SPC基础知识--
SPC (统计过程控制)基础知识
SPC(统计过程控制)基础知识 统计过程控制) 统计过程控制
4.X-Rs 控制图。多用于下列场合:对每一个产品都进行检验,采用自动化检查和 测量的场合;取样费时、昂贵的场合;以及如化工等过程、样品均匀,多抽样也无 太大意义的场合。由于它不像前三种控制图那样能取得较多的信息,所以它判断过 程的灵敏度也要差一些。
以 客 贯 彻
户 为
中
心 宗
旨
的
质 量 目 标 的 制 定
有 目 期 况
无 制 定 可 测 量 的 质 量 目 标 ? 质 量 标 有 无 分 解 到 各 职 能 层 ? 有 无 定 测 量 评 估 各 质 量 目 标 的 达 成 情 ?
职 责 和 权 限
各 部 门 , 各 职 能 岗 位 有 无 定 义 相 关 的 职 责 和 权 限 ?
4 .2 .2
质 量 手 册
有 无 编 写 符 合 要 求 的 质 量 手 册 ?
SPC(统计过程控制)基础知识 统计过程控制) 统计过程控制
3.4 分层图 用于将数据分类比较 250
不良率(PPM)
目标线
150 100 50 0 1 2 3 4
工作周
C班 B班 A班
5
6
7
8
9
SPC(统计过程控制)基础知识 统计过程控制) 统计过程控制
3.5 控制图 什么是控制图? 什么是控制图? 控制图是对过程质量加以测定,记录从而进行控制管理的一种用科学方法设计的图。 控制图的理论基础是概率论。依据概率论,我们把“小概率的事件如果发生了,我 们认为有异常存在”。 控制图的种类: 控制图的种类
数据 计量值 分布 正态分布 控制图名称 均值-极差 图 均值-标准差 图 中位数-极差 图 单值-移动极差 图 不合格品率图 不合格品数图 单位缺陷数 缺陷数 简记 X-R chart X-S chart X-R chart X-Rs chart P chart Pn chart U chart C chart
SPC培训讲义---基础知识
SPC培训讲义—基础知识简介SPC(Statistical Process Control,统计过程控制)是一种基于统计方法的质量管理工具,旨在通过对过程数据的统计分析,帮助组织识别和解决可能导致质量问题的根本原因,从而提高产品的稳定性和可靠性。
本讲义将介绍SPC的基础知识,包括SPC的原理、常用的SPC 工具和应用案例等内容。
1. SPC的原理SPC的核心原理是基于过程数据的统计分析,通过对数据的收集和分析,识别和排除可能导致质量问题的特殊原因,同时通过控制图的使用,监控和改进过程的稳定性和可靠性。
1.1 正态分布在SPC中,数据的正态分布是一个重要的假设。
正态分布是一种对称的概率分布,其特点是均值和标准差能够完全描述分布的情况。
正态分布的图形呈钟形曲线,均值位于曲线的中央。
在实际应用中,SPC 通常假设数据是近似正态分布的,以方便进行统计分析。
1.2 变异性与稳定性在质量管理中,变异性是指同一过程在不同时间或不同条件下相同测量项的数值差异。
通过SPC的应用,可以发现原本被认为是随机变动的过程,实际上可能存在特殊原因造成的异常波动。
稳定性是指过程在一段时间内的变异性较小,并且符合预期的性能要求。
通过SPC 的控制图,可以监控过程的稳定性,并及时采取措施防止不稳定状态的出现。
2. 常用的SPC工具SPC工具是SPC实施过程中使用的具体方法和技术,下面介绍几种常用的SPC工具。
2.1 控制图控制图是SPC中最常用的一种工具,它用来监控过程在一段时间内的变异情况。
控制图是一种统计图表,将过程数据按时间顺序绘制在图表上,同时画出上下限和中心线。
如果过程数据处于控制限之内,说明过程处于稳定状态;如果过程数据超过控制限,说明过程发生了特殊原因的变异,需要进行分析和改进。
2.2 直方图直方图是一种用柱形表示数据分布的图表,它可以直观地展示数据的中心趋势、波动幅度以及偏态情况。
通过直方图,可以判断数据是否符合正态分布,如果数据呈现钟形分布,则可以认为数据符合正态分布的假设。
SPC理论基础知识
广州今朝科技有限公司SPC基础知识一SPC术语录1.控制图:SPC的核心工具。
一种标绘着根据相继抽取的样本或子组的某一统计量的值、并画有控制限的图,用于评估或检查一个过程是否处于控制状态之下。
画在坐标系中,横轴表示时间或样本号,纵轴表示数值大小,将采集到的数据以点的形式表示在图中。
2.运行图:一种代表过程特性的简单图形,上面描有一些从过程中收集到的统计数据(通常是单值)和一条中心线(通常是测量值的中位数),可用来进行链分析。
3.排列图:一种用于解决问题的简单工具,按照对成本或变差的影响程度对各种潜在的有问题区域或变差源进行排序。
一般情况下,大多数的成本(或变差)是由于少量原因造成的,所以解决问题的精力最好是首先集中在少量关键的原因上,而暂时忽视多数不重要的原因。
4.散点图(相关图):把两个变量标在横轴与纵轴上,按照一一对应测量值点描绘成的图。
5.计量值:当质量特性值可以取给定范围内的任何一个可能的数值时,这样的质量特性值称为计量值。
6.计数值:当质量特性值只能取一组特定的数值,而不能取这些数值之间的数值时,称之为计数值。
7.过程:过程是指将输入转换成输出的一系列活8.9.10.628052366666611.动的总和。
12.样本:取自总体中的一个或多个个体,用于提供关于总体的信息,并作为可能做出对总体(或产生总体的过程)的某种判定的基础(引自GB3358-82)。
样本中所包含的样本单位数,称为样本大小。
13.样本容量(子组大小):在抽检中抽出来的样本单位数。
14.不良品:指整件物品作为一个整体考虑而未满人意或不能接受。
一件不良品可能具有若干相同的或不相同的缺陷。
15.不良率控制图:即P图,用于控制对象的不合格率。
16.不良品数控制图:即Pn图,是一种计数值控制图,用于控制对象为不合格品数的场合。
)17.采集规划:采集规划指从某过程中选择质量特征值进行数据采集的一种工具。
18.单位缺陷数(U)控制图:是一种计数值控制图,它通过周期性抽取样本以统计单位产品的缺陷率并在控制图上绘制点来监控过程变化,样本的检测结果为平均每个样品包含的缺陷数。
SPC的基础知识与数据整理
SPC的基础知识与数据整理引言SPC(统计过程控制)是一种用于监控和控制过程的统计方法。
它通过收集一系列的数据并进行分析,以确定过程是否处于控制状态,并采取相应的措施保持过程稳定。
在本文中,我们将介绍SPC的基础知识和数据整理方法。
SPC的基础知识SPC的核心思想是通过采集过程中的样本数据,分析其变异情况,以判断过程是否处于控制状态。
基于不同的过程类型,SPC通常使用控制图来可视化过程的变异情况。
常用的控制图包括X-Bar图、R图和S图等。
X-Bar图X-Bar图是一种用于监控过程均值的控制图。
它基于过程中收集到的样本数据,计算每个样本的均值,并绘制在图表上。
通过观察X-Bar 图,我们可以判断过程均值是否稳定。
R图R图是一种用于监控过程变异性的控制图。
它基于过程中收集到的样本数据,计算每个样本的极差(最大值与最小值之差),并绘制在图表上。
通过观察R图,我们可以判断过程的变异性是否稳定。
S图S图是一种用于监控过程变异性的控制图。
它基于过程中收集到的样本数据,计算每个样本的标准差,并绘制在图表上。
通过观察S图,我们可以判断过程的变异性是否稳定。
数据整理方法数据整理是SPC的一个重要步骤,它涉及收集样本数据、记录数据、计算统计量和绘制控制图等过程。
下面我们将介绍一些常用的数据整理方法。
数据收集在进行数据收集之前,需要确定采集数据的时间间隔和样本容量。
通常,采集数据的时间间隔应保证能够捕捉到过程的变化。
样本容量的确定应根据具体情况和要求进行。
数据记录数据记录是指将收集到的数据记录下来,以备后续分析使用。
可以使用电子表格软件(如Excel)或统计软件(如SPSS)等工具来记录数据。
统计量计算在进行SPC分析之前,需要计算一些统计量,如样本均值、样本标准差等。
这些统计量的计算可通过公式或统计软件完成。
控制图绘制控制图的绘制是用于直观地观察过程变异情况的重要步骤。
可以使用统计软件或绘图软件(如R语言)来绘制控制图。
SPC基础知识
SPC运用统计技术对生产过程中的各工序参数进行 监控,从而达到改进、保证产品质量的目的。
二、SPC特点
SPC具有以下特点: ---基于一定的数据资料进行统计 ---方法是绘制选择的控制图 ---只能提示过程有异常,并不能告诉异常在哪里 ---目的是实现持续改进过程 ---是全系统的、全过程的、要求全员参加 ---不仅用于生产过程,而且用于服务过程和管理过程 ---强调用科学方法来保证全过程的预防
制 程 条 件 变 动 时
制程的继续管制
六、SPC的焦点 SPC:希望将努力的方向,更进一步的放在品质 的源头----制程( Process)上。因为制程的起 伏变化,才是造成品质变异的主要根源。 品质变异的大小,才是决定产品优劣的关键 制程起伏条件 品质异常 产品优劣
七、基本统计概念
N n 母體數(批量數) 樣本數(抽樣數) USL SL 規格上限 規格中心限 (u=規格中心值)
您在工厂经常遇到这些情况吗?
