但对经济造成严重的损失,而且会造成人员的伤亡,所以我们在钢结构设计中,一定要把握好这一关。

本文提出了设计中应该掌握的一些钢结构稳定的基本概念,以及钢结构稳定性研究中存在的问题。

2.钢结构稳定设计的基本概念2.1 钢结构失稳的类型2.1.1 第一类失稳,也叫平衡分岔失稳,构件会在同一荷载点出现平衡分岔现象。

根据构件在屈曲后的荷载—挠度曲线变化的不同,平衡分岔失稳又可以分为稳定分岔失稳和不稳定分岔失稳。

钢结构厂房稳定性研究3篇

钢结构厂房稳定性研究3篇

钢结构厂房稳定性研究3篇钢结构厂房稳定性研究1钢结构厂房稳定性研究随着工业化进程的快速发展,钢结构厂房成为现代工业园区的主要建筑。

钢结构厂房具有结构高强、耐久性强、防火性能好、施工周期短等优点,因此备受广大企业的青睐。

然而,由于地基、施工质量、自然灾害等因素的影响,钢结构厂房稳定性问题一直是困扰企业的大问题。

本文将从不同的角度探讨钢结构厂房稳定性问题。

地基问题钢结构厂房的地基是支撑整个建筑的关键。

在进行施工之前,地基的承载力、稳定性和抗震性等必须进行严密的计算和设计。

在钢结构厂房建设过程中,经常会遇到地基不稳固或地基太软的情况,这就需要采取一定的措施,如选择更加稳固的地基,或者在地基上添加加固设施等。

同时,钢结构厂房的地基需要在施工过程中不断注意保护,避免因非法倾倒垃圾等情况破坏地基稳定性。

质量问题在钢结构厂房建设过程中,质量问题是一个不可忽视的重要因素。

质量问题涉及到机器设备的选购、材料品质的质量、施工人员的素质等多个方面。

如果一些钢结构厂房的部件质量不过关,比如缺乏制作工艺和规范的单位,或者是选用了劣质材料,就会给建筑承受能力带来巨大的风险。

因此,在施工过程中,我们必须要确保所有部件都进过必要的质量检查,以保障生产过程的安全。

防火性能问题钢构造无论在材料的强度、刚度及重量方面都有超过混凝土和砖墙式建筑,但它其实也是存在风险的,特别是在防火性能上。

由于钢材本身的导热性极差,同时如果发生火灾,钢结构房屋的承载能力也会大幅度下降。

因此,在钢结构厂房建设过程中,合理的防火设计和应急预案是不可或缺的,一定要严格执行现行的相关规定,这样能够最大限度地确保安全。

自然灾害问题自然灾害也是影响钢结构厂房稳定性的一个因素。

由于地震、暴雨、强风等原因,很多钢结构厂房都面临着严重的威胁。

主要是因为钢结构的构造轻便而使得钢结构在面遭风暴、地震等自然灾害时,不够承受稳定性。

在建造过程中需要针对地震等自然灾害的特点加强相关设计和施工质量,以确保建筑物在自然灾害中的稳定性和安全性。

钢结构稳定设计论文

钢结构稳定设计论文

浅析钢结构稳定设计简介:钢结构的稳定性能是决定其承载力的一个重要因素,因此论文对钢结构稳定设计提出了在设计过程中设计人员应该明确知道的一些基本概念,以便帮助设计人员在设计中树立正确而完整的稳定分析和稳定设计的理念;随着新型结构不断地出现,在应用过程中,对其性能不够了解、设计经验有缺陷,导致发生失稳事故,因此论文介绍了钢结构设计中可能遇到的稳定问题,以便设计人员在钢结构设计过程中参考。

关键字:钢结构结构稳定失稳结构设计introduction: the steel structure of the performance is stable to determine the bearing capacity of the one of the important factors, so papers on steel structure stability design and puts forward in the design process design personnel should be clearly know some basic concepts, to help designers in the design to set up correct and complete stability analysis and stability design idea; with the new structure keep popping up, in the application process, its performance don’t know enough about, design experience with a defect, causing instability accident, so this paper introduces steel structure design may be met in stability issues, so as to design personnel in the steel structure design process reference.key word: steel structure stability instability structure design中图分类号:tu391文献标识码:a 文章编号:1、引言钢结构的稳定问题普遍存在于钢结构设计中,凡是结构的受压部位,在设计时都必须认真考虑其稳定性。

