2017年高考数学专题设计:立体几何中的三角形面积计算
三角形面积模型公式
三角形面积模型公式三角形是几何中最基本的图形之一,其面积的计算在数学和实际应用中都具有重要意义。
我们常见的三角形面积模型公式主要有以下几种。
一、基本公式:底乘以高除以 2这是最常见也是最基础的三角形面积公式,即面积 S = 1/2 ×底 ×高。
比如说,有一个三角形,底边长为 6 厘米,对应的高为 4 厘米。
那么它的面积就是 1/2 × 6 × 4 = 12 平方厘米。
这个公式的原理其实很好理解。
我们可以把三角形想象成一个平行四边形的一半。
平行四边形的面积是底乘以高,那么三角形作为平行四边形的一半,面积自然就是底乘以高除以 2 啦。
二、正弦定理求面积如果已知三角形的两边 a、b 以及它们的夹角 C,那么三角形的面积可以表示为 S = 1/2 × a × b × sinC 。
举个例子,如果一个三角形的两条边分别为 5 和 6,它们的夹角为60 度。
那么先计算 sin60 度,约等于 0866。
所以这个三角形的面积就是 1/2 × 5 × 6 × 0866 = 1299 。
这个公式的推导需要用到一些三角函数的知识。
因为三角形的面积可以看作是两边及其夹角所构成的平行四边形面积的一半,而平行四边形的面积是两边之积乘以它们夹角的正弦值,所以三角形的面积就是两边之积乘以夹角正弦值的一半。
三、海伦公式假设三角形的三条边长分别为 a、b、c,半周长 p =(a + b + c)/ 2 ,则三角形的面积 S =√p(p a)(p b)(p c) 。
比如说,一个三角形的三条边分别为 3、4、5,先计算半周长 p =(3 + 4 + 5)/ 2 = 6 。
然后计算 6×(6 3)×(6 4)×(6 5) = 36 ,最后求出面积为√36 = 6 。
海伦公式的推导相对复杂一些,但在已知三角形三条边长时,使用起来非常方便。
三角形面积计算法(经典例题)
三角形面积计算法(经典例题)
引言
计算三角形的面积是许多数学问题中的一个重要步骤。
在本文
档中,我们将介绍一个经典的例题,并提供计算三角形面积的方法。
例题描述
给定一个三角形,其中两边长度分别为a=5cm和b=7cm,夹角为θ=60度。
我们的目标是要计算该三角形的面积。
解决方案
我们可以使用以下公式来计算三角形的面积:
面积= 0.5 * a * b * sin(θ)
其中,a和b分别是三角形的两边长度,θ是夹角的度数。
代入已知值,我们可以进行计算:
面积 = 0.5 * 5cm * 7cm * sin(60度)
为了计算sin(60度),我们可以使用三角函数表或计算器。
根
据标准三角函数数值,sin(60度)的值为√3/2,约等于0.866。
将已知值代入公式,我们可以得到:
面积= 0.5 * 5cm * 7cm * 0.866 ≈ 21.22cm²
因此,该三角形的面积约为21.22平方厘米。
结论
通过计算,我们得出了给定三角形的面积为约21.22平方厘米。
这个经典例题展示了计算三角形面积的基本方法,希望能对读者有
所帮助。
参考资料
- 三角函数表或计算器:用于计算sin(60度)的数值。
三角形面积的计算方法
三角形面积的计算方法
三角形的面积可以通过以下几种方法来进行计算:
1. 使用底边和高的关系:对于任意三角形,我们可以将其分割成一个矩形和两个直角三角形。
此时,三角形的面积等于底边乘以高再除以2,即 S = (底边 ×高) / 2。
2. 使用两边和夹角的关系:对于已知两边的长度和它们之间的夹角的三角形,可以使用三角形的正弦定理或余弦定理来计算面积。
使用正弦定理时,计算公式为 S = (a × b × sin(夹角)) / 2,其中 a 和 b 分别为两边的长度,夹角为它们之间的夹角。
使用余弦定理时,计算公式为 S = (a^2 + b^2 - c^2) / 2,其中 a、b 和 c 分别为三角形的三条边。
3. 使用海伦公式:对于已知三边的长度的三角形,可以使用海伦公式来计算面积。
计算公式为S = √(p × (p - a) × (p - b) × (p - c)),其中 a、b 和 c 分别为三角形的三条边的长度,p 为半周长,即 p = (a + b + c) / 2。
三角形的面积计算
三角形的面积计算三角形是几何学中最基本的图形之一,计算其面积也是初学者必须掌握的知识。
本文将介绍三种计算三角形面积的方法:通过底边和高、通过两边和夹角、通过三边长度。
方法一:底边和高三角形的面积可以通过底边和高的关系来计算。
假设三角形的底边长度为b,高为h,则三角形的面积S可表示为S = (b * h) / 2。
即面积等于底边长度与高的乘积再除以2。
例如,已知一个三角形的底边长度为5,高为8,那么可以通过以下步骤计算其面积:S = (5 * 8) / 2 = 20。
所以这个三角形的面积为20平方单位。
方法二:两边和夹角如果已知三角形的两边长度和它们之间的夹角,可以使用三角形面积公式S = (a * b * sinθ) / 2来计算,其中a和b分别是两边的长度,θ是夹角的度数,sin表示正弦函数。
例如,已知一个三角形的两边长度分别为4和7,夹角为45度,那么可以通过以下步骤计算其面积:S = (4 * 7 * sin45°) / 2 ≈ 9.9。
所以这个三角形的面积约为9.9平方单位。
方法三:三边长度对于已知三边长度的三角形,可以使用海伦公式来计算面积。
设三边长度分别为a、b和c,半周长为s = (a + b + c) / 2,则三角形的面积可以表示为S = √(s * (s - a) * (s - b) * (s - c))。
例如,已知一个三角形的三边长度分别为3、4和5,可以通过以下步骤计算其面积:s = (3 + 4 + 5) / 2 = 6S = √(6 * (6 - 3) * (6 - 4) * (6 - 5)) = √(6 * 3 * 2 * 1) = √36 = 6。
所以这个三角形的面积为6平方单位。
总结:本文介绍了三种计算三角形面积的方法:通过底边和高、通过两边和夹角、通过三边长度。
不同的情况下可以使用不同的方法来计算三角形的面积,选择合适的方法能够简化计算步骤,提高计算的准确性。
三角形的面积计算方法
三角形的面积计算方法三角形是几何学中最基本的图形之一,它的面积计算是许多数学问题的基础。
在本文中,我们将介绍三角形的面积计算方法,包括三角形的基本知识和不同种类三角形的面积计算公式。
一、三角形的基本知识1. 三角形定义:三角形是由三条线段组成的图形,这三条线段两两相交于端点,称为三角形的顶点。
2. 三角形的三边:三角形的三边是组成三角形的线段,分别记为a、b、c。
3. 三角形的三个顶点:三角形的三个顶点用大写字母A、B、C表示。
4. 三角形的一个内角:三角形的角是由两条边组成的线段所形成的夹角,记为∠A、∠B、∠C。
二、三角形面积计算公式1. 一般三角形的面积公式当已知三角形的三边长a、b、c时,可以使用海伦公式计算三角形的面积,公式如下:面积(Area) = √[s(s-a)(s-b)(s-c)]其中,s为半周长,计算公式为:s = (a + b + c) / 22. 直角三角形的面积公式当已知直角三角形的直角边长a、b时,可以使用直角三角形的面积公式计算三角形的面积,公式如下:面积(Area) = (a * b) / 23. 等边三角形的面积公式当已知等边三角形的边长a时,可以使用等边三角形的面积公式计算三角形的面积,公式如下:面积(Area) = (sqrt(3) * a^2) / 44. 等腰三角形的面积公式当已知等腰三角形的等腰边长a和底边长b时,可以使用等腰三角形的面积公式计算三角形的面积,公式如下:面积(Area) = (b * sqrt(a^2 - (b^2 / 4))) / 25. 正三角形的面积公式正三角形是一种特殊的等边三角形,当已知正三角形的边长a时,可以使用正三角形的面积公式计算三角形的面积,公式如下:面积(Area) = (sqrt(3) * a^2) / 4三、例题解析为了更好地理解三角形的面积计算方法,我们来做几个例题。
例题1:已知三角形的三边长分别为a = 3 cm,b = 4 cm,c = 5 cm,计算这个三角形的面积。
三角形的面积公式怎么算
三角形的面积公式怎么算
三角形的面积计算公式为:三角形底乘以高除以2。
三角形面积公式是指使用算式计算出三角形的面积,同一平面内,且不在同一直线的三条线段首尾顺次相接所组成的封闭图形叫做三角形。
常见的三角形有直角三角形、锐角三角形、钝角三角形等。
1
1、在平面上三角形的内角和等于180°(内角和定理)。
2、在平面上三角形的外角和等于360°(外角和定理)。
3、在平面上三角形的外角等于与其不相邻的两个内角之和。
推论:三角形的一个外角大于任何一个和它不相邻的内角。
4、一个三角形的三个内角中最少有两个锐角。
5、在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
6、三角形任意两边之和大于第三边,任意两边之差小于第三边。
专题19 立体几何中体积与表面积—三年高考(2015-2017)数学(文)真题分项版解析(解析版)
好教育云平台 1.【2017课标3,文9】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为() A .πB .3π4C .π2D .π4【答案】B【解析】如果,画出圆柱的轴截面,11,2AC AB ==,所以32r BC ==,那么圆柱的体积是2233124V r h πππ⎛⎫==⨯⨯= ⎪ ⎪⎝⎭,故选B.【考点】圆柱体积【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.2.【2015高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) (A )(B )(C )(D )【答案】【考点定位】1.旋转体的几何特征;2.几何体的体积.【名师点睛】本题考查了旋转体的几何特征及几何体的体积计算,解答本题的关键,是理解所得旋转体的几何特征,确定得到计算体积所需要的几何量.本题属于基础题,在考查旋转体的几何特征及几何体的体积计算方法的同时,考查了考生的空间想象能力及运算能力,是“无图考图”的一道好题.3.【2016高考新课标1文数】平面过正文体ABCD—A1B1C1D1的顶点A,,,则m,n所成角的正弦值为()(A)(B)(C)(D)【答案】A【解析】考点:平面的截面问题,面面平行的性质定理,异面直线所成的角.【名师点睛】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.4.【2017天津,文11】已知一个正方形的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.【答案】92π 【解析】试题分析:设正方体边长为a ,则226183a a =⇒=,外接球直径为34427923,πππ3382R V R ====⨯=. 【考点】球与几何体的组合体【名师点睛】正方体与其外接球的组合体比较简单,因为正方体的中心就是外接球的球心,对于其他几何体的外接球,再找球心时,注意球心到各个顶点的距离相等,1.若是柱体,球心肯定在中截面上,再找底面外接圆的圆心,过圆心做底面的垂线与中截面的交点就是球心,2.若是锥体,可以先找底面外接圆的圆心,过圆心做底面的垂线,再做一条侧棱的中垂线,两条直线的交点就是球心,构造平面几何关系求半径,3.若是三棱锥,三条侧棱两两垂直时,也可补成长方体,长方体的外接球就是此三棱锥的外接球,这样做题比较简单. 5.【2015新课标2文10】已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为()A.B.C.D.【答案】C 【解析】【考点定位】本题主要考查球与几何体的切接问题及空间想象能力. 【名师点睛】由于三棱锥底面AOB 面积为定值,故高最大时体积最大,本题就是利用此结论求球的半径,然后再求出球的表面积,由于球与几何体的切接问题能很好的考查空间想象能力,使得这类问题一直是高考中的热点及难点,提醒考生要加强此方面的训练. 6. [2016高考新课标Ⅲ文数]在封闭的直三棱柱内有一个体积为的球,若,,,,则的最大值是()(A )4π (B )(C )6π (D )【答案】B【解析】试题分析:要使球的体积最大,必须球的半径最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值,此时球的体积为,故选B.考点:1、三棱柱的内切球;2、球的体积.【思维拓展】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解.7.【2014全国2,文7】正三棱柱的底面边长为,侧棱长为,为中点,则三棱锥的体积为( )(A)(B)(C)(D)【答案】C【考点定位】棱柱、棱锥、棱台的体积【名师点睛】本题考查几何体的体积的求法,属于中档题,求解几何体的底面面积与高是解题的关键,对于三棱锥的体积还可利用换底法与补形法进行处理.8.【2015高考新课标1,文6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有()(A)斛(B)斛(C)斛(D)斛【答案】B【解析】设圆锥底面半径为r ,则,所以,所以米堆的体积为=,故堆放的米约为÷1.62≈22,故选B.