测量LED的伏安特性曲线
LED综合特性测试实验
LED综合特性测试实验13应用物理(1)班杨礴 2013326601111一、实验目的1.测量LED正向伏安特性,掌握拐点电压、正向开启电压及工作电流的概念,并对比分析不同发光颜色的LED拐点电压和工作电压的异同2.测量LED的反向伏安特性,了解发光二极管的反向截止特性3.掌握LED发光强度的概念及其测量方式4.了解LED发光强度随电流变化的规律,并对比分析不同发光颜色LED发光强度随电流变化的响应异同5.了解LED光通量与发光效率的概念及其测量方法6.了解LED光通量/发光效率随电流变化的规律,并对比分析不同发光颜色LED光通量随电流变化的响应异同以及发光效率随电流的变化规律7.掌握LED的光空间分布曲线的概念及其测量方法8.掌握LED半强度角和偏差角的概念及其测量方法9.了解强度定标的意义及其定标方法10.掌握常见色度参数的概念及其计算方法11.测量LED器件的电压-温度关系特性,计算K系数,并理解K系数的意义及其作用12.理解LED结温、热阻的概念,掌握一种测大功率贴片型LED结温,热阻的测量方法二、实验原理1.电学特性测试在LED两端加正向电压,当电压较小,不足以克服势垒电场时,通过LED的电流很小。
当正向电压超过死区电压后,电流岁电压迅速增长。
正向工作电流指LED正常发光时的正向电流值,根据不同管子的结构和输出功率的大小,在几十毫安到1安之间。
在LED两端加反向电压,只有微安级的反向电流。
反向电压超过击穿电压后,管子被击穿损坏。
为安全起见,激励电源提供的最大反向电压应低于击穿电压。
2.光电特性测试光强是描述LED光度学特性最为重要的参数,它表征了光源在指定方向上单位立体角内发射的光通量,在不同的空间角下,LED将表现出不同的光强大小。
LED光源发射的辐射通量中能引起人眼视觉的那部分,称为光通量,单位是流明,与辐射通量的概念类似,它是LED光源向整个空间在单位时间内发射的能引起人眼视觉的辐射通量。
测量伏安特性曲线
测量小灯泡的伏安特性曲线一、基本原理与操作二、数据处理(1)在坐标纸上以U为横轴,以I为纵轴,建立坐标系。
(2)在坐标纸上描出各组数据所对应的点。
(3)将描出的点用平滑的曲线连接起来,就得到小电珠的伏安特性曲线。
三、注意事项1.电流表外接法:本实验中被测小电珠灯丝的电阻值较小,因此测量电路必须采用电流表外接法。
2.滑动变阻器应采用分压式连接3.保护元件安全:为保护元件不被烧毁,开关闭合前变阻器滑片应位于图中的a端(左端)。
加在小电珠两端的电压不要超过其额定电压。
四、误差分析1.由于电压表不是理想电表,内阻并非无穷大,对电路的影响会带来误差,电流表外接,由于电压表的分流,使测得的电流值大于真实值。
2.测量时读数带来误差。
3.在坐标纸上描点、作图带来误差。
题型示例:1、小明同学想研究一段铅笔芯的伏安特性,并设想加在铅笔芯两端的电压从0开始逐渐增大,他连接了如图(甲)所示的实验电路.小亮同学认为小明的电路并不完善,他在该电路上增加了一条导线,得到了小明的认同.(1)请你用笔画线在图(甲)中加上这条导线.(2)对小亮完善后的电路,在闭合开关前,滑动变阻器的滑片应先置于(选填“最左端”或“最右端”).(4)由(3)中图线可知:随着温度的升高,铅笔芯的电阻率(选填“增大”“减小”或“不变”).2、小华和小明在“描绘小灯泡伏安特性曲线”的实验中,将实验数据记录在下表中:A.滑动变阻器(阻值范围0~10 Ω、额定电流3 A)B.滑动变阻器(阻值范围0~2 000 Ω、额定电流1 A)实验中选择的滑动变阻器是________。
(填写字母序号)(2)在图甲中用笔画线代替导线,将实验电路连接完整。
(3)开关闭合前,滑动变阻器的滑片应滑至最________(选填“左”或“右”)端。
(4)利用表中数据,在图乙中画出小灯泡的UI图线。
(5)他们在UI图象上找到小灯泡工作电压为2.0 V时的坐标点,计算此状态的电阻值时,小明提出用图象上该点曲线斜率表示小灯泡的阻值;小华提出该点与坐标原点连线的斜率表示小灯泡的阻值。
LED发光二极管特性测试(二)
