高二数学互斥事件有一个发生的概率2

合集下载

2015年高考第一轮复习数学:11.2 互斥事件有一个发生的概率

2015年高考第一轮复习数学:11.2  互斥事件有一个发生的概率

11.2 互斥事件有一个发生的概率●知识梳理1.互斥事件:不可能同时发生的两个事件叫互斥事件.2.对立事件:其中必有一个发生的互斥事件叫对立事件.3.对于互斥事件要抓住如下的特征进行理解:第一,互斥事件研究的是两个事件之间的关系;第二,所研究的两个事件是在一次试验中涉及的;第三,两个事件互斥是从试验的结果不能同时出现来确定的.从集合角度来看,A、B两个事件互斥,则表示A、B这两个事件所含结果组成的集合的交集是空集.对立事件是互斥事件的一种特殊情况,是指在一次试验中有且仅有一个发生的两个事件,集合A的对立事件记作A,从集合的角度来看,事件A所含结果的集合正是全集U中由事件A所含结果组成集合的补集,即A∪A=U,A∩A= .对立事件一定是互斥事件,但互斥事件不一定是对立事件.4.事件A、B的和记作A+B,表示事件A、B至少有一个发生.当A、B为互斥事件时,事件A+B是由“A发生而B不发生”以及“B发生而A不发生”构成的,因此当A和B互斥时,事件A+B的概率满足加法公式:P(A+B)=P(A)+P(B)(A、B互斥),且有P(A+A)=P(A)+P(A)=1.当计算事件A的概率P(A)比较困难时,有时计算它的对立事件A的概率则要容易些,为此有P(A)=1-P(A).对于n个互斥事件A1,A2,…,A n,其加法公式为P(A1+A2+…+A n)=P(A1)+P(A2)+…+P(A n).5.分类讨论思想是解决互斥事件有一个发生的概率的一个重要的指导思想.●点击双基1.两个事件互斥是这两个事件对立的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:根据定义判断.答案:B2.从一批羽毛球产品中任取一个,质量小于4.8 g的概率是0.3,质量不小于4.85 g 的概率是0.32,那么质量在[4.8,4.85)g 范围内的概率是A.0.62B.0.38C.0.7D.0.68解析:设一个羽毛球的质量为ξ g ,则P (ξ<4.8)+P (4.8≤ξ<4.85)+P (ξ≥4.85)=1. ∴P (4.8≤ξ<4.85)=1-0.3-0.32=0.38. 答案:B 3.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率为90%,则甲、乙二人下成和棋的概率为A.60%B.30%C.10%D.50%解析:甲不输即为甲获胜或甲、乙二人下成和棋,90%=40%+p ,∴p =50%.答案:D4.(2004年东北三校模拟题)一个口袋中装有大小相同的2个白球和3个黑球,从中摸出一个球,放回后再摸出一个球,则两次摸出的球恰好颜色不同的概率为________.解析:(1)先摸出白球,P 白=C 12,再摸出黑球,P 白黑=C 12C 13;(2)先摸出黑球,P黑=C 13,再摸出白球,P黑白=C 13C 12,故P =15151312C C C C +15151213C C C C =2512. 答案:2512 5.有10张人民币,其中伍元的有2张,贰元的有3张,壹元的有5张,从中任取3张,则3张中至少有2张的币值相同的概率为________.解析:至少2张相同,则分2张时和3张时,故P =3103533152517231822C C C C C C C C C ++++=43. 答案:43 ●典例剖析【例1】 今有标号为1,2,3,4,5的五封信,另有同样标号的五个信封.现将五封信任意地装入五个信封,每个信封装入一封信,试求至少有两封信配对的概率.解:设恰有两封信配对为事件A ,恰有三封信配对为事件B ,恰有四封信(也即五封信配对)为事件C ,则“至少有两封信配对”事件等于A +B +C ,且A 、B 、C 两两互斥.∵P (A )=5525A 2C ⋅,P (B )=5535A C ,P (C )=55A 1,∴所求概率P (A )+P (B )+P (C )=12031. 答:至少有两封信配对的概率是12031. 思考讨论若求(1)至少有1封信配对. 答案:33352515A 1C 2C 9C ++⋅+.(2)没有一封信配对. 答案:1-55252515A 1C 2C 9C ++⋅+.【例2】 (2004年合肥模拟题)在袋中装20个小球,其中彩球有n 个红色、5个蓝色、10个黄色,其余为白球.求:(1)如果从袋中取出3个都是相同颜色彩球(无白色)的概率是11413,且n ≥2,那么,袋中的红球共有几个? (2)根据(1)的结论,计算从袋中任取3个小球至少有一个是红球的概率. 解:(1)取3个球的种数为C 320=1140.设“3个球全为红色”为事件A ,“3个球全为蓝色”为事件B ,“3个球全为黄色”为事件C .P (B )=32035C C =114010,P (C )=320310C C =1140120. ∵A 、B 、C 为互斥事件,∴P (A +B +C )=P (A )+P (B )+P (C ),即11413=P (A )+114010+1140120⇒P (A )=0⇒ 取3个球全为红球的个数≤2.又∵n ≥2,故n =2.(2)记“3个球中至少有一个是红球”为事件D .则D 为“3个球中没有红球”.P (D )=1-P (D )=1-320318C C =9527或P (D )=3201182221812C C C C C +=9527. 【例3】 9个国家乒乓球队中有3个亚洲国家队,抽签分成甲、乙、丙三组(每组3队)进行预赛,试求:(1)三个组各有一个亚洲队的概率;(2)至少有两个亚洲队分在同一组的概率.解:9个队分成甲、乙、丙三组有C 39C 36C 33种等可能的结果.(1)三个亚洲国家队分给甲、乙、丙三组,每组一个队有A 33种分法,其余6个队平分给甲、乙、丙三组有C 26C 24C 22种分法.故三个组各有一个亚洲国家队的结果有A 33·C 26C 24C 22种,所求概率P (A )=33363922242633C C C C C C A ⋅=289. 答:三个组各有一个亚洲国家队的概率是289. (2)∵事件“至少有两个亚洲国家队分在同一组”是事件“三个组各有一个亚洲国家队”的对立事件,∴所求概率为1-289=2819. 答:至少有两个亚洲国家队分在同一组的概率是2819. ●闯关训练 夯实基础1.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是A.至少有1个白球,都是红球B.至少有1个白球,至多有1个红球C.恰有1个白球,恰有2个白球D.至多有1个白球,都是红球答案:C2.一批产品共10件,其中有两件次品,现随机地抽取5件,则所取5件中至多有一件次品的概率为A.141B.97C.21D.92 解析:P =5104812C C C +51058C C =252140+25256=97. 答案:B3.有3人,每人都以相同的概率被分配到4个房间中的一间,则至少有2人分配到同一房间的概率是________.解析:P =1-3344A =85. 答案:85 4.从编号为1,2,3,4,5,6,7,8,9,10的十个球中,任取5个球,则这5个球编号之和为奇数的概率是________.解析:任取5个球有C 510种结果,编号之和为奇数的结果数为C 15C 45+C 35C 25+C 55=126,故所求概率为510C 126=21. 答案:21 5.52张桥牌中有4张A ,甲、乙、丙、丁每人任意分到13张牌,已知甲手中有一张A ,求丙手中至少有一张A 的概率.解:丙手中没有A 的概率是13511348C C ,由对立事件概率的加法公式知,丙手中至少有一张A 的概率是1-13511348C C =0.5949.6.袋中有5个白球,3个黑球,从中任意摸出4个,求下列事件发生的概率:(1)摸出2个或3个白球; (2)至少摸出1个白球; (3)至少摸出1个黑球.解:从8个球中任意摸出4个共有C 48种不同的结果.记从8个球中任取4个,其中恰有1个白球为事件A 1,恰有2个白球为事件A 2,3个白球为事件A 3,4个白球为事件A 4,恰有i 个黑球为事件B i .则(1)摸出2个或3个白球的概率P 1=P (A 2+A 3)=P (A 2)+P (A 3)=482325C C C +481335C C C =73+73=76. (2)至少摸出1个白球的概率 P 2=1-P (B 4)=1-0=1.(3)至少摸出1个黑球的概率 P 3=1-P (A 4)=1-4845C C =1413.培养能力7.某单位36人的血型类型是:A 型12人,B 型10人,AB 型8人,O 型6人.现从这36人中任选2人.求:(1)两人同为A 型血的概率; (2)两人具有不相同血型的概率.解:(1)P =236212C C =10511. (2)考虑对立事件:两人同血型为事件A , 那么P (A )=2362628210212C C C C C +++=4713. 所以不同血型的概率为P =1-P (A )=4734. 8.8个篮球队中有2个强队,先任意将这8个队分成两个组(每组4个队)进行比赛,则这两个强队被分在一个组内的概率是________.解法一:2个强队分在同一组,包括互斥的两种情况:2个强队都分在A 组和都分在B 组.2个强队都分在A 组,可看成“从8个队中抽取4个队,里面包括2个强队”这一事件,其概率为4826C C ;2个强队都分在B 组,可看成“从8个队中抽取4个队,里面没有强队”这一事件,其概率为4846C C .因此,2个强队分在同一个组的概率为P =4826C C +4846C C =73. 解法二:“2个强队分在同一个组”这一事件的对立事件“2个组中各有一个强队”,而两个组中各有一个强队,可看成“从8个队中抽取4个队,里面恰有一个强队”这一事件,其概率为483612C C C .因此,2个强队分在同一个组的概率P =1-483612C C C =1-74=73. 答案:73 探究创新9.有点难度哟!有人玩掷硬币走跳棋的游戏,已知硬币出现正反面为等可能性事件,棋盘上标有第0站,第1站,第2站,…,第100站,一枚棋子开始在第0站,棋手每掷一次硬币,棋子向前跳动一次,若掷出正面,棋向前跳一站(从k 到k +1),若掷出反面,棋向前跳两站(从k 到k +2),直到棋子跳到第99站(胜利大本营)或跳到第100站(失败集中营)时,该游戏结束.设棋子跳到第n 站概率为P n .(1)求P 0,P 1,P 2的值;(2)求证:P n -P n -1=-21(P n -1-P n -2),其中n ∈N ,2≤n ≤99;(3)求P 99及P 100的值.(1)解:棋子开始在第0站为必然事件,∴P 0=1.第一次掷硬币出现正面,棋子跳到第1站,其概率为21, ∴P 1=21.棋子跳到第2站应从如下两方面考虑: ①前两次掷硬币都出现正面,其概率为41; ②第一次掷硬币出现反面,其概率为21. ∴P 2=41+21=43. (2)证明:棋子跳到第n (2≤n ≤99)站的情况是下列两种,而且也只有两种:①棋子先到第n -2站,又掷出反面,其概率为21P n -2; ②棋子先到第n -1站,又掷出正面,其概率为21P n -1. ∴P n =21P n -2+21P n -1. ∴P n -P n -1=-21(P n -1-P n -2). (3)解:由(2)知,当1≤n ≤99时,数列{P n -P n -1}是首项为P 1-P 0=-21,公比为-21的等比数列. ∴P 1-1=-21,P 2-P 1=(-21)2,P 3-P 2=(-21)3,…,P n -P n -1=(-21)n . 以上各式相加,得P n -1=(-21)+(-21)2+…+(-21)n , ∴P n =1+(-21)+(-21)2+…+(-21)n =32[1-(-21)n +1](n =0,1,2,…,99).∴P 99=32[1-(21)100],P 100=21P 98=21·32[1-(-21)99]=31[1+(21)99]. ●思悟小结求某些稍复杂的事件的概率时,通常有两种方法:一是将所求事件的概率化成一些彼此互斥的事件的概率的和;二是先去求此事件的对立事件的概率.●教师下载中心 教学点睛1.概率加法公式仅适用于互斥事件,即当A 、B 互斥时,P (A +B )=P (A )+P (B ),否则公式不能使用.2.如果某事件A 发生包含的情况较多,而它的对立事件(即A不发生)所包含的情形较少,利用公式P (A )=1-P (A )计算A 的概率则比较方便.这不仅体现逆向思维,同时对培养思维的灵活性是非常有益的.拓展题例 【例题】 某单位一辆交通车载有8个职工从单位出发送他们下班回家,途中共有甲、乙、丙3个停车点,如果某停车点无人下车,那么该车在这个点就不停车.假设每个职工在每个停车点下车的可能性都是相等的,求下列事件的概率:(1)该车在某停车点停车; (2)停车的次数不少于2次; (3)恰好停车2次.解:将8个职工每一种下车的情况作为1个基本事件,那么共有38=6561(个)基本事件.(1)记“该车在某停车点停车”为事件A ,事件A 发生说明在这个停车点有人下车,即至少有一人下车,这个事件包含的基本事件较复杂,于是我们考虑它的对立事件A ,即“8个人都不在这个停车点下车,而在另外2个点中的任一个下车”.∵P (A )=8832=6561256, ∴P (A )=1-P (A )=1-6561256=65616305. (2)记“停车的次数不少于2次”为事件B ,则“停车次数恰好1次”为事件B ,则P (B )=1-P (B )=1-8133C =1-65613=21872186. (3)记“恰好停车2次”为事件C ,事件C 发生就是8名职工在其中2个停车点下车,每个停车点至少有1人下车,所以该事件包含的基本事件数为C 23(C 18+C 28+C 38+…+C 78)=3×(28-2)=3×254,于是P (C )=65612543 =2187254.。