【考点定位】圆锥的性质与圆锥的体积公式【名师点睛】本题以《九章算术》中的问题为材料,试题背景新颖,解答本题的关键应想到米堆是圆锥,底面周长是两个底面半径与圆的和,根据题中的条件列出关于底面半径的方程,解出底面半径,是基础题.9.【2017课标1,文16】已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________. 【答案】36π因为平面SAC ⊥平面SBC 所以OA ⊥平面SBC 设OA r =3111123323A SBC SBC V S OA r r r r -∆=⨯⨯=⨯⨯⨯⨯=所以31933r r =⇒=,所以球的表面积为2436r ππ=【考点】三棱锥外接球【名师点睛】本题考查了球与几何体的问题,是高考中的重点问题,要有一定的空间想象能力,这样才能找准关系,得到结果,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.10.【2017课标II ,文15】长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 【答案】14π.【解析】球的直径是长方体的体对角线,所以224π14π.R S R ==== 【考点】球的表面积【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.11.【2017江苏,6】如图,在圆柱12,O O 内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱12,O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是 ▲ .【答案】32【考点】圆柱体积【名师点睛】空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.12【2015高考四川,文14】在三棱住ABC -A 1B 1C 1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B 1C 1的中点,则三棱锥P -A 1MN 的体积是______. 【答案】【解析】由题意,三棱柱是底面为直角边长为1的 等腰直角三角形,高为1的直三棱柱,底面积为如图,因为AA 1∥PN ,故AA 1∥面PMN , 故三棱锥P -A 1MN 与三棱锥P -AMN 体积相等, 三棱锥P -AMN 的底面积是三棱锥底面积的,高为1故三棱锥P -A 1MN 的体积为【考点定位】本题主要考查空间几何体的三视图、直观图及空间线面关系、三棱柱与三棱锥的体积等基础知识,考查空间想象能力、图形分割与转换的能力,考查基本运算能力. 【名师点睛】解决本题,首先要正确画出三棱柱的直观图,包括各个点的对应字母所在位置,结合条件,三棱锥P -A 1MN 的体积可以直接计算,但转换为三棱锥P -AMN 的体积,使得计算更为简便,基本上可以根据条件直接得出结论.属于中档偏难题.13.【2016高考浙江文数】某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm 3.【答案】80;40.PC 1B 1A 1NCMBA考点:三视图.【方法点睛】解决由三视图求空间几何体的表面积与体积问题,一般是先根据三视图确定该几何体的结构特征,再准确利用几何体的表面积与体积公式计算该几何体的表面积与体积. 14.【2017课标II ,文18】如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,01,90.2AB BC AD BAD ABC ==∠=∠= (1)证明:直线//BC 平面PAD ;(2)若△PAD 面积为P ABCD -的体积.【答案】(Ⅰ)见解析(Ⅰ)4√3 【解析】试题解析:(1)在平面ABCD 内,因为∠BAD=∠ABC=90°,所以BC ∥AD.又BC PAD ⊄平面,AD PAD ⊂平面,故BC ∥平面PAD.(2)取AD 的中点M ,连结PM ,CM ,由12AB BC AD ==及BC ∥AD ,∠ABC=90°得四边形ABCM 为正方形,则CM ⊥AD.因为侧面PAD为等边三角形且垂直于底面ABCD,平面PAD∩平面ABCD=AD,所以PM ⊥AD,PM⊥底面ABCD,因为CM ABCD底面,所以PM⊥CM.设BC=x,则CM=x,CD=√2x,PM=√3x,PC=PD=2x.取CD的中点N,连结PN,则PN⊥CD,所以PN=√142x因为△PCD的面积为2√7,所以1 2×√2x×√142x=2√7,解得x=-2(舍去),x=2,于是AB=BC=2,AD=4,PM=2√3,所以四棱锥P-ABCD的体积V=13×2(2+4)2×2√3=4√3.【考点】线面平行判定定理,面面垂直性质定理,锥体体积【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.15.【2017课标3,文19】如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.【答案】(1)详见解析;(2)1试题解析:(1)证明:取AC 中点O ,连OB OD , ∵CD AD =,O 为AC 中点, ∴OD AC ⊥,又∵ABC ∆是等边三角形, ∴OB AC ⊥,又∵O OD OB = ,∴⊥AC 平面OBD ,⊂BD 平面OBD , ∴BD AC ⊥.(2)设2==CD AD ,∴22=AC ,22==CD AB , 又∵BD AB =,∴22=BD , ∴≅∆ABD CBD ∆,∴EC AE =, 又∵EC AE ⊥,22=AC , ∴2==EC AE , 在ABD ∆中,设xDE =,根据余弦定理DEAD AE DE AD BD AD AB BD AD ADB ⋅-+=⋅-+=∠22cos 222222 x x ⨯⨯-+=⨯⨯-+=22222222)22()22(2222222解得2=x ,∴点E 是BD 的中点,则ACE B ACE D V V --=,∴1=--ACEB ACED VV . 【考点】线面垂直判定及性质定理,锥体体积【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.16.【2017北京,文18】如图,在三棱锥P –ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(Ⅰ)求证:PA ⊥BD ;(Ⅱ)求证:平面BDE ⊥平面PAC ;(Ⅲ)当PA ∥平面BD E 时,求三棱锥E –BCD 的体积. 【答案】详见解析 【解析】试题解析:证明:(I )因为PA AB ⊥,PA BC ⊥,所以PA ⊥平面ABC , 又因为BD ⊂平面ABC ,所以PA BD ⊥.(II )因为AB BC =,D 为AC 中点,所以BD AC ⊥, 由(I )知,PA BD ⊥,所以BD ⊥平面PAC , 所以平面BDE ⊥平面PAC .(III )因为PA ∥平面BDE ,平面PAC 平面BDE DE =,所以PA DE ∥.因为D 为AC 的中点,所以112DE PA ==,BD DC ==. 由(I )知,PA ⊥平面PAC ,所以DE ⊥平面PAC .所以三棱锥E BCD -的体积1163V BD DC DE =⋅⋅=. 【考点】1.线面垂直的判断和性质;2,。
专题08 立体几何中的计算(原卷版)
衡水中学内部资料群:591993305,高中各科学霸资料群:680662798,专题08 立体几何中的计算1、【2019年江苏数】.如图,长方体1111ABCD A B C D 的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.2、【2018年高考江苏数】.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.3、【2019年高考全国Ⅰ卷文数】已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BCP 到平面ABC 的距离为___________.4、【2019年高考全国Ⅱ卷文数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48衡水中学内部资料群:591993305,高中各科学霸资料群:680662798,的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)5、【2019年高考全国Ⅲ卷文数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =AA =,,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.6、【2019年高考北京卷文数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.7、【2019.若圆柱的一个底衡水中学内部资料群:591993305,高中各科学霸资料群:680662798,面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.8、【2018年高考全国II 卷文数】已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30 ,若SAB △的面积为8,则该圆锥的体积为__________.一、柱、锥、台和球的侧面积和体积注意:(1)分的处理.(2)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.衡水中学内部资料群:591993305,高中各科学霸资料群:680662798,二、在求解一些不规则的几何体的体积以及两个几何体的体积之比时,常常需要用到分割法.在求一个几何体被分成两部分的体积之比时,若有一部分为不规则几何体,则可用整个几何体的体积减去规则几何体的体积求出其体积.(1)解决空间几何体表面上的最值问题的根本思路是“展开”,即将空间几何体的“面”展开后铺在一个平面上,将问题转化为平面上的最值问题.(2)如果已知的空间几何体是多面体,则根据问题的具体情况可以将这个多面体沿多面体中某条棱或者两个面的交线展开,把不在一个平面上的问题转化到一个平面上.如果是圆柱、圆锥则可沿母线展开,把曲面上的问题转化为平面上的问题. 三、方法与技巧(1)棱柱、棱锥要掌握各部分的结构特征,计算问题往往转化到一个三角形中进行解决.旋转体要抓住“旋转”特点,弄清底面、侧面及展开图形状. (2)要注意将空间问题转化为平面问题.(3)求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解. (4)一些几何体表面上的最短距离问题,常常利用几何体的展开图解决. 四、失误与防范(1)几何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系.(2)与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.题型一 多面体的表面积与体积求多面体的表面积与体积常用方法:1、公式法:可以运用规则的几何体;2、割补法:把不规则的图衡水中学内部资料群:591993305,高中各科学霸资料群:680662798,形分割成规则的图形,或者把几何体补成熟悉的几何体。
求三角形面积的基本方法
求三角形面积的基本方法三角形是几何学中最基础的形状之一,求解其面积是常见的数学问题。
本文将介绍几种基本的方法来计算三角形的面积。
方法一:海伦公式海伦公式是一种用三角形的边长来计算面积的方法。
假设三角形的三边长度分别为a、b、c,海伦公式的计算公式如下:面积= √[s(s - a)(s - b)(s - c)]其中,s是半周长,计算公式为 s = (a + b + c) / 2。
方法二:底边高公式对于已知底边长为b,且垂直于底边的高为h的三角形,可以使用底边高公式来计算面积。
计算公式如下:面积 = (底边长度 ×高) / 2方法三:向量法如果知道三角形的两个非共线向量a和b,可以使用向量法来计算面积。
计算公式如下:面积 = |a × b| / 2其中,|a × b|表示向量a与向量b的叉积的模。
方法四:三角函数法如果已知三角形的一个角度和两边的长度,可以使用三角函数法来计算面积。
假设已知三角形的一个角度为θ,两边长度分别为a和b,计算公式如下:面积= (a × b × sin(θ)) / 2其中,sin(θ)表示角度θ的正弦值。
需要注意的是,以上方法适用于不同类型的三角形,包括普通三角形、等腰三角形和等边三角形。
根据已知条件的不同,选择合适的方法来计算面积。
例如,对于一个已知边长分别为3、4、5的三角形,可以使用海伦公式来计算面积。
首先计算半周长s:s = (3 + 4 + 5) / 2 = 6然后带入海伦公式计算面积:面积= √[6(6 - 3)(6 - 4)(6 - 5)]= √[6 × 3 × 2 × 1]= √[36]= 6因此,该三角形的面积为6平方单位。
总结:本文介绍了求解三角形面积的几种基本方法,包括海伦公式、底边高公式、向量法和三角函数法。
根据已知条件的不同,可以选择合适的方法来计算三角形的面积。
通过掌握这些基本方法,可以解决多种三角形面积计算的问题。
2017版高考数学课件:7.2 空间几何体的表面积与体积
分成的上下两部分的体积的比为
.