LED发光二极管特性测试(二)3测量结果与分析3.1LED的伏安特性通过图1测量了在常温下5种颜色LED的伏安特性曲线如图6所示。
LED临界导通状态下的电压称为阈值电压,根据图7中的拟合公式算出拟合直线与横轴交点得到5种LED的正常电压,为后续测试的正常发光条件做准备。
根据公式λ=[(hc)/e]Ud和上述数据,计算发光二极管的发光波长与理论主波长相吻合。
由图6可知,开始时LED电流随电压变化几乎不变,大于阈值电压后,电流随电压以104~236mA/V的变化率呈线性增加,其中红色方形LED的增长最快,而白色圆形LED的增长最慢。
5种LED的正常工作电压、阈值电压和发光波长如表1所示。
表1显示除红色方形的LED以外,其他4种LED的正常电压、阈值电压大约分别在3V和2V;红色方形LED的发光波长最长,其他4种LED发光波长均在500nm左右。
3.2LED的光强分布特性LED的光强分布测试结果如图8所示。
光强分布曲线能恰当地反映光源能量的空间分布状况。
可以从光强空间分布确定5种LED的发光范围。
实验所用照度表的传感器面积是9mm2,测试半径为8cm,通过计算所得数据与国际标准规定的测量LED的光强条件数据相吻合,即所测量的光源可近似为点光源。
由测量结果可发现:方形LED更具有指向性;所有LED在其中央法线处的光强最强。
常用半值角描述LED发光分布特性,半值角θ越小所对应的指向性越强(见表2),这可为用户根据使用情况选择二极管提供参考。
3.3LED的光谱特性利用TCS230颜色传感器在暗箱内进行光谱测量。
本文采用的颜色传感器是将红、绿、蓝、透明4组滤光镜集成,通过光电二极管采集光强,由电路转换为脉冲输出。
利用它测量了上述5种颜色LED的发光光谱,并将其测量结果与单色仪所测得的结果进行比较,判断颜色传感器测量的准确状况。
单色仪和颜色传感器所测得光谱特性曲线如图9和10所示,用颜色传感器所测得的发光成分如图11所示。
半导体发光二极管测试国标(精)
基于LED各个应用领域的实际需求,LED的测试需要包含多方面的内容,包括:电特性、光特性、开关特性、颜色特性、热学特性、可靠性等。
1、电特性LED是一个由半导体无机材料构成的单极性PN结二极管,它是半导体PN结二极管中的一种,其电压-电流之间的关系称为伏安特性。
由图1可知,LED电特性参数包括正向电流、正向电压、反向电流和反向电压,LED必须在合适的电流电压驱动下才能正常工作。
通过LED电特性的测试可以获得LED的最大允许正向电压、正向电流及反向电压、电流,此外也可以测定LED的最佳工作电功率。
图 1 LED伏安特性曲线LED电特性的测试一般利用相应的恒流恒压源供电下利用电压电流表进行测试。
2、光特性类似于其它光源,LED光特性的测试主要包括光通量和发光效率、辐射通量和辐射效率、光强和光强分布特性和光谱参数等。
(1)光通量和光效有两种方法可以用于光通量的测试,积分球法和变角光度计法。
变角光度计法是测试光通量的最精确的方法,但是由于其耗时较长,所以一般采用积分球法测试光通量。
如图2所示,现有的积分球法测LED光通量中有两种测试结构,一种是将被测LED放置在球心,另外一种是放在球壁。
_h:^E8(_ d图 2 积分球法测LED光通量此外,由于积分球法测试光通量时光源对光的自吸收会对测试结果造成影响,因此,往往引入辅助灯,如图3所示。
图3 辅助灯法消除自吸收影响在测得光通量之后,配合电参数测试仪可以测得LED的发光效率。
而辐射通量和辐射效率的测试方法类似于光通量和发光效率的测试。
(2)光强和光强分布特性图4 LED光强测试中的问题如图4所示,点光源光强在空间各方向均匀分布,在不同距离处用不同接收孔径的探测器接收得到的测试结果都不会改变,但是LED由于其光强分布的不一致使得测试结果随测试距离和探测器孔径变化。
因此,CIE-127提出了两种推荐测试条件使得各个LED在同一条件下进行光强测试与评价,目前CIE-127条件已经被各LED制造商和检测机构引用。
LED综合特性测试实验