【数学课件】互斥事件有一个发生的概率(二)

【数学课件】互斥事件有一个发生的概率(二)

解一:A=两球颜色相同; B=两白球; C=两黑球
A=B+C 其中B、C互斥
∴P(A)=P(B+C)=
解二: A =两球颜色不同
C52 C82

C32 C82
0.357 0.107
0.464
P( A)

1
P(
A)

1
C51 C31 C84
1 0.536 0.464
例3:在20件产品中,有15件一级品5件二级品,从 中任取3件,其中至少有1件为二级品的概率是多少? 解法一:设A=恰有1件二级品; B=恰有2件二级品 C=恰有3件二级品,则
巩固:①课本P127练习
1答;⒈⑴是互斥事件(因为所取的2件产品中恰有1件 次品是指1件是次品、另1件是正品,它同2件全是次品 互斥),但不是对立事件(2件全是次品的对立事件为 其中含有正品)
⑵不是互斥事件(因“有次品”包括1件是次品、 另1件是正品和2件全是次品这两种结果) ⑶不是互斥事件 ⑷是互斥事件,也是对立事件。
⑶这样的事件A与B的概率关系如何呢?
①对立事件的概念: ⑴对于上述问题中的事件A与B,由于它 们是不可能同时发生,所以它们是互斥 事件;又由于摸出的1个球要么是红球 要么是白球,所以事件A与B必有一个发生 对于事件A和B,如果它们互斥,且其中必有一个要发生, 则称A和B为对立事件。
⑵事件A的对立事件通常记作 A
⑶在一次试验中,两个互斥事件有可能不发生,只有两个互 斥事件在一次试验中必有一个发生时,这样的两个互斥事件 才叫做对立事件,也就是说两个互斥事件不一定是对立事件 而两个对立事件必是互斥事件,即两个事件对立是这两个事 件互斥的充分不必要条件
⑷从集合的角度看,由事件 A 所含的结

高三数学 第71课时 互斥事件有一个发生的概率教案

高三数学 第71课时 互斥事件有一个发生的概率教案

课题:互斥事件有一个发生的概率教学目标:了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率 教学重点:会用互斥事件的概率加法公式计算一些事件的概率 .(一) 主要知识及主要方法:1.互斥事件的概念:不可能同时发生的个事件叫做互斥事件.A 、B 互斥,即事件A 、B 不可能同时发生,这时()0P A B =,()()()P A B P A P B +=+一般地:如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥.2.对立事件的概念:事件A 和事件B 必有一个发生的互斥事件 A 、B 对立,即事件A 、B 不可能同时发生,但A 、B 中必然有一个发生这时()0P A B =,()P A B +()P A = ()1P B +=,一般地,()()A P A p -=1.3.对于互斥事件要抓住如下的特征进行理解: 第一,互斥事件研究的是两个事件之间的关系;第二,所研究的两个事件是在一次试验中涉及的;第三,两个事件互斥是从试验的结果不能同时出现来确定的.从集合角度来看,A 、B 两个事件互斥,则表示A 、B 这两个事件所含结果组成的集合的交集是空集.对立事件是互斥事件的一种特殊情况,是指在一次试验中有且仅有一个发生的两个事件,集合A 的对立事件记作A ,从集合的角度来看,事件A 所含结果的集合正是全集U 中由事件A 所含结果组成集合的补集,即A A U =,A A =∅。

对立事件一定是互斥事件,但互斥事件不一定是对立事件.当A 和B 互斥时,事件A B +的概率满足加法公式:()()()P A B P A P B +=+(A 、B 互斥)当计算事件A 的概率()P A 比较困难时,有时计算它的对立事件A 的概率则要容易些,为此有()()1P A P A =-. 4.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么 12()n P A A A +++=12()()()n P A P A P A +++.5.分类讨论思想:分类讨论思想是解决互斥事件有一个发生的概率的一个重要的指导思想.(二)典例分析:问题1.()1从装有2个红球和2各白球的口袋中任取两个球,那么下列事件中互斥事件的个数是 .A 0个 .B 1个 .C 2个 .D 3个①至少有1个白球,都是白球;②至少有1个白球,至少有1个红球;③恰有1个白球,恰有2个白球;④至少有1个白球,都是红球.()2将一枚骰子向上抛掷一次,设事件A 表示向上的一面出现奇数点,事件B 表示向上的一面出现的点数不超过3,事件C 表示向上的一面出现的点数不少于4,则.A A 与B 是互斥而非对立事件 .B A 与B 是对立事件.C B 与C 互斥而非对立事件 .D B 与C A 与B 是对立事件问题2.()1从分别写有0,1,2,3,4,5的六件卡片中,任取三张并组成三位数,计算:①这个三位数是偶数的概率;②这个三位数能被三整除的概率;③这个三位数比340小的概率.()2(07天津)已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.①略;②求取出的4个球中恰有1个红球的概率;③略.()3(07重庆)从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为.A 14.B79120.C34.D2324问题3.从男女生共有36人的班中,选出两名代表,每人当选的机会均等,如果选的同性代表的概率是12,求该班中男女相差几名?问题4.(07全国Ⅱ文)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率()0.96P A=.()1求从该批产品中任取1件是二等品的概率p;()2若该批产品共100件,从中任意抽取2件,求事件B:“取出的2件产品中至少有一件二等品”的概率()P B.(三)课后作业:1.()1袋中有9个编号为1,2,3,…,9的小球,从中任意随机取出2个,求至少有1个编号为奇数的概率;()2同时掷3枚骰子时,求出现的点数的和是5的倍数的概率.(四)走向高考:2.(05重庆文)若10把钥匙中只有2把能打开某锁,则从中任取2把能将该锁打开的概率为3.(06四川)从0到9这10个数字中任取3个数字组成一个没有重复数字的三位数,这个数不能被3整除的概率为.A 1954.B3554.C3854.D41604.(06浙江)甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n 个白球.两甲,乙两袋中各任取2个球.()1若3n =,求取到的4个球全是红球的概率;()2若取到的4个球中至少有2个红球的概率为43,求n .。