第十八页,编辑于星期六:二十点 二十三分。
答案
(1)C
3
(2) 5
解析 (1)如图,此几何体是底面半径为1,高为2的圆柱挖去一个底面半径
为1,高为1的圆锥,故所求体积V=2π-
=
5 .
33
(2)设四棱锥P-ABCD的体积为V,连结FA,FB,则下面部分几何体的体积为
1-1 (2015课标Ⅰ,11,5分)圆柱被一个平面截去一部分后与半球(半径 为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若 该几何体的表面积为16+20π,则r= ( )
A.1 B.2 C.4 D.8
第十五页,编辑于星期六:二十点 二十三分。
答案 B
解析 由已知可知,该几何体的直观图如图所示,其表面积为2πr2+πr2+4r2 +2πr2=5πr2+4r2.由5πr2+4r2=16+20π,得r=2.故选B.
=
5a3. 6
第十一页,编辑于星期六:二十点 二十三分。
几何体的表面积 典例1 (2014浙江,3,5分)某几何体的三视图(单位:cm)如图所示,则此几 何体的表面积是 ( )
A.90 cm2 B.129 cm2 C.132 cm2 D.138 cm2
第十二页,编辑于星期六:二十点 二十三分。
答案 D 解析 由三视图可知该几何体由一个直三棱柱与一个长方体组合而成 (如图),其表面积为S=3×5+2× 1×4×3+4×3+3×3+2×4×3+2×4×6+3×6=138
3
第七页,编辑于星期六:二十点 二十三分。
三角形的面积计算与性质推导
三角形的面积计算与性质推导三角形是几何学中最基本的几何图形,它具有独特的形状和一些重要的性质。
本文将介绍三角形的面积计算方法以及推导一些与三角形性质相关的公式。
一、三角形的面积计算三角形的面积计算是几何学中最常见的问题之一,下面我们将介绍三种常用的计算方法。
1. 高度法当我们已知三角形的底和高时,可以通过高度法来计算三角形的面积。
设三角形的底长为a,高为h,则三角形的面积S可以表示为:S = (1/2) * a * h。
例如,若一个底长为10cm,高为8cm的三角形,使用高度法可得到其面积为:S = (1/2) * 10cm * 8cm = 40cm²。
2. 两边夹角与边长法当我们已知三角形的两条边长和夹角时,可以通过两边夹角与边长法来计算三角形的面积。
设三角形的两边长分别为a、b,夹角为θ,则三角形的面积S可以表示为:S = (1/2) * a * b * sin(θ)。
例如,若一个边长分别为5cm和8cm,夹角为60°的三角形,使用两边夹角与边长法可得到其面积为:S = (1/2) * 5cm * 8cm * s in(60°) ≈ 17.32cm²。
3. 海伦公式当我们已知三角形的三边长时,可以通过海伦公式来计算三角形的面积。
设三角形的三边长分别为a、b、c,则三角形的面积S可以表示为:S = √[s(s-a)(s-b)(s-c)],其中s为半周长,即s = (a + b + c)/2。
例如,若一个边长分别为3cm、4cm、5cm的三角形,使用海伦公式可得到其面积为:S = √[(3cm + 4cm + 5cm)/2 * (3cm + 4cm + 5cm -3cm) * (3cm + 4cm + 5cm - 4cm) * (3cm + 4cm + 5cm - 5cm)] = 6cm²。
二、三角形的性质推导除了面积计算,三角形还有一些重要的性质,下面我们将推导一些与三角形性质相关的公式。
几何形的面积与体积计算
几何形的面积与体积计算在几何学中,面积和体积是常见的计算问题。
无论是平面上的二维图形,还是空间中的三维图形,计算其面积和体积是我们学习几何学的基础。
本文将介绍一些常见几何形的面积与体积的计算方法。
一、平面图形的面积计算1. 三角形的面积计算三角形的面积可以通过以下公式进行计算:面积 = 底边长度 ×高 ÷ 2其中,底边长度是指三角形的底边的长度,高是指从顶点到底边的垂直距离。
以一个具体例子进行说明:例如,已知一个三角形的底边长度为6cm,高为4cm,代入公式可以计算出三角形的面积为:面积 = 6cm × 4cm ÷ 2 = 12cm²2. 矩形的面积计算矩形的面积可以通过以下公式进行计算:面积 = 长 ×宽其中,长和宽分别指矩形的边长。
以一个具体例子进行说明:例如,已知一个矩形的长为5cm,宽为3cm,代入公式可以计算出矩形的面积为:面积 = 5cm × 3cm = 15cm²3. 圆形的面积计算圆形的面积可以通过以下公式进行计算:面积= π × 半径²其中,π是一个恒定的数值,约等于3.14159;半径是指圆形的半径长度。
以一个具体例子进行说明:例如,已知一个圆形的半径为2cm,代入公式可以计算出圆形的面积为:面积 = 3.14159 × 2cm × 2cm = 12.56636cm²二、空间图形的体积计算1. 直方体的体积计算直方体的体积可以通过以下公式进行计算:体积 = 长 ×宽 ×高其中,长、宽、高分别指直方体的三个边长。
以一个具体例子进行说明:例如,已知一个直方体的长为5cm,宽为3cm,高为4cm,代入公式可以计算出直方体的体积为:体积 = 5cm × 3cm × 4cm = 60cm³2. 球体的体积计算球体的体积可以通过以下公式进行计算:体积= 4/3 × π × 半径³其中,π是一个恒定的数值,约等于3.14159;半径是指球体的半径长度。
高中数学三角形面积公式
高中数学三角形面积公式第一篇:高中数学三角形面积公式高中数学三角形面积公式由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形。
平面上三条直线或球面上三条弧线所围成的图形。
三条直线所围成的图形叫平面三角形;三条弧线所围成的图形叫球面三角形,也叫三边形。
面积公式:(1)S=ah/2(2).已知三角形三边a,b,c,则(海伦公式)(p=(a+b+c)/2)S=√[p(p-a)(p-b)(p-c)]=(1/4)√[(a+b+c)(a+b-c)(a+c-b)(b+c-a)](3).已知三角形两边a,b,这两边夹角C,则S=1/2 * absinC(4).设三角形三边分别为a、b、c,内切圆半径为rS=(a+b+c)r/2(5).设三角形三边分别为a、b、c,外接圆半径为RS=abc/4R(6).根据三角函数求面积:S= absinC/2a/sinA=b/sinB=c/sinC=2R第二篇:三角形面积公式教案课题: §1.2解三角形应用举例教学目标:知识与技能:能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题, 掌握三角形的面积公式的简单推导和应用过程与方法:本节课补充了三角形新的面积公式,引导学生证明,同时总结出该公式的特点,循序渐进地具体运用于相关的题型。
情感态度与价值观:让学生进一步巩固所学的知识,加深对所学定理的理解,进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验教学重点:推导三角形的面积公式并解决简单的相关题目。
教学难点:三角形面积公式与正弦余弦定理的综合应用。
教学过程:Ⅰ.课题导入师:以前我们就已经接触过了三角形的面积公式,今天我们来学习它的另一个表达公式。
121推导出下面的三角形面积公式,S=absinC,大家能推出其它的几个公式吗?211生:同理可得,S=bcsinA, S=acsinB 22根据以前学过的三角形面积公式S=ah,应用以上求出的高的公式如ha=bsinC代入,可以Ⅱ.讲授新课[范例讲解] 例1、在∆ABC中,根据下列条件,求三角形的面积S(1)已知a=5cm,c=7cm,B=60︒;(2)已知B=30︒,C=45︒,b=2cm;(3)已知三边的长分别为a=3cm,b=5cm,c=7cm分析:这是一道在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形面积的知识,观察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面积。
立体几何表面积:计算表面积
立体几何表面积:计算表面积在立体几何中,表面积是一个重要的概念。
它用来描述物体外部的面积大小,是计算物体表面覆盖的单位面积的一种方式。
正确计算立体几何的表面积对于建筑设计、工程测量以及日常生活中的空间规划都有着重要的意义。
本文将介绍计算立体几何表面积的方法和公式。
1. 三角形和四边形的表面积计算方法首先,我们来讨论一下三角形和四边形的表面积计算方法。
对于一个平面的三角形,我们可以使用海伦公式来计算其面积。
海伦公式为:其中,a、b、c分别为三角形的三边长度。
根据海伦公式,我们可以计算出三角形的面积。
而对于一个四边形,我们可以将其拆分为两个三角形,然后分别计算两个三角形的面积,并相加得到四边形的表面积。
2. 球的表面积计算方法接下来,我们来讨论球的表面积计算方法。
球是一种特殊的几何体,其表面由无数个相交的等距离点组成。
球的表面积计算公式为:其中,r为球的半径。
根据此公式,我们可以计算出球的表面积。
3. 圆柱体的表面积计算方法再来介绍一下圆柱体的表面积计算方法。
圆柱体由两个底面和一个侧面组成。
圆柱体的表面积计算公式为:其中,r为底面半径,h为圆柱体的高度。
根据此公式,我们可以计算出圆柱体的表面积。
4. 三棱锥和四棱锥的表面积计算方法最后,我们来讨论一下三棱锥和四棱锥的表面积计算方法。
三棱锥和四棱锥是两种常见的几何体,其表面积计算公式分别为:三棱锥:四棱锥:其中,l为棱长,h为高。
根据这两个公式,我们可以计算出三棱锥和四棱锥的表面积。
总结起来,计算立体几何的表面积需要根据具体物体的形状和性质选择不同的计算方法和公式。
在实际应用中,我们常常需要将复杂的几何体分解为简单的几何体,并分别计算它们的表面积,然后将各个部分的表面积相加得到整个立体体积。
正确计算立体几何的表面积能够帮助我们更好地理解和应用空间几何概念,为我们日常生活和工作提供便利。
因此,在建筑设计、工程测量和日常生活中,我们应该熟练掌握几何体表面积的计算方法和公式,以便能够准确、高效地解决各种与表面积相关的问题。
三角面积计算方式
三角面积计算方式三角形是最常见的几何形状之一,也是计算面积的基本形状之一。
在数学中,计算三角形的面积有多种方法和公式,每种方法都有其独特的适用情况和应用场景。
本文将探讨三角形面积的计算方式,并深入讨论其中的数学原理和使用方法。
首先,我们来介绍最常用的三角形面积计算公式——“底乘以高除以二”。
这个公式适用于任意类型的三角形,无论其形状是否锐角、直角或钝角。
所谓“底”是指三角形的底边的长度,而“高”是指从顶点到底边的垂直距离。
通过将底乘以高再除以二,可以得到三角形的面积。
然而,在某些情况下,三角形的底和高可能不容易直接测量或确定。
此时,可以考虑使用其他面积计算方法。
例如,当已知三角形的两个边长和夹角时,可以使用“正弦定理”来计算三角形的面积。
正弦定理指出,三角形的任意一边的长度与其对应的角的正弦值成正比。
通过根据已知的边长和夹角,计算出另外两条边的长度,然后利用“底乘以高除以二”的公式进行面积计算。
除了正弦定理,还有另一种常用的计算三角形面积的公式——“海伦公式”。
海伦公式适用于已知三角形的三个边长的情况下,通过公式:面积=√[s(s-a)(s-b)(s-c)] 来计算面积。
其中,s表示三角形的半周长,计算公式为:s = (a+b+c)/2。
这个公式在实际运用中非常方便,尤其适用于计算不规则形状的三角形。
除了上述的数学公式,计算三角形面积还有一些其他的方法。