LED综合特性测试实验13应用物理(1)班杨礴2一、实验目的1.测量LED正向伏安特性,掌握拐点电压、正向开启电压及工作电流的概念,并对比分析不同发光颜色的LED拐点电压和工作电压的异同2.测量LED的反向伏安特性,了解发光二极管的反向截止特性3.掌握LED发光强度的概念及其测量方式4.了解LED发光强度随电流变化的规律,并对比分析不同发光颜色LED发光强度随电流变化的响应异同5.了解LED光通量与发光效率的概念及其测量方法6.了解LED光通量/发光效率随电流变化的规律,并对比分析不同发光颜色LED光通量随电流变化的响应异同以及发光效率随电流的变化规律7.掌握LED的光空间分布曲线的概念及其测量方法8.掌握LED半强度角和偏差角的概念及其测量方法9.了解强度定标的意义及其定标方法10.掌握常见色度参数的概念及其计算方法11.测量LED器件的电压-温度关系特性,计算K系数,并理解K系数的意义及其作用12.理解LED结温、热阻的概念,掌握一种测大功率贴片型LED结温,热阻的测量方法二、实验原理1.电学特性测试在LED两端加正向电压,当电压较小,不足以克服势垒电场时,通过LED的电流很小。
当正向电压超过死区电压后,电流岁电压迅速增长。
正向工作电流指LED正常发光时的正向电流值,根据不同管子的结构和输出功率的大小,在几十毫安到1安之间。
在LED两端加反向电压,只有微安级的反向电流。
反向电压超过击穿电压后,管子被击穿损坏。
为安全起见,激励电源提供的最大反向电压应低于击穿电压。
2.光电特性测试光强是描述LED光度学特性最为重要的参数,它表征了光源在指定方向上单位立体角内发射的光通量,在不同的空间角下,LED将表现出不同的光强大小。
LED光源发射的辐射通量中能引起人眼视觉的那部分,称为光通量,单位是流明,与辐射通量的概念类似,它是LED光源向整个空间在单位时间内发射的能引起人眼视觉的辐射通量。
积分球测量光通量,积分球是一个球形空腔,由内壁涂有均匀白色漫反射层的球壳组装而成,被测LED置于空腔内。
LED伏安特性及应用
5-5
LED 伏安特性及应用
四、LED 伏安特性的应用
1. 举例说明
2 只小功率黄光的 VF 为 0.1V,当它们直接并联时,以较高的 VF 点亮时,高 VF 的电流是 20mA,另一 只 LED 的电流将达到 34.7mA。两只 LED 的亮度将产生极大的差异。
2 只 1 瓦级的白光 LED 直接并联,它们的 VF 差为 0.14V,当以较高的 VF 来点亮时,高 VF 的电流是 350mA,另一只的电流将达到 461mA。两只 LED 的亮度将产生极大的差异。
曲线斜率 mA / 0.1V
8 10 7.3 11.8 7.3 16.7 3.4 4.8 2.6 3.3
4.4
109.4 109.4 109.4
94 70 66
说明: 1. 斜率表明:LED 的正向电压每变化 0.1V,电流变化的幅度。 2. 表中所列的斜率,是将当电流大到一定值后近似看作直线。 3. 对于未列出的小电流状况,是因为较小电流时,曲线是非线性的,没有统一的、可以近似的斜率。 4. 表中的数据是某芯片的测试值,不同的芯片及封装工艺会造成数据有些差异。
VF 差必须以 0.05V 以下分档。 2.3 大功率 LED,不要直接并联使用。也不要通过串联电阻来并联,否则电阻损耗太大。若用串联电
阻分压,电阻的功率较大,价格、体积都不是好的选择。
2.4 若通过细分 VF 来直接并联,一般封装厂家的机台分辨率为 0.05V(再小是否可行及成本是否会增 加?),这样还可能会带来几十 mA 的电流差异。若 LED 损坏,损失的结果,还不如当初增加使 用适当的控制电路。
1-1
绿光、蓝光、白光
LED 伏安特性及应用
蓝光 LED 4~10 mA: 2.6 mA / 0.1V 10 mA 以上:3.3 mA / 0.1V 绿光 LED 4~10 mA: 3.4 mA / 0.1V 10 mA 以上:4.8 mA / 0.1V
光电实验二LED光源的伏安特性 (1)
实验二 LED光源的伏安特性实验日期:2017年9月22日姓名:徐风学号:201508403146 成绩:一、实验目的1. 掌握LED光源的伏安特性;2. 掌握测量伏安特性的方法;3.通过LED的伏安特性曲线,学会如何使用LED作为探测光源。
二、实验仪器1. GDS-VI型光电综合实验平台主机系统;2. LED光源三个;3.夹持装置、LED光源装置各一个。