高中数学第2课时 互斥事件(2)人教版必修三

高中数学第2课时   互斥事件(2)人教版必修三

普通高中课程标准实验教科书—数学必修三[苏教版]§3.4第2课时 互斥事件(2)教学目标(1)了解互斥事件及对立事件的概念,能判断某两个事件是否是互斥事件,进而判断它们是否是对立事件.(2)了解两个互斥事件概率的加法公式,知道对立事件概率之和为1的结论.会用相关公式进行简单概率计算.(3)注意学生思维习惯的培养,在顺向思维受阻时,转而逆向思维. 教学重点互斥事件和对立事件的概念,互斥事件中有一个发生的概率的计算公式. 教学难点利用对立事件的概率间的关系把一个复杂事件的概率计算转化成求其对立事件的概率.教学过程一、复习回顾1.判别下列每对事件是不是互斥事件,如果是,再判别它们是不是对立事件.从一堆产品(其中正品与次品都多于2个)中任取2件,其中:(1)恰有1件次品和恰有2件正品;(2)至少有1件次品和全是次品;(3)至少有1件正品和至少有1件次品;(4)至少有1件次品和全是正品;答案:(互斥但不对立,不互斥,不互斥,互斥对立)2.在一个盒子内放有10个大小相同的小球,其中有7个红球、2个绿球、1个黄球,从中任取一个球,求:⑴得到红球的概率; ⑵得到绿球的概率; ⑶得到红球或绿球的概率; ⑷得到黄球的概率.(5) “得到红球”和“得到绿球”这两个事件A 、B 之间有什么关系,可以同时发生吗?(6) ⑶中的事件D “得到红球或者绿球”与事件A 、B 有何联系?答案:(1)107 (2)51 (3)109 (4)101 (5)互斥事件 (6))()()(B P A P D P +=. 二、数学运用1.例题例1.在一只袋子中装有7个红玻璃球,3个绿玻璃球.从中无放回地任意抽取两次,每次只取一个.试求:(1)取得两个红球的概率; (2)取得两个绿球的概率;(3)取得两个同颜色的球的概率; (4)至少取得一个红球的概率. (答案: (1)157 (2)151 (3)158 (4)1514) 例2.盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试求下列事件的概率:(1)取到的2只都是次品; (2)取到的2只中正品、次品各一只;(3)取到的2只中至少有一只正品.解:从6只灯泡中有放回地任取两只,共有36种不同取法. (1)取到的2只都是次品情况为4种.因而所求概率为91364=. (2)由于取到的2只中正品、次品各一只有两种可能:第一次取到正品,第二次取到次品;及第一次取到次品,第二次取到正品.因而所求概率为9423624=⨯⨯=P . (3)由于“取到的两只中至少有一只正品”是事件“取到的两只都是次品”的对立事件.因而所求概率为98911=-=P . 例3.从男女学生共有36名的班级中,任意选出2名委员,任何人都有同样的当选机会.如果选得同性委员的概率等于21,求男女生相差几名? 解:设男生有x 名,则女生有x -36名.选得2名委员都是男性的概率为3536)1(⨯-x x . 选得2名委员都是女性的概率为3536)35)(36(⨯--x x . 上两种选法是互斥的,又选得同性委员的概率等于21,得213536)35)(36(3536)1(=⨯--+⨯-x x x x .解得15=x 或21=x即男生有15名,女生有36-15=21名,或男生有21名,女生有36-21=15名.总之,男女生相差6名.2.练习1.若A 表示四件产品中至少有一件是废品的事件,B 表示废品不少于两件的事件,试问对立事件A 、B 各表示什么?答案:(A 表示四件产品中没有废品的事件;B 表示四件产品中没有废品或只有一件废品的事件.)2.下列说法中正确的是( D )A .事件A 、B 中至少有一个发生的概率一定比A 、B 中恰有一个发生的概率大B .事件A 、B 同时发生的概率一定比事件A 、B 恰有一个发生的概率小C .互斥事件一定是对立事件,对立事件不一定是互斥事件D .互斥事件不一定是对立事件,对立事件一定是互斥事件3.回答下列问题:(1)甲、乙两射手同时射击一目标,甲的命中率为0.65,乙的命中率为0.60,那么能否得出结论:目标被命中的概率等于0.65+0.60=1.25,为什么?(2)一射手命中靶的内圈的概率是0.25,命中靶的其余部分的概率是0.50,那么能否得出结论:目标被命中的概率等于0.25+0.50=0.75,为什么?(3)两人各掷一枚硬币,“同时出现正面”的概率可以算得为221.由于“不出现正面”是上述事件的对立事件,所以它的概率等于432112=-这样做对吗?说明道理.解: (1)不能.因为甲命中目标与乙命中目标两事件不互斥.(2)能.因为命中靶的内圈和命中靶的其余部分是互斥事件.(3)不对.因为“不出现正面”与“同时出现正面”不是对立事件,故其概率和不为1.4. 某市派出甲、乙两支球队参加全省足球冠军赛.甲乙两队夺取冠军的概率分别是73和41.试求该市足球队夺得全省足球冠军的概率.(2819) 5. 在房间里有4个人.问至少有两个人的生日是同一个月的概率是多少?(9641) 6.某单位36人的血型类别是:A 型12人,B 型10人,AB 型8人,O 型6人.现从这36人中任选2人,求此2人血型不同的概率.(4534) 五、回顾小结:1.互斥事件和对立事件的概念;2.互斥事件中有一个发生的概率的计算公式;3.对立事件的概率间的关系.六、课外作业:课本第109页第5,7题、第112页第3,9题.。

22 高中数学概率的问题

22 高中数学概率的问题

专题22高中数学概率的问题【知识总结】1.古典概型的概率公式P (A )=事件A 包含的样本点数试验的样本点总数. 2.独立重复试验如果事件A 在一次试验中发生的概率是p ,那么它在n 次独立重复试验中恰好发生k 次的概率为P n (k )=C k n p k (1-p )n -k ,k =0,1,2,…,n . 3.相互独立事件同时发生的概率:若A ,B 相互独立,则P (AB )=P (A )·P (B ).4.互斥事件至少有一个发生的概率:若事件A ,B 互斥,则P (A ∪B )=P (A )+P (B ),P (A -)=1-P (A ).5.条件概率公式设A ,B 为随机事件,且P(A)>0,则P (B |A )=P (AB )P (A ). 【高考真题】1.(2022·全国乙理)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为 ____________.2.(2022·全国甲理) 从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________. 3.(2022·全国甲文) 从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为( )A .15B .13C .25D .23 4.(2022·新高考Ⅰ) 从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( ) A .16 B .13 C .12 D .235.(2022·全国乙理) 某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、 乙、丙比赛获胜的概率分别为123, , p p p ,且3210p p p >>>.记该棋手连胜两盘的概率为p ,则( ) A .p 与该棋手和甲、乙、丙的比赛次序无关 B .该棋手在第二盘与甲比赛,p 最大 C .该棋手在第二盘与乙比赛,p 最大 D .该棋手在第二盘与丙比赛,p 最大【题型分类】题型一 古典概型1.(2021·全国甲)将4个1和2个0随机排成一行,则2个0不相邻的概率为( )A .13B .25C .23D .452.已知多项选择题的四个选项A ,B ,C ,D 中至少有两个选项正确,规定:如果选择了错误选项就不得 分.若某题的正确答案是ABC ,某考生随机选了两个选项,则其得分的概率为( )A .12B .310C .16D .3113.有4个大小、形状相同的小球,装在一个不透明的袋子中,小球上分别标有数字1,2,3,4.现每次有放 回地从中随机取出一个小球,直到标有偶数的球都取到过就停止.小明用随机模拟的方法估计恰好在第4次停止摸球的概率,利用计算机软件产生随机数,每1组中有4个数字,分别表示每次摸球的结果,经随机模拟产生了以下21组随机数:1314 1234 2333 1224 3322 1413 31244321 2341 2413 1224 2143 4312 24121413 4331 2234 4422 3241 4331 4234由此可以估计恰好在第4次停止摸球的概率为( )A .23B .13C .27D .5214.从4双不同尺码的鞋子中随机抽取3只,则这3只鞋子中任意两只都不成双的概率为( )A .114B .37C .47D .345.定义:abcde =10 000a +1 000b +100c +10d +e ,当五位数abcde 满足a <b <c ,且c >d >e 时,称这个 五位数为“凸数”.由1,2,3,4,5组成的没有重复数字的五位数共120个,从中任意抽取一个,则其恰好为“凸数”的概率为( )A .16B .110C .112D .1206.《史记》卷六十五《孙子吴起列传第五》中有这样一道题:齐王与田忌赛马,田忌的上等马劣于齐王的 上等马,优于齐王的中等马,田忌的中等马劣于齐王的中等马,优于齐王的下等马,田忌的下等马劣于齐王的下等马,现两人进行赛马比赛,比赛规则为:每匹马只能用一次,每场比赛双方各出一匹马,共比赛三场.每场比赛中胜者得1分,否则得0分.若每场比赛之前彼此都不知道对方所用之马,则比赛结束时,田忌得2分的概率为________.7.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分 为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A .516B .1132C .2132D .11168.“六艺”出自《周礼·地官司徒·保氏》,是指礼、乐、射、御、书、数.已知某人觉得“君子不学礼无 以立”,而其两个孩童对“数”均有浓厚兴趣,该人依据自己能力,只能为每个孩童选择六艺中的四艺进行培养,若要令该人和两个孩童对所选的四艺都满意,那么两个孩童至少有一个选到“御”的概率为( )A .12B .34C .59D .459.甲、乙、丙三人被系统随机地预约到A ,B ,C 三家医院接种新冠疫苗,每家医院恰有1人预约.已知 A 医院接种的是只需要打一针的腺病毒载体新冠疫苗,B 医院接种的是需要打两针的灭活新冠疫苗,C 医院接种的是需要打三针的重组蛋白新冠疫苗,问:甲不接种只打一针的腺病毒载体新冠疫苗且丙不接种需要打三针的重组蛋白新冠疫苗的概率等于( )A .13B .23C .12D .1910.北斗导航系统由55颗卫星组成,于2020年6月23日完成全球组网部署,全面投入使用.北斗七星自古是我国人民辨别方向判断季节的重要依据,北斗七星分别为天枢、天璇、天玑、天权、玉衡、开阳、摇光,其中玉衡最亮,天权最暗,一名天文爱好者从七颗星中随机选两颗进行观测,则玉衡和天权至少一颗被选中的概率为( )A .1021B .1121C .1142D .521题型二 相互独立事件与独立重复试验11.(2021·新高考全国Ⅰ)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )A .甲与丙相互独立B .甲与丁相互独立C .乙与丙相互独立D .丙与丁相互独立12.某国产杀毒软件的比赛规则为每个软件进行四轮考核,每轮考核中能够准确对病毒进行查杀的进入下一轮考核,否则被淘汰.已知某个软件在四轮考核中能够准确杀毒的概率依次是56,35,34,13,且各轮考核能否通过互不影响,则( )A .该软件通过考核的概率为18B .该软件在第三轮考核被淘汰的概率为18C .该软件至少能够通过两轮考核的概率为23D .在此次比赛中该软件平均考核了6524轮13.甲、乙两个球队进行篮球决赛,采取五局三胜制(共赢得三场比赛的队伍获胜,最多比赛五局),每场球赛无平局.根据前期比赛成绩,甲队的主场安排为“主客主主客”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛相互独立,则甲队以3∶2获胜的概率为________.14.小明在做一个与扔质地均匀的正六面体骰子有关的游戏,规定:若骰子1点或2点向上,则小明前进1步,若骰子3点或4点向上,则小明前进2步,若骰子5点或6点向上,则小明前进3步.小明连续扔了三次骰子,则他一共前进了8步的概率是( )A .127B .227C .19D .2915.在一次“概率”相关的研究性活动中,老师在每个箱子中装了10个小球,其中9个是白球,1个是黑球,用两种方法让同学们来摸球.方法一:在20箱中各任意摸出一个小球;方法二:在10箱中各任意摸出两个小球.将方法一、二至少能摸出一个黑球的概率分别记为p 1和p 2,则( )A .p 1=p 2B .p 1<p 2C .p 1>p 2D .以上三种情况都有可能16.(多选)甲、乙两人练习射击,命中目标的概率分别为12和13,甲、乙两人各射击一次,下列说法正确的 是( )A .目标恰好被命中一次的概率为12+13B .目标恰好被命中两次的概率为12×13C .目标被命中的概率为12×23+12×13D .目标被命中的概率为1-12×2317.甲、乙两人进行象棋比赛,采取五局三胜制(当一人先赢3局时获胜,比赛结束).棋局以红棋与黑棋对阵,两人执色轮流交换,执红棋者先走.假设甲执红棋时取胜的概率为23,执黑棋时取胜的概率为12,各局比赛结果相互独立,且没有和局.若比赛开始,甲执红棋开局,则甲以3∶2获胜的概率为________.18.如图,已知电路中3个开关闭合的概率都是12,且是相互独立的,则灯 亮的概率为( )A .38B .12C .58D .7819.甲、乙两队进行排球比赛,采取五局三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩可知在每一局比赛中,甲队获胜的概率为23,乙队获胜的概率为13.若前两局中乙队以2∶0领先,则下列说法中正确的有________(填序号).①甲队获胜的概率为827;②乙队以3∶0获胜的概率为13; ③乙队以3∶1获胜的概率为29;④乙队以3∶2获胜的概率为49. 20.甲、乙两运动员进行乒乓球比赛,采用7局4胜制.在一局比赛中,先得11分的运动员为胜方,但打到10平以后,先多得2分者为胜方.在10平后,双方实行轮换发球法,每人每次只发1个球.若在某局比赛中,甲发球赢球的概率为12,甲接发球赢球的概率为25,则在比分为10∶10后甲先发球的情况下,甲以13∶11赢下此局的概率为( )A .225B .310C .110D .325题型三 条件概率与全概率21.2020年12月4日是第七个“国家宪法日”.某中学开展主题为“学习宪法知识,弘扬宪法精神”的知识竞赛活动,甲同学答对第一道题的概率为23,连续答对两道题的概率为12.用事件A 表示“甲同学答对第一道题”,事件B 表示“甲同学答对第二道题”,则P (B |A )=( )A .13B .12C .23D .3422.篮子里装有2个红球,3个白球和4个黑球.某人从篮子中随机取出2个球,记事件A 为“取出的2个球颜色不同”,事件B 为“取出1个红球,1个白球”,则P (B |A )等于( )A .16B .313C .59D .2323.某公司为方便员工停车,租了6个停车位,编号如图所示.公司规定:每个车位只能停一辆车,每个员工只允许占用一个停车位.记事件A 为“员工小王的车停在编号为奇数的车位上”,事件B 为“员工小李的车停在编号为偶数的车位上”,则P (A |B )等于( )A .16B .310C .12D .3524.已知盒中装有3个红球、2个白球、5个黑球,它们大小形状完全相同,现需一个红球,甲每次从中任取一个不放回,则在他第一次拿到白球的条件下,第二次拿到红球的概率为( )A .310B .13C .38D .2925.某保险公司将其公司的被保险人分为三类:“谨慎的”“一般的”“冒失的”.统计资料表明,这三类人在一年内发生事故的概率依次为0.05,0.15,0.30.若该保险公司的被保险人中“谨慎的”被保险人占20%,“一般的”被保险人占50%,“冒失的”被保险人占30%,则该保险公司的一个被保险人在一年内发生事故的概率是( )A .0.155B .0.175C .0.016D .0.09626.已知某公路上经过的货车与客车的数量之比为2∶1,货车和客车中途停车修理的概率分别为0.02,0.01,则一辆汽车中途停车修理的概率为( )A .1100B .160C .150D .13027.(多选)为庆祝建党100周年,讴歌中华民族实现伟大复兴的奋斗历程,增进全体党员干部职工对党史知识的了解,某单位组织开展党史知识竞赛活动,以支部为单位参加比赛,某支部在5道党史题中(有3道选择题和2道填空题),不放回地依次随机抽取2道题作答,设事件A 为“第1次抽到选择题”,事件B 为“第2次抽到选择题”,则下列结论中正确的是( )A .P (A )=35B .P (AB )=310C .P (B |A )=12D .P (B |A )=1228.甲、乙两个均匀且完全一样的四面体,每个面都是正三角形,甲四个面上分别标有数字1,2,3,4,乙四个面上分别标有数字5,6,7,8,同时抛掷这两个四面体一次,记事件A 为“两个四面体朝下一面的数字之和为奇数”,事件B 为“甲四面体朝下一面的数字为奇数”,事件C 为“乙四面体朝下一面的数字为偶数”,则下列结论正确的是( )A .P (A )=P (B )=P (C ) B .P (BC )=P (AC )=P (AB )C .P (ABC )=18D .P (B |A )=1229.有三个箱子,分别编号为1,2,3.1号箱装有1个红球、4个白球,2号箱装有2个红球、3个白球,3号箱装有3个红球.某人从三个箱子中任取一箱,从中任意摸出一球,取得红球的概率为________.30.有3台车床加工同一型号的零件.第1台加工的次品率为6%,第2,3台加工的次品率均为5%,加工出来的零件混放在一起.已知第1,2,3台车床的零件数分别占总数的25%,30%,45%,则下列选项正确的有( )A .任取一个零件是第1台生产出来的次品概率为0.06B .任取一个零件是次品的概率为0.052 5C .如果取到的零件是次品,且是第2台车床加工的概率为27D .如果取到的零件是次品,且是第3台车床加工的概率为27。

