抛物线焦点弦性质总结30条(PDF版)
(完整版)抛物线的焦点弦_经典性质及其证明过程
有关抛物线焦点弦问题的探讨过抛物线px y 22=(p>0)的焦点F 作一条直线L 和此抛物线相交于A ),(11y x 、B ),(22y x 两点结论1:p x x AB ++=21p x x px p x BF AF AB ++=+++=+=2121)2()2( 结论2:若直线L 的倾斜角为θ,则弦长θ2sin 2pAB =证: (1)若2πθ= 时,直线L 的斜率不存在,此时AB 为抛物线的通径,结论得证∴=∴p AB 2(2)若2πθ≠时,设直线L 的方程为:θtan )2(p x y -=即2cot py x +⋅=θ 代入抛物线方程得0cot 222=-⋅-p py y θ由韦达定理θcot 2,21221p y y p y y =+-=由弦长公式得θθθ22212sin 2)cot 1(2cot1pp y y AB =+=-+= 结论3: 过焦点的弦中通径长最小p p2sin 21sin 22≥∴≤θθ ∴AB 的最小值为p 2,即过焦点的弦长中通径长最短. 结论4: )(832为定值p AB S oAB =∆()8sin 2sin sin 2221sin 21sin 21sin 21sin 2132220P AB S p p p AB OF BF AF OF AF OF BF OF S S S OAB AF OBF OAB =∴=⋅⋅⋅=⋅⋅=+⋅=⋅⋅+⋅⋅=+=∆∆∆∆θθθθθϑθ结论5: (1) 221p y y -= (2) x 1x 2=42p证44)(,2,22222121222211P Py y x x p y x p y x ==∴== 结论6:以AB 为直径的圆与抛物线的准线相切证:设M 为AB 的中点,过A 点作准线的垂线AA 1, 过B 点作准线的垂线BB 1, 过M 点作准线的垂线MM 1,由梯形的中位线性质和抛物线的定义知 222111AB BFAF BB AA MM =+=+=故结论得证结论7:连接A 1F 、B 1 F 则 A 1F ⊥B 1FFA A FO A FO A F AA OF AA AFA F AA AF AA 11111111//,∠=∠∴∠=∠∴∠=∠∴=同理︒=∠∴∠=∠901111FB A FB B FO B ∴A 1F ⊥B 1 F 结论8:(1)AM 1⊥BM 1 (2)M 1F ⊥AB (3)BF AF FM ⋅=21(4)设AM 1 与A 1F 相交于H ,M 1B 与 FB 1相交于Q 则M 1,Q ,F ,H 四点共圆 (5)2121214M M B M AM =+证:由结论(6)知M 1 在以AB 为直径的圆上∴ AM 1⊥BM 111FB A ∆为直角三角形, M 1 是斜边A 1 B 1 的中点111111111AFA F AA F A M FA M F M M A ∠=∠∠=∠∴=∴︒=∠=∠+∠9011111M AA M FA F AA ︒=∠+∠∴90111FM A AFA∴M 1F ⊥ABBF AF F M ⋅=∴21 AM 1⊥BM 1 F B F A 90111⊥︒=∠∴ 又B AM︒=∠∴90FB A 11 所以M 1,Q ,F,H 四点共圆,22121AB B M AM =+()()()2121211242MM MM BB AABFAF ==+=+=结论9: (1)、A O 、B 1 三点共线 (2)B ,O ,A 1 三点共线(3)设直线AO 与抛物线的准线的交点为B 1,则BB 1平行于X 轴(4)设直线BO 与抛物线的准线的交点为A 1,则AA 1平行于X 轴证:因为p y p y k y p p y y x y k oB oA 2212111122,221-=-====,而221p y y -=所以122222oB oA k p y y ppk =-=-=所以三点共线。
抛物线的焦点弦性质
法二:由题知AB不与x轴平行 p 设AB方程为x my ,(m R) 2 y 2 2 px p 2 p y 2 p (my ) 2 x my 2 y
即:y 2 pmy p 0
2 2
A
y1 y2 p (定值)
2
O
F B
1 当AB x轴时,
O B
F
x
20 AB斜率存在时设为k,(k 0)
2
y p 2 py 2 消元得y 2 ( p )即y p2 0 k 2 k 2 2 2 y1 y1 p 2 y1 y2 - p ;x1 x2 2 p 2 p 4
p 则直线AB方程为y=k(x- ) 代入抛物线方程y2 2 px 2
1 同理, k
以代k得B(2pk2, -2pk) .
1 2 x p ( k ) 0 k2 y p( 1 k ) 0 k
1 1 2 k 2 (k ) 2 k k
2
x0 y0 2 ( ) 2 p p
即 y02 = px0-2p2,
2 px y1 2 px1 y1 y2 2 px 2 px1 y y y1 y1 y2 y1 y2 y1 y2 y1 y2
2 2 px 4 p 2 y1 2 px1 , y1 y2 4 p2 y y1 y2 y1 y2
2 p | y1 y2 | 4 p2
当且仅当|y1|=|y2|=2p时,等号成立.