钢结构设计中稳定性分析论文

钢结构设计中稳定性分析论文

钢结构设计中稳定性分析探讨摘要:钢结构是用钢材经过加工、连接、安装而建成的一种工程结构,它需要承受各种可能的自然环境和人为环境作用,并应满足各种预定功能要求和具有足够的可靠性及良好的社会经济效益。

在钢结构设计中,稳定是较为重要的一个环节,本文分析了钢结构稳定设计应遵循的原则以及钢结构稳定设计特点,并提出钢结构稳定性设计的计算方法。

关键词:钢结构设计稳定性1 钢结构稳定设计存在问题分析(1)强度与稳定的区别。

强度问题是指结构或者单个构件在稳定平衡状态下由荷载所引起地最大应力(或内力)是否超过建筑材料的极限强度,因此是一个应力问题。

极限强度的取值取决于材料的特性。

对混凝土等脆性材料,可取它的最大强度,对钢材则常取它的屈服点。

稳定问题则与强度问题不同,它主要是找出外荷载与结构内部抵抗力间的不稳定平衡状态,即变形开始急剧增长的状态。

从而设法避免进入该状态,因此,它是一个变形问题。

如轴压柱,由于失稳,侧向挠度使柱中增加数量很大的弯矩,因而柱子的破坏荷载可以远远低于它的轴压强度。

显然,轴压强度不是柱子破坏的主要原因。

(2)目前在网壳结构稳定性的研究中,梁一柱单元理论已成为主要的研究工具。

但梁一柱单元是否能真实反映网壳结构的受力状态还很难说,虽然有学者对梁一柱单元进行过修正,主要问题在于如何反映轴力和弯矩的耦合效应。

(3)在大跨度结构设计中整体稳定与局部稳定的相互关系也是一个值得探讨的问题。

目前大跨度结构设计中取一个统一的稳定安全系数,未反映整体稳定与局部稳定的关联性。

(4)预张拉结构体系的稳定设计理论还很不完善。

目前还没有一个完整合理的理论体系来分析预张拉结构体系的稳定性。

(5)钢结构体系的稳定性研究中存在许多随机因素的影响。

目前结构随机影响分析所处理的问题大部分局限于确定的结构参数、随机荷载输入这样一个格局范围,而在实际工程中,由于结构参数的不确定性,会引起结构响应的显著差异。

所以应着眼于考虑随机参数的结构极值失稳、干扰型屈曲、跳跃型失稳问题的研究。

钢结构工程论文2400字_钢结构工程毕业论文范文模板

钢结构工程论文2400字_钢结构工程毕业论文范文模板

钢结构工程论文2400字_钢结构工程毕业论文范文模板钢结构工程论文2400字(一):钢结构工程焊接技术重点、难点及控制措施论文摘要:钢结构工程作为当前生产生活各个方面普遍应用的结构之一,该结构在实际应用中对于提升稳定性,促使工程项目质量建设满足质量目标需求等方面起着非常重要的作用。

本文面对当前钢结构在工程应用焊接落实分析,针对实际焊接技术重难点分析,提出相对应的控制措施,旨在为实践生活创新使用奠定基础。

关键词:钢结构;焊接技术;重点操作;难点控制钢结构工程项目作为当前工程施工建设中重要的结构部分之一,该结构的使用对于整体上提升工程项目施工建设效率,促使一切建设工作向着科学化的方向发展,提升整体工程质量建设稳定性等方面起着非常重要的作用。

但是,在钢结构工程施工建设中,相关操作人员认识到钢结构工程本身作为一项复杂的、需要团队协调配合,才能够促使钢结构施工操作按照操作方案落实,提升工程项目整体施工建设水平。

那么,在钢结构施工操作中,焊接操作作为重要的一环,如果相关焊接工作未能及时完成,那么在很大程度上容易导致钢结构在后期运行中出现脱节的现象,给工程项目实现长期运行产生不良影响。

