初中数学竞赛应用题练习卷(一)
初二数学竞赛试题7套整理版(含答案)
初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。
初中数学竞赛:最值问题求法应用举例[附答案]
最值问题求法例题(1)、若实数a ,b ,c 满足a2 + b2+ c2= 9,则代数式(a - b)2 + (b —c)2 +(c - a)2的最大值是()A.27 B、 18 C、15 D、 12例题(2)、如果对于不小于8的自然数N ,当3N+1是一个完全平方数时,N + 1都能表示成K个完全平方数的和,那么K的最小值是()A、 1B、 2C、 3D、 4例题(3)、设a、b为实数,那么a2+ab+b2-a-2b的最小值是——————————。
例题(4)、已知实数a、b满足a2+ab+b2=1 ,则a2-ab+b2的最小值和最大值的和是————————。
例题5、若a、b满足3a+5∣b∣= 7 ,则S= 2a-3∣b∣的最大值为-------------------,最小值为--------------------。
(二)、直接运用a 2+b 2≥ 2ab ( a +b ≥ 2ab )性质求最值。
例题(6)、若X > 0,则函数Y =3X +31X+21++XX 的最小值。
例题(7)、已知 a 、b 、c 、d 均为实数,且a +b +c +d = 4 ,a 2+b 2+c 2+d 2 =316,求a 的最小值与最大值。
(三)、用一元二次方程根的判别式Δ=b 2-4ac (结合韦达定理)求最值。
例题(8)、已知实数a 、b 、c 满足a +b +c = 2 ,abc = 4 ,○1求a 、b 、c 中最大者的最小值 ;○2求∣a ∣+∣b ∣+∣c ∣的最小值。
例题(9)、求函数Y = 12156322++++X X X X 的最小值。
(四)、用绝对值的几何意义和取零点、分段讨论法求最值。
例题(10)、a b c d e是一个五位自然数,其中a ,b ,c ,d ,e 为阿拉伯数字,且a<b<c<d ,则│a-b │+│b-c │+│c -d │+│d -e │的最大值是 ———。
数学竞赛试题及答案初中
数学竞赛试题及答案初中试题一:代数问题题目:如果\( a \)和\( b \)是两个连续的自然数,且\( a^2 + b^2= 45 \),求\( a \)和\( b \)的值。
解答:设\( a \)为较小的自然数,那么\( b = a + 1 \)。
根据题意,我们有:\[ a^2 + (a + 1)^2 = 45 \]\[ a^2 + a^2 + 2a + 1 = 45 \]\[ 2a^2 + 2a - 44 = 0 \]\[ a^2 + a - 22 = 0 \]分解因式得:\[ (a + 11)(a - 2) = 0 \]因此,\( a = -11 \)或\( a = 2 \)。
由于\( a \)是自然数,所以\( a = 2 \),\( b = 3 \)。
试题二:几何问题题目:在一个直角三角形中,直角边的长度分别为3厘米和4厘米,求斜边的长度。
解答:根据勾股定理,直角三角形的斜边\( c \)可以通过以下公式计算:\[ c = \sqrt{a^2 + b^2} \]其中\( a \)和\( b \)是直角边的长度。
代入数值:\[ c = \sqrt{3^2 + 4^2} \]\[ c = \sqrt{9 + 16} \]\[ c = \sqrt{25} \]\[ c = 5 \]所以斜边的长度是5厘米。
试题三:数列问题题目:一个等差数列的前三项分别是2,5,8,求这个数列的第10项。
解答:等差数列的通项公式是:\[ a_n = a_1 + (n - 1)d \]其中\( a_n \)是第\( n \)项,\( a_1 \)是首项,\( d \)是公差。
已知首项\( a_1 = 2 \),公差\( d = 5 - 2 = 3 \)。
代入公式求第10项:\[ a_{10} = 2 + (10 - 1) \times 3 \]\[ a_{10} = 2 + 9 \times 3 \]\[ a_{10} = 2 + 27 \]\[ a_{10} = 29 \]所以这个数列的第10项是29。
初中数学竞赛:列方程解应用题(含例题练习及答案)
初中数学竞赛:列方程解应用题在小学数学中介绍了应用题的算术解法及常见的典型应用题。
然而算术解法往往局限于从已知条件出发推出结论,不允许未知数参加计算,这样,对于较复杂的应用题,使用算术方法常常比较困难。
而用列方程的方法,未知数与已知数同样都是运算的对象,通过找出“未知”与“已知”之间的相等关系,即列出方程(或方程组),使问题得以解决。
所以对于应用题,列方程的方法往往比算术解法易于思考,易于求解。
列方程解应用题的一般步骤是:审题,设未知数,找出相等关系,列方程,解方程,检验作答。