例如,当三角形的顶点坐标已知时,可以使用行列式的方法进行计算。
通过将三个顶点的坐标组成一个矩阵,然后利用行列式公式来计算面积。
此外,对于特殊类型的三角形,还有一些专门的计算方法。
对于直角三角形,可以使用“直角三角形面积公式”:面积=底乘以高除以二。
对于等边三角形,可以使用“等边三角形面积公式”:面积=边长的平方乘以根号三除以四。
对于等腰三角形,可以使用“等腰三角形面积公式”:面积=底边乘以高除以二。
总之,计算三角形的面积是数学中基础而重要的技巧,它可以应用于各种实际问题和工程项目中。
2017年高考数学试题分项版—立体几何(解析版)
2017年高考数学试题分项版—立体几何(解析版)一、选择题1.(2017·全国Ⅰ文,6)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()1.【答案】A【解析】A项,作如图①所示的辅助线,其中D为BC的中点,则QD∥AB.∵QD∩平面MNQ=Q,∴QD与平面MNQ相交,∴直线AB与平面MNQ相交;B项,作如图②所示的辅助线,则AB∥CD,CD∥MQ,∴AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,∴AB∥平面MNQ;C项,作如图③所示的辅助线,则AB∥CD,CD∥MQ,∴AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,∴AB∥平面MNQ;D项,作如图④所示的辅助线,则AB∥CD,CD∥NQ,∴AB∥NQ,又AB ⊄平面MNQ ,NQ ⊂平面MNQ ,∴AB ∥平面MNQ .故选A.2.(2017·全国Ⅱ文,6)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π2.【答案】B【解析】方法一 (割补法)如图所示,由几何体的三视图,可知该几何体是一个圆柱被截去上面虚线部分所得.将圆柱补全,并将圆柱体从点A 处水平分成上下两部分.由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V =π×32×4+π×32×6×12=63π.故选B.方法二 (估值法)由题意,知12V 圆柱<V 几何体<V 圆柱. 又V 圆柱=π×32×10=90π,∴45π<V 几何体<90π.观察选项可知只有63π符合.故选B.3.(2017·全国Ⅲ文,9)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4C .π2D .π43.【答案】B【解析】设圆柱的底面半径为r ,球的半径为R ,且R =1,由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.∴r = 1-⎝⎛⎭⎫122=32.∴圆柱的体积为V =πr 2h =34π×1=3π4. 故选B.4.(2017·全国Ⅲ文,10)在正方体ABCDA 1B 1C 1D 1中,E 为棱CD 的中点,则( )A .A 1E ⊥DC 1B .A 1E ⊥BDC .A 1E ⊥BC 1D .A 1E ⊥AC4.【答案】C【解析】方法一 如图,∵A 1E 在平面ABCD 上的投影为AE ,而AE 不与AC ,BD 垂直,∴B ,D 错;∵A 1E 在平面BCC 1B 1上的投影为B 1C ,且B 1C ⊥BC 1,∴A 1E ⊥BC 1,故C 正确;(证明:由条件易知,BC 1⊥B 1C ,BC 1⊥CE ,又CE ∩B 1C =C ,∴BC 1⊥平面CEA 1B 1. 又A 1E ⊂平面CEA 1B 1,∴A 1E ⊥BC 1)∵A 1E 在平面DCC 1D 1上的投影为D 1E ,而D 1E 不与DC 1垂直,故A 错.故选C.方法二 (空间向量法)建立如图所示的空间直角坐标系,设正方体的棱长为1,则A (1,0,0),B (1,1,0),C (0,1,0),D (0,0,0),A 1(1,0,1),C 1(0,1,1),E ⎝⎛⎭⎫0,12,0,∴A 1E →=⎝⎛⎭⎫-1,12,-1,DC 1→=(0,1,1),BD →=(-1,-1,0),BC 1→=(-1,0,1),AC →=(-1,1,0),∴A 1E →·DC 1→≠0,A 1E →·BD →≠0,A 1E →·BC 1→=0,A 1E →·AC →≠0,∴A 1E ⊥BC 1.故选C.5.(2017·北京文,6)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A .60B .30C .20D .105.【答案】D【解析】由三视图画出如图所示的三棱锥P -ACD ,过点P 作PB ⊥平面ACD 于点B ,连接BA ,BD ,BC ,根据三视图可知,底面ABCD 是矩形,AD =5,CD =3,PB =4,所以V 三棱锥P ACD =13×12×3×5×4=10. 故选D.6.(2017·浙江,3)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A .π2+1 B .π2+3 C .3π2+1 D .3π2+3 6.【答案】A【解析】由几何体的三视图可知,该几何体是一个底面半径为1,高为3的圆锥的一半与一个底面为直角边长是2的等腰直角三角形,高为3的三棱锥的组合体,∴该几何体体积为V =13×12π×12×3+13×12×2×2×3=π2+1. 故选A.7.(2017·浙江,9)如图,已知正四面体DABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP =PB ,BQ QC =CR RA=2,分别记二面角DPRQ ,DPQR ,DQRP 的平面角为α,β,γ,则( )A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α7.【答案】B【解析】如图①,作出点D 在底面ABC 上的射影O ,过点O 分别作PR ,PQ ,QR 的垂线OE ,OF ,OG ,连接DE ,DF ,DG ,则α=∠DEO ,β=∠DFO ,γ=∠DGO .由图可知它们的对边都是DO ,∴只需比较EO ,FO ,GO 的大小即可.如图②,在AB 边上取点P ′,使AP ′=2P ′B ,连接OQ ,OR ,则O 为△QRP ′的中心. 设点O 到△QRP ′三边的距离为a ,则OG =a ,OF =OQ ·sin ∠OQF <OQ ·sin ∠OQP ′=a ,OE =OR ·sin ∠ORE >OR ·sin ∠ORP ′=a ,∴OF <OG <OE ,∴OD tan β<OD tan γ<OD tan α, ∴α<γ<β.故选B.8.(2017·全国Ⅰ理,7)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .168.【答案】B【解析】观察三视图可知,该多面体是由直三棱柱和三棱锥组合而成的,且直三棱柱的底面是直角边长为2的等腰直角三角形,侧棱长为2.三棱锥的底面是直角边长为2的等腰直角三角形,高为2,如图所示.因此该多面体各个面中有两个梯形,且这两个梯形全等,梯形的上底长为2,下底长为4,高为2,故这两个梯形的面积之和为2×12×(2+4)×2=12.故选B.9.(2017·全国Ⅱ理,4)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π9.【答案】B【解析】方法一 (割补法)由几何体的三视图可知,该几何体是一个圆柱截去上面虚线部分所得,如图所示.将圆柱补全,并将圆柱从点A 处水平分成上下两部分.由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V =π×32×4+π×32×6×12=63π.故选B.方法二 (估值法)由题意知,12V 圆柱<V 几何体<V 圆柱,又V 圆柱=π×32×10=90π,∴45π<V 几何体<90π.观察选项可知只有63π符合.故选B.10.(2017·全国Ⅱ理,10)已知直三棱柱ABCA 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( ) A.32 B.155 C.105 D.3310.【答案】C【解析】方法一 将直三棱柱ABC -A 1B 1C 1补形为直四棱柱ABCD -A 1B 1C 1D 1,如图①所示,连接AD 1,B 1D 1,BD .由题意知∠ABC =120°,AB =2,BC =CC 1=1, 所以AD 1=BC 1=2,AB 1=5,∠DAB =60°.在△ABD 中,由余弦定理知BD 2=22+12-2×2×1×cos 60°=3,所以BD =3,所以B 1D 1= 3. 又AB 1与AD 1所成的角即为AB 1与BC 1所成的角θ,所以cos θ=AB 21+AD 21-B 1D 212×AB 1×AD 1=5+2-32×5×2=105. 故选C.方法二 以B 1为坐标原点,B 1C 1所在的直线为x 轴,垂直于B 1C 1的直线为y 轴,BB 1所在的直线为z 轴建立空间直角坐标系,如图②所示.由已知条件知B 1(0,0,0),B (0,0,1),C 1(1,0,0),A (-1,3,1),则BC 1→=(1,0,-1),AB 1→=(1,-3,-1).所以cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→||BC 1→|=25×2=105. 所以异面直线AB 1与BC 1所成的角的余弦值为105. 故选C.11.(2017·全国Ⅲ理,8)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A .πB.3π4C.π2D.π4 11.【答案】B【解析】设圆柱的底面半径为r ,球的半径为R ,且R =1,由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.∴r =12-⎝⎛⎭⎫122=32.∴圆柱的体积为V =πr 2h =π×⎝⎛⎭⎫322×1=3π4. 故选B.12.(2017·北京理,7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A .3 2B .2 3C .2 2D .212.【答案】B 【解析】在正方体中还原该四棱锥,如图所示,可知SD 为该四棱锥的最长棱.由三视图可知正方体的棱长为2,故SD =22+22+22=2 3.故选B.二、填空题1.(2017·全国Ⅰ文,16)已知三棱锥SABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥SABC 的体积为9,则球O 的表面积为________.1.【答案】36π【解析】如图,连接OA ,OB .由SA =AC ,SB =BC ,SC 为球O 的直径知,OA ⊥SC ,OB ⊥SC .由平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,OA ⊥SC 知,OA ⊥平面SCB . 设球O 的半径为r ,则OA =OB =r ,SC =2r ,∴三棱锥S -ABC 的体积V =13×(12SC ·OB )·OA =r 33, 即r 33=9,∴r =3,∴S 球表=4πr 2=36π. 2.(2017·全国Ⅱ文,15)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为________.2.