例3. A、B是抛物线 y2 = 2px(p>0)上的两点,且OA⊥OB, (5)求O在AB上的射影M轨迹方程. y (5)法一:设M(x3, y3), 则 kOM 3 x3 x
抛物线经典性质总结30条
抛物线经典性质总结30条1.已知抛物线y=2px(p>0),AB是抛物线的焦点弦,点C 是AB的中点。
AA’垂直准线于A’,BB’垂直准线于B’,CC’垂直准线于C’,CC’交抛物线于点M,准线交x轴于点K。
证明:CC’是梯形AA’BB’的中位线,即|AB|=2|CC’|。
2.证明:|BF|=x^2/(2p)。
3.证明:CC’=AB=(AA’+BB’)/2.4.证明:以AB为直径的圆与准线L相切。
5.证明:∠A’FB’=90°。
6.证明:AA’FK,∴∠A’FK=∠FA’A;|AF|=|AA’|,∴∠AA’F=∠AFA’;同理可证∠B’FK=∠XXX,得证。
7.证明:C’F= A’B’=C’A’=C’B’。
8.证明:AC’平分∠A’AF,BC’平分∠B’BF,A’F平分∠AFK,B’F平分∠XXX。
9.证明:C’F垂直AB,即C’F⋅AB=0.10.证明:AF=(y+y1)/2p(1-cosα),BF=(y2-y)/(2p(1+cosα))。
11.证明:AF/BF=p/(1-cosα)。
12.证明:点A处的切线为y=y1+p(x+x1)。
1.证明y = 2px的两种方法:方法一:代入y = kx^2求解k,得到k = 2p,证毕。
方法二:对y = 2px两边求导得到2yy' = 2p,解出y' = p/x,证毕。
2.证明切线AC'和BC'交于焦点F:易证点A处的切线为y = px + py1,点B处的切线为y = px + py2,解得两切线的交点为C'(-p(y1-y2)。
(y1+y2)/2),证毕。
3.对于抛物线y^2 = 2px,过准线上任一点P(-2p。
t)作切线,证明过两切点Q1、Q2的弦必过焦点,且PQ1⊥PQ2:设切点为Q(x。
y),则有y' = p/x,代入y^2 = 2px得到x = y^2/(2p),进而得到Q1、Q2的坐标。
最新抛物线经典性质总结教学内容
2124p x =;3. 212y y p =-;4. '90AC B ∠=;5. ''90A FB ∠=;6. 123222()2sin p pAB x x p x α=++=+=; 7.112AF BF P+=; 8. A 、O 、'B 三点共线; 9. B 、O 、'A 三点共线;10. 22sin AOB P S α=;11. 23()2AOB S PAB =(定值); 12. 1cos P AF α=-;1cos PBF α=+;13. 'BC 垂直平分'B F ;14. 'AC 垂直平分'A F ;15. 'C F AB ⊥; 16. 2AB P ≥;17. 11'('')22CC AB AA BB ==+;18. AB 3P K =y ; 19. 2p 22ytan =x -α;20. 2A'B'4AF BF =⋅; 21. 1C'F A'B'2=. 22. 切线方程 ()x x m y y +=00性质深究一)焦点弦与切线1、 过抛物线焦点弦的两端点作抛物线的切线,两切线交点位置有何特殊之处?结论1:交点在准线上先猜后证:当弦x AB ⊥轴时,则点P 的坐标为⎪⎭⎫⎝⎛-0,2p 在准线上. 证明: 从略结论2 切线交点与弦中点连线平行于对称轴结论3 弦AB 不过焦点即切线交点P 不在准线上时,切线交点与弦中点的连线也平行于对称轴.2、上述命题的逆命题是否成立?结论4 过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点先猜后证:过准线与x 轴的交点作抛物线的切线,则过两切点AB 的弦必过焦点. 结论5过准线上任一点作抛物线的切线,过两切点的弦最短时,即为通径.3、AB 是抛物线px y 22=(p >0)焦点弦,Q 是AB 的中点,l 是抛物线的准线,l AA ⊥1,l BB ⊥1,过A ,B 的切线相交于P ,PQ 与抛物线交于点M .则有结论6P A ⊥PB . 结论7PF ⊥AB . 结论8 M 平分PQ .结论9 P A 平分∠A 1AB ,PB 平分∠B 1BA . 结论2FB FA = 结论11PAB S ∆2minp =二)非焦点弦与切线思考:当弦AB 不过焦点,切线交于P 点时, 也有与上述结论类似结果: 结论12 ①p y y x p 221=,221y y y p += 结论13 P A 平分∠A 1AB ,同理PB 平分∠B 1BA . 结论14 PFB PFA ∠=∠结论15 点M 平分PQ结论16 2PF =相关考题1、已知抛物线y x 42=的焦点为F ,A ,B 是抛物线上的两动点,且FB AF λ=(λ>0),过A ,B 两点分别作抛物线的切线,设其交点为M , (1)证明:AB FM ⋅的值;(2)设ABM ∆的面积为S ,写出()λf S =的表达式,并求S 的最小值.2、已知抛物线C 的方程为y x 42=,焦点为F ,准线为l ,直线m 交抛物线于两点A ,B ; (1)过点A 的抛物线C 的切线与y 轴交于点D ,求证:DF AF =;(2)若直线m 过焦点F ,分别过点A ,B 的两条切线相交于点M ,求证:AM ⊥BM ,且点M 在直线l 上.3、对每个正整数n ,()n n n y x A ,是抛物线y x 42=上的点,过焦点F 的直线F A n 交抛物线于另一点()n n n t s B ,, (1)试证:4-=⋅n n s x (n ≥1)(2)取nn x 2=,并C n 为抛物线上分别以A n 与B n 为切点的两条切线的交点,求证:122121+-=++++-n n n FC FC FC (n ≥1)—南 昌 大 学 考试 试 卷—【适用时间:20 13 ~20 14 学年第 二 学期 试卷类型:[ B ]卷】。
抛物线焦点弦的性质
p ( 设抛物线 y = 2px p > 0) 的焦点为F 2 , 0 ,直线 L过焦点F且与抛物线交于A,B两点,过A,B分别向 准线作垂线,垂足为D,C.