其中列方程是关键的一步,其实质是将同一个量或等量用两种方式表达出来,而要建立这种相等关系必须对题目作细致分析,有些相等关系比较隐蔽,必要时要应用图表或图形进行直观分析。
一、列简易方程解应用题分析:欲求这个六位数,只要求出五位数x abcde =就可以了。
按题意,这个六位数的3倍等于1abcde 。
解:设五位数x abcde =,则六位数abcde 1x +=510,六位数1101+=x abcde , 从而有3(105+x )=10x+1,x =42857。
答:这个六位数为142857。
说明:这一解法的关键有两点: ⑴抓住相等关系:六位数abcde 1的3倍等于六位数1abcde ;⑵设未知数x :将六位数abcde 1与六位数1abcde 用含x 的数学式子表示出来,这里根据题目的特点,采用“整体”设元的方法很有特色。
(1)是善于分析问题中的已知数与未知数之间的数量关系;(2)是一般语言与数学的形式语言之间的相互关系转化。
因此,要提高列方程解应用题的能力,就应在这两方面下功夫。
例2有一队伍以1.4米/秒的速度行军,末尾有一通讯员因事要通知排头,于是以2.6米/秒的速度从末尾赶到排头并立即返回排尾,共用了10分50秒。
问:队伍有多长?分析:这是一道“追及又相遇”的问题,通讯员从末尾到排头是追及问题,他与排头所行路程差为队伍长;通讯员从排头返回排尾是相遇问题,他与排尾所行路程和为队伍长。
数学竞赛试题及答案初一
数学竞赛试题及答案初一【试题一】题目:计算下列表达式的值:\[ 2^3 + 3 \times 4 - 5^2 \]【答案】首先计算指数部分:\[ 2^3 = 8 \]\[ 5^2 = 25 \]然后进行乘法运算:\[ 3 \times 4 = 12 \]接下来,按照运算顺序,先进行加法和减法:\[ 8 + 12 - 25 = 20 - 25 = -5 \]所以,表达式的值为 -5。
【试题二】题目:如果一个数的平方等于该数的两倍,求这个数。
【答案】设这个数为 \( x \),根据题意,我们有:\[ x^2 = 2x \]将等式两边同时除以 \( x \)(注意 \( x \neq 0 \)):\[ x = 2 \]所以,这个数是 2。
但我们还应该检查 \( x = 0 \) 的情况,因为 0 的平方也是 0 的两倍:\[ 0^2 = 2 \times 0 \]所以,这个数也可以是 0。
【试题三】题目:一个长方形的长是宽的两倍,如果长和宽都增加 2 米,那么面积增加了 24 平方米。
求原长方形的长和宽。
【答案】设原长方形的宽为 \( w \) 米,那么长为 \( 2w \) 米。
根据题意,长和宽都增加 2 米后,新的长为 \( 2w + 2 \) 米,新的宽为 \( w + 2 \) 米。
新的面积与原面积的差为 24 平方米:\[ (2w + 2)(w + 2) - 2w \times w = 24 \]展开并简化:\[ 2w^2 + 4w + 2w + 4 - 2w^2 = 24 \]\[ 6w + 4 = 24 \]\[ 6w = 20 \]\[ w = \frac{20}{6} = \frac{10}{3} \]所以原长方形的宽为 \( \frac{10}{3} \) 米,长为 \( 2 \times \frac{10}{3} = \frac{20}{3} \) 米。
【试题四】题目:一个班级有 40 名学生,其中 25% 的学生是男生。
初中数学竞赛试题及答案pdf
初中数学竞赛试题及答案pdf一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333...(3无限循环)B. √2C. 3.14D. 1/32. 一个数的平方等于它本身,这个数是?A. 0B. 1C. -1D. 0或13. 如果一个等腰三角形的底边长为6,高为4,那么它的周长是多少?A. 12B. 14C. 16D. 184. 一个数列的前三项是2,4,8,那么第四项是多少?A. 16B. 32C. 64D. 1285. 一个圆的半径是5,那么它的面积是多少?A. 25πC. 75πD. 100π6. 下列哪个图形的面积是最大的?A. 边长为4的正方形B. 半径为4的圆C. 长为6,宽为4的矩形D. 底边为6,高为4的等腰三角形7. 如果一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 08. 一个数的相反数是-3,那么这个数是?A. 3B. -3C. 0D. 69. 一个数的倒数是1/4,那么这个数是?A. 4B. 1/4C. 1/2D. 210. 下列哪个表达式的值是最小的?A. 5 - 3B. 5 + 3D. 5 ÷ 3二、填空题(每题4分,共20分)11. 一个数的立方等于-8,这个数是______。
12. 如果一个直角三角形的两条直角边长分别是3和4,那么它的斜边长是______。
13. 一个数的平方根是2,那么这个数是______。
14. 如果一个数除以3的商是5,那么这个数是______。