三、实验原理发光二极管的核心部分是由p型半导体和n型半导体组成的晶片,它的电学特性和半导体PN结类似。
LED的主要电学参量包括阈值电压、反向饱和电流等,主要的电学特性是伏安特性。
图1 LED的伏安特性特性曲线如图 1所示为LED 的伏安特性特性曲线。
OA 段:正向死区,正向电流极小,电压小于阈值电压时,LED 不发光。
AB 段:正向工作区,工作电流与外加电压呈指数关系,即 qV kT I =Is(e-1)(1)式中I S 为反向饱和电流。
当正向电压大于V B 时LED 被烧坏。
OC 段:反向死区,几乎没有电流流过。
CD 段:反向击穿区,当反向电压大于V C 时,LED 被击穿。
四、实验步聚1. 按图2的电路连接。
图2 LED 供电及电流测量电路2.打开实验平台的电源开关,调节R 使流经LED 的电流产生变化,读取不同电流下的LED 两端电压值,并记录至下表;3. 将LED 换成其他颜色,重复上述测量。
(分别测红、蓝、白、绿至少3种LED 光源)五、实验数据分析处理1.实验原始数据:+5V2. LED的伏安特性曲线;3.结论:正向电压比较小时,正向电流几乎为零,当正向电压超过一定值时,正向电流开始快速增长。
LED的性能指标和测试
一、LED的电学指标1、LED的正向电流IF1)正向电流与电压间的关系:当正向电压小于3V时,LED正向电流很小,此时LED不发光,但正向电压等于和大于3V时,正向电流迅速增加,LED发光。
额定工作电流的大小与LED 的额定功率大小有关;2)正向电流与温度间的关系:温度小于30度时,正向电流几乎不随温度变化,一旦温度超过30度,则正向电流随温度的升高而降低,发光强度和发光效率都将随温度的升高而降低,于是对于大功率LED的散热问题尤为重要;3)正向电流与发光强度的关系:发光强度随正向电流的增大而增加,另外发光强度与结晶材料及用以控制n、p层的杂质有关。
2、LED正向电压VF正向工作电压:规格书等参数表所标示的工作电压是在给定的正向电流下得到的,一般在IF=20mA时测得。
3、LED电压与相关电性参数的关系1)VF-IF曲线(伏安特性曲线):在正向电压小于某一值时,电流极小,LED不发光。
当电压超过某一值后,正向电流随着电压迅速增加而发光。
2)正向电压与温度间的关系:在外界温度升高时,内阻变小,VF将会下降;3)热阻的概念:a.热阻Rth的定义:在热平衡条件下,导热介质在两个规定点处的温度差,及热源、周围环境之间的温差(T1-T2)与产生这两点温度差的耗散功率(P)之比,单位是oC/W或K/W;b.LED的热阻;c.LED的热阻模型d.LED器件热阻的测量;4、反向电压和电流的单位和大小1)反向电压VR单位为V,正常VR设定值:5V(也有的管大于100V)。
在反向施加高电压会导致组件受损,因此操作时须留意反向电压的极限值;2)反向电流IR单位为uA,正常IR读值范围:在VR=5V条件下,反向电流小于5uA,要求严格的高档产品其反向电流值规定小于1uA。
5、电学参数测量二、LED光学特性参数1、发光角度:指发光强度值为轴向强度值一半的方向与发光轴向(法向)的夹角,成为半值角,半值角的2倍称为视角(或称为半功率角)。
实验:测定小灯泡的伏安特性曲线正式文档精选全文完整版
安培表采用“外接法”. 可使测出的小灯泡的电压、电 流更准确。
滑动变阻器采用“分压接 法”.可使小灯泡两端的电压 从零开始连续变化。
实验器材
小灯泡、电流表、电 压表、滑动变阻器、电源、 电键、导线
实验步骤
(1) 按 照 如 图 所 示 的 电 路图连接成实验电路(安 培表外接,变阻器用分压 式,开关处于断开状态, 变阻器触头位于电压表读 数为零处)。
一、电阻的测量
伏安法
用电压表测出电阻两端的电压U,用电流表 测出通过电阻的电流I,利用部分电路欧姆定律 可以算出电阻的阻值R,
RU I
一、电阻的测量 伏安法测电阻的两种电路
电流表接在电压表两接线柱外侧,通常叫
“外接法”
V
A R
电流表接在电压表两接线柱内侧,通常叫
“内接法”
V
A R
因为电流表、电压表分别有分压、分流作用,因此两种 方法测量电阻都有误差.