【答案】14π【解析】∵长方体的顶点都在球O 的球面上,∴长方体的体对角线的长度就是其外接球的直径.设球的半径为R ,则2R =32+22+12=14.∴球O 的表面积为S =4πR 2=4π×⎝⎛⎭⎫1422=14π. 3.(2017·天津文,11)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.3.【答案】9π2【解析】设正方体的棱长为a ,则6a 2=18,∴a = 3.设球的半径为R ,则由题意知2R =a 2+a 2+a 2=3,∴R =32. 故球的体积V =43πR 3=43π×⎝⎛⎭⎫323=9π2. 4.(2017·山东文,13)由一个长方体和两个14圆柱构成的几何体的三视图如图,则该几何体的体积为________.4.【答案】2+π2【解析】该几何体由一个长、宽、高分别为2,1,1的长方体和两个半径为1,高为1的14圆柱体构成,∴V =2×1×1+2×14×π×12×1=2+π2. 5.(2017·浙江,11)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S 6,S 6=________. 5.【答案】332【解析】作出单位圆的内接正六边形,如图,则OA =OB =AB =1,S 6=6S △OAB =6×12×1×32=332.6.(2017·江苏,6)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.6.【答案】32【解析】设球O 的半径为R ,∵球O 与圆柱O 1O 2的上、下底面及母线均相切, ∴圆柱O 1O 2的高为2R ,底面半径为R . ∴V 1V 2=πR 2·2R 43πR 3=32. 7.(2017·全国Ⅰ理,16)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为________.7.【答案】415【解析】如图,连接OD ,交BC 于点G ,由题意知,OD ⊥BC ,OG =36BC . 设OG =x ,x ∈⎝⎛⎭⎫0,52, 则BC =23x ,DG =5-x , 三棱锥的高h =DG 2-OG 2 =25-10x +x 2-x 2=25-10x ,S △ABC =12×23x ×3x =33x 2,则三棱锥的体积V =13S △ABC ·h =3x 2·25-10x =3·25x 4-10x 5.令f (x )=25x 4-10x 5,x ∈⎝⎛⎭⎫0,52,则f ′(x )=100x 3-50x 4. 令f ′(x )=0,得x =2.当x ∈(0,2)时,f ′(x )>0,f (x )单调递增,当x ∈⎝⎛⎭⎫2,52时,f ′(x )<0,f (x )单调递减,故当x =2时,f (x )取得最大值80,则V ≤3×80=415. 所以三棱锥体积的最大值为415 cm 3.8.(2017·全国Ⅲ理,16)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号) 8.【答案】②③【解析】依题意建立如图所示的空间直角坐标系,设等腰直角三角形ABC 的直角边长为1.由题意知,点B 在平面xOy 中形成的轨迹是以C 为圆心,1为半径的圆.设直线a 的方向向量为a =(0,1,0),直线b 的方向向量为b =(1,0,0),CB →以Ox 轴为始边沿逆时针方向旋转的旋转角为θ,θ∈[)0,2π,则B (cos θ,sin θ,0), ∴AB →=(cos θ,sin θ,-1),|AB →|= 2. 设直线AB 与a 所成的夹角为α, 则cos α=|AB →·a ||a ||AB →|=22|sin θ|∈⎣⎡⎦⎤0,22,∴45°≤α≤90°,∴③正确,④错误; 设直线AB 与b 所成的夹角为β, 则cos β=|AB →·b ||b ||AB →|=22|cos θ|.当直线AB 与a 的夹角为60°,即α=60°时, 则|sin θ|=2cos α=2cos 60°=22, ∴|cos θ|=22,∴cos β=22|cos θ|=12. ∵45°≤β≤90°,∴β=60°,即直线AB 与b 的夹角为60°. ∴②正确,①错误.9.(2017·天津理,10)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________. 9.【答案】92π【解析】设正方体棱长为a ,则6a 2=18,∴a = 3.设球的半径为R ,则由题意知2R =a 2+a 2+a 2=3,∴R =32.故球的体积V =43πR 3=43π×⎝⎛⎭⎫323=92π.10.(2017·山东理,13)由一个长方体和两个14圆柱体构成的几何体的三视图如下,则该几何体的体积为________.10.【答案】2+π2【解析】该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的四分之一圆柱体构成,∴V =2×1×1+2×14×π×12×1=2+π2.三、解答题1.(2017·全国Ⅰ文,18)如图,在四棱锥P ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,且四棱锥P ABCD 的体积为83,求该四棱锥的侧面积.1.(1)证明 由已知∠BAP =∠CDP =90°, 得AB ⊥P A ,CD ⊥PD .由于AB ∥CD ,故AB ⊥PD ,从而AB ⊥平面P AD . 又AB ⊂平面P AB , 所以平面P AB ⊥平面P AD .(2)解 如图,在平面P AD 内作PE ⊥AD ,垂足为E .由(1)知,AB ⊥平面P AD ,故AB ⊥PE ,AB ⊥AD , 所以PE ⊥平面ABCD .设AB =x ,则由已知可得AD =2x ,PE =22x , 故四棱锥P ABCD 的体积V P ABCD =13AB ·AD ·PE =13x 3.由题设得13x 3=83,故x =2.从而结合已知可得P A =PD =AB =DC =2,AD =BC =22,PB =PC =22, 可得四棱锥P ABCD 的侧面积为12P A ·PD +12P A ·AB +12PD ·DC +12BC 2sin 60°=6+2 3. 2.(2017·全国Ⅱ文,18)如图,四棱锥P ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面P AD ;(2)若△PCD 的面积为27,求四棱锥P ABCD 的体积.2.(1)证明 在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD . 又BC ⊄平面P AD ,AD ⊂平面P AD , 故BC ∥平面P AD .(2)解 如图,取AD 的中点M ,连接PM ,CM .由AB =BC =12AD 及BC ∥AD ,∠ABC =90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面P AD 为等边三角形且垂直于底面ABCD ,平面P AD ∩平面ABCD =AD ,所以PM ⊥AD ,PM ⊥底面ABCD .因为CM ⊂底面ABCD ,所以PM ⊥CM . 设BC =x ,则CM =x ,CD =2x ,PM =3x ,PC =PD =2x . 取CD 的中点N ,连接PN ,则PN ⊥CD , 所以PN =142x . 因为△PCD 的面积为27, 所以12×2x ×142x =27,解得x =-2(舍去)或x =2.于是AB =BC =2,AD =4,PM =2 3.所以四棱锥P ABCD 的体积V =13×2(2+4)2×23=4 3.3.(2017·全国Ⅲ文,19)如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.3.(1)证明 如图,取AC 的中点O ,连接DO ,BO . 因为AD =CD ,所以AC ⊥DO . 又由于△ABC 是正三角形, 所以AC ⊥BO . 又DO ∩OB =O ,所以AC ⊥平面DOB ,故AC ⊥BD . (2)解 连接EO .由(1)及题设知∠ADC =90°,所以DO =AO . 在Rt △AOB 中,BO 2+AO 2=AB 2.又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°. 由题设知△AEC 为直角三角形,所以EO =12AC .又△ABC 是正三角形,且AB =BD ,所以EO =12BD .故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1∶1.4.(2017·北京文,18)如图,在三棱锥P -ABC 中,P A ⊥AB ,P A ⊥BC ,AB ⊥BC ,P A =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:P A ⊥BD ;(2)求证:平面BDE ⊥平面P AC ;(3)当P A ∥平面BDE 时,求三棱锥E -BCD 的体积. 4.(1)证明 因为P A ⊥AB ,P A ⊥BC ,AB ∩BC =B , 所以P A ⊥平面ABC .又因为BD ⊂平面ABC ,所以P A ⊥BD .(2)证明 因为AB =BC ,D 是AC 的中点,所以BD ⊥AC . 由(1)知,P A ⊥BD , 又P A ∩AC =A , 所以BD ⊥平面P AC . 所以平面BDE ⊥平面P AC .(3)解 因为P A ∥平面BDE ,平面P AC ∩平面BDE =DE ,所以P A ∥DE . 因为D 为AC 的中点,所以DE =12P A =1,BD =DC = 2.由(1)知,P A ⊥平面ABC ,所以DE ⊥平面ABC , 所以三棱锥E -BCD 的体积V =16BD ·DC ·DE =13.5.(2017·天津文,17)如图,在四棱锥P ABCD 中,AD ⊥平面PDC ,AD ∥BC ,PD ⊥PB ,AD =1,BC =3,CD =4,PD =2.(1)求异面直线AP 与BC 所成角的余弦值; (2)求证:PD ⊥平面PBC ;(3)求直线AB 与平面PBC 所成角的正弦值.5.(1)解 由已知AD ∥BC ,故∠DAP 或其补角即为异面直线AP 与BC 所成的角. 因为AD ⊥平面PDC ,直线PD ⊂平面PDC ,所以AD ⊥PD . 在Rt △PDA 中,由已知,得AP =AD 2+PD 2=5, 故cos ∠DAP =AD AP =55.所以异面直线AP 与BC 所成角的余弦值为55. (2)证明 由(1)知AD ⊥PD . 又因为BC ∥AD ,所以PD ⊥BC .又PD ⊥PB ,PB ∩BC =B ,所以PD ⊥平面PBC .(3)解 如图,过点D 作DF ∥AB ,交BC 于点F ,连接PF ,则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角.因为PD ⊥平面PBC ,所以PF 为DF 在平面PBC 上的射影,所以∠DFP 为直线DF 和平面PBC 所成的角.由于AD ∥BC ,DF ∥AB ,故BF =AD =1. 由已知,得CF =BC -BF =2. 又AD ⊥DC ,所以BC ⊥DC .在Rt △DCF 中,可得DF =CD 2+CF 2=25, 在Rt △DPF 中,可得sin ∠DFP =PD DF =55.所以直线AB 与平面PBC 所成角的正弦值为55. 6.