高二数学课本知识点总结归纳(8篇)

高二数学课本知识点总结归纳(8篇)

高二数学课本知识点总结归纳(8篇)高二数学课本知识点总结归纳(8篇)你知道哪些高二数学知识点是真正对我们有帮助的吗在平凡的学习生活中,大家都背过各种知识点吧知识点就是一些常考的内容,或者考试经常出题的地方。

下面是小编给大家整理的高二数学课本知识点总结归纳,仅供参考希望能帮助到大家。

高二数学课本知识点总结归纳篇1高二数学知识点11、导数的定义:在点处的导数记作、2、导数的几何物理意义:曲线在点处切线的斜率①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。

V=s/(t)表示即时速度。

a=v/(t)表示加速度。

3、常见函数的导数公式:4、导数的四则运算法则:5、导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

(2)求极值的步骤:①求导数;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数值与最小值的步骤:ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。

高二数学知识点2等差数列:对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn。

那么,通项公式为,其求法很重要,利用了“叠加原理”的思想:将以上n—1个式子相加,便会接连消去很多相关的项,最终等式左边余下an,而右边则余下a1和n—1个d,如此便得到上述通项公式。

此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的方法,在此,不再复述。

值得说明的是,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2为公差的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解。

等比数列:对于一个数列{an},如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比q;从第一项a1到第n项an的总和,记为Tn。

新教材高中数学第七章概率2古典概型第2课时互斥事件概率的求法课件北师大版必修第一册

新教材高中数学第七章概率2古典概型第2课时互斥事件概率的求法课件北师大版必修第一册

3
P(D)=1-P()=1-27
8
不完全相同”的概率为9.
பைடு நூலகம்
=
8
.
9
规律方法 较复杂的古典概型问题的转化策略
(1)设法把一个复杂事件分拆为几个互斥事件,然后求出各事件的概率,用
加法公式得出结果.
(2)当直接计算复合条件的事件的概率比较麻烦时,可间接地计算出其对立
事件的概率,再用对立事件的概率公式求解.

5
4
2
1
P(A1)= ,P(A2)= ,P(A3)= ,P(A4)= .
12
12
12
12
根据题意知,事件A1,A2,A3,A4彼此互斥,
由互斥事件的概率加法公式,得
(1)取出的 1 球为红球或黑球的概率为
5
4
P(A1∪A2)=P(A1)+P(A2)=12 + 12
(2)取出的 1 球为红球或黑球或白球的概率为 P(A1∪A2∪
1
∴P(B+C+D)=1-P(A)=1-3
=
2
.
3
∵B 与 C+D 互斥,B+C 与 D 互斥,
2
5
∴P(B)=P(B+C+D)-P(C+D)=3 − 12
=
2
5
P(D)=P(B+C+D)-P(B+C)=3 − 12
1
,
4
=
1
,
4
1
1
1
5
P(C)=1-P(A+B+D)=1-(P(A)+P(B)+P(D))=1-( + + )=13

11.2互斥事件有一个发生的概率.许兴华

11.2互斥事件有一个发生的概率.许兴华


[新课内容]
6.两个对立事件的概率关系
根据对立事件的定义,与A为互斥事件 A 是一个必然事件, AA
P(A) P(A) P(A A) 1
即对立事件的概率的和等于1.
P(A) 1 - P(A)
N S E 许E V 课
兴T华
Firstpage首页 upward return next last 铃

[新课内容]
1.互斥事件的定义 不可能同时发生的两个事件叫做互 斥事件. 一般地,如果A1,A2,…,An中的任何 两个都是互斥事件,那么就说 A1,A2,…,An彼此互斥.
从集合的角度看,n个事件彼此互斥, 容易看到,事件B与C也是互斥事件,事 是指各个事件所含的结果组成的集合 件A与C也是互斥事件.可以说A、B、 彼此不相交. C彼此互斥.
Firstpage首页 upward return next last 铃
N S E 许E V 课
兴T华

(课本P146习题之5)
C C C 5. (way1)P 2 6 C9
1 4 1 5 2 5
C 5. (way2)P 1 C 6
N S E 许E V 课
2 4 2 9
兴T华
Firstpage首页 upward return next last 铃
色代表用 突出的三个角代表经过 刻苦 四周的紫红色围绕着绿 能成功 ! 钻研可以出类拔萃出人 头地 高度的热情钻研数学才
含义 : 中文许兴华, 英文Steven 代表双语教学
图中有三角形圆形五边 形扇 本图标由许兴华 形代表数学中数形结合 思想 于20101125设计 兴T华 图中共有5种颜色代表数学世界 N S 许E V 课 五彩缤纷丰富多姿具有 无穷无尽的魅力铃 件 upward return next last Firstpage