2
p2 1. x1x2 = , y1y2 = −p2 4
2.弦长 AB = x1 + x2 + p ,且以通径最短.
.
C H D
y
B O E F A
x
3.
1 1 2 + = AF BF p
4. ∠ AOB为钝角
0 0 5. ∠CFD = 90 , ∠AHB = 90 , HF ⊥ AB
p ( 设抛物线 y = 2px p > 0) 的焦点为F 2 , 0 ,直线 L过焦点F且与抛物线交于A,B两点,过A,B分别向 准线作垂线,垂足为D,C.
2
例4 以抛物线 y = 2px (p>0)的焦半径为直 径的圆与y轴的位置关系是 (B) A.相交 B.相切 C.相离 D.不确定
2
• • • •
作业 课本P123.6 P133.2 案例学习法P273.19(2)
2
变形:若直线AB过定点(2p,0)呢? 猜测:欲使原点对A,B的张角为锐角,则直线 AB过抛物线对称轴上的定点的横坐标有何 范围?
例2 抛物线 y
2
= 2x 与过焦点的直线交于
A,B两点,求 OA ⋅ OB 的值.
例3 若抛物线 y = 2px (p>0)上三点的纵坐 标的平方成等差数列,则相应三个点的焦半径 A.成等差数列 B.成等比数列 C.既成等差又成等比数列 D.既不成等差也不成等比数列
2
6.以AB为直径的圆和准线相切. 思考:椭圆和双曲线中有无类似结论? 7.A,O,C及B,O,D各三点共线 8.抛物线上不存在两点关于直线AB对称.
抛物线焦点弦性质总结30条
1. 以AB 90(AC 2. 3. '90A FB ∠('A F 4.C F '⊥5.BC '垂直平分B F ' 6.AC '垂直平分A F ' 7.抛物线的准线与x 轴相交于点P ,则.BPF APF ∠=∠ 8.B 、O 、A '三点共线 9. A 、O 、B '三点共线10. 2124p x x = 11. 212y y p =-12. 123222()22sin p p AB x x p x d α=++=+==弦中点到准线 11'('')22CC AB AA BB ==+ 13. 123222()22cos p p AB y y p y d α=++=+==弦中点到准线14. 焦点弦弦长|AB|=x 1+x 2+p,当x 1=x 2时,叫通径,焦点弦弦长最短为2p. 有2AB p ≥15. 112AF BF P +=; 1cos P AF α=-; 1cos P BF α=+16. 243p OB OA -=⋅17. 22sin AOB P S α=18. ⇔⎪⎪⎭⎫ ⎝⎛+=∆AF BF BF AF p S AOB 42弦AB 过焦点 19. 23()2AOB S P AB = 20. ||||||2FB FA F C ⋅='; 2A'B'4AF BF =⋅; 1C'F A'B'2=21. AB 3P K =y ; 2p 22y tan =x -α 22. 切点在抛物线上的切线方程 ()x x p y y +=0023. 点)0,(p D 处的结论:点)0,(p 是抛物线px y 22=上到点)0,(a A 的距离最近的点为顶点的分界点: )0,(a A 在点)0,(p 左边时顶点O 到点)0,(a A 的距离最近,最近距离为a ;)0,(a A 在点)0,(p 右边时横坐标为p a -的两个抛物线上的点到点)0,(a A 的距离最近,最近距离为22p ap -.24. 设过点()0,p D 的直线交抛物线px y 22=于A 、B ,则=+2211DB DA 21p 25. 点)0,2(p E 处的结论:),(11y x A 、),(22y x B 是抛物线)0(22>=p px y 上的两点,O 为抛物线的顶点,(1)090=∠AOB ⇔直线AB 过点)0,2(p .(2)2214p x x =,2214p y y -=. 26. 准线上的有关结论:过抛物线的焦点的直线交抛物线于两点B A ,,再以B A ,为切点作抛物线的切线,其交点在抛物线的准线上,且两切线垂直。
抛物线焦点弦经典性质
焦点弦
通过焦点的直线,与抛物线相交 于两点,连接这两点的线段叫做 抛物线的焦点弦。
y
A (x1, y1)
F
O
x
B (x2, y2)
过抛物线 y2 2 px (p>0)的焦点 F 作一条直线 L 和此抛物线相交于 A (x1, y1) 、B (x2 , y2 ) 两点
性质3: 过焦点的弦中通径长最小
y
∴|AB|=|AF|+|BF|
C
B
=|AD|+|BC| =2|EH|
H
E
OF
x
D
A
所以EH是以AB为直径的圆E的半径,且
EH⊥l,因而圆E和准线l相切.