顾客是上帝
销售
超时加班
额外成 本费用
•新品投放 •未预计的订单 变化 SPC作用 过程控制原理 SPC推行步骤 SPC的焦点 基本统计概念
一、什么是SPC SPC:统计过程控制(Statistical Process Control) 统计过程控制是一种通过对产品或工程进行抽样, 测量其特性参数、记录数据并绘制图表,然后进行 分析,以判断过程是否处于受控状态的管理工具。
X
R P C LCL UCL CL
平均數
全距 不良率 缺點數 控制下限 控制上限 控制中心限
LSL
Ca Cp Cpk T NP
規格下限
准确度 精密度 制程能力指數 規格公差 不良數 T=USL-LSL
SPC基本知识
SPC 基础知识一、 什么是SPCSPC 是Statistical process control 的缩写,即统计过程控制。
是应用统计方法对过程中的各个阶段进行临控,从而达到质量保证与质量改进的目的,在此可将统计学看成是从一系列数据中收集信息的工具,它是通过预防而不是通过检测来避免浪费。
二、 SPC 目的1. 预防问题的发生 2. 减少浪费三、 SPC 的管制图原理与益处1.根据3σ原理,在分布范围μ ±3 σ内,对于服从或近似服从正态分布的统计量,大约有99.73%的数据点会落在上下控制界限之内,数据点落在上下控制界限之外的概率约为0.27%,根据小概率原则,可判为异常点.图示如上.2.SPC管制图举例下面是Minitab R14 制作的Xbar-R 管制图。
从图可以看出制程有多个超出控制限的点,说明需要查找原因,采取措施,加以消除,不再出现,纳于标准。
合理使用管制图能够:1.区分变差的普通原因和特殊原因,作为采取局部措施和系统措施的指南。
2.有助于过程在质量上和成本上能持续地、可预测地保持下去。
3.使过程达到:A、更高的质量 B、更低的单位成本C、更高的有效能力。
四、 SPC制程能力分析1.Cp、Cpk与Pp、Ppk的含义与区别如下:Cp指数= 规格宽度工序宽度Cp:(Capability of Process)过程能力指数Cpk:修正的过程能力指数Pp: (Performance of Process)过程性能指数Ppk:修正的过程性能指数2..Cp、Cpk与Pp、Ppk的计算:过程能力指数的计算公式如下:过程性能指数计算公式如下:1.经济性:有效的抽样管制,不用全数检验,不良率,得以控制成本。
使制程稳定,能掌握品质、成本与交期。
2.预警性:制程的异常趋势可实时对策,预防整批不良,以减少浪费。
3.分辨特殊原因:作为局部问题对策或管理阶层系统改进之参考。
4.善用机器设备:估计机器能力,可妥善安排适当机器生产适当零件。
SPC基本知识
受控
不受控
可接受
1类
3类
不可接受
2类
4类
2类过程虽然受控,但因为普通原因造成过大的变差而不能满足规范要求。
3类过程可接受,但存在变差的特殊原因,一般情况下要设法找出原因并消除之。
4类过程既不受控,又不可接受。应减少变差的普通原因和特殊原因。
在某些情况下,顾客允许3类过程运行。例如特殊原因已查明,具有一定的稳定性,采取措施所发生的成本比顾客获得的利益大等。
3.四类过程
过程能力与规范无关。顾客更关心的是过程的输出是否满足规范的要求。满足则可接受,否则不可接受。(关于能力与规范的关系可以用能力指数描述,以后再介绍)。
过程是否受控和是否满足规范要求是两个不同的问题。下面将过程按此分成4类(见表3-1):
1类过程是理想的,它受控且满足
规范要求。
表3-1
是否受控
二、收集数据
1.选择子组容量、频率、子组数
合理子组的确定将决定控制图的效果
①在 -R控制图中,子组的容量是恒定的。在过程研究初期n取4~5,通常取2~5件连续生产的产品。这样的子组反映的是在很短时间内、非常相似的生产条件下生产出来的产品,因此,子组内的变差主要应是普通原因造成的。这些条件不满足,就不能有效地区分出变差的特殊原因。
2.计量型数据控制图分类
表3-2列出计量型数据控制图的种类及其应用范围。
表3-2
类型
优点
应用
均值-极差图 -R
较简便,对子组内特殊原因较敏感
广泛
均值-标准差图 -S
S较R更准确有效,尤其在大样本容量时
计算机实时记录样本容量大
中位数图 -R
用 代替 ,直接描点,不用计算,最为简便
SPC 基础知识
SPC 基础知识一、基本概念:1、极差:测定值中最大值Xmax与最小值Xmin之差称为极差,用R表示:R=X max-X min2、平方和:各个测定值与平均值之差称为偏差。
各测定值的偏差的平方和称为平方和,简称平方和,用S表示:S=(X1-Xa)2+(X2-Xa)2+(X3-Xa)2+(X4-Xa)2+……+(Xn-Xa)2Xa:平均值3、方差:各个测定值的偏差平方和除以(n-1)后所得的值称为无偏方差(简称方差),用s2表示:s2=S/(n-1)4、标准偏差:方差s2的平方根称为标准偏差(简称标准差),用s表示:s=√s2我们常说的δ和μ是指的总体标准差和总体均值;当过程在受控状态下,且样本容量差较大时,可用样本标准差s和样本平均值Xa;5、正态分布:f(x)=1/√2πδ*e-(x-u)2/2δ2 (1.1)式中:x为随机变量,实为标在横座标上的特性值;e≈2.7183,是自然对数底;π≈3.1416,圆周率;δ为总体标准差;μ-根据公式(1.1)可看出,任一正态分布仅由两个参数,即总体均值μ和总体标准差δ完全确定。
μ亦称分布的位置参数,δ称分布的形状参数;δ越小,曲线越陡,数据(变量)离散也小;δ越大,曲线越扁平,数据的离散也越大,总体数值落在:μ±1δ界限范围内的概率为68.26%;μ±2δ界限范围内的概率为95.46%;μ±3δ界限范围内的概率为99.73%;μ±1.96δ界限范围内的概率为95.0%;而数据落在:μ±3δ之外的概率应小于3‟;μ±1.96δ之外的概率应小于5%;二、质量控制和过程控制概念:质量控制是质量管理的一部分,其目的是“致力于满足质量要求”。
质量控制的内容,主要包含以下三方面:1、识别并确定过程,以做到及时发现和排除产品实现过程中的变异要求,使上过程(工序)的问题不带到下一过程(工序)中去,以保证过程的稳定性和产品质量的一致性,这是一项预防性工作,简称过程控制。
SPC统计基础知识
SPC统计基础知识简介SPC(Statistical Process Control,统计过程控制)是一种用于监控和管理过程稳定性和可靠性的统计技术。