15. 一个圆的直径是10,那么它的周长是______。
三、解答题(每题10分,共50分)16. 一个等差数列的前三项分别是3,7,11,求这个数列的第10项。
17. 一个长方形的长是宽的两倍,且周长是24,求这个长方形的面积。
18. 一个三角形的内角和是多少?19. 一个数的平方加上这个数本身等于0,求这个数。
20. 一个圆的半径增加2,那么它的面积增加了多少?答案一、选择题1. B2. D3. C4. B5. C6. B7. C8. A9. A 10. A二、填空题11. -2 12. 5 13. 4 14. 15 15. 31.4三、解答题16. 第10项是31。
全国初中数学竞赛试题(含答案)-20220207144625
全国初中数学竞赛试题(含答案)20220207144625一、选择题(每题5分,共20分)1. 下列哪个数是质数?A. 2B. 3C. 4D. 52. 如果一个三角形的两边长分别为3和4,那么这个三角形的周长可能是多少?A. 7B. 10C. 11D. 123. 下列哪个分数可以化简为最简分数?A. 2/4B. 3/6C. 4/8D. 5/104. 一个正方形的面积是36平方厘米,那么这个正方形的边长是多少厘米?A. 6B. 7C. 8D. 9二、填空题(每题5分,共20分)1. 7的平方根是______。
2. 0.25的小数点向右移动两位后是______。
3. 一个等边三角形的边长是10厘米,那么这个等边三角形的周长是______厘米。
4. 下列哪个数是立方数?A. 2B. 3C. 4D. 5三、解答题(每题10分,共30分)1. 解方程:2x 5 = 11。
2. 计算下列表达式的值:3(2 + 4) 7。
3. 一个长方形的长是8厘米,宽是4厘米,求这个长方形的面积。
四、答案部分一、选择题1. A2. B3. A4. D二、填空题1. ±√72. 253. 304. C三、解答题1. x = 82. 133. 32平方厘米全国初中数学竞赛试题(含答案)20220207144625四、应用题(每题15分,共30分)1. 小明家有一块长方形的地,长是12米,宽是8米。
小明计划将这块地分成两个相同大小的正方形区域。
请问每个正方形的边长是多少米?2. 小红有一笔钱,她将其中的1/3用于购买书,剩下的钱再将其中的1/2用于购买文具。
她剩下的钱是100元。
请问小红最初有多少钱?五、证明题(每题15分,共30分)1. 证明:对于任意实数a和b,如果a < b,那么a² < b²。
2. 证明:等腰三角形的底角相等。
六、答案部分四、应用题1. 每个正方形的边长是6米。
2. 小红最初有300元。
根源杯初中数学竞赛试题
根源杯初中数学竞赛试题根源杯初中数学竞赛是一项旨在激发学生数学兴趣、提高数学素养的竞赛活动。
以下是一套模拟试题,供参赛学生练习使用。
一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于16,那么这个数是多少?A. 4B. -4C. 4 或 -4D. 163. 一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 84. 以下哪个表达式的结果为0?A. \( 2 - 2 \)B. \( 3 + 1 \)C. \( 4 \times 0 \)D. \( 5 \div 5 \)5. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5 或 -5D. 0二、填空题(每题2分,共10分)1. 一个数的平方根是3,那么这个数是________。
2. 一个数的立方根是2,那么这个数是________。
3. 如果\( a \)和\( b \)互为相反数,那么\( a + b = ________ \)。
4. 一个数的倒数是\( \frac{1}{2} \),那么这个数是________。
5. 一个数的绝对值是它本身,这个数是________或________。
三、简答题(每题5分,共20分)1. 解释什么是质数,并给出10以内的质数列表。
2. 描述什么是完全平方数,并给出10以内的完全平方数列表。
3. 解释什么是有理数和无理数,并给出各一个例子。
4. 解释什么是代数表达式,并给出一个代数表达式的例子。
四、计算题(每题10分,共30分)1. 计算下列表达式的值:\( (3x - 2y) - (5x + 4y) \),假设\( x= 1 \)且\( y = 2 \)。
2. 解下列方程:\( 2x + 3 = 7 \)。
3. 计算下列多项式的乘积:\( (x^2 - 4)(x + 2) \)。
五、应用题(每题15分,共30分)1. 一个农场有鸡和兔子共40只,它们的腿总共有100条。
初中数学全国竞赛试题及答案