2
2
2 2 sin 2
2 s in
S2 OAB
P3
AB 8
性质6:以焦点弦AB为直径的圆和抛物线的准线相切.
分析:运用抛物线的 定义和平面几何知识
y
C
B
来证比较简捷.
H
E
OF
x
D
A
证明:如图,设AB的中点为E,过A,E,B分别向准
线l引垂线AD,EH,BC,垂足分别为D,H,C,
则|AF|=|AD|,|BF|=|BC|
证明:sin 2 1 2 p 2 p sin 2
AB 的最小值为 2 p ,即过焦点的弦长中通径长最短.
性质 4:
S2 OAB
p3 (定值)
AB 8
S OAB
S OBF
S0AF
1 2
OFBFsin源自1 2OFAF
sin
1 OF AF BF sin 1 OF AB sin 1 p 2 p sin p 2
(完整版)抛物线的焦点弦_经典性质及其证明过程
有关抛物线焦点弦问题的探讨过抛物线 y 22 px (p>0)的焦点 F 作一条直线 L 和此抛物线相交于 A (x 1,y 1) 、B (x 2,y 2)两点结论 1: AB x 1 x 2 pAB AF BF (x 1 p) (x 2 p) x 1 x 2 22结论 2:若直线 L 的倾斜角为 ,则弦长 AB 2p 2sin2结论 4:23S ABoAB p8(为定值)(2)若2时 ,设直线 L 的方程为: py (x )tan2 即xy cot2p代入抛物线方程得2 y2py cot p 2 0 由韦达定理y 1y 2 2 p ,y 1y22pcot2 )2p )2由弦长公式得 AB 1 cot 2y 1 y 2 2p(1 cot证: (1)若2时,直线 L 的斜率不存在,此时 AB 为抛物线的通径si n结论 3: 过焦点的弦中通径长最小 AB 2p 结论得证 2sin2p 2sin2p AB 的最小值为 2p ,即过焦点的弦长中通径长最短同理 B 1FOB 1FBA 1FB 1 90A 1FB 1 F2结论 8:(1)AM 1 BM 1 (2)M 1F AB (3) M 1F AF BF(4)设 AM 1 与 A 1F 相交于 H ,M 1B 与 FB 1相交于 Q 则M 1,Q ,F ,H 四点共圆 (5) AM 12M 1B 24M 1M 2证:由结论( 6)知 M 1 在以 AB 为直径的圆上 AM 1 BM 1A 1FB 1为直角三角形, M 1 是斜边 A 1 B 1 的中点A 1M 1 M 1F M1FA 1M1A 1FAA 1F AFA 1AA 1FFA 1MAA 1M190AFA 1A1FM190M 1FABM 1F2AFBFAM 1BM 1 AM1B 90又 A 1FB 1FA 1FB 1 90 所以 M 1,Q , F,H 四点共圆, AM 1 2M 1B 2AB 22 2 2 2AF BF 2AA 1 BB 1 22MM 1 24MM 1 2结论 9: (1) A 、O 、B 1 三点共线 ( 2)B ,O ,A 1 三点共线(3)设直线 AO 与抛物线的准线的交点为 B 1,则 BB 1平行于 X 轴( 4)设直线 BO 与抛物线的准线的交点为 A 1,则 AA 1平行于 X 轴S OAB SOBF1S 0AFOFBF 1sin 2OF AF sin OF 2S OABAB结论 5: (1) 证x 1AFP 3y 1y 22y1 2p ,x 2BF 2p 2sinOF AB sinp22psin2 sin 22 p2sin(2) x 1x 2=2 y22px 1x 2(y 1y 2)24P 2P 2结论 6:以 AB 证:设 M 为 AB 的中点,过 A 点作准线的垂线 过 M 点作准线的垂线 MM 1,由梯形的中位线性质和抛物线的定义知 为直径的圆与抛物线的准线相切AA 1, 过 B 点作准线的垂线 BB 1,MM 1结论 7:连接 A 1F 、 AA 1 AF,AA 1 BB 1 AF BF22B 1 F 则 A 1FAA 1F B 1FAB 2故结论得证AFA 1 AA 1 //OF AA 1FA 1FO A 1FO A 1FA41E,因为直线 L 的倾斜角为证:因为 k oAy1 x1y12 y12p,k oBoB 1y 11y2 p2y2,而 y 1y 2 p2 p2p2所以 k oA2p2 p y22y 2 pk oB 1所以三点共线。
(完整版)抛物线的焦点弦_经典性质及其证明过程
有关抛物线焦点弦问题的探讨过抛物线px y 22=(p>0)的焦点F 作一条直线L 和此抛物线相交于A ),(11y x 、B ),(22y x 两点两点结论1:px x AB ++=21p x x px px BF AF AB ++=+++=+=2121)2()2( 结论2:若直线L 的倾斜角为θ,则弦长θ2sin 2pAB =证:(1)若2πθ= 时,直线L 的斜率不存在,此时AB 为抛物线的通径,结论得证∴=∴p AB 2(2)若2πθ≠时,设直线L 的方程为:θtan )2(px y -=即2cot py x +⋅=θ 代入抛物线方程得cot 222=-⋅-p py y θ由韦达定理θcot 2,21221p y y p y y =+-= 由弦长公式得θθθ22212sin 2)cot 1(2cot 1p p y y AB =+=-+= 结论3: 过焦点的弦中通径长最小p p 2sin 21sin 22≥∴≤θθΘ∴AB 的最小值为p 2,即过焦点的弦长中通径长最短. 