通过收集样本数据并进行分析,SPC能够及时发现过程中的变异和异常情况,从而帮助组织实现质量改进、成本控制和客户满意度的提高。
本文将介绍SPC的基本概念和常用统计方法,帮助读者理解和运用SPC统计基础知识。
1. SPC的基本概念SPC是一种通过分析过程数据来监控过程稳定性的方法。
它基于以下三个基本统计概念:1.1 均值过程中的均值是指一组样本数据的平均值。
在SPC中,通过计算样本的均值来了解过程的中心位置。
如果样本均值始终在预设的目标值附近波动,说明过程稳定。
1.2 变异过程中的变异是指一组样本数据的离散程度。
在SPC中,通过计算样本数据的变异度来了解过程的稳定性。
如果样本数据的变异度较低且在预设的范围内,说明过程稳定。
1.3 控制界限控制界限是为了判断过程是否处于可接受的控制范围内而设定的。
上下控制界限定义了过程稳定的上下限,超出这一范围的样本数据将被认为是异常值或异常事件。
2. 常用的SPC统计方法2.1 过程能力指数(Cp)过程能力指数是一种衡量过程稳定性和可靠性的指标。
它通过比较过程的变异度和指定的公差范围来评估过程性能。
Cp值越高,说明过程的稳定性和可靠性越好。
2.2 控制图控制图是SPC中最常用的统计工具之一。
它通过绘制样本数据的均值、上下控制界限和中心线来反映过程的变化趋势。
通过控制图,可以及时发现和纠正过程中的变异和异常情况。
2.3 散点图散点图是用来显示两个变量之间关系的图表。
在SPC中,散点图可以用来发现变量之间的相关性和趋势。
通过分析散点图,可以帮助确定工艺参数的合理范围和优化生产过程。
2.4 直方图直方图是用来显示数据分布情况的图表。
在SPC中,直方图可以帮助了解过程数据的分布特征和变异程度。
通过分析直方图,可以判断过程是否正常、是否满足规定要求。
SPC 基础知识
力銘科技
Logah Technology
LOGAH
一. 基本概念
什麼是 SPC(Statistical Process Control,製程 統計管制) ? 在製程管理及改善中所用到的統計技巧 重點在於利用少量樣本及統計手法的特性, 進 行不良原因的探討
品保、工程、生產、研發 … 各單位都應善用 SPC 方法來管理並持續改善問題
力銘科技
Logah Technology
LOGAH
五.規格界限(USL,LSL) & 管制界限(UCL,LCL)
USL
UCL +3s +2s +s CL -s -2s -3s LSL
USL: Upper Specification Limit 規格 LSL: Lower Specification Limit UCL: Upper Control Limit LCL: Lower Control Limit
力銘科技
Logah Technology
LOGAH
二.SPC vs 傳統模式
*傳統模式 製造生產 檢查 出貨、重工、次級品、報廢
*SPC模式 製造生產 檢查 出貨 發現問題,排除問題, 預防再發生。
SPC管制
力銘科技
Logah Technology
LOGAH
三.資料的種類
計數值
通常都是針對於只能判定Pass/Fail的 製程上使用。
計量值
經由量測可以取得實質的量測數據, 做為判斷Pass/Fail之依據。
力銘科技
Logah Technology
LOGAH
四.統計名詞
USL:規格上限值。(標準值+上限公差)
SPC基础知识
HS
HanShin Molding QC
7.计量型数据控制图
接上页
测量方法必须保证始终产生准确和精密的结果 不精密 精密
不准确
•• • •• •• •
•• •••• •• • • • •• • • •
• •• •• •
准确
HS
HanShin Molding QC
7.计量型数据控制图 使用控制图的准备
a b c d e f 制程控制系统 变差的普通及特殊原因 局部措施和对系统采取措施 过程控制和过程能力 过程改进循环及过程控制 控制图
• 5 管制图的类型 • 6 管制图的选择方法
HS
HanShin Molding QC
• 7 计量型数据管制图 • a 与过程有关的控制图
• • • • • • • • • b 使用控制图的准备 c X-R 图 d X- s 图 e ˜X- R图 f X-MR图 a b c d p图 np 图 c图 u图
如果仅存在变差的普通原因, 随着时间的推移,过程的输 出形成一个稳定的分布并可 预测。
目标值线
预测
时间 范围 目标值线 预测
如果存在变差的特殊 原因,随着时间的推 移,过程的输出不 稳定。 时间
范围
HS
HanShin Molding QC
4.持续改进及统计过程控制概述
局部措施和对系统采取措施
•
局部措施
1、建立适合于实施的环境 a 排除阻碍人员公正的因素 b 提供相应的资源 c 管理者支持 2、定义过程 根据加工过程和上下使用者之间的关系,分析每个阶段的影响 因素。 3、确定待控制的特性 应考虑到: 顾客的需求 当前及潜在的问题区域 特性间的相互关系 4、确定测量系统 a 规定检测的人员、环境、方法、数量、频率、设备或量具。 b 确保检测设备或量具本身的准确性和精密性。
SPC基础知识1
再見!
工序能力的評估 :
5. CPK<0.67時,工序能力非常不充分,根本 沒有滿足品質的狀態,必須進行品質改善.
管制圖的描劃 :
1. 將UCLX,LCLx,CLx,UCLR,LCLR,CLR繪制
在X-R管制圖(QA-022A表格) 2. IPQC檢查員4小時隨機抽取5PCS數據,將 X填入X-R,并描點. 3. X-R需張貼在生產線相應的工位旁,一台 設備/工具一張. 4. 4小時內隨機抽取5個數據的方法是 : 第 一小時取2個,後續3小時各1個.
注 : 極差分布寬度減小是一個好狀態,應研究以便 推廣應用和改進過程.
c . 過程均值已改變,也許還在變化; d . 測試系統已改變, (飄移,偏倚,靈敏度等)
三.異常情況及處理 :
a. 連續10點在中心線一側
b. 連續5點出現向上或向下趨勢 應知會生產組長,必要時作出調整 c. 前兩項的調整無效 d. 超出管制線但未超出公差 知會生產課長,立即作出調整 e. 發生不良經調整無效且有惡化現象 f. 超出公差 暫停生產,對不良加以追溯隔離,調整經QA接受後 才可繼續生產.