(2017·山东文,18)由四棱柱ABCD -A 1B 1C 1D 1截去三棱锥C 1-B 1CD 1后得到的几何体如图所示.四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD .(1)证明:A 1O ∥平面B 1CD 1;(2)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1. 6.证明 (1)取B 1D 1的中点O 1,连接CO 1,A 1O 1, 由于ABCD -A 1B 1C 1D 1是四棱柱, 所以A 1O 1∥OC ,A 1O 1=OC ,因此四边形A 1OCO 1为平行四边形,所以A 1O ∥O 1C . 又O 1C ⊂平面B 1CD 1,A 1O ⊄平面B 1CD 1, 所以A 1O ∥平面B 1CD 1.(2)因为AC ⊥BD ,E ,M 分别为AD 和OD 的中点, 所以EM ⊥BD .又A 1E ⊥平面ABCD ,BD ⊂平面ABCD , 所以A 1E ⊥BD .因为B 1D 1∥BD ,所以EM ⊥B 1D 1,A 1E ⊥B 1D 1. 又A 1E ,EM ⊂平面A 1EM ,A 1E ∩EM =E ,所以B 1D 1⊥平面A 1EM . 又B 1D 1⊂平面B 1CD 1, 所以平面A 1EM ⊥平面B 1CD 1.7.(2017·浙江,19)如图,已知四棱锥P ABCD ,△P AD 是以AD 为斜边的等腰直角三角形,BC ∥AD ,CD ⊥AD ,PC =AD =2DC =2CB ,E 为PD 的中点.(1)证明:CE ∥平面P AB ;(2)求直线CE 与平面PBC 所成角的正弦值. 7.(1)证明 如图,设P A 中点为F ,连接EF ,FB .因为E ,F 分别为PD ,P A 中点, 所以EF ∥AD 且EF =12AD ,又因为BC ∥AD ,BC =12AD ,所以EF ∥BC 且EF =BC ,所以四边形BCEF 为平行四边形,所以CE ∥BF . 因为BF ⊂平面P AB ,CE ⊄平面P AB , 因此CE ∥平面P AB .(2)解 分别取BC ,AD 的中点为M ,N , 连接PN 交EF 于点Q ,连接MQ .因为E ,F ,N 分别是PD ,P A ,AD 的中点, 所以Q 为EF 中点,在平行四边形BCEF 中,MQ ∥CE . 由△P AD 为等腰直角三角形得PN ⊥AD .由DC ⊥AD ,BC ∥AD ,BC =12AD ,N 是AD 的中点得BN ⊥AD .所以AD ⊥平面PBN .由BC ∥AD 得BC ⊥平面PBN , 那么平面PBC ⊥平面PBN .过点Q 作PB 的垂线,垂足为H ,连接MH .MH 是MQ 在平面PBC 上的射影,所以∠QMH 是直线CE 与平面PBC 所成的角. 设CD =1.在△PCD 中,由PC =2,CD =1,PD =2得CE =2, 在△PBN 中,由PN =BN =1,PB =3得QH =14,在Rt △MQH 中,QH =14,MQ =2,所以sin ∠QMH =28, 所以直线CE 与平面PBC 所成角的正弦值是28. 8.(2017·江苏,15)如图,在三棱锥ABCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .8.证明 (1)在平面ABD 内,因为AB ⊥AD ,EF ⊥AD , 则AB ∥EF .又因为EF ⊄平面ABC ,AB ⊂平面ABC , 所以EF ∥平面ABC .(2)因为平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,BC ⊂平面BCD ,BC ⊥BD , 所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥AD .又AB ⊥AD ,BC ∩AB =B ,AB ⊂平面ABC ,BC ⊂平面ABC , 所以AD ⊥平面ABC .又因为AC ⊂平面ABC ,所以AD ⊥AC .9.(2017·江苏,18)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32 cm ,容器Ⅰ的底面对角线AC 的长为107 cm ,容器Ⅱ的两底面对角线EG ,E 1G 1的长分别为14 cm 和62 cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12 cm.现有一根玻璃棒l ,其长度为40 cm.(容器厚度、玻璃棒粗细均忽略不计).(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱CC 1上,求l 没入水中部分的长度;(2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱GG 1上,求l 没入水中部分的长度. 9.解 (1)由正棱柱的定义,CC 1⊥平面ABCD ,所以平面A 1ACC 1⊥平面ABCD ,CC 1⊥AC ,如图①,记玻璃棒的另一端落在CC 1上点M 处.①因为AC =107,AM =40,所以MC =402-1072=30,从而sin ∠MAC =34. 记AM 与水面的交点为P 1,过P 1作P 1Q 1⊥AC ,Q 1为垂足,则P 1Q 1⊥平面ABCD ,故P 1Q 1=12,从而AP 1=P 1Q 1sin ∠MAC=16. 答 玻璃棒l 没入水中的部分的长度为16 cm.(如果将“没入水中部分”理解为“水面以上部分”,则结果为24 cm)(2)如图②,O ,O 1是正棱台的两底面中心.②由正棱台的定义,OO 1⊥平面EFGH ,所以平面E 1EGG 1⊥平面EFGH ,O 1O ⊥EG .同理,平面E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O ⊥E 1G 1.记玻璃棒的另一端落在GG 1上点N 处.过G 作GK ⊥E 1G 1,K 为垂足,则GK =OO 1=32.因为EG =14,E 1G 1=62,所以KG 1=62-142=24, 从而GG 1=KG 21+GK 2=242+322=40. 设∠EGG 1=α,∠ENG =β,则sin α=sin ⎝⎛⎭⎫π2+∠KGG 1=cos ∠KGG 1=45. 因为π2<α<π,所以cos α=-35. 在△ENG 中,由正弦定理可得40sin α=14sin β, 解得sin β=725. 因为0<β<π2,所以cos β=2425. 于是sin ∠NEG =sin(π-α-β)=sin(α+β)=sin αcos β+cos αsin β=45×2425+⎝⎛⎭⎫-35×725=35. 记EN 与水面的交点为P 2,过P 2作P 2Q 2⊥EG ,Q 2为垂足,则P 2Q 2⊥平面EFGH ,故P 2Q 2=12,从而EP 2=P 2Q 2sin ∠NEG=20. 答 玻璃棒l 没入水中部分的长度为20 cm.(如果将“没入水中部分”理解为“水面以上部分”,则结果为20 cm)10.(2017·江苏,22)如图,在平行六面体ABCDA 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 1=3,∠BAD =120°.(1)求异面直线A 1B 与AC 1所成角的余弦值;(2)求二面角BA 1DA 的正弦值.10.解 在平面ABCD 内,过点A 作AE ⊥AD ,交BC 于点E .因为AA 1⊥平面ABCD ,所以AA 1⊥AE ,AA 1⊥AD .如图,以{AE →,AD →,AA 1→}为正交基底,建立空间直角坐标系Axyz .因为AB =AD =2,AA 1=3,∠BAD =120°,则A (0,0,0),B (3,-1,0),D (0,2,0),E (3,0,0),A 1(0,0,3),C 1(3,1,3). (1)A 1B →=(3,-1,-3),AC 1→=(3,1,3),则cos 〈A 1B →,AC 1→〉=A 1B →·AC 1→|A 1B →||AC 1→|=(3,-1,-3)·(3,1,3)7=-17, 因此异面直线A 1B 与AC 1所成角的余弦值为17. (2)平面A 1DA 的一个法向量为AE →=(3,0,0).设m =(x ,y ,z )为平面BA 1D 的一个法向量,又A 1B →=(3,-1,-3),BD →=(-3,3,0),则⎩⎪⎨⎪⎧ m ·A 1B →=0,m ·BD →=0,即⎩⎨⎧3x -y -3z =0,-3x +3y =0. 不妨取x =3,则y =3,z =2,所以m =(3,3,2)为平面BA 1D 的一个法向量,从而cos 〈AE →,m 〉=AE →·m |AE →||m |=(3,0,0)·(3,3,2)3×4=34. 设二面角BA 1DA 的大小为θ,则|cos θ|=34. 因为θ∈[0,π],所以sin θ=1-cos 2θ=74. 因此二面角BA 1DA 的正弦值为74. 11.(2017·全国Ⅰ理,18)如图,在四棱锥P ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,求二面角APBC 的余弦值.11.(1)证明 由已知∠BAP =∠CDP =90°,得AB ⊥AP ,CD ⊥PD ,因为AB ∥CD ,所以AB ⊥PD .又AP ∩DP =P ,所以AB ⊥平面P AD .因为AB ⊂平面P AB ,所以平面P AB ⊥平面P AD .(2)解 在平面P AD 内作PF ⊥AD ,垂足为点F .由(1)可知,AB ⊥平面P AD ,故AB ⊥PF ,可得PF ⊥平面ABCD .以点F 为坐标原点,的方向为x 轴正方向,||为单位长度建立如图所示的空间直角坐标系F -xyz .由(1)及已知可得A ⎝⎛⎭⎫22,0,0,P ⎝⎛⎭⎫0,0,22,B ⎝⎛⎭⎫22,1,0,C ⎝⎛⎭⎫-22,1,0, 所以=⎝⎛⎭⎫-22,1,-22,=(2,0,0),=⎝⎛⎭⎫22,0,-22,=(0,1,0). 设n =(x 1,y 1,z 1)是平面PCB 的一个法向量,则即⎩⎪⎨⎪⎧-22x 1+y 1-22z 1=0,2x 1=0.所以可取n =(0,-1,-2). 设m =(x 2,y 2,z 2)是平面P AB 的一个法向量,则 即⎩⎪⎨⎪⎧22x 2-22z 2=0,y 2=0.所以可取m =(1,0,1),则cos 〈n ,m 〉=n ·m |n ||m |=-23×2=-33. 所以二面角A -PB -C 的余弦值为-33. 12.(2017·全国Ⅱ理,19)如图,四棱锥P ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角MABD 的余弦值.12.(1)证明 取P A 的中点F ,连接EF ,BF .因为E 是PD 的中点,所以EF ∥AD ,EF =12AD . 由∠BAD =∠ABC =90°,得BC ∥AD ,又BC =12AD , 所以EF BC ,四边形BCEF 是平行四边形,CE ∥BF ,又BF ⊂平面P AB ,CE ⊄平面P AB ,故CE ∥平面P AB .(2)解 由已知得BA ⊥AD ,以A 为坐标原点,AB →的方向为x 轴正方向,|AB →|为单位长度,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (1,0,0),C (1,1,0),P (0,1,3),PC →=(1,0,-3),AB →=(1,0,0).