因此,在现今钢结构工程项目施工操作中,控制焊接技术是非常必要的。

1钢结构工程焊接技术重点和难点分析钢结构工程在实际焊接工作中,一方面,由于外部热力作用在焊接过程中存在不均匀现象,在很大程度上容易引起外部应力的变化,造成焊接变形异常;另一方面,焊接工作人员操作技术水平低,没有结合焊接工作控制焊接应力,焊接操作过程中存在不熟悉现象,同样会造成焊接裂纹、气泡等不良现象。

针对以上问题,在实际钢结构工程焊接中,做好焊接变形控制,提升焊接质量,减少气泡和缝隙的出现是非常必要的。

2钢结构工程焊接管控措施分析2.1焊接变形控制钢结构工程焊接中,焊接变形控制需要操作人员在熟悉操作工艺,明确工程项目实际焊接质量标准基础上实施操作处理。

首先,操作人员控制焊接缝隙接触的面积,只要保证焊接质量即可,不可过度焊接。

钢结构毕业论文最终版

钢结构毕业论文最终版

毕业论文论文题目:浅谈钢结构专业:建筑工程技术班级:学号:姓名:浅谈钢结构引言老师您好,我是,这次写的论文是浅谈钢结构。

现在建筑行业的发展,对钢结构所建筑的房屋越来越需要,由于钢结构自身的优点突出,目前在国内得到越来越广泛的应用。

随着国内经济的发展和改革开放的深入,国内钢材每年的产量已连续超过100.000.000t,成为世界第一,迅速增长的钢材产量为发展国内钢结构建筑创造了优越的条件。

正文钢结构建筑具有高强轻质、抗震性能好、力学性能优越、施工迅速、工业化程度高、外观优美、可多次利用并且符合国家可持续发展的政策等一系列优点,近几年钢结构建筑在国内发展的很迅速,应用范围不断扩大,但与国外一些发达国家相比,还有一定的差距。

本文结合现实生活,浅谈了一些在建筑施工过程中的一些应用情况,分析了钢结构迅速发展的一些原因。

钢结构是用钢板,型钢和圆钢等通过焊接,铆接,螺栓连接等方式制造的结构。

与其他结构比较,钢结构有如下一些特点:1 强度高,塑性和韧性都比较好;2 耐火性差。

钢结构的使用范围,是根据上述特点而确定的。

当前在大跨度结构,重工业厂房,高层建筑,高耸结构,容器和其他构筑物,移动结构等方面,多采用钢结构。

钢结构单层工业厂房是工业与民用建筑中应用钢结构较多的建筑物,厂房结构是由房盖,屋面板,檩条,天窗屋架或梁,托架,柱,吊车梁(包括制动梁或制动桁架),墙架,各种支撑和基础等构件组合而成的空间刚性骨架,承重作用下在厂房结构上的各种荷载,是整个建筑物的承重骨干。

在单层厂房钢结构中,通常由许多平行等间距放量的横向平面框架作为基本承重结构。

横向平面框架由柱和梁组成。

柱在基础处通常做成固定端横梁与柱的连接可以做成铰接。

但为了增加刚度和节约钢材,通常做成刚接,则构成横向平面刚架包括全部建筑物重量(屋盖,墙,结构自重等)屋面雪荷载和积灰荷载和其他活荷载,吊车竖向荷载和横向水平制动力,横向风荷载,横向地震作用等。