二 . 原因 : (分偶發性原因和系統性原因) a~b為R值原因, c~d為均值原因 a . 全距R增加,可能是無規律的,如設備工 作不正常或固定松動或過程中某個要素 變化,如使用新的不是很一致的原材料,需 糾正或調整或改善; b . 測量系統改變,如檢驗員或量具; ===>>會遮掩過程真實性能的變化
定義
SPC : Statistical Process Control 統計過程 控制 δ : Sigma 代表標準偏差的希臘字母 μ : 標準中心值 (規格要求的中間值) ε : 分布中心對標準中心的絕對偏移 ====>>> μ-x T : 規格之上限與下限的差 X : 樣品的實測值﹐也稱單值 X : 讀作 X bar , 為子組X的均值 X : 子組均值X 的平均值,即各樣本總平均 值, 讀作 X double bar
SPC基础知识培训讲义
SPC基础知识培训讲义SPC基础知识⼀、什么是SPCSPC是英⽂Statistical Process Control的前缀简称。
即统计过程控制。
SPC就是应⽤统计技术对过程中的各个阶段进⾏监控。
从⽽达到改进与保证质量的⽬的。
SPC强调全过程的预防。
SPC的特点是:1.SPC是全系统的,全过程的,要求全员参加,⼈⼈有责。
这点与全⾯质量管理的精神完全⼀致。
2.SPC强调⽤科学⽅法(主要是统计技术,尤其是控制图理论)来保证全过程的预防。
3.SPC不仅⽤于⽣产过程,⽽且可⽤于服务过程和⼀切管理过程。
⼆、SPC发展简史过程控制的⽅法早在20世纪20年代就由美国的休哈特提出。
迄今为⽌已经经历了三个发展阶段,即:SPC,SPCD和SPCDA。
1.SPC(Statistical Process Control):它能使⼈们采取措施,消除异常,恢复过程的稳定。
这就是科学地区分出⽣产过程中产品质量的正常波动与异常波动,从⽽对过程的异常及时告警,谓统计过程控制。
2.SPCD(Statistical Process Control and Diagnosis)的前缀简称,即统计过程与诊断。
SPC虽然能对过程的异常进⾏告警,但是它并不能告诉我们是什么异常,发⽣于何处,即不能进⾏诊断。
1982年我国张公绪⾸创两种质量诊断理论,突破了传统的美国休哈特质量控制理论,开辟了统计质量诊断的新⽅向。
3.SPCDA(Statistical Process Control , Diagnosis and Adhustment)的前缀简称,即统计过程控制、诊断与调整。
正如同病⼈确诊后要进⾏治疗,过程诊断后⾃然要加以调整。
⽬前尚⽆实⽤性的成果。
三、成都公司在TS16949标准基础上建⽴的《统计技术应⽤规定》中推荐了⼏种⽤于质量改进的统计⼯具和技术序号⼯具和技术应⽤1调查表系统地收集资料,以得到真实清晰的实况⽤于⾮数字资料的⼯具和技术2因果图分析和表达因果图解关系;通过从症状到原因分析到寻找答案的过程,促进问题的解决3流程图描述现存的过程;设计新的过程4特性要因图表⽰某个论题与其组成要素之间的关系⽤于数字资料的统计⼯具和技术5控制图诊断:评估过程的稳定性;控制:决定何时某⼀过程需要调整,何时该过程需要继续保持下去。
SPC精髓总结汇总
SPC精髓总结汇总目录:一、SPC基础知识介绍二、计量型数据控制图:X-R 图三、其它计量型数据控制图四、计数型数据控制图:P 图五、其它计数型数据控制图六、停止灯控制图一、SPC基础知识介绍1、什么是SPC⏹统计过程控制(Statistical Process Control)⏹第二版2005年7月发布(1992/2005)⏹版权由戴姆勒克莱斯勒公司、福特汽车公司和通用汽车公司所有2、SPC的目的利用统计技术:控制过程、持续改进过程3、常见的统计技术⏹旧QC七大手法:柏拉图、因果分析图、直方图、查检表、分层法、控制图、散布图⏹新QC七大手法:亲和图法、关联图法、系统图法、矩阵图法、矩阵分、析法、PDPC法、箭形图解法4、SPC与检验的区别⏹检验:是事后的行为(产品生产后将不合格品挑选出来),是容忍浪费⏹SPC:是事前或事中的行为(在生产前或生产中有些控制和调整五大生产要素,以避免不合格品的产生),是避免浪费5、正态分布图6、变差的普通原因⏹普通原因:始终作用于过程的变差的原因为变差的普通原因⏹例如:一个机加工轴的直径易于受到由于机器(间隙、轴承磨损)、工具(强度、磨损率)、材料(直径、硬度)、操作人员(进给速率、对中准确度)、维修(润滑、易损零件的更换)及环境(温度、动力供应是否恒定)等原因造成潜在的变差的影响⏹针对普通原因的对策:对系统采取措施⏹通常用来消除变差的普通原因⏹几乎总是要求管理措施,以便纠正⏹大约可纠正85%的过程7、变差的特殊原因⏹特殊原因:不是始终作用于过程的变差的原因⏹即当它们出现时将造成(整个)过程的分布改变。
由于特殊原因造成的过程分布的改变有些有害,有些有利⏹针对特殊原因的对策:局部措施⏹通常用来消除变差的特殊原因⏹通常由与过程直接相关的人员实施⏹大约可纠正15%的过程问题8、控制图的构成USL 上规格线UCL ----------------------------------------------------------------------上控制线CL 中线 LCL ----------------------------------------------------------------------下控制线 LSL 下规格线9、 控制图的类型1、计量型数据控制图1.1、均值和极差图( R X -图) 1.2、均值和标准差图(s X -图)1.3、中位数图(R X -~图)1.4、单值和移动极差图( MR X -图) 2、计数型数据控制图2.1、不合格品率控制图(P 图) 2.2、不合格品数控制图(NP 图) 2.3、不合格数控制图(C 图)2.4、单位产品不合格数控制图(U 图)二计量型数据控制图:R X - 图1、 实施步骤A.收集数据:子组大小/子组频率/子组数的大小B.计算控制限:初始控制线/延长控制线C.过程控制解释:4种异常情况的判定及对策D.过程能力解释:PPK/CPK 的计算及要求2、 子组大小⏹ 子组:每次连续取样的样本⏹ 子组大小:每次连续取样的样本数量⏹ 确定子组大小的原则:— 子组要合理,一般为2-10个、— 一个子组内的变差代表很短时间内的零件的变差 — 非常相似的生产条件下生产出来的,相互间不存在其 它的系统的关系— 每个子组内的变差主要应是普通原因造成3、 子组频率⏹ 子组频率:每次取样的间隔时间 ⏹ 确定子组频率的原则:— 在适当的时间收集足够的子组来反映过程中的变化 — 过程的初期研究,很短的时间间隔进行分组,以便发觉 短时间的不稳定因子— 当证明过程已处于稳定状态下(或已对过程进行改 善),子组间的时间间隔可以增加 4、子组数大小⏹ 子组数大小:每张控制图的控制点数量 ⏹ 确定子组数大小的原则:— 在初始阶段不低于100个单值数据 — 在量产阶段一般不少于25个点 5、过程控制解释1、超出控制限的点2、连续7点位于平均值的一侧3、连续7点上升(后点等于或大于前点)或下降4、明显的非随机图形(大约2/3的描点应落在控制限的中间三分之一的区域内,大约1/3的点落在其外的三分之二的区域)6、异常情况对策⏹ 当发现异常时,不要随意对过程做不必要的改变 ⏹ 正确的做法是:— 记录下当时的六大生产要素:人/机/料/法/环/测— 进行原因分析后,若能找到原因采取措施,则记录好所 采取的措施— 进行原因分析后,若不能找到原因采取措施,则密切观察过程的变化 7、过程能力解释⏹ PPK:初始过程能力指数PPK,也叫性能指数,或短期过程能力指数 ⏹ 其要求是:PPK >1.67或满足顾客的要求⏹ 计算公式为:Ppk=min( ss XUSL LSL X σσˆ3,ˆ3-- ) s ni I n X X S σˆ1)(12=--=∑= ⏹计算数据为:最少100个数据以上⏹ 计算时间:小批量试生产阶段,为PPAP 重要文件之一,需要提交给顾客 ⏹ CPK:稳定的过程能力指数CPK,也叫长期过程能力指数 ⏹其要求是:CPK >1.33或满足顾客要求⏹ 计算公式为:Cpk=min(22ˆ3,ˆ3R R XUSL LSL X σσ-- )⏹ 计算数据为:最好是25组⏹ 计算时间:批量生产阶段,按照控制计划的规定,一般是每张控制图完成后三、其它计量型数据控制图1、均值和标准差控制图⏹标准差s是过程变异性更有效的指针,尤其是对于样本容量较大(n>10)的情况,一般来说,当出现下列一种或多种情况时用s图代替R图:⏹数据是由计算机按实时时序记录和/或描图的,则s的计算程序容易集成化⏹有方便适用的袖珍计算器使s的计算能简单按程序算出⏹使用子组样本容量较大,更有效的变差量度是合适的2、中位数控制图⏹中位数图用在子组的样本容量小于或等于10的情况,样本容量为奇数时更方便⏹如果子组样本容量为偶数,中位数是中间两个数的均值3、单值和移动极差控制图⏹测试一个产品的数据所化时间很长⏹所选取的样本,属于一种极为均匀一致之产品如像液体或气体,测量几个和一个一样⏹加工一个产品的时间很长⏹产品价值很高,测试一个样本会损失很多钱⏹属破坏性试验,每测试一个产品,就损失一个⏹控制过程参数,如:温度﹑压力﹑时间等四、计数型数据控制图:P图1、不合格品率(P图)实施步骤:A.