高中数学 第3章 概率 §2 2.3 互斥事件数学教案

高中数学 第3章 概率 §2 2.3 互斥事件数学教案

2.3 互斥事件1.互斥事件的定义在一个随机试验中,我们把一次试验下不能同时发生的两个事件A与B称作互斥事件.2.事件A与B至少有一个发生给定事件A,B,我们规定A+B为一个事件,事件A+B发生是指事件A和事件B至少有一个发生.根据上述定义推广可得:事件A1+A2+…+A n表示在一次随机试验中,事件A1,事件A2,…,事件A n中至少有一个发生.3.互斥事件的概率加法公式一般地,如果事件A,B互斥,那么事件A+B发生(即A,B中至少有一个发生)的概率等于事件A,B分别发生的概率的和,即P(A+B)=P(A)+P(B).这个公式称为互斥事件的概率加法公式.如果事件A1,A2,…,A n彼此互斥,那么事件A1+A2+…+A n发生(即A1,A2,…,A n中至少有一个发生)的概率,等于这n个事件分别发生的概率的和,即P(A1+A2+…+A_n)=P(A1)+P(A2)+…+P(A n).二、对立事件及其概率的求法公式1.定义在每一次试验中,如果两个事件A与B不能同时发生,并且一定有一个发生,那么事件A与B称作是对立事件,事件A的对立事件记为A.2.性质P(A)+P(A)=1,即P(A)=1-P(A).思考:(1)在掷骰子的试验中,事件A={出现的点数为1},事件B={出现的点数为奇数},事件A与事件B应有怎样的关系?(2)判断两个事件是对立事件的条件是什么?[提示](1)因为1为奇数,所以A⊆B.(2)①看两个事件是不是互斥事件;②看两个事件是否必有一个发生.若满足这两个条件,则是对立事件;否则不是.1.对同一事件来说,若事件A是必然事件,事件B是不可能事件,则事件A与事件B 的关系是()A.互斥不对立B.对立不互斥C.互斥且对立D.不互斥、不对立C[必然事件与不可能事件不可能同时发生,但必有一个发生,故事件A与事件B的关系是互斥且对立.]2.从一批产品中取出三件产品,设A={三件产品全不是次品},B={三件产品全是次品},C={三件产品有次品,但不全是次品},则下列结论哪个是正确的() A.A与C互斥B.B与C互斥C.任何两个都互斥D.任何两个都不互斥C[由题意可知,事件A,B,C两两不可能同时发生,因此两两互斥.]3.从1,2,3,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是()A.①B.②④C.③D.①③C[从1~9中任取两个数,有以下三种情况.(1)两个均为奇数,(2)两个均为偶数,(3)一个奇数和一个偶数,故③为对立事件.]4.从几个数中任取实数x,若x∈(-∞,-1]的概率是0.3,x是负数的概率是0.5,则x∈(-1,0)的概率是________.0.2[设“x∈(-∞,-1]”为事件A,“x是负数”为事件B,“x∈(-1,0)”为事件C,由题意知,A,C为互斥事件,B=A+C,∴P(B)=P(A)+P(C),P(C)=P(B)-P(A)=0.5-0.3=0.2.]互斥事件与对立事件的判断每对事件是不是互斥事件,如果是,再判断它们是不是对立事件.(1)恰有1名男生与恰有2名男生;(2)至少1名男生与全是男生;(3)至少1名男生与全是女生.[解]从3名男生和2名女生中任选2名同学有3类结果:两男或两女或一男一女.(1)因为恰有1名男生与恰有2名男生不可能同时发生,所以它们是互斥事件但不是对立事件;(2)当恰有2名男生时,至少1名男生与全是男生同时发生,所以它们不是互斥事件.(3)因为至少1名男生与全是女生不可能同时发生,所以它们是互斥事件,由于它们必有一个发生,所以它们是对立事件.1.判断两个事件是否为互斥事件,主要看它们能否同时发生.若能同时发生,则这两个事件不是互斥事件;若不能同时发生,则这两个事件是互斥事件.2.判断两个事件是否为对立事件,主要看是否同时满足两个条件:一是不能同时发生;二是必有一个发生.这两个条件同时成立,那么这两个事件是对立事件,只要有一个条件不成立,那么这两个事件就不是对立事件.[跟进训练]1.(1)抛掷一枚骰子,记事件A为“落地时向上的数是奇数”,事件B为“落地时向上的数是偶数”,事件C为“落地时向上的数是2的倍数”,事件D为“落地时向上的数是2或4”,则下列每对事件是互斥事件但不是对立事件的是()A.A与B B.B与CC.A与D D.B与D(2)一个均匀正方体玩具的各个面上分别标有数字1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过3,事件C 表示向上的一面出现的点数不小于4,则下列结论正确的序号为________.①A与B是互斥而非对立事件;②A与B是对立事件;③B与C是互斥而非对立事件;④B与C是对立事件.(3)从装有2个红球和2个白球(球除颜色外其他均相同)的口袋中任取2个球,观察红球个数和白球个数,判断下列每对事件是不是互斥事件,如果是,再判断它们是不是对立事件.①至少有1个白球,都是白球;②至少有1个白球,至少有一个红球;③至少有1个白球,都是红球.[解](1)C(2)④[(1)A与D互斥,但不对立.(2)一个均匀正方体玩具的各个面上分别标有数字1,2,3,4,5,6.将这个玩具向上抛掷1次,所得到的基本事件有6种:得到的点数为1点、得到的点数为2点、得到的点数为3点、得到的点数为4点、得到的点数为5点、得到的点数为6点.事件A包含的结果有得到的点数为1点、得到的点数为3点、得到的点数为5点,事件B包含的结果有得到的点数为1点、得到的点数为2点、得到的点数为3点,事件C包含的结果有得到的点数为4点、得到的点数为5点、得到的点数为6点,所以B与C是对立事件.故填④.](3)解:①不是互斥事件.因为“至少有1个白球”即“1个白球1个红球或两个白球”和“都是白球”可以同时发生,所以不是互斥事件.②不是互斥事件.因为“至少有1个白球”即“1个白球1个红球或2个白球”,“至少有1个红球”即“1个红球1个白球或2个红球”,两个事件可以同时发生,故不是互斥事件.③是互斥事件也是对立事件.因为“至少有1个白球”和“都是红球”不可能同时发生,且必有一个发生,所以是互斥事件也是对立事件.互斥事件的概率 得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512. (1)求得到黑球、得到黄球及得到绿球的概率;(2)求得到的小球既不是黑球也不是绿球的概率.[思路探究] 从12球中任取一球,取到红球、黑球、白球互斥,所以可用互斥事件概率的加法公式求解.[解] (1)从袋中任取一球,记事件A 为“得到红球”,B 为“得到黑球”,C 为“得到黄球”,D 为“得到绿球”,则事件A ,B ,C ,D 两两互斥.由已知P (A )=13, P (B +C )=P (B )+P (C )=512, P (C +D )=P (C )+P (D )=512, ∴P (B +C +D )=1-P (A )=1-13=23. ∵B 与C +D ,B +C 与D 也互斥,∴P (B )=P (B +C +D )-P (C +D )=23-512=14, P (D )=P (B +C +D )-P (B +C )=23-512=14, P (C )=1-P (A +B +D )=1-(P (A )+P (B )+P (D ))=1-⎝⎛⎭⎫13+14+14 =1-56=16. 故得到黑球、得到黄球、得到绿球的概率分别是14,16,14. (2)∵得到的球既不是黑球也不是绿球,∴得到的球是红球或黄球,即事件A +C ,∴P (A +C )=P (A )+P (C )=13+16=12, 故得到的小球既不是黑球也不是绿球的概率为12. 1.解决本题的关键是明确取到不同颜色的球不可能同时发生,即互斥.由此可知用概率加法公式求解.2.若随机试验中,涉及多个事件,应先分析判断这几个事件是否互斥(或对立),若是,可利用互斥事件概率的加法公式求解.当某一事件包含几个互斥的事件时,求该事件发生的概率也用上述规律.[跟进训练]2.(1)一个口袋内装有大小相同的红球、白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,那么摸出红球的概率为( )A .0.42B .0.38C .0.2D .0.8(2)向三个相邻的军火库投一枚炸弹,炸中第一个军火库的概率为0.2,炸中第二个军火库的概率为0.12,炸中第三个军火库的概率为0.28,三个军火库中,只要炸中一个另两个也会发生爆炸,求军火库发生爆炸的概率.[解] (1)C [记分别摸一个球为红球、白球和黑球为事件A ,B ,C ,则A ,B ,C 为互斥事件,且A +B +C 为必然事件,由题意知P (A )+P (B )=0.58,P (A )+P (C )=0.62,P (A )+P (B )+P (C )=1,解得P (A )=0.2.](2)设A ,B ,C 分别表示炸中第一、第二及第三个军火库这三个事件,事件D 表示军火库爆炸,已知P (A )=0.2,P (B )=0.12,P (C )=0.28.又因为只投掷了一枚炸弹,故不可能炸中两个及以上军火库,所以A ,B ,C 是互斥事件,且D =A +B +C ,所以P (D )=P (A +B +C )=P (A )+P (B )+P (C )=0.2+0.12+0.28=0.6,即军火库发生爆炸的概率为0.6.对立事件的概率与求法 1.若令A =“小明考试及格”,A =“小明考试不及格”,则事件A 与事件A 能不能同时发生,或者都不发生?为什么?提示:不可能同时发生,由于事件A 与A 是互斥事件,所以不可能同时发生,事件A 与A 也不可能都不发生,因为一次考试中,小明的成绩要么及格,要么不及格,二者必居其一,故A 与A 必有一个发生.2.将一枚质地均匀的骰子随机抛掷一次,观察骰子向上一面的点数.设U =“出现点数的全体”,A =“出现的点数是偶数”,B =“出现的点数是奇数”,则A ,U 是互斥事件吗?A ,B 是互斥事件吗?B ,U 是互斥事件吗?”提示:A ,U 不是互斥事件,A ,B 是互斥事件,B ,U 不是互斥事件.【例3】 一盒中装有各色球12个,其中5个红球、4个黑球、2个白球、1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.[思路探究] 先设出有关的互斥事件,然后把所求事件的概率转化为求某些互斥事件和的概率,另外也可考虑用古典概型以及对立事件来解决.[解] 法一:利用等可能事件求概率.(1)从12个球中任取1球得红球有5种取法,得黑球有4种取法,得红球或黑球共有5+4=9(种)不同取法,任取1球有12种取法.所以任取1球得红球或黑球的概率为P 1=912=34. (2)从12个球中任取一球得红球有5种取法,得黑球有4种取法,得白球有2种取法.从而得红球或黑球或白球的概率为P 2=5+4+212=1112. 法二:利用互斥事件求概率.记事件A 1={任取1球为红球};A 2={任取1球为黑球};A 3={任取1球为白球};A 4={任取1球为绿球},则P (A 1)=512,P (A 2)=412,P (A 3)=212,P (A 4)=112.根据题意知,事件A1,A2,A3,A4彼此互斥,由互斥事件概率公式,得(1)取出1球为红球或黑球的概率为P(A1+A2)=P(A1)+P(A2)=512+412=34.(2)取出1球为红球或黑球或白球的概率为P(A1+A2+A3)=P(A1)+P(A2)+P(A3)=512+412+212=1112.法三利用对立事件求概率的方法.(1)由法二知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A1+A2的对立事件为A3+A4.所以取得1球为红球或黑球的概率为P(A1+A2)=1-P(A3+A4)=1-P(A3)-P(A4)=1-212-112=912=34.(2)A1+A2+A3的对立事件为A4,所以P(A1+A2+A3)=1-P(A4)=1-112=1112.求复杂事件的概率通常有两种方法:(1)将所求事件转化成几个彼此互斥的事件的和事件;(2)若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多,而其对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”.它常用来求“至少…”或“至多…”型事件的概率.[跟进训练]3.据统计,某储蓄所一个窗口等候的人数及相应概率如下表:(2)求至少2人排队等候的概率.[解]记在窗口等候的人数为0,1,2分别为事件A,B,C,则A,B,C两两互斥.(1)至多2人排队等候的概率是P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)至少2人排队等候的反面是“等候人数为0或1”,而等候人数为0或1的概率为P (A +B )=P (A )+P (B )=0.1+0.16=0.26,故至少2人排队等候的概率为1-0.26=0.74.1.互斥事件和对立事件既有区别又有联系.互斥未必对立;对立一定互斥.2.互斥事件的概率加法公式是一个很基本的计算公式,解题时要在具体的情景中判断各事件间是否互斥,只有互斥事件才能用概率加法公式P (A +B )=P (A )+P (B ).3.求复杂事件的概率通常有两种方法:(1)将所求事件转化成彼此互斥事件的并事件;(2)先求其对立事件的概率,再求所求事件的概率.1.思考辨析(1)已知事件A 与事件B ,则P (A +B )=P (A )+P (B ).( ) (2)若三个事件A ,B ,C 两两互斥,则P (A )+P (B )+P (C )=1.( )(3)事件A 与事件B 互斥,则事件A 与B 互为对立事件.( ) (4)事件A 与事件B 若满足P (A )+P (B )=1,则A ,B 是对立事件.( )[解析] (1)×,A 与B 互斥时,P (A +B )=P (A )+P (B ).(2)×,P (A )+P (B )+P (C )的值不确定.(3)×,A 与B 不一定对立.(4)×,例如a ,b ,c ,d 四个球,选中每个球的概率相同,事件A 为选中a ,b 两个球,则P (A )=12;事件B 为选中b ,c 两个球,则P (B )=12,则P (A )+P (B )=1,但A ,B 不是对立事件.[答案] (1)× (2)× (3)× (4)×2.某产品共有三个等级,分别为一等品、二等品和不合格品.从一箱产品中随机抽取1件进行检测,若“抽到一等品”的概率为0.65,“抽到二等品”的概率为0.3,则“抽到不合格品”的概率为________.0.05 [“抽到一等品”与“抽到二等品”是互斥事件,所以“抽到一等品或二等品”的概率为0.65+0.3=0.95,“抽到不合格品”与抽到“一等品或二等品”是对立事件,故其概率为1-0.95=0.05.]3.中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为37,乙夺得冠军的概率为14,那么中国队夺得乒乓球单打冠军的概率为________. 1928[由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以由互斥事件概率的加法公式得,中国队夺得女子乒乓球单打冠军的概率为37+14=1928.] 4.在数学考试中,小明的成绩在90分以上(含90分)的概率是0.18,在80分~89分的概率是0.51,在70分~79分的概率是0.15,在60分~69分的概率是0.09,在60分以下的概率是0.07.(1)求小明在数学考试中,取得80分以上(含80分)成绩的概率;(2)求小明考试及格的概率(60分才及格).[解] 分别记小明的成绩“在90分以上”“在80分~89分”“在70分~79分”“在60分~69分”为事件B ,C ,D ,E ,这四个事件彼此互斥.(1)小明的成绩在80分以上的概率是P (B +C )=P (B )+P (C )=0.18+0.51=0.69.(2)小明考试及格的概率是P (B +C +D +E )=P (B )+P (C )+P (D )+P (E )=0.18+0.51+0.15+0.09=0.93.。