横梁通常是桁架式的(即屋架)轻屋面和跨度小时也可采用实腹式的。

建筑钢结构论文:浅谈钢结构稳定性的设计

建筑钢结构论文:浅谈钢结构稳定性的设计

建筑钢结构论文:浅谈钢结构稳定性的设计在现代建筑领域中,钢结构凭借其高强度、大跨度、施工快捷等诸多优势,得到了广泛的应用。

然而,钢结构的稳定性设计是确保其安全可靠的关键环节。

钢结构的稳定性一旦出现问题,可能会导致严重的结构破坏甚至坍塌事故,给生命财产带来巨大损失。

因此,深入探讨钢结构稳定性的设计具有重要的现实意义。

钢结构稳定性问题的本质是结构在受到外部荷载作用时,能否保持其原有平衡状态而不发生失稳破坏。

钢结构的失稳形式多种多样,常见的有弯曲失稳、扭转失稳和弯扭失稳等。

弯曲失稳通常发生在受压的梁柱构件中,当压力超过一定限度时,构件会突然发生弯曲变形而丧失承载能力。

扭转失稳则多见于受扭的构件,如钢梁的扭转。

弯扭失稳则是弯曲和扭转共同作用下导致的失稳现象,常见于一些复杂的结构构件。

在钢结构稳定性设计中,首先要准确分析和计算结构所承受的荷载。

荷载包括恒载、活载、风载、地震作用等。

这些荷载的大小、分布和组合方式对结构的稳定性有着直接的影响。

例如,在风荷载较大的地区,设计时必须充分考虑风对钢结构的作用,确保结构在风荷载下不会发生失稳。

材料的性能也是影响钢结构稳定性的重要因素。

钢材的强度、弹性模量、屈服点等性能指标直接关系到结构的承载能力和稳定性。

不同的钢材品种和规格具有不同的性能,因此在设计时需要根据具体情况选择合适的钢材。

同时,还要考虑钢材在长期使用过程中的性能变化,如钢材的锈蚀、疲劳等对结构稳定性的影响。

钢结构的几何形状和尺寸对其稳定性也有着至关重要的作用。

构件的长细比是衡量其稳定性的一个重要参数。

长细比越大,构件越容易发生失稳。

因此,在设计时要合理控制构件的长细比,通过增加截面尺寸、设置支撑等方式来提高构件的稳定性。

此外,节点的设计也不容忽视。

节点的连接方式和刚度会影响结构的整体稳定性,不合理的节点设计可能导致局部失稳,进而影响整个结构的稳定性。

在计算钢结构的稳定性时,需要运用适当的理论和方法。

目前常用的有经典的欧拉理论、切线模量理论等。

提高钢结构稳定性方法论文

提高钢结构稳定性方法论文

提高钢结构稳定性方法论文摘要:钢结构构件的缺陷、残余应力以及非线性因素等,都对结构的稳定性有着巨大的影响,同时在大跨度桥梁、大跨度薄壳、大跨度大空间网壳、高层与超高层建筑结构双重非线性动力稳定性研究等方面还存在着许多问题,这需要广大工程技术人员在结构设计和工程施工等方面对钢结构稳定性进行更加深入的研究。

只有不断提高钢结构的稳定性,才能减少人员伤亡和财产损失,不断推动钢结构行业快速健康发展。

1、前言随着钢铁工业技术的快速发展,钢结构在建筑工程中的应用日趋广泛。

但是,因结构稳定性被破坏而造成人员伤亡和财产损失的事件时常发生。

如1978年,美国哈特福特城体育馆网架结构压杆发生屈曲,导致平面92m×110m破坏坠落;2010年,内蒙古鄂尔多斯市伊金霍洛旗赛马场发生罩棚钢结构局部坍塌事故,造成巨额经济损失;2012年,云南省大理市一钢构建筑工程因支撑建筑失稳而发生坍塌,造成多名人员死亡。

仔细分析这类事故发生的原因,大都与钢结构的稳定性有着必然联系。

2、问题的提出在设计和施工过程中,钢结构系统的稳定性已经成为阻碍行业发展的一大难题。

尽管我国钢结构施工技术在快速发展,对结构稳定性的研究也取得了一定进展,但仍然存在诸多问题:一是对于网壳结构,主要采用梁-柱单元理论,梁- 柱单元在反映轴力和弯矩的耦合效应方面存在不足;二是在设计大跨度结构时,习惯于设定一个统一的稳定安全系数,不能反映整体稳定与局部稳定的关系;三是分析预张拉结构的稳定性的理论不完善;四是工程结构参数存在不确定性,随机参数对结构极值失稳、跳跃型失稳会产生一定影响。

3、影响结构稳定性的因素按照GB50017-2003钢结构设计规范中的规定,轴心受力构件稳定的计算公式为。

针对整个结构,构件在弹性范围内的临界力为,这与材料特性E 、截面特性I 以及长度有关,反映了外荷载与结构内部抵抗力的稳定平衡状态,即结构或构件从变形开始到急剧增长阶段的状态。