收集数据:子组大小/子组频率/子组数的大小B.计算控制限:初始控制线/延长控制线C.过程控制解释:4种异常情况的判定及对策D.过程能力解释:产品合格率或不合格率2、子组大小⏹子组:每次连续取样的样本⏹子组大小:每次连续取样的样本数量⏹确定子组大小的原则:●子组要大,如50个到200,甚至更多,以便检验出性能的一般变化●一个子组内要包括几个不合格品●每一个子组代表很长的一段时间的过程操作●子组容量分为恒定或它们变化不超过±25%,以及超出±25%二种图形3、子组频率⏹子组频率:每次取样的间隔时间⏹确定子组频率的原则:—应根据产品的周期确定分组的频率以便帮助分析和纠正发现的问题﹒时间间隔短则反馈快﹐但也许与大的子组容量要求矛盾—一般为每班或每天,用于全检工位的较多4、子组数大小⏹为了子组数大小:每张控制图的控制点数量⏹确定子组数大小的原则:—在初始阶段不低于100个单值数据—在量产阶段一般不少于25个点5、过程控制解释1、超出控制限的点2、连续7点位于平均值的一侧3、连续7点上升(后点等于或大于前点)或下降4、明显的非随机图形(大约的描点应落在控制限的中间三分之一的区域内,大约的点落在其外的三分之二的区域)6、过程能力解释⏹如果对于计数型控制图﹐能力直接被定义为不合格品的平均百分数或比例,如PPM(百万分之一)⏹而计量型控制图的能力指的是将/或不将过程的中心调整到规范的目标值后﹐用PPK和CPK表示五、其它计数型数据控制图1、不合格品数控制图(np图)⏹np图用来衡量一个检验中的不合格(不符合或所谓的缺陷)品的数量⏹与p图不同﹐np图表示不合格品的实际数量而不是与样本的比率⏹p图和np图适用的基本情况相同﹐当满足下列情况时可选用np图—不合格品的实际数量比不合格品率更有意义或更容易报告—各阶段子组的样本容量相同2、不合格数控制图(c图)⏹c图用来测量一个检验批内的不合格(或缺陷)的数量(与描在np图上的不合格品的数量不同)⏹c图要求样本的容量恒定或受检材料的数量恒定﹐它主要应用于以下两类检验﹕—不合格分布在连续的产品流上(例如每匹维尼龙上的瑕疵﹐玻璃上的气泡或电线上绝缘层薄的点)—在单个的产品检验中可能发现许多不同潜在原因造成的不合格3、单位产品不合格数控制图(u图)⏹u图是用来测量具有容量不同的样本(受检材料的量不同)的子组内每检验单位产品之内的不合格数量⏹除了不合格数是按每单位产品为基本量表示以外﹐它是与c图相似的⏹u图和c图适用于相同的数据情况﹐但如果样本含有多于一个“单位产品”的量﹐为使报告值更有意义时﹐可以使用u图六、停止灯控制图1、停止灯控制图的概念⏹无论在停止灯控制图中,目标值区域指定为绿色,警告区域指定为黄色,停止区域指定为红色。
SPC基础
SPC(统计过程控制)基础知识培训教材 第一部分 SPC 统计过程控制概论 1,什幺是 SPC? SPC 是三个英文单词的缩写(Statistical Process Control) ,即统计过程控制是应用统 计方法对过程中的各个阶段进行监控,从而达到质量保证与质量改进的目的.在此可将 统计学看成是从一系列数据中收集信息的工具, 它是通过预防而不是通过检测来避免浪 费. SPC 的特点是:1.全系统的,要求全员参与,人人有责;2.强调用科学的方法来保 证达到目的;3.SPC 强调全过程的预防为主;4.SPC 不仅用于生产过程,而且可用于服 务过程和一切管理过程. SPC 要点:1.SPC 是运用统计学方法将过程的输出量和预先设定的控制界限进行比 较,并分辨出通常原因和异常原因,从而在生产过程中进行质量控制;2.SPC 是预防行 为,可针对问题的纠正措施提供有效的资源配置;3.SPC 是一系列的"事前"方法,它 不仅是检测,而且是通过系统的分析,使用收集的数据,并以过程能力为基础,来预测 过程的发展趋势. 2,SPC 的发展史与质量管理的进展 20 世纪二三十年代,美国贝尔电话实验室的休哈特(W.A.Shewhart)博士首先提出 过程控制的概念与实施过程控制的方法,并于 1931 年出版了"加工产品品质的经济控 制" (Economic Control of Quality of Manufactured Products)之后,SPC 应用于各种制造 过程改善便从此展开.今天的 SPC 与当年的休哈特方法并没有根本的区别. 当时 SPC 并不流行,二次世界大战后期,美国开始在军工部门推行休哈特的方法, 但应用并不广泛. 战后, 美国成为当时工业强大的国家, 于是统计过程控制方法在 1950~ 1980 年这一阶段内逐渐从美国工业中消失.反之,在战后经济遭到严重破坏的日本,白 废待兴,提出了以产品质量为根本来提高竞争力,所以到美国请了戴明等人到日本指导 品质,将 SPC 的概念引入日本.SPC 在戴明的指导下,功能发挥的很不错,从 1950 年 到 1980 年,日本跃居世界质量和生产率方面的领先地位.日本人为了牢记戴明的功劳, 就在日本设立了一年一度的品质界最高奖项-----戴明品质奖,后来美国和台湾等地也采 用日本的方式,设立了一年一度的戴明奖. 在日本强有力的竞争之下,SPC 在西方工业发达的国家复兴,西方工业发达国家纷 纷加以推行并把 SPC 列为高科技之一.如美国从 80 年代起开始推行 SPC,美国汽车工 业,钢铁工业等许多行业都推行了 SPC. 20 世纪人类跨入了以加工机械化,经营规模化,资本垄断化为特征的工业化时代. 在整整一个世纪中,质量管理的发展经历了生产后检测,生产中使用 SPC,在生产前进 行产品和过程控制三个阶段. 3,SPC 的作用 过程控制是为了确保满足顾客的要求而对过程所执行的一套程序和经过计划的措 施,使用控制图等统计技术来分析过程或其输出,以便采取适当措施来达到并保持统计 控制状态从而提高过程能力. SPC 的作用主要体现在如下几个方面: 3.1 单纯从 SPC 理论上分析对企业的益处,它具有经济性,预警性,能合理的使用企业 的设备; 3.2 从制造过程(制程)上分析对制程的功效,通过分辨共同原因和特殊原因,找出最 大质量问题原因,以便于工作更有绩效;生产过程能力指数(CPK)可作为改善前后简 单比较的依据,作为生产过程检讨的共同语言;减少报表处理工作量,增加了分析数据的真实性,科学性,从宏观到微观全面真实地了解质量状况;建立一个技术,生产,质 管三个与质量有直接管理部门的沟通的平台. 3.3SPC 有利于维护过程控制和过程的稳定性,加强产品的可靠性和可维护性 3.4 理想的运做 SPC 可以达到的做用可以用 3W2H 来描述:找出什幺时候会发生异常 (When) ;找出发生什幺具体异常(What) ;分析出异常的原因(Why) ;得出解决异常 的方法(How) ;建立起预防方案(How) . 4,SPC 的基本理论基础 在 SPC 中,虽然任何统计方法都可以应用的,但最常用的是控制图理论.现在将 SPC 的理论要点简单介绍如下: 4.1 产品质量的统计观点 产品质量的统计观点是现代质量管理的基本观点之一.它包括两部分的内容:1.产 品质量具有变异性:在生产中,影响产品质量的因素按不同的来源分可分为人员,原材 料,机器设备,操作方法,测量设备,环境等(即 5M1E)几个方面,这些质量因素不 可能保持绝对不变,因此,产品质量在一系列客观存在的因素的影响下必然会不停的变 化着.这就是产品质量的变异性;2.产品质量的变异具有统计规律性:生产正常的情况 下,对产品质量的变异经过大量调查与分析,可应用概率论和数理统计方法来精确地找 出产品质量变异的幅度及不同大小的变异幅度出现的可能性,即产品质量的分布,这就 是产品质量变异的统计规律.在质量管理中,计量特性值常见的分布有正态分布等,计 件质量特性值常见的分布有二项分布等,计点质量特性值常见的分布有泊松分布等,利 用这些规律,可以做到保证和提高产品质量. 从哲学的观点看,前者是认识世界,后者是改造世界.引入产品质量的统计观点是 近代质量管理的区别于传统质量管理的一个重要的标志. 近代质量管理不再把产品质量 仅仅看成是产品和规格的比较, 而是辨证的认为产品质量是受一系列因素的影响并遵循 一定的统计规律在不停的变化着的,这种观点就是产品质量的统计观点. 4.2 抓住异常因素就是抓住主要矛盾 将质量因素分为通常因素和异常因素两类,通常因素对产品质量影响微小,随生产 过程始终存在,难以去除,反之,异常因素对产品质量影响很大,在生产过程中有时存 在,有不难除区.因此在生产过程中,对通常因素的是听之任之,而对异常因素则不然, 异常因素一旦发生,要尽快找出来,并采取措施将其消除,这就是抓住主要矛盾(前面 我们介绍的因果图和排列图) .这里控制图是发现异常因素的科学工具. 4.3 稳定状态是生产过程追求的目标 在生产过程中,只存在通常因素而不存在异常因素时的状态称为稳定状态,简称稳 态,也叫统计控制状态.