初中数学全国竞赛试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于16,那么这个数是:A. 4B. ±4C. 16D. ±163. 一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 84. 将一个圆分成四个相等的扇形,每个扇形的圆心角是多少度?A. 45°B. 60°C. 90°D. 120°5. 一个数的立方等于-8,这个数是:A. -2B. 2C. -8D. 8二、填空题(每题2分,共10分)6. 一个数的平方根等于它本身,这个数是______。
7. 如果一个数的绝对值等于5,那么这个数可以是______。
8. 一个数的倒数是1/4,那么这个数是______。
9. 一个数的平方是25,这个数可以是______。
10. 一个数的立方根是2,那么这个数是______。
三、解答题(每题10分,共30分)11. 已知一个长方体的长、宽、高分别是a、b、c,求长方体的体积。
12. 一个圆的半径是r,求圆的面积。
13. 已知一个等腰三角形的两个腰长为a,底边长为b,求三角形的面积。
四、证明题(每题15分,共30分)14. 证明:直角三角形的斜边的平方等于两直角边的平方和。
15. 证明:如果一个角的余弦值等于1/2,那么这个角是60°。
五、应用题(每题20分,共20分)16. 某工厂生产一种零件,每个零件的成本是5元,售价是10元。
如果工厂想要获得10000元的利润,需要生产和销售多少个这种零件?初中数学全国竞赛试题答案一、选择题1. B2. B3. A4. C5. A二、填空题6. 0或17. ±58. 49. ±510. 8三、解答题11. 长方体的体积 = 长× 宽× 高= a × b × c。
初中数学竞赛试题及答案pdf
初中数学竞赛试题及答案pdf一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 一个数的平方等于9,这个数是?A. 3B. -3C. 3或-3D. 以上都不是答案:C3. 计算下列算式的结果:(2x + 3)(2x - 3) = ?A. 4x^2 - 6x + 6B. 4x^2 - 9C. 4x^2 + 6x - 9D. 4x^2 + 9答案:B4. 如果一个三角形的两边长分别为3和4,且这两边之间的夹角为90度,那么这个三角形的周长是多少?A. 7B. 8C. 9D. 10答案:D5. 以下哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:A6. 一个圆的直径是10厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 100πD. 200π答案:C7. 以下哪个是完全平方数?A. 36B. 49C. 64D. 81答案:C8. 一个数的立方等于-8,这个数是?A. -2B. 2C. -2或2D. 以上都不是答案:A9. 计算下列算式的结果:(a + b)^2 = ?A. a^2 + 2ab + b^2B. a^2 - 2ab + b^2C. a^2 + b^2D. a^2 - b^2答案:A10. 如果一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 以上都不是答案:C二、填空题(每题4分,共20分)11. 一个数的平方根是2,那么这个数是______。
答案:412. 一个等差数列的首项是2,公差是3,那么这个数列的第5项是______。
答案:1713. 一个等腰三角形的底边长是6厘米,两腰长分别是8厘米,那么这个三角形的周长是______厘米。
答案:2214. 如果一个数除以3余2,除以5余1,那么这个数可能是______(写出一个符合条件的数即可)。
答案:1115. 一个直角三角形的两直角边长分别是3厘米和4厘米,那么这个三角形的斜边长是______厘米。
八年级数学竞赛数学试题
八年级数学竞赛数学试题一、选择题(每题3分,共15分)1. 下列哪个数不是有理数?A. πB. √2C. -3.14D. 0.333...2. 如果一个三角形的三边长分别为a、b、c,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不规则三角形3. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 24. 以下哪个表达式等于2?A. (-2)^2B. √4C. |-2|D. 2^1/25. 如果x^2 - 5x + 6 = 0,那么x的值是:A. 2B. 3C. 1和2D. 1和3二、填空题(每题2分,共10分)6. 一个数的立方根是-2,这个数是______。
7. 一个圆的半径是5厘米,它的面积是______平方厘米。
8. 一个分数的分母比分子大2,且这个分数等于1/3,那么这个分数是______。
9. 如果一个数的相反数是-7,那么这个数是______。