因此,根据构件受力特点,可以将钢结构失稳分为平衡分岔失稳、极值点失稳和跃越失稳。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钢结构稳定理论与设计学习报告钢结构具有高强、质轻、力学性能良好的优点,是制造结构物的一种极好的建筑材料。

钢结构与在建筑结构中应用广泛的钢筋混凝土结构相比,对于充任相同受力功能的构件,具有截面轮廓尺寸小、构件细长和板件柔薄的特点。

对于因受压、受弯和受剪等存在受压区的杆件和板件,如果技术上处理不当,可能使钢结构出现整体失稳和局部失稳。

失稳前结构物的变形可能很微小,突然失稳使结构物的几何形状急剧改变而导致结构物完全丧失抵抗能力,以致整体塌落。

引起钢结构失稳事故的原因包括设计错误、制造和安装误差以及使用不当等。

钢结构的稳定性能是决定其承载力的一个特别重要因素。

就不同类型的稳定问题研究内容一般包括构件发生平面变位的稳定问题以及构件和薄板发生空间变位的稳定问题。

1.概述1.1 钢结构失稳的类型钢结构失稳现象是多种多样的,但是就其性质而言,可以分为以下三类:1.1.1第一类失稳,也叫平衡分岔失稳,构件会在同一荷载点出现平衡分岔现象。

根据构件在屈曲后的荷载—挠度曲线变化的不同,平衡分岔失稳又可以分为稳定分岔失稳和不稳定分岔失稳。

完善的轴心受压构件和薄板的失稳都是属于第一类失稳。

1.1.2 第二类失稳,也叫极值点失稳。

具有极值点失稳的构件的荷载—挠度曲线只有极值点,没有出现如完善的轴心受压构件的不同变形状态的分岔点,构件弯曲变形的性质也没有改变。

极值点失稳的现象十分普遍,偏心受压构件在弹塑性变形发展到一定程度后的失稳都属于极值点失稳。

1.1.3 跃越失稳。

跃越失稳既无平衡分岔点,又无极值点,和不稳定分岔失稳有一些相似的地方,都在丧失稳定平衡之后又跳跃到另一个稳定平衡状态。

区分结构失稳类型的性质十分重要,这样才有可能正确估量结构的稳定承载力。

曾有学者研究指出结构体系在平衡分岔点的屈曲荷载稳定与否决定了该结构体系屈曲后的性能。

1.2 稳定问题的计算方法我们知道并非处于平衡状态的结构都是稳定的。

结构稳定问题的分析方法都是针对着在外荷载作用下结构存在变形的条件下进行的,此变形应该与所研究结构或构件失稳时出现的变形相对应。

首先需要清楚结构或构件的计算简图,图中应展示其变形和作用着的内外力。

构件失稳时产生的变形可能受到与其相连接构件约束的影响,有时甚至还可能与整个结构的变形有关,因此需要着眼于整个结构来分析稳定问题。

由于所研究的结构变形与荷载之间呈非线性关系,因此稳定计算属于几何非线性问题,采用的是二阶分析的方法(当平衡方程按结构变位后的轴线建立时,称为二阶分析,也称为几何非线性)稳定问题的计算方法有以下三种:1.2.1平衡法中性平衡法或静力平衡法,简称平衡法,是求解结构稳定极限荷载的最基本方法。

平衡法是根据已产生了微小变形后结构的受力条件建立平衡方程而后求解的。

平衡法只能求解屈曲荷载,但不能判断平衡状态的稳定性。

在许多情况下,采用平衡法可以获得精确解。

1.2.2能量法按照小变形理论,能量法一般只能获得屈曲荷载的近似解;但是,如果能够事先了解屈曲后的变形形式,采用此变形形式计算可以得到精确解。

能量法用于大挠度理论分析,可以判断屈曲后的平衡是否稳定。

稳定平衡时总势能最小的原理称为最小势能原理。

我们可以用总势能驻值原理求解屈曲荷载,而用总势能最小原理可以判断屈曲后平衡的稳定性。

1.2.3动力法处于平衡状态的结构体系,如果施加微小干扰使其发生振动,这是结构的变形和振动加速度都和已经作用在结构上的荷载有关。

动力法属于结构动力稳定问题。

1.3稳定与强度的区别轴心受力构件的强度和稳定计算,GB 50017-2003 钢结构设计规范中规定分别为:n N f A σ=≤和N f A ϕ≤,从公式的形式上看,两者差不多,但却迥然不同。