电流表内接法
电压表示数
UV U R U A U R
V
电流表示数
IA IR
R测
UV IA
>
R真
UR IR
A R
测量值偏大,适于测量大阻值电阻.
说明:误差来源于电流表的分压,分压越少,误差越小.所以该电
路适合测量大电阻,即
R R A
电阻的测量
伏安法测电阻
外接法
பைடு நூலகம்
误差来源 伏特表的分流
测量结果 R真>R测
图
测得Rx的误差较100小0Ω,测量值Rx=
.
V
Rx
A
(a)
V
Rx
A
(b)
例5:为了测绘小灯泡的伏安特性曲线,下列实物连
LED特性及光度测量实验
LED特性及光度测量实验LED特性及光度测量实验摘要:简述了LED的发光原理与特性,并对绿光、蓝光、白光LED的V-I特性,P-I特性,发光效率 ,以及光强的角度分布等光度学特性进行测量,探究LED的发光特性。
关键词:LED,光度测量一、实验原理概述1.L ED结构与发光原理LED是英文lightemitting diode(发光二极管)的缩写,它属于固态光源,其基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用(如图1)。
发光二极管的核心部分是由p型半导体和n 型半导体组成的晶片,在p型半导体和n型半导体之间有一个过渡层,称为p-n结。
跨过此p-n 结,电子从n型材料扩散到p区,而空穴则从p 型材料扩散到 n 区,如右面的图2(a)所示。
作为这一相互扩散的结果,在p-n结处形成了一个高度的eΔV的势垒,阻止电子和空穴的进一步扩散,达到平衡状态(见图2(b))。
当外加足够高的直流电压V,且 p 型材料接正极,n型材料接负极时,电子和空穴将克服在p-n结处的势垒,分别流向p区和n区。
在p-n结处,电子与空穴相遇,复合,电子由高能级跃迁到低能级,电子将多余的能量将以发射光子的形式释放出来,产生电致发光现象。
这就是发光二极管的发光原理。
选择可以改变半导体的能带隙,从而就可以发出从紫外到红外不同波长的光线,且发光的强弱与注入电流有关。
图 22.发光二极管的主要特性a)光谱分布、峰值波长和光谱辐射带宽:发光二极管所发之光并非单一波长,其波长具有正态分布的特点,在最大光谱能量(功率)处的波长成为峰值波长。
即使有两个LED的峰值波长是一样的,但它们在人眼中引起的色感觉也是可能不同的。
光谱辐射带宽是指光谱辐射功率大于等于最大值一半的波长间隔,它表示发光管的光谱纯度。
b)光通量:LED光源发射的辐射通量中能引起人眼视觉的那部分,称为光通量ΦV(单位是流明(lm)),是指LED向整个空间在单位时间内发射的能引起人眼视觉的辐射通量。
实验六LDLED的V-I特性曲线测试.doc
光电子技术基础实验报告实验题目实验六 LD/LED 的 V-I 特性曲线测试日期2020.11.27姓名组别04 班级学号【实验目的】1、了解半导体激光器的基本工作原理,掌握其使用方法;2、学习测量LD 半导体激光器电压-电流(V-I)特性曲线的方法。
3、学习测量LED 发光二极管的电压-电流(V-I)特性曲线的方法;4、了解 LED 发光二极管的基本工作特性。
【实验器材】光电技术创新综合实验平台一台、光源特性测试模块一块、万用表两块、连接导线若干【实验原理】LD 和普通二极管一样都是半导体光电子器件,其核心部分都是 PN 结。
因此 LD 也具有与普通二极管相类似的 V-I 特性曲线,如图 1-1 所示。
其测量方法见图 1-2,由 V-I 曲线我们可以计算出 LD 总的串联电阻 R 和开门电压VT。