10. 一个数的绝对值是5,这个数可以是______。
三、解答题(每题5分,共30分)11. 解方程:2x - 3 = 7x + 4。
12. 一个长方形的长是宽的两倍,如果它的周长是24厘米,求这个长方形的长和宽。
13. 一个数列的前三项是2, 5, 8,如果每一项都是前一项加上一个固定的数,求这个固定的数。
14. 一个班级有40名学生,其中30名学生喜欢数学,20名学生喜欢英语,5名学生既不喜欢数学也不喜欢英语。
求同时喜欢数学和英语的学生人数。
四、证明题(每题5分,共10分)15. 证明:在一个直角三角形中,斜边的中点到三个顶点的距离相等。
16. 证明:如果一个角是直角,那么它的余角也是直角。
五、应用题(每题5分,共10分)17. 一家商店销售两种类型的计算器,普通型计算器每台售价为20元,科学型计算器每台售价为50元。
如果商店共售出40台计算器,总收入为1600元,求普通型和科学型计算器各售出了多少台。
初中数学竞赛列方程解应用题(含答案)
初中数学竞赛列⽅程解应⽤题(含答案)列⽅程解应⽤题在⼩学数学中介绍了应⽤题的算术解法及常见的典型应⽤题。
然⽽算术解法往往局限于从已知条件出发推出结论,不允许未知数参加计算,这样,对于较复杂的应⽤题,使⽤算术⽅法常常⽐较困难。
⽽⽤列⽅程的⽅法,未知数与已知数同样都是运算的对象,通过找出“未知”与“已知”之间的相等关系,即列出⽅程(或⽅程组),使问题得以解决。
所以对于应⽤题,列⽅程的⽅法往往⽐算术解法易于思考,易于求解。
列⽅程解应⽤题的⼀般步骤是:审题,设未知数,找出相等关系,列⽅程,解⽅程,检验作答。
其中列⽅程是关键的⼀步,其实质是将同⼀个量或等量⽤两种⽅式表达出来,⽽要建⽴这种相等关系必须对题⽬作细致分析,有些相等关系⽐较隐蔽,必要时要应⽤图表或图形进⾏直观分析。
⼀、列简易⽅程解应⽤题10x+1,从⽽有3(105+x)=10x+1,7x=299999,x=42857。
答:这个六位数为142857。
说明:这⼀解法的关键有两点:⽰出来,这⾥根据题⽬的特点,采⽤“整体”设元的⽅法很有特⾊。
(1)是善于分析问题中的已知数与未知数之间的数量关系;(2)是⼀般语⾔与数学的形式语⾔之间的相互关系转化。
因此,要提⾼列⽅程解应⽤题的能⼒,就应在这两⽅⾯下功夫。
例2有⼀队伍以1.4⽶/秒的速度⾏军,末尾有⼀通讯员因事要通知排头,于是以2.6⽶/秒的速度从末尾赶到排头并⽴即返回排尾,共⽤了10分50秒。
问:队伍有多长?分析:这是⼀道“追及⼜相遇”的问题,通讯员从末尾到排头是追及问题,他与排头所⾏路程差为队伍长;通讯员从排头返回排尾是相遇问题,他与排尾所⾏路程和为队伍长。
如果设通讯员从末尾到排头⽤了x秒,那么通讯员从排头返回排尾⽤了(650-x)秒,于是不难列⽅程。
解:设通讯员从末尾赶到排头⽤了x秒,依题意得2.6x-1.4x=2.6(650-x)+1.4(650-x)。
解得x=500。
推知队伍长为(2.6-1.4)×500=600(⽶)。
初一数学竞赛测试题及答案
初一数学竞赛测试题及答案【测试题一】题目:计算下列表达式的值:\[ 2^3 + 3^2 - 4 \times 5 \]【答案】首先,按照运算顺序,先计算乘方和乘法,再计算加法和减法。
\[ 2^3 = 8 \]\[ 3^2 = 9 \]\[ 4 \times 5 = 20 \]然后进行加减运算:\[ 8 + 9 - 20 = 17 - 20 = -3 \]所以,表达式的值为 -3。
【测试题二】题目:如果一个数的平方等于这个数本身,这个数是什么?【答案】设这个数为 \( x \),根据题意,我们有:\[ x^2 = x \]这个方程可以重写为:\[ x^2 - x = 0 \]\[ x(x - 1) = 0 \]根据零乘律,\( x = 0 \) 或 \( x - 1 = 0 \),所以 \( x = 0 \) 或 \( x = 1 \)。
【测试题三】题目:一个长方体的长、宽、高分别是 8 厘米、6 厘米和 5 厘米,求这个长方体的体积。
【答案】长方体的体积可以通过长、宽、高的乘积来计算:\[ \text{体积} = 长 \times 宽 \times 高 \]\[ \text{体积} = 8 \times 6 \times 5 = 240 \text{ 立方厘米} \]【测试题四】题目:一个圆的半径是 7 厘米,求这个圆的周长和面积。
【答案】圆的周长公式是 \( C = 2\pi r \),面积公式是 \( A = \pi r^2 \)。
将半径 \( r = 7 \) 厘米代入公式中:\[ C = 2 \times \pi \times 7 \approx 44 \text{ 厘米} \]\[ A = \pi \times 7^2 \approx 153.94 \text{ 平方厘米} \]【测试题五】题目:一个班级有 40 名学生,其中 2/5 是男生,3/5 是女生。