强度计算是针对某个特定的截面,仅与该界面的净截面面积有关,反映了结构或者单个构件在稳定平衡状态下由荷载所引起的最大应力是否超过材料的极限强度,属于应力分析;而稳定计算是针对整个结构的,构件在弹性范围内的临界力,可应用著名的欧拉公式:22E EIN l π=,临界力与材料特性E 、截面特性I 以及长度l 均有关,因此不再是个别截面的问题。

稳定分析是要找到外荷载与结构内部抵抗力间的不稳定平衡状态,也就是结构或者构件的变形开始急剧增长的状态,属于变形分析。

1.4稳定分析的特点1)稳定问题与强度问题有本质差别;2)稳定问题必须考虑变形后的位形;3)稳定问题无静定和超静定的差别,静定和超静定都要有荷载变形关系才能求解;4)失稳具有多样性,如弯曲失稳、扭转失稳、弯扭失稳等;5)失稳破坏一般很难出现塑性铰。

1.5钢构件各种缺陷对钢结构稳定的影响实际工程中的钢构件不可避免地存在各种缺陷,而非理想中的完善直杆。

钢构件的缺陷一般包括几何缺陷和力学缺陷。

由于几何缺陷是客观存在的,在稳定问题的分析中,已经比较普遍地作为不可忽视的因素加以考虑。

不过不同的构件或结构对缺陷敏感的程度不同,对于某些情况,缺陷影响是可以忽略不计的。

除几何缺陷外,杆件在承受荷载之前存在的残余应力也可看成一种缺陷,即力学缺陷。

残余应力虽然在杆件截面上自相平衡,且不影响截面的强度,但是它对杆件的刚度有不利影响,从而也影响它的稳定承载力。

这也是强度计算和稳定计算的一个重要区别。

1.6稳定设计需要注意的问题保证结构及构件的稳定,是钢结构设计的重要内容,《钢结构设计规范》的很大一部分条文都和稳定问题有关,在实际设计中处理稳定问题时需要注意以下几个问题:1) 结构计算简图和实用计算方法(包括规范给出的方法)所依据的简图应该相一致。

2) 结构稳定计算和结构布置方案相符合。

这个问题是确定桁架、塔架等的杆件出平面稳定时应该十分注意的。

问题的核心是结构布置方案是否确实能够对桁架节点提供平面外位移约束。

3) 结构稳定计算与构造设计相符合。

构造与计算相符合一直是设计者所关注的问题。

但是,当涉及稳定性能时,构造上常有不同与强度的要求或特殊考虑。

以上三个原则性问题也可看成是稳定设计必须遵从的基本概念。

2.构件的平面变位稳定问题2.1轴心受压构件的弯曲屈曲轴心受压构件的弯曲屈曲分为弹性弯曲屈曲和非弹性弯曲屈曲。

对于轴心受压杆的弹性弯曲屈曲,一般在建立弯曲平衡方程是要做一些基本假定,然后以此为条件来建立平衡方程,求解屈曲荷载。

在这里要说明的一点是。

在建立平衡方程时的一条基本假定是:构件的弯曲变形是微小的,曲率可以近似地用变形的二次微分表示,即"y Φ=-,而曲率的精确解则是"322[1(')]y y Φ=-+。

由于按小变形理论理论在建立平衡方程时曲率近似地取了变形的二阶导数,因此求解后只能得到构件屈曲后变形的形状而不能得到构件任一点的挠度值。

事实上由于端部约束条件的不同,有必要建立一个通用的方程来求解轴心受压构件的屈曲荷载,陈骥教授的书中通过取隔离体,建立力矩及水平力的平衡方程得到了适用于任何边界条件的轴心受压构件的四阶微分方程"0EIy Py +=Ⅳ求得上式的通解之后,即可利用构件两端的几何边界条件和自然边界条件来确定其中的积分常数。