结论4: )(832为定值p AB S oAB =∆()8sin 2sin sin 2221sin 21sin 21sin 21sin 2132220P AB S p pp AB OF BF AF OF AF OF BF OF S S S OAB AF OBF OAB =∴=⋅⋅⋅=⋅⋅=+⋅=⋅⋅+⋅⋅=+=∆∆∆∆θθθθθϑθ结论5: (1) 221p y y -= (2) x 1x 2=42p证44)(,2,22222121222211P P y y x x p y x p yx ==∴==Θ 结论6:以AB 为直径的圆与抛物线的准线相切 证:设M 为AB 的中点,过A 点作准线的垂线AA 1, 过B 点作准线的垂线BB 1,过M 点作准线的垂线MM 1,由梯形的中位线性质和抛物线的定义知,由梯形的中位线性质和抛物线的定义知 222111ABBF AF BBAA MM =+=+=故结论得证故结论得证 结论7:连接A 1F 、B 1 F 则 A 1F ⊥B 1FFA A FO A FO A F AA OF AA AFA F AA AF AA 11111111//,∠=∠∴∠=∠∴∠=∠∴=ΘΘ 同理︒=∠∴∠=∠901111FB A FB B FO B ∴A 1F ⊥B 1 F 结论8:(1)AM 1⊥BM 1 (2)M 1F ⊥AB (3)BF AF F M ⋅=21 (4)设AM 1 与A 1F 相交于H ,M 1B 与 FB 1相交于Q 则M 1,Q ,F ,H 四点共圆(5)2121214M M B M AM =+证:由结论(6)知M 1 在以AB 为直径的圆上∴ AM 1⊥BM 1Θ11FB A ∆为直角三角形,为直角三角形,M 1 是斜边A 1 B 1 的中点的中点 111111111AFA F AA F A M FA M F M M A ∠=∠∠=∠∴=∴Θ︒=∠=∠+∠9011111M AA M FA F AA Θ ︒=∠+∠∴90111FM A AFA∴M 1F ⊥ABBF AF F M ⋅=∴21 ΘAM 1⊥BM 1 F B F A 90111⊥︒=∠∴Θ又B AM︒=∠∴90FB A 11所以M 1,Q ,F,H 四点共圆,22121AB B M AM =+()()()2121211242MM MM BB AA BFAF ==+=+=结论9: (1)、A O 、B 1 三点共线 (2)B ,O ,A 1 三点共线 (3)设直线AO 与抛物线的准线的交点为B 1,则BB 1平行于X 轴(4)设直线BO 与抛物线的准线的交点为A 1,则AA 1平行于X 轴证:因为p y p y k y p py y x y k oB oA 2212111122,221-=-====,而221p y y -= 所以122222oB oAk p y y p p k =-=-=所以三点共线。
抛物线30条经典性质及其证明
抛物线的30条经典性质及证明已知抛物线22(0)y px p =>,AB 是抛物线的焦点弦,点C 是AB 的中点.AA’垂直准线于A’,BB’垂直准线于B’,CC’垂直准线于C’,CC’交抛物线于点M ,准线交x 轴于点K.求证:1.12||,||,22p pAF x BF x =+=+2.11()22CC AB AA BB '''==+;3.以AB 为直径的圆与准线L 相切;证明:CC’是梯形AA’BB’的中位线,||||||||||2||2AB AF BF AA BB CC r'''=+=+==4.90AC B '∠=;(由1可证)5.90A FB ''∠= ;,,||||,,1,2AA FK A FK FA A AF AA AA F AFA A FK AFK '''∴∠=∠'''=∴∠=∠'∴∠=∠ 证明:同理:1,2B FK BFK '∠=∠得证.6.1C F A B 2'''=.证明:由90A FB ''∠=得证.7.AC '垂直平分A F ';BC '垂直平分B F ';证明:由1C F A B 2'''=可知,1||||||,2C F A B C A '''''==||||,.AF AA '=∴ 又得证同理可证另一个.8.AC '平分A AF '∠,BC '平分B BF '∠,A’F 平分AFK ∠,B’F 平分BFK ∠.证明:由AC '垂直平分A F '可证.9.C F 'AB ⊥;证明:122121(,)(,)2y y C F AB p x x y y +'⋅=-⋅-- 22222212211221()02222y y y y y y p x x --=-+=-+=10.1cos P AF α=-;1cos PBF α=+;证明:作AH 垂直x 轴于点H,则||||||||||cos ,||1cos pAF AA KF FH p AF AF αα'==+=+∴=-.同理可证另一个.11.112AF BF P+=;证明:由1cos P AF α=-;1cos PBF α=+;得证.12.