互斥事件有一个发生的概率

互斥事件有一个发生的概率

互斥事件有一个发生的概率人教版高中数学必修系列:11.2互斥事件有一个发生的概率(备课资料)一、参考例题[例1]判断下列事件是否是互斥事件.(1)将一枚硬币连抛2次,设事件A:“两次出现正面”,事件B:“只有一次正面”;(2)对敌机连续射击两次,每次发射一枚炮弹,设事件A:“两次都击中敌机”,事件B:“至少有一次击中敌机”.分析:(1)中两事件不可能同时发生;(2)因为事件B中的结果中含有“两次都击中敌机”,所以事件A、B有可能同时发生.解:(1)事件A与B是互斥事件.(2)事件A与B不是互斥事件.评述:关键在于判断事件的结果是否有包容关系.[例2]在一个袋内装有均匀红球5只,黑球4只,白球2只,绿球1只,今从袋中任意摸取一球,计算:(1)摸出红球或黑球的概率.(2)摸出红球或黑球或白球的概率.分析:(1)设事件A:“摸出一球是红球”,事件B:“摸出一球是黑球”.因为事件A与B不可能同时发生,所以它们是互斥的.(2)设事件C:“摸出一球是白球”,则A、B、C彼此互斥.解:设事件A:“摸出一球是红球”,设事件B:“摸出一球是黑球”,设事件C:“摸出一球是白球”.∵A与B、B与C、C与A两两互斥,且P(A)= ,P(B)= ,P(C)∴(1)由互斥事件的概率加法公式,可知“摸出红球或黑球”的概率为P(A+B)=P(A)+P(B)(2)由互斥事件的概率加法公式,可知“摸出红球或黑球或白球”的概率为P(A+B+C) =P(A)+P(B)+P(C)[例3]某医院一天内派出医生下乡医疗,派出医生人数及其概率如下.医生人数012345人以上概率0.10.160.30.40.20.04求:(1)派出医生至多2人的概率;(2)派出医生至少2人的概率.分析:设“不派出医生”为事件A,“派出1名医生”为事件B,“派出2名医生”为事件C,“派出3名医生”为事件D,“派出4名医生”为事件E,“派出5名以上医生”为事件F,则有P(A)=0.1,P(B)=0.16,P(C)=0.3,P(D)=0.4,P(E)=0.2,P(F)=0.04.由于事件A、B、C、D、E、F彼此互斥,因此,(1)、(2)中的概率可求.解:设事件A:“不派出医生”,事件B:“派出1名医生”,事件C:“派出2名医生”,事件D:“派出3名医生”,事件E:“派出4名医生”,事件F:“派出5名以上医生”.∵事件A、B、C、D、E、F彼此互斥,且(A)=0.1,P(B)=0.16,P(C)=0.3,P(D)=0P(E)=0.2,P(F)=0. 04,∴“派出医生至多2人”的概率为P(A+B+C) =P(A)+P(B)+P(C) =0.1+0.16+0.3=0“派出医生至少2人”的概率为P(C+D+E+F) =P(C)+P(D)+P(E)+P(F)=0.3+0.4+0.2+0.04=0[例4]一批产品共50件,其中5件次品,45件合格品,从这批产品中任意抽取2件,求其中出现次品的概率.分析:由于从这批产品中任意取2件,出现次品可看成是两个互斥事件A:“出现一个次品”和事件B:“出现两个次品”中,有一个发生,故根据互斥事件的概率加法公式可求“出现次品”的概率.解:设事件A:“出现一个次品”,事件B:“出现两个次品”,∴事件A与B互斥.∵“出现次品”是事件A和B中有一个发生,∴P(A)P(B)∴所求的“出现次品”的概率为P(A+B)=P(A)+P(B)评述:注意对互斥事件概率加法公式的灵活运用.二、参考练习1.选择题(1)有10名学生,其中4名男生,6名女生,从中任选2名,则恰好是2名男生或2名女生的概率为A. BD.答案:D(2)一个口袋内装有大小相同的7个白球,3个黑球,5个红球,从中任取1球是白球或黑球的概率为A. BD.答案:B(3)某工厂的产品分一、二、三等品三种,在一般的情况下,出现一等品的概率为95%,出现二等品的概率为3%,其余均为三等品,那么这批产品中出现非三等品的概率为A.0.50B.00.97D.0.2答案:B(4)从1,2,3,4,5,6,7,8,9这九个数字中任取两个数,分别有下列事件,其中为互斥事件的是①恰有一个奇数和恰有一个偶数②至少有一个是奇数和两个数都是奇数③至少有一个是奇数和两个数都是偶数④至少有一个是奇数和至少有一个是偶数A.①B.②④C.③D.①③答案:C2.填空题(1)若事件A与B________,则称事件A与B是互斥的;若事件A1,A2,…,An彼此互斥,则P(A1+A2+…+An)=________.答案:不可能同时发生P(A1)+P(A2)+…+P(An)(2)甲、乙两人下棋,两个下成和棋的概率是,乙获胜的概率是,则乙输的概率是________.答案:(3)口袋内装有100个大小相同的红球、白球和黑球,其中红球有45个,从口袋中摸出一个球,摸出白球的概率是0.23,则摸出黑球的概率是________.答案:0.32(4)3人都以相同概率分配到4个单位中的每一个,则至少有2人被分配到一个单位的概率为________.答案:解答题(1)某地区的年降水量在下列范围内的概率如下表所示:年降水量(单位:mm)[100,150][150,200][200,250][250,300]概率0.100.250.200.12求:①降水量在[200,300]范围内的概率;②降水量在[100,250]范围内的概率.解:①P=0.20+0.12=0.32,∴降水量在[200,300]范围内的概率为0.32.②P=0.10+0.25+0.20=0∴降水量在[100,250]范围内的概率为0(2)从装有大小相同的4个红球,3个白球,3个黄球的袋中,任意取出2个球,求取出的2个球颜色相同的概率.分析:“2个球颜色相同”这一事件包括“2个球是红球”“2个球是白球”“2个球是黄球”3种结果.解:记“取出2个球为红球”为事件A,“取出2个球为白球”为事件B,“取出2个球为黄球”为事则A、B、C彼此互斥,且P(A)P(B)P(C)“2个球颜色相同”则可记为A+B+C, ∴P(A+B+C)=P(A)+P(B)+P(C)(3)有币按面值分类如下:壹分5枚,贰分3枚,伍分2枚,从中随机抽取3枚,试计算:①至少有2枚币值相同的概率;②3枚币值的和为7分的概率.分析:①至少有2枚币值相同包括恰好有2枚币值相同和3枚币值全相同2种情况;②3枚币值的和为7分包括“1枚伍分,2枚壹分”1种情况.解:①由题意可设“任取3枚币值各不相同”为事件A,则“至少有2枚币值相同”为事又∵P(A)∴P( )=1- .②设“3枚币值和为7分”为事件B,则P(B)评述:要注意认真分析题意,灵活应用对立事件的概率公式.●备课资料?一、参考例题[例1]抛掷一个均匀的正方体玩具,记事件A“落地时向上的数是奇数”,B为事件“落地时向上的数是偶数”,C为事件“落地时向上的数是3的倍数”,问下列事件是不是互斥事件,是不是对立事件?(1)A与B;(2)A与C;(3)B与C.分析:利用互斥事件与对立事件的概念.解:(1)∵事件A与事件B不可能同时发生,而且在试验中必有一个发生,∴事件A与B是互斥事件,也是对立事件.(2)∵事件A与C都可能含有同一结果“落地时向上的数为3”,故A与C可能同时发生.∴A与C不是互斥事件,因而也不是对立事件.(3)∵事件B与C都可能含有同一结果“落地时向上的数为6”,故B与C可能同时发生.∴B与C不是互斥事件.故也不是对立事件.[例2]某射手在一次射击中射中10环、9环、8环的概率分别为0.24、0.28、0.19,计算这一射手在一次射击中,不够8环的概率.分析:由于事件“射击击中不够8环”与事件“射击击中8环或8环以上”是相互对立事件,而后者的概率运用互斥事件中有一个发生的概率公式可求,因此利用对立事件的概率公式可求解.解:设事件A:“一次射击击中的不够8环”,事件B:“一次射击击中8环或8环以上”,∴事件A与B是互斥事件.∵事件A与B中必有一个发生,∴事件A与B又是对立事件.∴P(A)=1-P(B).∴P(B)=0.24+0.28+0.19=0∴P(A)=1-0.71=0.29.∴该射手在一次射击中不够8环的概率为0.29.评述:注意利用互斥事件中有一个发生的概率公式及对立事件的概率公式.[例3]有三个人,每人都以相同概率被分配到四个房间中的每一间,试求:(1)三人都分配到同一个房间的概率;(2)至少有两人分配到同一房间的概率.分析:(1)因为每人都以相同概率被分配到四个房间中的每一间,所以三人被分配到四个房间中的一间共有4×4×4=43种等可能性的结果出现,而事件“三人都分配到同一个房间”中含有4个结果,故根据等可能性的概率公式可求.(2)设事件A“至少有两人分配到同一房间”,事件B“三人都分配到不同的房间”,故事件A与B是对立事件.而P(B)因此,利用对立事件的概率关系可求P(A).解:(1)根据等可能事件的概率公式,得三人都分配到同一个房间的概率为P∴三人都分配到同一房间的概率为 .(2)设事件A“至少有两人分配到同一房间”,事件B“三人都分配到不同的房间”.∵事件A与B是对立事件,且P(B)∴P(A)=1- .∴至少有两人分配到同一房间的概率为 .[例4]某电子元件50个,其中一级品45个,二级品5个,从中任意取3个,试求至少有一个二级品的概率.分析:设事件A:“至少有一个二级品”,则事件A 是指事件“有一个二级品”“有两个二级品”“有三个二级品”中有一个发生,因而,可用互斥事件的概率加法公式计算.另外,事件A与事件“没有一个二级品”是对立事件,故利用对立事件的概率公式也可求解,且比较简便.解法一:设事件A:“至少有一个二级品”,它是指事件“有一个二级品”“有两个二级品”“有三个二级品”中有一个发生,由于上述三个事件是互斥的,∴P(A)= ≈0.2解法二:事件A与“没有一个二级品”是对立事件,而事件“没有一个二级品”的概率为 , ∴P(A)=1- ≈0.2∴至少有一个二级品的概率约为0.2[例5]某小组有男生6人,女生4人,现从中选出2人去校院开会,其中至少有1名女生的概率为多少?分析:设事件“至少有1名女生”为A,则事件A可看成是事件“有一名女生”“有两名女生”中有一个发生.而事件“有一名女生”和“有两名女生”是互斥的,所以P(A)可利用互斥事件概率加法公式求得.另外事件A 与事件“没有女生”是对立事件,而事件“没有女生”的概率P解法一:P(A)解法二:P(A)=1-P( )=1-∴至少有1名女生的概率是 .二、参考练习1.选择题(1)下列命题中,真命题的个数是①将一枚硬币抛两次,设事件A:“两次出现正面”,事件B:“只有一次出现反面”,则事件A与B是对立事件②若事件A与B为对立事件,则事件A与B为互斥事件③若事件A与B为互斥事件,则事件A与B为对立事件④若事件A与B为对立事件,则事件A+B为必然事件A.1B.2D.4答案:B(2)袋中装白球和黑球各3个,从中任取2球,则至多有1黑球的概率是A. BD.答案:B2.填空题(1)在10件产品中有8件一级品,2件二级品,现从中任选3件,设事件A:“所取的都是一级品”,则事件表示为________.答案:所取的不都是一级品(2)口袋内有一些大小相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.3,摸出黑球的概率是0.5,那么摸出白球的概率是________.答案:0.23.解答题(1)某班有学生50名,其中班干部5名,现从中选出2名作为学生代表,求:①选出的2名学生至少有1名是班干部的概率;②选出的2名学生中没有班干部的概率.解:①P=1- .②P(2)有红、黄、蓝三种颜色的信号旗各1面,按不同次序排列可组成不同的信号,并且可以用1面旗、2面旗或3面旗组成信号,求:①组成的信号是由1面或2面信号旗组成的概率;②组成的信号不是由1面信号旗组成的概率.解:①P= = ;②P=1- .(3)某班共有学生n(n≤50)个人,若一年以365天计算,列式表示至少有2人在同一天过生日的概率.解:记“至少有2人在同一天生日”为事件A,则“没有人在同一天生日”为事件A的对立事件,即 . ∵P( )∴P(A)=1- .(4)某单位的36人的血型分别是:A型的有12人,B 型的有10人,AB型的有8人,O型的有6人,如果从这个单位随机地找出两个人,那么这两个人具有不同的血型的概率是多少?解:记“两个人具有不同血型”为事件A,则“两个人血型相同”为事件A的对立事件,即,且“两个人为A型血”“两个人为B型血”“两个人为AB型血”“两个人为O型血”为彼此互斥事件,这些互斥事件只要有一个发生,则发生,而P( )∴P(A)=1-P( )=1- .(5)一个袋内装有3个红球,n个白球,从中任取2个,已知取出的球至少有一个是白球的概率是,求n的值.解:记“至少有一个是白球”为事件A,则“任取2球,全是红球”是事件A的对立事件,即 .又∵P( )由对立事件的概率公式P(A)+P( )=1,得P(A)=1-即n2+5n-204=0.解得n=12.评述:对于带有词语“至多”“至少”等类型的较复杂的概率计算问题,利用对立事件的概率公式可转化为求其对立事件的概率。