在稳态下生产,我们对产品的质量有完全的把握,同时生产过 程也是最经济的,所生产的不合格品最少.因此,稳定状态是生产过程追求的目标.一 道工序稳定称为稳定工序,道道工序稳定称为全稳生产线.建立全稳生产线是建立产品 质量保证体系的科学基础.对于如何判断过程是否稳定,有无异常,已建立了一套判断 稳定的准则和判断异常的准则. 4.4 预防为主是质量管理的重要原则 控制图是实现预防为主的原则的重要的科学方法, 这部分内容我们将在控制图部分 的学习时详细学习. 4.5SPD 诊断理论是 SPC 的重要新发展 SPC 可以判断过程的异常,及时告警,但 SPC 也具有其局限性,它不能告诉我们 异常发生的原因,发生在何处,换句话说,SPC 不能进行诊断.而生产现场迫切需要解 决诊断的问题,否则即使想要纠正异常也无从下手,故现场和理论都迫切需要将 SPC发展为 SPD(Statistical Process Diagnosis) .SPD 不仅具有 SPC 及时警告的功能,而且 具有 SPC 所没有的诊断功能,故 SPD 是 SPC 发展的新阶段.SPD 就是利用统计技术方 法对过程的各个阶段进行监控与诊断, 从而达到缩短诊断时间, 以便迅速采取解决措施, 减少损失,降低成本保证产品质量的目的. 4.6 生产线的系统分析工具 不是从孤立的一道工序出发, 而是从上下工序互相联系的整个系统出发来分析一条 生产线是 SPC 分析方法的特色. 以上 SPC 的理论要点将在以后的培训中进行详细的阐明. 5,SPC 进行的基本步骤 SPC 进行过程改进的流程如图所示.SPC的 重 要 性 正 态 分 布 等 统 计 基 础 知 识 质 量 管 理 的 七 个 工 具 如 何 制 定 过 程 控 制 网 图 , 即 控 制 点 工 艺 流 程 图 如 何 制 定 工 序 控 制 表SPC培 训确 定 关 键 变 量 , 提 出 规 格 标 准建 立 过 程 改 进 的 机 会选 择 过 程 改 进 小 组进 行 测 量 可 重 复 性 和 可 再 现 性 研 究进 行 过 程 能 力 研 究建 立 过 程 监 控 系 统持 续 过 程 改 进图 1 SPC 过程改进流程图 6,几个基本的品质概念 下面,我们了解几个与品质有关的重要的观念. 6.1 可能出问题的地方一定会出问题,不可能出问题的地方也可能出问题; 6.2 不要认为所有产品都符合规格就一定品质好了; 6.3 品质目标永远是零缺点,好的品质并不代表一定是高成本; 6.4 品质不是靠制造,检验,设计出来的,而是靠全体员工在一个良好的体系下面,并 拥有良好和完备的方法和工具,形成了一个良好的习惯并得到客户的认同并制造出来 的; 6.5 作了控制图和 CPK 并不代表做了 SPC; 6.6 对自身各环节要多注意任何一点的改善,认识同仁,建立团队默契,发挥团队功能; 6.7PDCA 观念. 第二部分 SPC 的研究对象----差异 SPC 是一种用来分析资料的科学方法,并且利用分析结果来解决实际的问题.只要 问题能以数字表示,就可以应用 SPC 来分析.在生产过程中,产品的加工尺寸的波动是不可避免的.为何会有这些波动发生?它是由人(Man) ,机(Machine) ,料(Material) , 法(Method) ,测(Measurement) ,环(environment) ,简称 5M1E,等基本因素的波动 影响所致.通常我们对产生了变异的系统也是从这六个方面去调查系统产生变异的原 因,这也是过程控制的主要影响因素.在此,我们用图 2 及图 3 来表示变异的来源,这 些来源影响并造成了产品的变异.生产原料机器设备操作者产品品质方法测量系统环境图2品质特性的因果图人机 法料环测产品图3 产品变异来源 生产系统的波动分为两种:正常波动和异常波动.正常波动是偶然性原因(不可避 免因素)造成的.它对产品质量影响较小,在技术上难以消除,在经济上也不值得消除. 异常波动是由系统原因(异常因素)造成的.它对产品质量影响很大,但能够采取措施 避免和消除.过程控制的目的就是消除,避免异常波动,使过程处于正常波动状态.图 4 异常变异和通常变异示意图 生产系统的波动造成数据的波动,在测量的结果上存在一定的差异,是事物所固有 的.但是,只有两种原因:一种是通常原因引起的差异,其过程是稳定的,可预测的, 差异的多种根源共同起作用,是过程所固有的,这些原因导致过程的自然波动;另一种 是异常原因引起的差异,存在异常差异过程是不稳定的,不可预测的,这种差异不是过 程固有的,它是间断差异的根源,是不可预测的,不稳定的.我们在分析差异产生的原 因时一般采用 80/20 原则. 第三部分 统计学基础 离开了数据收 数据收集和分析对于任何一个管理体系都是一个很基本的项目之一, 集和分析,所有的管理体系都是一纸空谈.1,数据的收集和分析 1.1 数据的分类 数据大体上可以分为两类:计量型数据和计数型数据.计量型数据是指那些作为连 续量测得到的质量特性值,如长度,重量,强度,化学成分,时间,电阻.计数型数据 是指按个数数得的非连续性取值的质量特性值,如铸件的疵点,统计抽样中的不合格判 定数,审核中的不合格数等可以用 0,1,2……等阿拉伯数一直数下去的数据.计数型 数据还可以进一步分为计件数(如不合格数)和计点数(如疵点数) ,将这些数据变换 成概率后的数据就是计数型数据. 两类数据的差别,决定了数据所反映的统计性质和数据处理的不同的方法.例如对 于计量型数据都属于连续性数据,最常见的是正态分布(Normal distribution) ;而计数 型数据属于离散概率分布,最典型的是二项分布和泊松分布. 1.2 数据的收集 在 SPC 中,数据收集是非常重要的,收集数据的好坏关系到 SPC 的意义是否存在, 关系到 SPC 的功能能否实现. 因为 SPC 应用的精神在于收集最简洁最基本的数据,经过一系列科学而复杂的运 算,以最简单,直观,明了的方式表现,以便于深入了解品质状况和预测问题.所以 SPC 在数据收集过程中必须强调四项原则:真实,及时,简洁,标准. SPC 在数据的收集过程中,通常包括两大类:一是所检验项目的各项位置条件,如 批号,产品类别,材料编号,收集时间,工序位置,批量数,检验数,检验人员等;二 是各种检验项目,如各缺点代码的缺点个数,各缺点类别个数,各质量特性值所测量出 来的类别个数,各产品控制特性值所测量出来的数值等. 还可根据需要收集:客户名称,班别,机台别,关键材料商等位置条件项目,但根 据的原则为:所订字段需要层别分析,以利于问题地深入分析. 数据收集流程简单来说, 就是把检验出来的数据收集整理好, 其基本流程如图所示.开 始QC工 程 图 或 客 户 要 求确 定 品 检 项 目 及 品 质 要 求制 定 抽 样 计 划 及 现 场 抽 样 表检 验 人 员 现 场 实 际 检 验 并 填 写 检 查 表做 数 据 处 理 或 正 确 无 误 地 输 入 计 算 机结 束图5数据收集流程图2,常用的统计学术语 2.1 必然事件,不可能事件和随机事件 必然事件(event)是指在一定条件下,必然发生的事件,而不可能事件是在一定的 条件下不可能发生的事件. 在质量管理方面我们经常遇到的是随机事件, 即一定条件下, 可能发生,也可能不发生的事件.如我们无法预料 SM 的 SW 一定是目标值,但我们从大量统计的基础上我们可以说 SW 在目标值附近; 再如我们无法预知电灯泡的使用寿命 一定是 1000 小时,但我们在大量统计的基础上可以说电灯泡的寿命有 80%的可能性在 1000 小时以上,这都是随机现象的一种科学的描述. 对于随机现象我们知道,随机现象的结果至少有两个,至于出现那一个,人们事先 并不知道.举一个最简单的例子.抛一枚硬币,可能出现正面,也可能出现反面,至于 出现那一面事先并不知道. 随机事件的发生是偶然的,但随即事件发生的概率还是可能有大小之别的,是可以 设法度量的.而在实际的生产过程中随机事件发生的可能性大小,我们是十分关注的. 例如在上边的例子中,硬币出现中面和反面的几率各是 1/2,足球裁判就是利用抛硬币 的方法让双方队长选择场地的,以示机会均等.再如购买彩票的中奖机会是多少? 2.2 总体和样本 在实际的生产过程中,当产品的批量很大,破坏性试验或无限总体的情况下,很难 或根本不可能对所有原料或产品进行检验,通常的做法是:从总体中抽取取部分个体进 行检验,并依据部分个体的检验结果,去推断总体的水平.例如我们在生产时一检检验 下线 SM 的 25%左右,对我们的生产情况作出推测,进行控制.总体是我们要研究或考 察的全体,而从总体中抽取的部分个体称为样本.所谓的统计判断就是依据对样本的检 测或观察的结果进行推断总体状况. 3,常用的表征数据情况的特征值 用来表示随机现象结果的变量称为随机变量,在生产过程中,产品的质量特性就是 表征产品性能的指标,产品的性能一般是随机的,为了表征这些问题我们引入如下几个 常用的表示随机变量的特征值. 