设M (x ,y ,z )(0<x <1),则BM →=(x -1,y ,z ),PM →=(x ,y -1,z -3).因为BM 与底面ABCD 所成的角为45°,而n =(0,0,1)是底面ABCD 的法向量,所以|cos 〈BM →,n 〉|=sin 45°, |z |(x -1)2+y 2+z 2=22, 即(x -1)2+y 2-z 2=0.①又M 在棱PC 上,设PM →=λPC →,则x =λ,y =1,z =3-3λ.②由①②解得⎩⎨⎧x =1+22,y =1,z =-62(舍去)或⎩⎨⎧ x =1-22,y =1,z =62, 所以M ⎝⎛⎭⎫1-22,1,62,从而AM →=⎝⎛⎭⎫1-22,1,62. 设m =(x 0,y 0,z 0)是平面ABM 的法向量,则⎩⎪⎨⎪⎧ m ·AM →=0,m ·AB →=0,即⎩⎨⎧(2-2)x 0+2y 0+6z 0=0,x 0=0, 所以可取m =(0,-6,2).于是cos 〈m ,n 〉=m ·n |m ||n|=105. 所以二面角MABD 的余弦值为105.13.(2017·全国Ⅲ理,19)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角DAEC 的余弦值.13.(1)证明 由题设可得△ABD ≌△CBD .从而AD =CD ,又△ACD 为直角三角形,所以∠ADC =90°,取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO .又因为△ABC 是正三角形,故BO ⊥AC ,所以∠DOB 为二面角DACB 的平面角,在Rt △AOB 中,BO 2+OA 2=AB 2,又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°,所以平面ACD ⊥平面ABC .(2)解 由题设及(1)知,OA ,OB ,OD 两两垂直,以O 为坐标原点,OA →为x 轴正方向,OB →为y 轴正方向,OD →为z 轴正方向,|OA →|为单位长度,建立如图所示的空间直角坐标系O -xyz ,则O (0,0,0),A ()1,0,0,D ()0,0,1,B ()0,3,0,C (-1,0,0),由题设知,四面体ABCE的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得E ⎝⎛⎭⎫0,32,12,故AE →=⎝⎛⎭⎫-1,32,12,AD →=()-1,0,1,OA →=()1,0,0. 设平面AED 的法向量为n 1=(x 1,y 1,z 1),平面AEC 的法向量为n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧ AE →·n 1=0,AD →·n 1=0,即⎩⎪⎨⎪⎧-x 1+32y 1+12z 1=0,-x 1+z =0,令x 1=1,则n 1=(1,33,1). ⎩⎪⎨⎪⎧ AE →·n 2=0,OA →·n 2=0,即⎩⎪⎨⎪⎧-x 2+32y 2+12z 1=0,x 2=0,令y 2=-1,则n 2=(0,-1,3),设二面角DAEC 的平面角为θ,易知θ为锐角,则cos θ=|n 1·n 2||n 1||n 2|=77. 14.(2017·北京理,16)如图,在四棱锥P ABCD 中,底面ABCD 为正方形,平面P AD ⊥平面ABCD ,点M 在线段PB 上,PD ∥平面MAC ,P A =PD =6,AB =4.(1)求证:M 为PB 的中点;(2)求二面角BPDA 的大小;(3)求直线MC 与平面BDP 所成角的正弦值.14.(1)证明:设AC ,BD 交于点E ,连接ME ,如图.因为PD ∥平面MAC ,平面MAC ∩平面PDB =ME ,所以PD ∥ME .因为四边形ABCD 是正方形,所以E 为BD 的中点,所以M 为PB 的中点.(2)解:取AD 的中点O ,连接OP ,OE .因为P A =PD ,所以OP ⊥AD ,又因为平面P AD ⊥平面ABCD ,且OP ⊂平面P AD ,所以OP ⊥平面ABCD .因为OE ⊂平面ABCD ,所以OP ⊥OE .因为四边形ABCD 是正方形,所以OE ⊥AD ,如图,建立空间直角坐标系O -xyz ,则P (0,0,2),D (2,0,0),B (-2,4,0),BD →=(4,-4,0),PD →=(2,0,-2).设平面BDP 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·BD →=0,n ·PD →=0,即⎩⎨⎧4x -4y =0,2x -2z =0. 令x =1,则y =1,z = 2.于是n =(1,1,2).平面P AD 的法向量为p =(0,1,0),所以cos 〈n ,p 〉=n ·p |n ||p |=12. 由题意知二面角B -PD -A 为锐角,所以它的大小为π3. (3)解:由题意知M ⎝⎛⎭⎫-1,2,22,C (2,4,0),MC →=⎝⎛⎭⎫3,2,-22. 设直线MC 与平面BDP 所成的角为α,则sin α=|cos 〈n ,MC →〉|=|n ·MC →||n ||MC →|=269. 所以直线MC 与平面BDP 所成角的正弦值为269. 15.(2017·天津理,17)如图,在三棱锥P ABC 中,P A ⊥底面ABC ,∠BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(1)求证:MN ∥平面BDE ;(2)求二面角CEMN 的正弦值;(3)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. 15.解 如图,以A 为原点,分别以AB →,AC →,AP →方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系.依题意,可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)证明 DE →=(0,2,0),DB →=(2,0,-2).设n =(x ,y ,z )为平面BDE 的一个法向量,则⎩⎪⎨⎪⎧ n ·DE →=0,n ·DB →=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0.不妨设z =1, 可得n =(1,0,1).又MN →=(1,2,-1),可得MN →·n =0.因为MN ⊄平面BDE ,所以MN ∥平面BDE .(2)易知n 1=(1,0,0)为平面CEM 的一个法向量.设n 2=(x 1,y 1,z 1)为平面EMN 的一个法向量,则⎩⎪⎨⎪⎧ n 2·EM →=0,n 2·MN →=0, 因为EM →=(0,-2,-1),MN →=(1,2,-1),所以⎩⎪⎨⎪⎧-2y 1-z 1=0,x 1+2y 1-z 1=0. 不妨设y 1=1,可得n 2=(-4,1,-2).因此cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-421, 于是sin 〈n 1,n 2〉=10521.所以,二面角CEMN 的正弦值为10521. (3)解 依题意,设AH =h (0≤h ≤4),则H (0,0,h ),进而可得NH →=(-1,-2,h ), BE →=(-2,2,2).由已知,得|cos 〈NH →,BE →〉|=|NH →·BE →||NH →||BE →|=|2h -2|h 2+5×23=721, 整理得10h 2-21h +8=0,解得h =85或h =12. 所以,线段AH 的长为85或12. 16.(2017·山东理,17)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G 是DF 的中点.(1)设P 是CE 上的一点,且AP ⊥BE ,求∠CBP 的大小;(2)当AB =3,AD =2时,求二面角E —AG —C 的大小.16.解 (1)因为AP ⊥BE ,AB ⊥BE ,AB ,AP ⊂平面ABP ,AB ∩AP =A ,所以BE ⊥平面ABP .又BP ⊂平面ABP ,所以BE ⊥BP ,又∠EBC =120°,所以∠CBP =30°.(2)方法一 取EC 的中点H ,连接EH ,GH ,CH .因为∠EBC =120°,所以四边形BEHC 为菱形,所以AE =GE =AC =GC =32+22=13.取AG 的中点M ,连接EM ,CM ,EC ,则EM ⊥AG ,CM ⊥AG ,所以∠EMC 为所求二面角的平面角.又AM =1,所以EM =CM =13-1=2 3.在△BEC 中,由于∠EBC =120°,由余弦定理得EC 2=22+22-2×2×2×cos 120°=12,所以EC =23,因此△EMC 为等边三角形,故所求的角为60°.方法二 在平面EBC 内,作EB ⊥BP 交CE 于点P .以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由题意得A (0,0,3),E (2,0,0),G (1,3,3),C (-1,3,0),故AE →=(2,0,-3),AG →=(1,3,0),CG →=(2,0,3),设m =(x 1,y 1,z 1)是平面AEG 的一个法向量.由⎩⎪⎨⎪⎧ m · AE →=0,m ·AG →=0,可得⎩⎨⎧2x 1-3z 1=0,x 1+3y 1=0. 取z 1=2,可得平面AEG 的一个法向量m =(3,-3,2).设n =(x 2,y 2,z 2)是平面ACG 的一个法向量.由⎩⎪⎨⎪⎧ n ·AG →=0,n ·CG →=0,可得⎩⎨⎧x 2+3y 2=0,2x 2+3z 2=0. 取z 2=-2,可得平面ACG 的一个法向量n =(3,-3,-2).所以cos 〈m ,n 〉=m ·n |m ||n |=12.因此所求的角为60°.。
2017年浙江省高考数学试卷(含解析版)