LED 是一个由半导体无机材料构成的单极性 PN结二极管,它是半导体 PN 结二极管中的一种,其电压-电流之间的关系称为伏安特性。
LED 电特性参数包括正向电流 If、正向电压Vf、反向电流 Ir 和反向电压 Vr,LED 必须在合适的电流电压驱动下才能正常工作。
通过 LED 电特性的测试可以获得 LED 的最大允许正向电压、正向电流及反向电压、电流,此外也可以测定LED 的最佳工作电功率。
LED 电特性的测试一般利用相应的恒流恒压源供电下利用电压电流表进行测试。
图 2-1 为 LED 的 V-I 特性曲线。
LED 的正向压降较大,并在正向压 Vf 降达到一定值时发光,由 V-I 曲线我们可以计算出LD/LED 的串联电阻 R 和开门电压 VT。
发光颜色和构成 PN 结的材料有关,通常有红、黄、绿、蓝和紫等颜色。
发光亮度近似和工作电流密度成正比,发光亮度随电流密度的增加会很快趋向饱和。
另外,随结温的升高,LED 的发光亮度将会减弱。
【实验注意事项】1)静电很容易导致激光器和发光二极管老化,实验时请佩戴防静电手腕带,不要用手直接接触发光二极管引脚以及与发光二极管连接的任何固定件、测试点和线路,以免损坏器件;2)严禁将任何电源对地短路;3)工作电流不要超过 LD 的额定值,防止烧坏器件;4)通电之前,确保 W301(微调)及 W302(粗调)旋钮在最小值位置,这样可防止冲击电流损坏 LD;5)严格按照指导书操作实验,出现任何异常情况,请立即关机断电,并请相关老师加以指导。
实验:描绘小灯泡的伏安特性曲线
题型二:数据的处理及实验结论
例2某同学在做测定小灯泡功率的实验中,优化设
计电路,正确测得如下一组 U 和 I 的数据:
编号 1 2
3
4
5678
U/V 0.20 0.60 1.00 1.40 1.80 2.20 2.60 3.00
线图象的最后一个点的坐标 tan α=r=3-0.23.70 Ω
=1.0 Ω.小灯泡电阻 8 Ω(正常发光),允许电流 0.3 A, R1 不适合,R2 能满足各方面的要求,小灯泡中电流很
小时,取伏安曲线 0—0.1 A 段求出电阻值 R=00..21 AV= 2 Ω.取两位有效数字 2.0 Ω.
2.LED 发光二极管新技术已被广泛应用,如家用 节能灯(LED 灯)、LED 投影仪、LED 打印机、LED 显示屏等.二极管是一种半导体元件,电路符号为 “ ”,其特点是具有单向导电性,即电流从正极
若干.
(1) 实 验 中 电 压 表 应 选
,电流表应
选
,滑动变阻器应选
(只填器材的
字母代号);
(2)在下面的虚线框中画出实验电路图,要求电
流、电压能从零开始变化;
(3)根据你设计的电路图,将下图中的实物连接成 实验用的电路;
(4)在实验中得到如下数据(I 和 U 分别表示 小灯泡上的电流和电压):
②某同学得出以下一些数据:
U/V 0 0.40 0.80 1.20 1.60 2.00 2.40 2.80 I/mA 0 0.9 2.3 4.3 6.8 12.0 19.0 30.0
请在所给坐标中画出其特性曲线.
③若此发光二极管的最佳工作电流为 12 mA,现连,还需串联一个 R= 83.3 Ω 的电阻(保留三位有 效数字),才能使它工作在最佳状态.
[课件]LED伏安特性测量PPT
虚拟仪器的实现方案
虚拟仪器的主要特点有
尽可能采用了通用的硬件,各种仪器的差异 主要是软件。 可充分发挥计算机的能力,有强大的数据处 理功能,可以创造出功能更强的仪器。 用户可以根据自己的需要定义和制造各种仪 器。
一个简单的设计实例
如何利用Labview实现示波器的波
形显示功能?