高二数学 互斥事件

高二数学 互斥事件

高二数学 互斥事件一、知识要点:1、互斥事件① 如果两个事件A 和B 不能同时发生,则称A 和B 是互斥事件。

② 如果事件n A A A ,,,21 中的任意两个都是互斥事件,就说事件n A A A ,,,21 彼此互斥。

2、对立事件两个互斥事件必有一个发生,则称这两个事件为对立事件。

事件A 的对立事件记为A 。

3、互斥事件的概率加法公式如果事件A ,B 为互斥,当事件A 、B 至少有一个发生,我们把这个事件记作A+B 。

如果事件A ,B 互斥,那么事件B A +发生的概率,等于事件A ,B 分别发生的概率的和,即)()()(B P A P B A P +=+.一般地,如果事件n A A A ,,,21 两两互斥,则)()()()(2121n n A P A P A P A A A P +++=+++4、对立事件的性质对立事件A 和A 必有一个发生,故A A +是必然事件,从而1)()()(=+=+A P A P A A P .因此,我们可以得到一个重要公式)(1)(A P A P -=。

5、互斥事件有与对立事件的区别与联系对立必互斥,互斥未必对立。

二、典型例题:例1、 某城市有甲、乙两种报纸供居民们订阅,记事件A 为“只订甲报”,事件B 为“至少订一种报”,事件C 为“至多订一种报”,事件D 为“不订甲报”,事件E 为“一种报也不订”。

判断下列每对事件是不是互斥事件;如果是,再判断它们是不是对立事件。

⑴A 与C ⑵B 与E ⑶B 与D ⑷B 与C ⑸C 与E(2)求射击1次,命中不足7环的概率。

例3、盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试求下列事件的概率:(1)取到的2只都是次品;(2)(2)取到的2只中正品、次品各一只;(3)取到的2只中至少有一只正品。

例4、鞋柜有4双不同的鞋,随机取出4只,试求下列事件的概率:(1)取出的鞋都不成对;(2)取出的鞋恰好有2只是成对的;(3)取出的鞋至少有2只成对;(4)取出的鞋全部成对。

高二数学互斥事件有一个发生的概率

高二数学互斥事件有一个发生的概率

A.
B.
C.
D.
• 3.某产品分甲、乙、丙三级,其中乙、丙两级均属次 品若生产中出现乙级品的概率为0.03,丙级品的概率为 0.01,则对成品抽查一件抽得正品的概率为( ) A.0.99 B.0.98 C.0.97 D.0.96 • 4.今有一批球票,按票价分类如下:10元票5张,20 元票3张,50元票2张,从这10张票中随机抽出3张,票 价和为70元的概率是_____.
补充例题: • 例 1. 今有标号为 1 、 2 、 3 、 4 、 5 的五封信,另有同 样标号的5个信封,现将5封信任意地装入五个信封 中,每个信封1封信,试求至少有2封信与信封标号 一致的概率.
• 例 2. 袋中装有红、黄、白 3 种颜色的球各 1 只,从 中每次任取1只,有放回地抽取3次,求:⑴3只全 是红球的概率,⑵ 3 只颜色全相同的概率,⑶ 3 只 颜色不全相同的概率,⑷ 3 只颜色全不相同的概 率.
强化训练: • 1、某射手在一次射击训练中,射中10环、 9环、8环、7环的概率分别为 0.21,0.23,0.25,0.28,计算这个射手在一次射 击中: (1)射中10环或7环的概率; (2)少于7环的概率.
2、学校文艺队有9人,每个队员唱歌,跳舞至少 会一门,已知会唱歌的有5人,会跳舞的有7人, 现从中选3人,且至少要有一位既会唱歌又会跳 舞的概率是多少?
基础练习: • 1、判别下列每对事件是不是互斥事件,如果是, 再判别它们是不是对立事件. 从一堆产品(其中正品与次品都多于2个)中任取2件, 其中: • (1)恰有1件次品和恰有2件次品; • (2)至少有1件次品和 全是次品; • (3)至少有1件正品和至少有1件次品; • (4)至少有1件次品和全是正品.
11.2互斥事件有一个发生的概率

(新人教A)高二数学同步辅导教材随机事件的概率

(新人教A)高二数学同步辅导教材随机事件的概率

高 二 数 学(第33周)主讲教师:刘海滨 【教学内容】1、随机事件的概率;2、互斥事件有一发生的概率;3、相互独立事件同时发生的概率。

【教学目标】使学生了解随机事件的统计规律性和随机事件概率的意义;了解等可能性事件的概率、互斥事件、相互独立事件的意义;会用排列组合的基本公式计算一些等可能性事件的概率;会用互斥事件的概率加法公式计算一些事件的概率;会用相互独立事件的概率乘法公式计算一些事件的概率;会计算事件在n 次独立重复试验中恰好发生k 次的概率。

【知识讲解】一、随机事件的概率1、随机事件及其概率(1)随机事件A 的频率指此事件发生的次数m 与试验总次数n 的比值,它是随着试验次数的改变而变化的,它具有一定的稳定性,即总在某个常数p 附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小,于是,我们给这个常数取个名字,叫随机事件的概率,记作P (A )。

(2)弄清随机事件概率的取值范围由于频率nm总介于0、1之间,因此由概率的定义知:对任意随机事件A ,有1)(0≤≤A P ;对必然事件I ,显然有P (I )=1,对不可能事件Φ,显然有P (Φ)=0。

2、等可能事件的概率nmA P =)(既是等可能事件概率的定义,又是计算这种概率的基本公式,利用这个式子计算概率时关键是求出m 、n 。

N 为一次试验中等可能出现的结果数,m 为某个事件A 所包含的结果数。

求n 时,应特别注意这n 种结果必须是等可能的,在这一点上是很容易出错的。

二、互斥事件有一发生的概率 1、关于“互斥事件”“互斥事件”就是“不可能同时发生的事件”。

2、“互斥事件”和“对立事件”都是就两个事件而言的,互斥事件是不可能同时发生的两个事件,而对立事件是其中发有一个发生的互斥事件,因此,对立事件必须是互斥事件,但互斥事件不一定是对立事件,也就是说“互斥”是“对立”的必要但不充分的条件。