3.1 平均数(Mean,但通常用 Xbar 或 x 表示) 把一组数据全部相加,再除以该组数据的个数, x = ( x1 + x2 + L + xn ) / n (1)在 SPC 的计量值中, 通过平均数可以看出这组数据的准确度状况如何, 判断出制程 控制与规格之间的关系,如果偏差过大,说明我们当初设定的规格有问题,并可进一步 判断是我们的规格订错了还是我们的机器设备或测量设备有较大的偏差;如果偏差很 小,则表明我们当初设定的规格正常,同时我们的制程也还可以,所以,平均数离规格 中心线越近越好. 3.2 中位数(median,通常用 M 表示) 为了减少计算,将一组数据先按大小顺序排列起来,然后取最中间的那个数(当数 据为奇数)或取中间两位数的平均值(数据为偶数) .在 SPC 的计量值中,通过中位数 也可以看出该组数据的准确度,它的变化与平均数有些相同,同样也是越接近中心规格 值越好. 3.3 极差(R) 极差是一组数据中的最大值减去最小值; R=Xmax-Xmin (2) 在 SPC 的计量值中, 通过极差的大小可以看出这组数据的精密度状况如何, 判断出 这一组数据的制程幅度是否很大,如果很大则表明制程能力较差,如果组距较小,则表 明制程能力还不错,如果在几组数据中有极差突然增大,则表明出现了特殊原因,必须 马上查出真正的问题点,并尽快解决. 3.4 方差( σ ,有时也用 S 表示)2方差是由该组数据中每个数据减去实际平均数的差值的平方和除以该组数据的个 数,计算公式如下:n 1 在 SPC 的计量值中, 方差是用来后面算标准方差用的, 通过方差我们可以了解该组 产品在这一控制特性值的制程能力.如果方差很大,则说明我们的制程能力较差,后面 的标准差就大,CPK 也就小,如果方差较小,则说明我们的制程能力较好,后面的标准 差就小,CPK 也就越大,也就是说方差小好.但是在 SPC 系统中,通常不用方差来分 析制程,这只是在后面使用的标准差的一个前奏. 3.5 标准差(s) 标准差可以直接有方差开平方的来,n 1 例如我们计算上例中的两组数据的方差和标准偏差.s12 =8.52 s 2 =72σ2∑ (x x ) =i2s=∑ (xix)2s1 = 8.5 =2.915 s 2 = 72 =8.485在 SPC 的计量值中,通过标准差可以判断该组数据的准确度和精密度,反映一定 的制程能力,同时为后面 CPK 和控制上下限算法做基础.如果标准差很大时,则表明 我们的制程能力不好,同时也不稳定,说明共同原因需要改善,CPK 也就小,控制上下 限距离也就大,如果标准差较小,则表明我们的制程能力很好,同时也很稳定,同时说 明我们可以维持现状,甚至考虑到成本时可以将制程适当放松,这时 CPK 也就大,控 制上下限距离也就小了,并且基本上所有数据都在规格上下限之间. 4,常用的数据处理工具 在实际的数据处理常用的统计工具有如下几种:质量管理的七个工具分别是:分层 法(Stratification) ,排列图(Pareto diagram) ,因果图(Cause-effect diagran) ,直方图 (Histogram) ,散布图(Scatter diagram) ,控制图(Control chart) ,检查表(Check list) . 5,常用的数据分布情况 对于随机现象通常用分布(distribution)来描述,分布可以告诉我们:变异的幅度 有多大,出现这幺大幅度的可能性(概率,probability)有多大,这就是统计规律.对 于计量特性值,如长度,重量,时间,强度,纯度,成分收率等连续性数据,最常见的 是正态分布(Normal distribution) .对于计件特性值,如特性测量的结果只有合格与不 合格两种情形的离散性数据,最常见的是二项分布(Binomial distribution) .对于计点特 性值,如铸件的沙眼数,布匹上瑕点数,电视机中的焊接不合格数等离散性数据,最常 见的是泊松分布(Poisson distribution) .掌握这些数据的统计规律可以保证和提高产质 量量. 5.1 正态分布 正态分布是一种最常见,应用最广泛的一种分布,当质量特性值(随机变量)由为 数众多的因素影响,而没有一个因素起主导作用的情况下,该质量特性值的分布规律符 合正态分布,例如,轴承的加工尺寸,化工产品的化学组成,测量误差,下线 SM 的尺 寸,透过率等都属于正态分布. 正态分布的曲线的特点有:1. 曲线的最高点的横坐标, 称为正态分布的均值用μ表示, 这意味着随机变量在μ附近 出现的概率最大,当 X 向左右远离时,X 出现的概率随分布曲线的降低而迅速下降. 2. 曲线以μ为对称轴,从理论上讲,如将曲线以该轴对折时,曲线应该能重合. 3. 如果用数学表达式来表述正态分布曲线,我们有: 1 2 f ( x) = e 2σ 2π σ 4. 根据上式可以看出, 任一正态分布仅由两个参数, 即总体平均值μ和总体标准偏差σ 完全确定,其中μ称为分布的位置参数,σ称为分布的形状参数,σ值 越小,曲线越 陡,数据变量离散性也越小,σ越大,曲线越扁平,数据的离散性也越大.如图给出了 标准偏差σ分别为 0.5,1 和 2 的三种情况的示意图. ( x )2图 6 σ变化的直观意义 5. 从理论上讲,曲线对横轴是渐进的,即横轴定义的区域是从-∞到+∞.通过计算可以 得到以下几个在质量管理中常用到的结论: 总体平均值落在:μ±1σ范围内的概率为 68.26% μ±2σ范围内的概率为 95.46% μ±3σ范围内的概率为 99.73% μ±1.96σ范围内的概率为 95.0% 而数据落在:μ±3σ之外的概率为 3‰ μ±1.96σ范围之外的概率为 5%图 7 以σ为基准分布曲线下不同面积所包含的概率 中心极限定理:对于较大样本,从总体中(其平均值为μ,标准偏差为 s)随机抽样的 各样本的平均值的分布接近正态分布,无论抽样总体的概率分布如何.样本容量越大, 样本平均值的分布越接近正态分布. 这是从统计学得出的重要结论, SPC 中占有重要 在地位.在 SPC 中,我们使用平均数据来判定过程是否受控.由于这个理论,我们知道样 本平均值的分布接近正态分布,其平均值等于μ,标准偏差等于 σ / n ,在此 n 是样 本数. 因为样本平均值的分布比总体的分布要紧密,所以它对过程的变化更加敏感.我们 将在讲述控制图时再做讨论.图 8 样本平均值对曲线的影响 掷骰子个数不同,其平均值的分布情况如下:随着样本容量(在此为掷骰子的个数) 的增加,你发现了什么变化?图 9 中心值定理的理解 5.2 二项分布 有时,一个事物只有两种可能的状态或结果,例如一张 SM 的检验,要么合格,要 么不合格;一颗卫星的发射要么成功,要么不成功;谈恋爱也是如此,要么成功要么不 成功,等等,二者必具其一,此时我们就可以用二项分布来研究和分析这些问题. 以 SM 的检验为例,虽然结果只有合格与不合格两种情况,但抽到的不合格品的概 率显然取决于该批产品的固有的不合格率,如果我们用 p 和 q 来代表 SM 的合格率和不 合格率,则有 p+q=1, (p+q)2=1,则我们通过二项分布的展开 n 个产品中出现 x 个不 合格品的概率为:C nx p x q n x 或 C nx p x (1 p ) n x = C nx p x (1 p ) n x ,在此是 n 个产品取 x 的组合C nx =n! x!( n x )!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
SPC 的发展及应用
SPC 源于20年代,以美国休哈特(She whart)博士发明控
制图为标志。
二战中美国将其制定为战时质量管理标准,对军工产品的
质量保证和及时交付起到了积极的作用。
50年代在日本工业界大量推广应用,对日本产品质量的崛
起起到了至关重要的作用。
14
控制图构想的基础
异因引起的变异
1/2 = 0.13%
UCL
偶因引起的变异
+3σ 3σ
1/2 = 0.13%
过程均值
LCL
控制上限 (UCL) = 过程均值 + 3 标准偏差 控制下限 (LCL) = 过程均值 – 3 标准偏差
15
时间
控制图的应用组合
Control charts should always be prepared and analyzed in pairs — one chart for location and another for spread
中位数
单值 (Individual)
31
SPC常用术语解释
名称 中心线 (Central Line) 过程均值 (Process Average) 解释 控制图上的一条线,代表所给数据平均值。
链(Run)
变差(Variation)
控制图上一系列连续上升或下降,或在中心线之上或之下的点。 它是分析是否存在造成变差的特殊原因的依据。 过程的单个输出之间不可避免的差别;变差的原因可分为两类: 普通原因和特殊原因。
满足技术要求的程度,对过程质量进行评价。
4
什么是过程?