点A 处的切线为11()y y p x x =+;证明:(方法一)设点A 处切线方程为11()y y k x x -=-,与22y px =联立,得21122()0,ky py p y kx -+-=由2110220,x k y k p ∆=⇒-+=解这个关于k 的一元二次方程(它的差别式也恰为0)得:111,2y pk x y ==得证.证法二:(求导)22y px =两边对x 求导得1122,,|x x p pyy p y y y y ='''==∴=得证.13.AC’是切线,切点为A;BC’是切线,切点为B;证明:易求得点A 处的切线为11()y y p x x =+,点B 处的切线为22()y y p x x =+,解得两切线的交点为12(,22y y p C +'-,得证.14.过抛物线准线上任一点P 作抛物线的切线,则过两切点Q 1、Q 2的弦必过焦点;并且12.PQ PQ ⊥证明:设点(,)()2pP t t R -∈为准线上任一点,过点P 作抛物线的切线,切点为2(,)2y Q y p ,22y px =两边对x 求导得22222,,,20,22PQ p p y tyy p y K y ty p y y y pp -''==∴==∴--=+显然22440,t p ∆=+>切点有两个,设为2221211221212(,),(,),2,,22y y Q y Q y y y t y y p p p+==-则1212122222221212222222FQ FQ y y py py k k y y y p y p pp p p ∴-=-=----1222121211221222220,py py p py y y y y y y y y y =-=-=++++所以Q 1Q 2过焦点.22222222121212*********(,)(,)()2222444y y y y y y p p p PQ PQ y t y t y y t y y tp p p +⋅=+-⋅+-=++-++ 22222222222121212()2420,242424y y y y y y p p p t p t t t ++-+=-+-=-+-=-+-=12.PQ PQ ∴⊥15.A 、O 、B '三点共线;B 、O 、A '三点共线;证明:A 、O 、B '三点共线2211212112.222OA OB y p pk k x y y y y y y p p '⇐=⇐=-⇐=-⇐=-同理可证:B 、O 、A '三点共线.16.122y y p ⋅=-;1224p x x ⋅=证明:设AB 的方程为(2py k x =-,与22y px =联立,得2220,ky py kp --=212122,,py y y y p k∴+==-224212122.2244y y p p x x p p p ∴=⋅==17.1222sin p AB x x p α=++=证明:1212,22p pAB AF FB x x x x p =+=+++=++||2AB p =222sin pα==得证.18.22sin AOBp S α∆=;证明:122AOB OFA OFB p S S S ∆∆∆=+=⋅⋅22sin p α==.19.322AOBS pAB∆⎛⎫= ⎪⎝⎭(定值);证明:由22sinpABα=、22sinAOBpSα∆=得证.20.22sinABCp Sα'∆=证明:11||||222 ABCS AB PF'∆=⋅=⋅22221(1)sinppkα==+=21.2AB p≥;证明:由22sinpABα=得证.22.122ABpky y=+;证明:由点差法得证.23.121222tanP Py yx xα==--;证明:作AA2垂直x轴于点A2,在2AA F∆中,2121tan,2AA yFA pxα==-同理可证另一个.24.2A B4AF BF''=⋅;证明:2212124||4()()22p pA B AF BF y y x x''=⋅⇔-=++2222121212121212242224y y y y x x px px p y y x x p⇔+-=+++⇔-=+,由122y y p⋅=-,1224px x⋅=得证.25.设CC’交抛物线于点M,则点M是CC’的中点;证明:12121212 (,),(),CC, 22224x x y y y y x x ppC C++++-''-∴中点横坐标为把122y yy+=代入22y px=,得2221212121222222,2,.444y y y y px px p x x ppx px x+++-+-=∴==所以点M的横坐标为12.4x x px+-=点M是CC’的中点.当弦AB 不过焦点时,设AB 交x 轴于点(,0)(0)D m m >,设分别以A 、B 为切点的切线相交于点P ,求证:26.点P 在直线x m =-上证明:设:,AB x ty m =+与22y px =联立,得21212220,2,2y pty pm y y pt y y pm --=∴+==-,又由221112121222:()(),,222:()PA y y p x x y y y y y y y y PB y y p x x =+⎧+-=-∴=⎨=+⎩,相减得代入11()y y p x x =+得,22112112,2,,22y y y y px y y px x m +=+∴=∴=-得证.27.