如果班级里增加了 10 名男生,那么班级里男生和女生的比例是多少?【答案】首先,计算原有男生和女生的人数:男生:\( 40 \times \frac{2}{5} = 16 \) 人女生:\( 40 \times \frac{3}{5} = 24 \) 人增加 10 名男生后,男生总数变为 \( 16 + 10 = 26 \) 人,女生人数不变。
全国初中数学竞赛决赛试卷
一、选择题(每题5分,共20分)1. 下列各数中,哪个是负数?A. -3B. 0C. 1.5D. -1/22. 如果一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是多少立方厘米?A. 12B. 24C. 36D. 483. 下列哪个图形是轴对称图形?A. 正方形B. 等腰三角形C. 长方形D. 等边三角形4. 在下列各式中,哪个式子是正确的?A. 2a + 3b = 5a - 2bB. 3x - 4 = 2x + 6C. 5m + 2n = 3m - nD. 4p - 5q = 7p + 2q5. 已知等差数列的前三项分别是2、5、8,那么这个等差数列的公差是多少?A. 3B. 4C. 5D. 6二、填空题(每题5分,共25分)6. 若a = 3,b = -2,则a² + b²的值为______。
7. 若x + y = 5,x - y = 1,则x² - y²的值为______。
8. 已知直角三角形的两条直角边分别是3cm和4cm,那么斜边的长度是______cm。
9. 一个圆的半径增加了20%,那么圆的面积增加了______%。
10. 在△ABC中,∠A = 45°,∠B = 60°,那么∠C的度数是______°。
三、解答题(每题10分,共40分)11. (10分)解下列方程:(1)2x - 5 = 3x + 1(2)5y² - 10y - 6 = 012. (10分)已知长方形的长是5cm,宽是3cm,求它的对角线长度。
13. (10分)已知等比数列的前三项分别是2、6、18,求这个等比数列的公比。
14. (10分)已知正方形的对角线长度是10cm,求这个正方形的面积。
四、应用题(每题15分,共30分)15. (15分)某商店在打折促销活动中,原价为100元的商品,打八折后售价为80元,再买一赠一。
历届初中奥林匹克数学竟赛应用题
历届初中奥林匹克数学竟赛应用题以下是初中奥林匹克数学竞赛中涉及的应用题:1. 一辆汽车从甲地开往乙地,如果把车速提高20%,可以比原定时间提前1小时到达;如果以原速行驶120千米后,再将速度提高25%,则可提前40分钟到达。
那么,甲、乙两地相距多少千米?2. 小张、小王和小李同时从湖边同一地点出发,绕湖行走。
小张速度是每小时千米,小王速度是每小时千米,他们两人同方向而行走,小李与他们反方向行走,半小时后小张与小李相遇,再过5分钟,小李与小王相遇。
那么,绕湖一周的行程是多少千米?3. 两辆汽车同时从相距190千米的甲乙两地相对开出,甲车每小时行45千米,乙车每小时行50千米。
两车开出几小时后,还相距95千米?4. 一只船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。
如果水流速度是每小时2千米,求两地间的距离?5. 两队同学同时从相距30千米的甲乙两地相向出发,一只鸽子以每小时20千米的速度在两队同学之间不断往返送信。
6. 一个水箱,用甲、乙、丙三个水管往里注水。
若只开甲、丙两管,甲管注入18吨水时,水箱已满;若只开乙、丙两管,乙管注入27吨水时,水箱才满。
又知,乙管每分钟注水量是甲管每分钟注水量的2倍。
则该水箱最多可容纳多少吨水?7. 一个同学骑自行车以每小时14千米的速度,在两队之间不停地往返联络。
甲队每小时行5千米,乙队每小时行4千米。
两队相遇时,骑自行车的同学共行多少千米?8. 一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度。
(得出保留整数)9. 猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。
10. 甲乙两车同时从AB两地相对开出。
第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。
全国初中数学竞赛试题及答案大全
全国初中数学竞赛试题及答案大全试题一:代数基础题目:若\( a \), \( b \), \( c \)为实数,且满足\( a + b + c = 3 \),\( ab + ac + bc = 1 \),求\( a^2 + b^2 + c^2 \)的值。
解答:根据已知条件,我们可以使用配方法来求解。
首先,我们知道\( (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \)。
将已知条件代入,得到\( 3^2 = a^2 + b^2 + c^2 + 2 \times 1 \)。