Open Labview 创建一个VI
在控制面板中 建立数据采集和波形图之间的连接
一个简单的数据采集功能已经实现 频率为450k左右
问题:采样率太低,通常采样率应10倍高于显示的频率
调整采样率后的显示
建立循环使之可以重复运行
选择 While 循环
选择 结构
循环已经建立,创建输入控件
点击建立 输入控件
将程序放 入循环
可以实现连续采样了
Electron energy p E
c
n+ eV
o
E (a)
E
c
E
F
g
E
F
E
v
eV
o
E
v
Distance into device
Electron in CB Hole in VB
h E k T g B
Under forward bias V
p n+
E
g
(b ) h = E
g
V
LED Characteristics
设计测量指脉功能——前面版
采样率
样品数
10秒的脉 搏情况
指脉程序框图
入门 学习
已经完成的 设计文件
方便的查 找范例
(c) (a ) E
Electrons in CB
测绘小灯泡的伏安特性曲线
灯泡伏安特性曲线
描述小灯泡两端电压与通过其电流的关系。
灯泡发光效率
随电压增加而提高,但电压过高会损坏灯泡。
灯泡的伏安特性曲线
1
测绘的基本原理
2
3
伏安表、电源、滑动变阻器、开关、小灯泡等。
测绘仪器
连接电路图,调整滑动变阻器滑片,控制小灯泡两端电压,记录伏安表的示数。
测绘步骤
根据测绘数据绘制伏安特性曲线,分析曲线特征。
详细描述
06
实验结论与展望
03
了解了小灯泡的电阻随温度变化的现象
实验结果表明,小灯泡的电阻随着温度的升高而增大,这反映了金属导体的电阻随温度变化的规律。
实验结论
01
成功绘制了小灯泡的伏安特性曲线
通过实验数据,可以观察到小灯泡的电流随着电压的变化而变化的规律,成功绘制出了伏安特性曲线。
02
验证了欧姆定律
电流表
量程
电压表的量程通常为0-2V或0-6V。
内阻
电压表的内阻通常为几千欧姆到几十千欧姆不等。
电压表
类型
导线通常为铜导线或镀银导线。
长度
导线的长度通常为几十厘米到几米不等。
导线若干
类型
开关可以为机械开关或半导体开关。
额定电流
开关的额定电流通常与电源电流相同。
开关若干
04
实验步骤
连接电路
按照电路图搭建电路,确保连接正确无误。
开始实验,记录数据
1
分析数据,绘制伏安特性曲线
2
3
将实验测得的数据整理成表格,包括电压值和对应的电流值。
根据数据绘制伏安特性曲线,横坐标为电压,纵坐标为电流。
分析曲线的形状和变化趋势,了解小灯泡的伏安特性。
测绘小灯泡伏安特性曲线实验PPT课件
第27页/共32页
第28页/共32页
(2)小灯泡的伏安特性曲线如图2215所示(只画
出了AB段),由图可知,当灯泡电压由3 V变为6
V时,其灯丝电阻改变了________Ω5.
第29页/共32页
谢谢您的观看!
第32页/共32页
第14页/共32页
A.电压表(0~3 V,内阻 6 kΩ) B.电压表(0~15 V,内阻 30 kΩ) C.电流表(0~3 A,内阻 0.1 Ω) D.电流表(0~0.6 A,内阻 0.5 Ω) E.滑动变阻器(10 Ω,2 A) F.滑动变阻器(200 Ω,0.5 A) G.蓄电池(电动势 6 V,内阻不计)
第16页/共32页
例1、某学生用如下图甲所示的器材做“描绘小灯泡的伏安特性
曲线”的实验,小灯泡标有 “3.8 V,1 W”的字样,电池组电动
势为4.5 V(内阻不计),滑动变阻器有两种规格:R1标有“10
Ω,2 A”,R2标有“100 Ω,20 mA”.测量时要求小灯泡两端
的电压从零开始,并测多组数据.
(1)画出实验电路图,
零起必分压
电压表应选用__A_______, 电流表应选用___D______,
滑动变阻器应选用____E_____. (用序号字母表示)
第15页/共32页
额定电压为 2.8 V, 功率约为 0.8 W 的小灯泡
当U=2.8V, I=0.28A
(2)通过实验测得此灯泡的伏安特性曲线如图乙所示,由 图线可求得此灯泡在正常工作时的电阻为_1_0______Ω. (3)若将此灯泡与电动势 6 V、内阻不计的电源相连,要 使灯泡正常发光,需串联一个阻值为__1_1._4____Ω的电 阻.
一、实验目的: 描绘小灯泡的伏安特性曲线并分析其规律。