设PC 交抛物线于点M ,则点M 是PC 的中点;证明:121212122(,),(,),,2224x x y y y y x x mC P m PC ++++--∴中点横坐标为把122y y y +=代入22y px =,得221212121212222422,2,2,.444y y y y px px pm x x mpx y y pm px x +++-+-==-∴== 所以点M 的横坐标为122.4x x mx +-=点M 是PC 的中点.28.设点A 、B 在准线上的射影分别是A 1,B 1,则PA 垂直平分A 1F ,PB 垂直平分B 1F ,从而PA 平分1A AF ∠,PB 平分1B BF∠证明:1111110()1,,()22PA A F y y p p k k PA A F y p p y p-⋅=⋅=⋅-=-∴⊥--又1||||AF AA =,所以PA 垂直平分A 1F.同理可证另一个.证法二:1112221112,,0,22AF AP AA y py pk k k y y y p p p ====--111tan tan 11AP AA AF APAF AP AP AA k k k k FAP PAA k k k k --∴∠-∠=-+⋅+⋅12222231111111222221111111122111202()022()101py p p p py y p y y p y y py p p p p ppy p y y y y p y p p y y p y y y p -----+=-==--=-+++⋅+⋅-11tan tan ,.FAP PAA FAP PAA ∴∠=∠∴∠=∠同理可证另一个29.PFA PFB∠=∠证明:11111,,,PAA PAF PFA PA A PFB PB B PA A PB B ∆≅∆⇒∠=∠∠=∠∴∠=∠同理:只需证易证:111111||||||,,PA PF PB PA B PB A ==∴∠=∠11,PA A PB B ∴∠=∠30.2||||||FA FB PF ⋅= 证明:22222212121212122||||()()(),2224444y y y y p p p p p AF BF x x x x x x p+⋅=++=+++=++1212(,),22y y y y P p + 22222222121212122||,222444y y y y y y y y p p PF p p ++⎛⎫⎛⎫∴=-+= ⎪ ⎝⎭⎝⎭得证.例1:(2007江苏高考第19题)如图,过C(0,c)(c>0)作直线与抛物线y=x 2相交于A、B 两点,一条垂直于x 轴的直线,分别与线段AB 和直线y+c=0交于P、Q。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,
2. CC 1 AB 1 ( AA BB ) ;
2
2
3.以 AB 为直径的圆与准线 L 相切;
证明:CC’是梯形 AA’BB’的中位线,
| AB || AF | | BF || AA| | BB| 2 | CC | 2r
4. ACB 90 ;(由 3 可证)
5. AFB 90 ; 证明: AA FK ,AFK FAA,
| y1 y 2 |2 4(x1
p)(x 2
2
p) 2
y12 y22 2y1 y2 4x1x2 2 px1 2 px2 p2 2y1 y2 4x1x2 p2 ,
由 y1 y2
p2 , x1 x2
p2 4
得证.
25. 设 CC’交抛物线于点 M,则点 M 是 CC’的中点;
p
. 点 M 是 CC’的中点.
当弦 AB 不过焦点时,设 AB 交 x 轴于点 D(m, 0) (m 0) ,设分别以 A、B
为切点的切线相交于点 P,求证:
26.点 P 在直线 x m 上 证明:设 AB : x ty m, 与 y2 2 px 联立,得
y2 2 pty 2 pm 0, y1 y2 2 pt, y1y2 2 pm ,
p y1
py12 p3 y1(y12 p2)
p y1
p y1
p y1
0
tan FAP tan PAA1, FAP PAA1. 同理可证另一个 29. PFA PFB
证明:
PAA1 PAF PFA PA1A,同理:PFB PB1B,只需证PA1A PB1B, 易证:|PA1 ||PF ||PB1 |,PA1B1 PB1A1, PA1A PB1B, 30. | FA | | FB || PF |2
p 2,
kFQ1 kFQ2
y1 y12 p
y2 2py1 2py2 y22 p y12 p2 y22 p2
2p 2 2p 2
2 py1 2 py2 y12 y1 y2 y22 y1 y2
2p y1 y2
2p y1 y2
0,
所以 Q1Q2 过焦点.
PQ1 PQ2
(
| AF || AA |,AAF AFA,AFK
1 2
AFK
,
同理: BFK
1 2
BFK , 得证.
6. CF 1 AB . 2
证明:由 AFB 90 得证.