简化后,我们得到\( a^2 + b^2 + c^2 = 9 - 2 = 7 \)。
试题二:几何问题题目:在直角三角形ABC中,∠A=90°,AB=6,AC=8,求斜边BC的长度。
解答:根据勾股定理,直角三角形的斜边BC的平方等于两直角边的平方和,即\( BC^2 = AB^2 + AC^2 \)。
代入已知数值,得到\( BC^2 = 6^2 + 8^2 = 36 + 64 = 100 \)。
因此,\( BC = \sqrt{100} = 10 \)。
试题三:数列问题题目:一个等差数列的首项是2,公差是3,求第10项的值。
解答:等差数列的第n项可以通过公式\( a_n = a_1 + (n - 1)d \)来计算,其中\( a_1 \)是首项,d是公差,n是项数。
将已知条件代入公式,得到\( a_{10} = 2 + (10 - 1) \times 3 = 2 + 9 \times 3 = 29 \)。
试题四:概率问题题目:一个袋子里有5个红球和3个蓝球,随机取出2个球,求取出的两个球颜色相同的概率。
解答:首先计算总的可能情况,即从8个球中取2个球的组合数,用组合公式C(8,2)计算。
然后计算取出两个红球或两个蓝球的情况。
两个红球的情况有C(5,2)种,两个蓝球的情况有C(3,2)种。
初中奥林匹克数学竞赛训练题7套
初中奥林匹克数学竞赛训练题7套训练题第一套:代数基础1. 已知a, b为正数,且a+b=10,求ab的最大值。
2. 解方程:3(x2) 2(2x+1) = 7。
3. 已知等差数列的前三项分别是2,5,8,求第10项的值。
4. 如果一个数的平方根加上它的倒数等于3,求这个数。
训练题第二套:几何图形1. 在直角坐标系中,点A(2,3)到原点O的距离是多少?2. 一个等腰三角形的底边长为10cm,腰长为13cm,求这个三角形的面积。
3. 在圆中,一条弦长为8cm,且这条弦距离圆心的距离为6cm,求圆的半径。
4. 证明:对任意等腰三角形,其底边上的中线垂直平分底边。
训练题第三套:数论与组合1. 求证:任意两个正整数a和b,如果它们的最大公约数为1,那么a和a+b也是互质的。
2. 在1到100的自然数中,有多少个数既不是3的倍数也不是5的倍数?3. 有8个男生和7个女生站成一排,要求男生必须站在一起,有多少种不同的站法?4. 一个班级有5对双胞胎,如果从中选出4对学生,要求每对学生中至少有一个是双胞胎,有多少种选法?训练题第四套:概率与统计1. 从一副52张的扑克牌中随机抽取4张牌,计算抽到至少一张红桃的概率。
2. 一个袋子里有5个红球,3个蓝球,2个绿球,从中随机取出3个球,求取出的球颜色相同的概率。
3. 如果一组数据的平均数是50,标准差是5,那么这组数据中有多少个数据至少为60?训练题第五套:逻辑推理与问题解决1. 甲、乙、丙三人中,一人是教师,一人是医生,一人是工人。
甲说:“我不是医生。
”乙说:“我不是工人。
”丙说:“我不是教师。
”请问他们各自是什么职业?2. 有4个数字密码锁,每个锁有4个按钮,分别是1、2、3、4。
如果密码是一个四位数,且每个数字都不相同,那么一共有多少种可能的密码组合?3. 一个数字序列的规律是:每个数字都是前两个数字之和。
如果序列的前两个数字分别是1和2,那么第10个数字是多少?4. 一个房间里有4个开关,对应着另一个房间里的4盏灯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用题练习卷(一)
1.甲种茶叶与乙种茶叶以重量比x∶y混合.甲的原价为50元/千克,乙的原价为40元/千克.若甲的价格增加10%,乙的价格减少15%,则混合茶叶每千克的价格不变.求x∶y的值.
2.甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁.那么( )
(A)甲比乙大5岁. (B)甲比乙大10岁. (C)乙比甲大10岁. (D)乙比甲大5岁.
3.某商场经销一种商品,由于进货时价格比原进价低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是多少? [注:利润率=(销售价-进价)÷进价×100%]
4.把1千克水加到盐水中,新盐水的浓度为20%,再把1千克盐加到新盐水中,结果盐水浓度为40%.求原来盐水的浓度
5.一商店把某种彩电按标价的八折出售,仍可获利20%.已知该品种彩电每台的进价为1996元.求这种彩电每台的标价是多少?
6.在某市举办的自行车越野赛中,甲乙二车同时从A地跑到B地.甲车用速度V1,V2,V3分别跑了
的时间,乙车甲速度V1,V2,V3分别跑了1
3
的路程.试问甲乙两车谁先跑到B地?
7.有收录机、钢笔和书包三种物品.已知购买收录机3台、钢笔6支、书包2个共需146元;购买收录机5台、钢笔11支、书包3个共需196元.那么购买收录机、钢笔、书包各一件共需共少元?