把各种约束条件构件的cr P 值换算成相当于两端铰接的轴心受压构件屈曲荷载的形式,其方法是把端部有约束的构件用等效长度为0l 的构件来代替。

等效长度通常为计算长度,而计算长度0l 与构件实际的几何长度之间的关系是0l l μ=,这里的μ称为计算长度系数。

这样一来,具有各种约束条件的轴心受压构件的屈曲荷载转化为欧拉荷载的通式是22()cr EI P L πμ= 如果轴心受压构件是按照大挠度理论来进行分析,则可以揭示构件屈曲后的性能,这是使用的将是曲率的精确解(前文有所提及),关于大挠度分析可以总结以下几点:1)小挠度理论只能指出构件处于中性平衡状态,可以给出分岔点水平线和构件初始屈曲后变形曲线的形状,但是不能确定挠度值;而大挠度理论不仅能说明构件屈曲以后仍处于稳定平衡状态,而且还能给出荷载与挠度的关系式,这时一一对应的确定的数值。

2)大挠度理论分析得到的屈曲后的荷载虽然略高于屈曲荷载,但是相对于力的增加挠度增加更快,所以轴心受压构件的屈曲后强度是不能被利用的。

初始几何缺陷对轴心受压构件的影响主要包括初弯曲和初偏心,由于初弯曲和初偏心对受压构件的影响都导致出现极值点失稳现象,都使构件的承载力有所下降,两种影响在本质上并无差别。

此时在研究实际构件的承载力时,常常把它们的影响一并考虑。

由于其影响具有偶然性,有时只取其中一项作为计算实际的轴心受压构件的依据。

有关轴心受压构件的非弹性屈曲,历史上主要的理论研究有切线模量理论,即用变化的变形模量t E 代替欧拉公式中的弹性模量E ,从而获得弹塑性屈曲荷载;而双模量理论则是建议用与t E 和E 都有关的折算模量r E 计算屈曲荷载。

但是实际的试验资料表明,实际的屈曲荷载介于两者之间而更接近于切线模量屈曲荷载。

直至1946年,Shanley,F.R.提出构件在微弯状态下加载时凸面可能不卸载的概念,并用力学模型证明了切线模量屈曲荷载是弹塑性屈曲荷载的下限,而双模量屈曲荷载是其上限。

2.2.压弯构件在弯矩作用平面内的稳定压弯构件又称为梁柱,构件所承受的弯矩均为二阶弯矩,即包括了挠度引起的附加弯矩。

和轴心受压构件不同,压弯构件不存在直线平衡状态,在构件端部一开始施加荷载,构件就产生弯曲变形。

我们一般需要求解压弯构件在不同荷载和不同边界条件下的变形和内力:也即挠曲线、最大挠度和最大弯矩。

通过对比发现,一般说来,挠度引起的附加弯矩将引起构件抗弯刚度的降低。

为了使用的方便我们需要找出一般受力条件下压弯构件的最大弯矩与典型压弯构件之间的关系式,分析其受力性能,而后对于其他不同受力条件的压弯构件,可将它们与典型压弯构件作比较,找出它们相互之间的关系,作为压弯构件稳定设计的通式。

在推导压弯构件的等效弯矩和等效弯矩系数时,对端弯矩的符号规定是:按照压弯构件受力后的物理现象规定其正负号。

使构件产生同向曲率(或称单曲率)变形时,1M 和2M 均取正值;规定1M 和2M 使构件产生异向曲律(或称双曲率)变形时取异号,即如取1M 为正值时,则2M 取为负值,且设12M M 。

本节上面的研究均是按照弹性稳定理论来进行研究,得到各种受力条件下压弯构件的挠曲线表达式、最大挠度和最大弯矩。

但实际上,在轴心压力和弯矩的共同作用下,压弯构件截面边缘纤维开始屈服即进入了弹塑性受力状态,这时随着外荷载的增加,弹性区缩小,构件的抗弯刚度降低,变形加快,导致附加弯矩增加,以致于构件的抗弯能力的增加小于外力作用的增加,达到极限状态时内外力无法平衡,因而发生整体失稳破坏,需根据极值点失稳的条件求解构件的极限荷载。

压弯构件的极限荷载计算比较困难,一般情况下都可以用数值积分法得到数值解,但是如果截面的形状比较简单,不计残余应力和初弯曲的影响,外力作用也比较单纯,那么在做了若干简化假定后就可以用解析法得到近似解。

相关文档
最新文档