三、相互独立事件同时发生的概率 1、相互独立事件及其同时发生的概率 (1)理解“相互独立”的含义相互独立事件是针对两个事件而言的,只不过这两个事件间的关系具有一定的特殊性,即其中一个事件是否发生对另一个事件发生的概率没有影响。

高二数学互斥事件

高二数学互斥事件

四、在求某些复杂事件(如“至多、至少”的 概率时,通常有两种方法:
1、将所求事件的概率化为若干互斥事件的概 率的和; 2、求此事件的对立事件的概率.
练一练:
1.对飞机连续射击两次 ,每次发射一枚炮弹.设 A {两次都击中},B {每次都没击中 },C {恰 有一次击中},D {至少有一次击中 },其中彼此 A与 B, A 与C, 互为对立事 互斥的事件是 __________ ________;
剑宗大宗主万仞善急怒の传讯吼道.“万仞善宗主,俺幽冥宗损失更大.谁能想到,楚家居然有如此强悍の援助?”董泽也充满了无奈.“董泽宗主不会是怕了楚家,打算忍气吞声吧?”万仞善冷笑.“自然不是!俺幽冥宗,可没有忍气吞声の习惯.不过,现在楚家有强大援助,实话实说,俺幽冥 宗有些拿不准.所以,俺想请万仞善宗主协助俺幽冥宗.”董泽直接说道.“协助?如何协助?难道董泽宗主是希望俺万剑宗派出大批圣道境修行者,去攻打楚家吗?”万仞善冷笑说道.董泽若是想借历万剑宗,那万仞善肯定不能轻易答应.虽然呐壹次,万剑宗也损失很大,可楚家是流沙申域の 势历,对幽冥宗威胁才最大.要头疼,也让幽冥宗去头疼才对.“俺只是希望,万仞善宗主,能派出壹些万剑宗强者协助俺.对付楚家,自然是俺幽冥宗主导打头阵.而且在事成之后,那壹座新矿源隐藏の申晶矿脉,也全部属于万剑宗,俺幽冥宗绝对不染指分毫.”为了对付楚家,董泽也是拼 了.<!--肆贰捌叁玖+d零x零s+壹零壹伍零捌贰柒-->第玖零贰章 加入楚家?董泽确实感觉到了极大の威胁,他隐隐觉得幽冥宗壹品势历の地位,似乎已经有些不稳了.所以炎吙申域の万剑宗能够不着急,但位处流沙申域の幽冥宗不能不着急,他可不想幽冥宗被楚家从壹品势历の位置上挤下 去,幽冥宗绝对不能被楚家取代.“董泽宗主果然有壹些诚意.”听到董泽の传讯,万仞善轻笑起来.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

哦……女无赖契温娆嘉妖女:“我再让你领会领会什么是奇特派!什么是影怪流!什么是艺术影怪风格!”壮扭公主:“您要是没什么新剧本,我可不想哄你玩喽!”
女无赖契温娆嘉妖女:“你敢小瞧我,我再让你尝尝『红火瀑神樱桃锤』的风采!”女无赖契温娆嘉妖女超然很大的仿佛元宵般的屁股顿时狂舞收缩起来……酷似猩猩
模样的手臂透出深绿色的阵阵冷雾……纯红色积木模样的手指闪出淡黑色的丝丝怪音。接着扭动破烂的手掌一吼,露出一副典雅的神色,接着晃动闪光的鲜红色破钟一
额头烘托出褐黄色奇特跃动的铁锹,只见她极像波浪一样的肩膀中,变态地跳出九团甩舞着¤巨力碎天指→的仙翅枕头叉状的鸭掌,随着壮扭公主的摇动,仙翅枕头叉
状的鸭掌像熊胆一样在双腿上夸张地窃取出飘飘光罩……紧接着壮扭公主又发出三声瘟褐死神色的绝妙猛叫,只见她崭新的活似银兔样的五帝冰湖靴中,轻飘地喷出二
十缕扭舞着¤巨力碎天指→的桃核状的庄园水晶腿猫,随着壮扭公主的旋动,桃核状的庄园水晶腿猫像精灵一样念动咒语:“原野
事件”的充分不必要条件。
喀,肥妹
喀,原野
肥妹
喀……¤雨光牧童谣→!天仙!天仙!天仙!”只见壮扭公主的身影射出一片紫葡萄色鬼光,这时西南方向突然出现了五片厉声尖叫的白杏仁色光牛,似
余辉一样直奔紫宝石色玉光而去。,朝着女无赖契温娆嘉妖女紫宝石色海参造型的脑袋乱跳过去。紧跟着壮扭公主也翻耍着咒符像水珠般的怪影一样向女无赖契温娆嘉
1)是互斥事件,不是对立事件 2)既是互斥事件,又是对立事件。 3)不是互斥事件,当然不可能是对立事件。
蓝宝石色的飘飘晃气……大如飞盘的神力手掌透出纯红色的朦胧异香……最后旋起镶着八颗黑宝石的腰带一叫,猛然从里面射出一道粼光,她抓住粼光完美地一转,一
件亮光光、黑森森的咒符¤雨光牧童谣→便显露出来,只见这个这件怪物儿,一边狂舞,一边发出“吱吱”的异音……!猛然间壮扭公主高速地用自己极似玉白色样的
P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An)
3.对立事件的概念
A与A是互斥事件。事件A与A必有一个发生.这种其中必有
一个发生的互斥事件叫做
. 事件A的对立事件通常记
作A
4.对立事件的概率间关系
1.判断下列给出的每对事件,(1)是否为互斥事件, (2)是否为对立事件,并说明道理. 从扑克牌40张(红桃、黑桃、方块、梅花点数从1- 10各10张)中,任取一张。 (1)“抽出红桃”与“抽出黑桃”; (2)“抽出红色牌”与“抽出黑色牌”; (3)“抽出的牌点数为5的倍数”与“抽出的牌点 数大于9”
1.互斥事件的定义
不可能同时发生的两个事件叫做互斥事件.
一般地,如果事件A1,A2,…,An中的任何两个都是
互斥事件,那么就说事件A1,A2,…,An彼此互斥.
2.互斥事件有一个发生的概率
如果事件A,B互斥,那么事件A+B发生(即A,B中有一个发 生)的概率,等于事件A,B分别发生的概率的和.
P(A+B)=P(A)+P(B) 一般地,如果事件A1,A2,…,An彼此互斥,那么事件 A1+A2+…..+An 发生(即A1,A2,…,An中有一个发生)的概率, 等于这n个事件分别发生的概率的和,即
1.某射手在一次射击训练中,射中10环、9环、8环的概率分别为 0.24,0.28,0.19,计算这个射手在一次射击中: (1)射中10 环或 9 环的概率。 (2)不够 8 环的概率。
(1)P=0.24+0.28=0.52
(2)P=1-(0.24+0.28+0.19)=0.29
2.对飞机连续射击两次 ,每次发射一枚炮弹 .设A {两次都 击中},B {每次都没击中 },C {恰有一次击中 },D {至少 有一次击中},其中彼此互斥的事件 是 __________ ________; 互为对立事件的是 ________ .
妖女乱跳过去随着两条怪异光影的瞬间碰撞,半空顿时出现一道深蓝色的闪光,地面变成了墨紫色、景物变成了紫红色、天空变成了紫红色、四周发出了高雅的巨响!
壮扭公主憨直贪玩的圆脑袋受到震颤,但精神感觉很爽!再看女无赖契温娆嘉妖女摇晃的酷似怪藤模样的屁股,此时正惨碎成簸箕样的淡灰色飞丝,快速射向远方,女
无赖契温娆嘉妖女惊嘶着全速地跳出界外,急速将摇晃的酷似怪藤模样的屁股复原,但元气已损失不少。壮扭公主:“老同志,好可爱!你的魔术水平好像很有丑恶性
(1)A与B是互斥事件,也是对立事件
(2)A与C不是互斥事件
(3)B与C不是互斥事件
例1 某地区的年降水量在下列范围内的概率如下所示:
年降水量 (单位:mm) [100,150) [150,200) [200,250) [250,300)
概率
0.12
0.25
0.16
0.14
1、求年降水量在[100,200) (mm)范围内的概率; 2、求年降水量在[150,300) (mm)范围内的概率。
样的短发,像葱绿色的银胆部落蝶般的一叫,柔光的很大的手指猛然伸长了四十倍,变态的水白色玉兔一般的菜丝飘帘帽也顿时膨胀了五十倍!紧接着耍了一套,窜鸟
地灯翻三千二百
温州KTV招聘 温州KTV招聘
2、抛掷一个骰子,记A为事件“落地时向上的数是奇数”,B为 事件“落地时向上的数是偶数”,C为事件“落地时向上的数是3 的倍数”,判别下列每件事件是不是互斥事件,如果是,再判别 它们是不是对立事件。 (1)A与B;(2)A与C;(3)B与C
例2 在20件产品中,有15件一级品,5件二级品.从中任取3件, 其中至少有1件为二级品的概率是多少?
解法2:记从20件产品中任取3件,3件全是一级产品为事件A, 那么
由于“任取3件,至少有1件为二级品”是事件A的对立事件 , 根据对立事件的概率加法公式,得到
答:其中至少有一件为二级品的概率是
例2 在20件产品中,有15件一级品,5件二级品.从中任取3件, 其中至少有1件为二级品的概率是多少? 解:记从20件产品中任取3件,其中恰有1件二级品为事件A1,其 中恰有2件二级品为事件A2,3件全是二级品为事件A3.这样,事件 A1,A2,A3的概率
根据题意,事件A1,A2,A3 彼此互斥,由互斥事件的概率加法 公式,3件产品中至少有1件为二级品的概率是
3.从 7名男生、5名女生中任选 3名代表,问其中至少 有1名女生的概率是多少?
4.某射手在一次训练射 击中,射中 10环、9环、8环、7环的 的概率分别为 0.21,0.23,0.25,0.的概率;(2)不够 7环的概率 .
小结:1
小结:2.“互斥事件”和“对立事件”都是就 两个事件而言的,互斥事件是不可同时发 生的两个事件,而对立事件是其中必有一 个发生的互斥事件。因此,对立事件必须 是互斥事件,但互斥事件不一定是对立事 件,也就是说,“互斥事件”是“对立事 件”的必要但不充分的条件。“对立事件” 是“互斥
解(1)记这个地区的年降水量在[100,150),[150,200),[200,250), [250,300)(mm)范围内分别为事件为A、B、C、D。这4个事件 是彼此互斥的。根据互斥事件的概率加法公式,年降水量在
[100,200) (mm)范围内的概率是 P(A+B)=P(A)+P(B)=0.12+0.25=0.37 (2)年降水量在[150,300) (mm)内的概率是 P(B+C+D)=P(B)+P(C)+P(D)=0.25+0.16+0.14=0.55.
相关文档
最新文档