People Machines Materials
人
机
料
A series of activities that transforms inputs into output
Output
将输入转变为输出的活动
输出
Methods
Environment
法
环
5
正态分布―连续过程的概率分布
6
任何过程均存在变异性
频 率 理想过程
(假设目标是100%)
100.00%
99.75%
理想过程
100.25
所有过程均包含变化
频 率 实际过程
99.75 目标值
100.00% 目标值
7
100.25 目标值
Cpk
规格上限 均值
3S
或
均值 规格下限
3S
8
移动极差
样本均值 样本标准偏差 单值图控制上限 单值图控制下限
/
移动极差的均值 移动极差图控制上限 28.8 28.5 移动极差图控制下限 Cpk
螺纹内径
28.88 28.84 28.80 28.76 28.72 28.68 28.64 28.60 28.56 28.52 28.48 28.44 28.40 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0.30 0.28 0.26 0.24 0.22 0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00
© 失控且无能力
18
Cpk所表征的过程表现 (BEHAVIOR)
Cpk = negative number
Cpk = zero Cpk = between 0 and 1 Cpk = 1 Cpk > 1
19
控制均值的意义 (CENTERING THE MEAN)
中间值
过程偏移
不符合率
LL
200
202
3.267 2.574
2.282 2.114 2.004 1.924 1.864 1.816 1.777
样本容量小于7时,没有极差的控制下限。
37
单值/移动极差图
螺纹内径SPC原始记录(单值/移动极差图)
线别: 取样日期: 序号 取样时间 检测值 1 2 3 品项: 测量地点: 4 5 6 7 8 9 2.1g瓶盖 规格限/单位: 测量环境温湿度: 10 11 12 13 14 15 16 17 28.5-28.8 g 生产周期: 测量设备型号/编号: 18 19 20 21 22 23 24
CPK的分类
过程能力:指过程处于正常状态(稳定受控状态)时,加工产品
质量能够满足技术标准的能力,是指过程加工产品质量特性实际 分布的6倍标准差。过程能力用于衡量过程加工产品质量的内在一 致性。
A+
≥1.67无缺点考虑降低成本
A
B C D
1.33≤Cpk<1.67状态良好维持现状
1.0≤Cpk<1.33改进为A级 0.67≤Cpk<1.0制程不良较多,必须提升其能力 Cpk<0.67制程能力较差,考虑整改设计制程
准则4:连续14点相邻点上下交替。数据分层不够。如,两 名操作人员轮流进行操作;轮流使用两台设备。
26
控制图判异准则
准则5:连续3点有两点落在中心线同一侧的B区以外。过程 参数μ发生了变化。
27
控制图判异准则
准则6:连续5点中有4点落在中心线同一侧的C区以外。参 数μ发生了变化。
28
控制图判异准则
取样时间
检测值
均值 极差 均值的均值 均值标准偏差 极差的均值 极差标准偏差
均值图控制上限
均值图控制下限 Cpk
407
388
极差图控制上限
极差图控制下限
均值图
410 408 406 404 402 400 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
极差图
398
396 394
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
9
EMPIRICAL RULL
经验定则
68.26%-95.44%-99.73% Rule
68.26%
95.44%
99.73%
10
正态分布下界限内外的比率
界限 µ±1 σ µ±2 σ 界限内的比率(%) 68.26 95.46 界限外的比率(%) 31.74 4.54
µ±3 σ
µ±4 σ µ±5 σ µ±6 σ
UL
目标值居中降低不符合率和避免浪费成本
20
精密度与漏检率的关系
中等离散性
高离散性
低离散性
漏检率几乎为零
21
纵坐标
控制图示例
XXXX图
控制图名称
566 564
UCL
562 560 558 556 554 1:00 2:00 3:00 4:00 5:00
22
控制值
总均值
横坐标(时间或次数)
UCL
6:00
32
SPC常用公式
X
Xi i
1
n
n
X 1 + X 2 + ...... + X n n
R X max X min
33
SPC常用公式
(X i i
1
n
X )
2
n 1
Xi i
1
n
2
nX
2
n 1
MR X n X n +1
34
SPC常用公式
1.880 1.023
0.729 0.577 0.483 0.419 0.373 0.337 0.308
2.660 1.772
1.457 1.290 1.184 1.109 1.054 1.010 0.975
0.000 0.000
0.000 0.000 0.000 0.076 0.136 0.184 0.223
标准差 (Standard Deviation) 分布宽度(Spread)
用于代表标准差的希腊字母
过程输出的分布宽度或从过程中统计抽样值(例如: 子组均值)的分布宽度的量度,用希腊字母σ或字母s (用于样本标准差)表示。 一个分布中从最小值到最大值之间的间距 将一组测量值从小到大排列后,中间的值即为中位数。 如果数据的个数为偶数,一般将中间两个数的平均值 作为中位数。 一个单个的单位产品或一个特性的一次测量,通常用 符号 X 表示。
3
SPC的定义
2、统计过程控制(SPC)的定义: 是应用统计技术对过程中的各个阶段进行评估和监控,建
立并保持过程处于可接受的、稳定的水平,从而保证产品
与服务符合规定要求的一种质量管理技术。
SPC是过程控制的一部分,从内容上主要分两方面:一是利
用控制图分析过程的稳定性,对过程存在的异常因素(异 因)进行预警;二是计算过程能力指数,稳定的过程能力
准则7:连续15点在C区中心线上下。现象是参数σ变小。
实际可能为数据分层不够或数据造假。
29
控制图判异准则
准则8:连续8点在中心线两侧,但无一在C区中。主要原
因为数据分层不够。
30
SPC常用术语解释
名称
平均值 极差(Range)
解释
一组测量值的均值 一个子组、样本或总体中最大与最小值之差
σ(Sigma)
我们用二个控制图 ─ 变量的位置及离散性
用于控制连续过程均值及离散性的控制图组合