8.某果品商店进行组合销售.甲种搭配:2千克A水果,4千克B水果;乙种搭配:3千克A水果,8千克B水果,1千克C水果;丙种搭配:2千克A水果,6千克B水果,1千克C水果.已知A水果每千克2元,B水果每千克1.2元,C水果每千克10元.某天该商店销售这三种搭配共得441.2元,其中A水果的销售额为116元,那么C水果的销售额为多少元?
9.用5元钱共买西瓜、梨子、山楂100个.西瓜每个5角,梨子每个1角,山楂每十个1角.问每样买了多少?
10.某项工程,由甲、乙两工程队承包需用2.4天完成,需支付工钱1800元;由乙、丙二队承包
需用3.75天完成,需支付工钱1500元;由甲、丙二队承包需26
7
天完成,需支付工钱1600元.
如果不限制工期,问由哪个队单独承包所需工钱最少?
11.某厂有九个车间,每个车间原有一样多的成品,每天也能生产一样多的产品.每个检验员的速度一样快.A组8个检验员在两天内检验完两个车间的所有产品(包括原有成品和后来生产的产品),再用三天检验完另外两个车间的所有产品.而在这五天内B组的检验员也检验完其余五个车间的全部产品.问B组有多少检验员?
12.甲乙两人在一条与铁路平行的笔直小路上背向而行.一列火车开来,二人在行进过程中各自测出整列火车通过自己的时间分别为42秒和34秒,并且在这段时间内二人各自走了68米和44米.求这列火车的速度和长度.
参考答案:
1. 设每份重k 千克,则混合后每千克
5040kx ky kx ky ++元;价格变化后,混合茶5534kx ky kx ky ++元/千克. 由题意: 5040kx ky kx ky ++=5534kx ky kx ky
++,x :y=6:5. 2. 设现在甲x 岁,乙y 岁,则甲y 岁时,乙10岁;乙x 岁时,甲25岁.
因为同一时刻甲、乙年龄之差不变,
所以1025x y y x y x -=-⎧⎨-=-⎩
解得x=20,y=15.
3. 设原来的进价为a,利润率为x,则a(1+x)=a(1-6.4%)(1+x+8%),x=17%.
4. 设原来盐水浓度为x,重a 千克. 则20%1140%11
ax x ax a ⎧=⎪⎪+⎨+⎪=⎪++⎩,a=2,x=30%. 5. 设每台标价为x 元,则售价为
810x 元. 于是, 810
x=1996(1+20%),x=2994. 6. 设AB=S,则S=13T 甲V 1+13T 甲V 2+13
T 甲V 3,得T 甲=1233S V V V ++, T 乙=123
111333S S S V V V ++=231312123()3S V V V V V V V V V ++. ∴T 甲- T 乙=1233S V V V ++-231312123
()3S V V V V V V V V V ++ =S ·222222123312213132123123
6()()()3()VV V V V V V V V V V V VV V V V V -+-+-+++. ∵V 12+V 22≥2V 1V 2, V 12+V 32≥2V 1V 3, V 32+V 22
≥2V 3V 2,
∴T 甲- T 乙≤S ·12312312312312312362223()V V V V V V V V V V V V V V V V V V ---++=0. 当V 1=V 2=V 3时,等号成立.
∴V 1=V 2=V 3时,二人同时到达B 地;否则,甲比乙先到达B 地.
7. 设录音机,钢笔,书包的单价分别为x,y,z(元),则
3621465113196x y z x y z ++=⎧⎨++=⎩
(1)×2-(2),得x+y+z=96.
8. 设每天卖出甲,乙,丙三种水果分别为x,y,z 套,则
2(232)1168.825.621.2441.2x y z x y z ++=⎧⎨++=⎩
可得x+y=15,10(x+y)=150(元).
9. 设西瓜,梨子,山楂分别买了x,y,z 个,则
1000.50.10.015x y z x y z ++=⎧⎨++=⎩
消去z,得y=400494(1)44599
x x x --=-+ ∵x,y 为正整数,x<9,
∴x=1,y=39,z=60.
10. 甲.
11. 设B 组有n 个检测员,每个车间原有成品x 个,每天能生产成品y 个,则 2(2)2(5)28385(5)2(5)
538x y x y x y x y n ++⎧=⎪⎪⨯⨯⎨++⎪=⎪⨯⎩
由(1)有:x=4y,代入(2)有:n=12.
12. ∵42秒>34秒
∴甲与火车同向而行
设火车长x 米,则当火车通过甲时,火车走了(68+x)米,每秒走
6842x +米;当火车通过乙时,火车走了(x-44)米,每秒走4434x -米.于是有68444234x x +-=,x=520,此时4434x -=14. ∴火车长520米,每秒14米.。