7. AC 垂直平分 AF ; BC 垂直平分 BF ;
证明:由
CF
1 2
AB
可知,| CF
|
1 2
|
AB || CA |,
又| AF || AA |,得证. 同理可证另一个.
y12 2p
p 2
,
y1
t)
(
y22 2p
p 2
,
y2
t)
y12 y22 4p2
y12
4
y22
p2 4
y1y2
t(y1
y2) t2
p2 2
y12
4
y22
t2
p2 2
( y1
y2 )2 4
2 y1y2
t2
p2 2
4t 2
2p2 4
t2
0,
PQ1 PQ2.
15.A、O、 B 三点共线;B、O、 A 三点共线; 证 明 : A 、 O 、 B 三 点 共 线
y1 2 x1
p y1
, 得证.
证 法 二 : ( 求 导 ) y2 2 px 两 边 对 x 求 导 得
2 yy 2 p,
y
p y
,
y | xx1
p y1
,
得证.
13. AC ' 是切线,切点为 A; BC ' 是切线,切点为 B;
证 明 : 易 求 得 点 A 处 的 切 线 为 y1 y p(x x1 ) , 点 B 处 的 切 线 为
证:| AF || BF | (x1
p 2
)(x2
p 2
)
x1x2
p 2
(x1
x2
)
p2 4
y12 y22 4p2
y12 y22 4
p2 4
,
P(
y1 y2 2p
,
y1
2
y2
),
|
PF
|2
y1 y2 2p
p 2
2
y1
2
y2
2
y12y22 4 p2
y12 y22 4
p2 4
,
得证.
1
1 k2
2p
1 cot 2
2p sin2
.
得证.
18. SAOB
p2 2sin
;
证明: SAOB
SOFA
SOFB
1 2
p 2
( y1 y2 )2 4y1y2
p 4
p2 2
(
1 k
)2
1
p2 2
1 cot2
p2 2sin
.
(
2p k
)2
4
p2
19.
S2 AOB AB
p 3 2 (定值);证:由
2p k
,
y1 y2 p 2,
x1x2
y12 y22 2p 2p
p4 4 p2
p2 4
.
17.
AB
x1 x2
p
2p sin2
证明:
AB
AF
FB
x1
p 2
x
2
p 2
x1 x2
p,
| AB |
1
1 k2
( y1 y2) 2 4 y1y2
1
1 k2
( 2kp) 2 4 p 2 2 p
AB
2p sin2
、 S AOB
p2 2sin
得证.
20. SABC
p2 sin2
证明:
S ABC
1 2
|
AB
| | PF
|
1 2
2p
1
1 k2
p2(
y1 2
y2 ) 2
p
1
1 k2
p2 (
p k
)
2
p 2(1
1 k2
)
p2 sin2
21. AB 2 p ;
证明:由
AB
2p sin2
x
x1
x2 2m 4
.
所以点 M 的横坐标为 x
x1 x2 2m 4
. 点 M 是 PC 的中点.
0
10.
AF
P 1 cos
;
BF
P 1 cos
;
证 明 : 作 AH 垂 直 x 轴 于 点 H , 则
|
AF || AA || KF | | FH |
p | AF | cos ,| AF |
p 1 cos
.
同理可
证另一个.
11.
1
1
2
;
AF BF P
证明:由
AF
P 1 cos
; BF
P 1 cos
直平分 B1F,从而 PA 平分 A1AF ,PB 平分 B1BF
证明: kPA kA1F
p y1
0 y1
p 2
(
p 2
)
p y1
(
y1 p
)
1, PA
A1F
,
又 | AF || AA1 | ,所以 PA 垂直平分 A1F. 同理可证另一个.
证法二: kAF
y1 y12
p
2 py1 y12 p2
抛物线性质 30 条
已知抛物线 y2 2 px( p 0) ,AB 是抛物线的焦点弦,点 C 是 AB 的中点.
AA’垂直准线于 A’, BB’垂直准线于 B’, CC’垂直准线于 C’,CC’交抛物 线于点 M,准线交 x 轴于点 K. 求证:
1. | AF | x1
p 2
,|
BF
|
x2
p 2
8. AC 平分 AAF , BC 平分 BBF ,A’F 平分 AFK ,B’F 平分
BFK . 证明:由 AC 垂直平分 AF 可证.
9. CF AB ;
证明: CF AB
(p,
y1
2
y2
)
(x
2
x1,
y
2
y1)
p(x2 x1)
y12 y22 2
y22 2
y12 2
y12 y22 2
kOA
kOB x1y2
p 2
y1
y12 2p
y2
pቤተ መጻሕፍቲ ባይዱ2
y1
y1y2 p 2.
同理可证:B、O、 A 三点共线.
16. y1 y2
p2 ; x1 x2
p2 4
证明:设
AB
的方程为
y k(x
p 2
)
,与
y2 2 px
联立,得
ky2 2 py kp2 0,
y1 y2
27. 设 PC 交抛物线于点 M,则点 M 是 PC 的中点;
证明: C(
x1
2
x2
,
y1
2
y2
),
P(m,
y1
2
y2
),PC中点横坐标为
x1
x2 2m 4
,
把y
y1 y2 2
代入 y2
2 px ,得
y12 y22 2y1y2 4
2px,
y1y2