2017年浙江省高考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=()A.(﹣1,2)B.(0,1)C.(﹣1,0)D.(1,2)2.(4分)椭圆A.+=1的离心率是()B.C.D.3.(4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.+1B.+3C.+1D.+34.(4分)若x、y满足约束条件A.[0,6]B.[0,4],则z=x+2y的取值范围是()C.[6,+∞)D.[4,+∞)5.(4分)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m()A.与a有关,且与b有关C.与a无关,且与b无关B.与a有关,但与b无关D.与a无关,但与b有关6.(4分)已知等差数列{a}的公差为d,前n项和为S,则“d>0”是“S+Sn n4>2S”的()56A.充分不必要条件C.充分必要条件B.必要不充分条件D.既不充分也不必要条件7.(4分)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)1的图象可能是()A.B.C.D.8.(4分)已知随机变量ξ满足P(ξ=1)=p,P(ξ=0)=1﹣p,i=1,2.若i i i i i0<p<p<,则()12A.E(ξ)<E(ξ),D(ξ)<D(ξ)B.E(ξ)<E(ξ),D(ξ)1212121>D(ξ)2C.E(ξ)>E(ξ),D(ξ)<D(ξ)D.E(ξ)>E(ξ),D(ξ)1212121>D(ξ)29.(4分)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R 分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D ﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α10.(4分)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I=•,I=•,I=•,则()1232( 3 2A .I <I <I 123B .I <I <I 1 32C .I <I <I 3 12D .I <I <I 2 13二、填空题:本大题共 7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分11.(4 分)我国古代数学家刘徽创立的“割圆术”可以估算圆周率 π,理论上能把 π 的值计算到任意精度,祖冲之继承并发展了“割圆术”,将 π 的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积 S ,S =.6612.(6 分)已知 a 、b∈R ,(a+bi )2=3+4i (i 是虚数单位),则 a 2+b 2=,ab=.13. 6 分)已知多项式(x+1)(x+2) =x 5+a x 4+a x 3+a x 2+a x+a ,则 a = ,12 3 4 5 4a =.514.(6 分)已知△ABC,AB=AC=4,BC=2,点 D 为 AB 延长线上一点,BD=2,连结△C D ,则 BDC 的面积是 ,cos∠BDC= .15 .( 6 分)已知向量、 满足 | |=1 , | |=2 ,则 | + |+| ﹣ | 的最小值是,最大值是.16.(4 分)从 6 男 2 女共 8 名学生中选出队长 1 人,副队长 1 人,普通队员 2人组成 4 人服务队,要求服务队中至少有 1 名女生,共有种不同的选法.(用数字作答)17.(4 分)已知 a∈R,函数 f (x )=|x+ ﹣a|+a 在区间[1,4]上的最大值是 5,则 a 的取值范围是.三、解答题(共 5 小题,满分 74 分)18.(14 分)已知函数 f (x )=sin 2x ﹣cos 2x ﹣2(Ⅰ)求 f ()的值.(Ⅱ)求 f (x )的最小正周期及单调递增区间.sinx cosx (x∈R ).319.(15分)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.20.(15分)已知函数f(x)=(x﹣)e﹣x(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.421.(15分)如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q.(Ⅰ)求直线AP斜率的取值范围;(Ⅱ)求|PA||PQ|的最大值.22.(15分)已知数列{x}满足:x=1,x=x+ln(1+x)(n∈N*),证明:当nn1n n+1n+1∈N*时,(Ⅰ)0<x<x;n+1n(Ⅱ)2x﹣x≤n+1n (Ⅲ)≤x≤n;.52017年浙江省高考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=()A.(﹣1,2)B.(0,1)C.(﹣1,0)D.(1,2)【考点】1D:并集及其运算.【专题】11:计算题;37:集合思想;5J:集合.【分析】直接利用并集的运算法则化简求解即可.【解答】解:集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q={x|﹣1<x<2}=(﹣1,2).故选:A.【点评】本题考查集合的基本运算,并集的求法,考查计算能力.2.(4分)椭圆A.+=1的离心率是()B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】直接利用椭圆的简单性质求解即可.【解答】解:椭圆+=1,可得a=3,b=2,则c==,所以椭圆的离心率为:=.故选:B.【点评】本题考查椭圆的简单性质的应用,考查计算能力.63.(4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.+1B.+3C.+1D.+3【考点】L!:由三视图求面积、体积.【专题】11:计算题;31:数形结合;44:数形结合法;5Q:立体几何.【分析】根据几何体的三视图,该几何体是圆锥的一半和一个三棱锥组成,画出图形,结合图中数据即可求出它的体积.【解答】解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,××3=+1,故该几何体的体积为××π×12×3+××故选:A.【点评】本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图得出原几何体的结构特征,是基础题目.74.(4分)若x、y满足约束条件,则z=x+2y的取值范围是()A.[0,6]B.[0,4]C.[6,+∞)D.[4,+∞)【考点】7C:简单线性规划.【专题】11:计算题;31:数形结合;35:转化思想;5T:不等式.【分析】画出约束条件的可行域,利用目标函数的最优解求解即可.【解答】解:x、y满足约束条件,表示的可行域如图:目标函数z=x+2y经过C点时,函数取得最小值,由解得C(2,1),目标函数的最小值为:4目标函数的范围是[4,+∞).故选:D.【点评】本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键.5.(4分)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m()A.与a有关,且与b有关C.与a无关,且与b无关B.与a有关,但与b无关D.与a无关,但与b有关8【考点】3V:二次函数的性质与图象.【专题】32:分类讨论;4C:分类法;51:函数的性质及应用.【分析】结合二次函数的图象和性质,分类讨论不同情况下M﹣m的取值与a,b 的关系,综合可得答案.【解答】解:函数f(x)=x2+ax+b的图象是开口朝上且以直线x=﹣为对称轴的抛物线,①当﹣>1或﹣<0,即a<﹣2,或a>0时,函数f(x)在区间[0,1]上单调,此时M﹣m=|f(1)﹣f(0)|=|a+1|,故M﹣m的值与a有关,与b无关②当≤﹣≤1,即﹣2≤a≤﹣1时,函数f(x)在区间[0,﹣]上递减,在[﹣,1]上递增,且f(0)>f(1),此时M﹣m=f(0)﹣f(﹣)=,故M﹣m的值与a有关,与b无关③当0≤﹣<,即﹣1<a≤0时,函数f(x)在区间[0,﹣]上递减,在[﹣,1]上递增,且f(0)<f(1),此时M﹣m=f(1)﹣f(﹣)=1+a+,故M﹣m的值与a有关,与b无关综上可得:M﹣m的值与a有关,与b无关故选:B.【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.6.(4分)已知等差数列{a}的公差为d,前n项和为S,则“d>0”是“S+S6n n4>2S”的()59A.充分不必要条件C.充分必要条件B.必要不充分条件D.既不充分也不必要条件【考点】29:充分条件、必要条件、充要条件.【专题】11:计算题;35:转化思想;4R:转化法;54:等差数列与等比数列;5L:简易逻辑.【分析】根据等差数列的求和公式和S+S>2S,可以得到d>0,根据充分必要465条件的定义即可判断.【解答】解:∵S+S>2S,465∴4a+6d+6a+15d>2(5a+10d),111∴21d>20d,∴d>0,故“d>0”是“S+S>2S”充分必要条件,465故选:C.【点评】本题借助等差数列的求和公式考查了充分必要条件,属于基础题7.(4分)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A.B.C.D.10E【考点】3A :函数的图象与图象的变换.【专题】31:数形结合;44:数形结合法;52:导数的概念及应用.【分析】根据导数与函数单调性的关系,当 f′(x )<0 时,函数 f (x )单调递减,当 f′(x )>0 时,函数 f (x )单调递增,根据函数图象,即可判断函数的单调性,然后根据函数极值的判断,即可判断函数极值的位置,即可求得函数 y=f (x )的图象可能【解答】解:由当 f′(x )<0 时,函数 f (x )单调递减,当 f′(x )>0 时,函数 f (x )单调递增,则由导函数 y=f′(x )的图象可知:f (x )先单调递减,再单调递增,然后单调递减,最后单调递增,排除 A ,C ,且第二个拐点(即函数的极大值点)在 x 轴上的右侧,排除 B ,故选:D .【点评】本题考查导数的应用,考查导数与函数单调性的关系,考查函数极值的判断,考查数形结合思想,属于基础题.8.(4 分)已知随机变量 ξ 满足 P (ξ =1)=p ,P (ξ =0)=1﹣p ,i=1,2.若iiiii0<p <p < ,则()12A .E (ξ )<E (ξ ),D (ξ )<D (ξ )B .E (ξ )<E (ξ ),D (ξ )1212121>D (ξ )2C .E (ξ )>E (ξ ),D (ξ )<D (ξ ) D .E (ξ )>E (ξ ),D (ξ )12 1 2 1 2 1>D (ξ )2【考点】CH :离散型随机变量的期望与方差.【专题】11:计算题;34:方程思想;49:综合法;5I :概率与统计.【分析】由已知得 0<p <p < , <1﹣p <1﹣p <1,求出 E (ξ )=p ,(ξ )1221112=p ,从而求出 D (ξ ),D (ξ ),由此能求出结果.21 2【解答】解:∵随机变量 ξ 满足 P (ξ =1)=p ,P (ξ =0)=1﹣p ,i=1,2,…,iiiii0<p <p < ,1211∴<1﹣p<1﹣p<1,21E(ξ)=1×p+0×(1﹣p)=p,1111E(ξ)=1×p+0×(1﹣p)=p,2222D(ξ)=(1﹣p)2p+(0﹣p)2(1﹣p)= 11111D(ξ)=(1﹣p)2p+(0﹣p)2(1﹣p)= 22222,,D(ξ)﹣D(ξ)=p﹣p2﹣(1211)=(p﹣p)(p+p﹣1)<0,2112∴E(ξ)<E(ξ),D(ξ)<D(ξ).1212故选:A.【点评】本题考查离散型随机变量的数学期望和方差等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.9.(4分)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R 分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D ﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α【考点】MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离;5G:空间角;5H:空间向量及应用.【分析】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,6,0),D(0,0,6),Q,R,利用法向量的夹角公式即可得出二面角.解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,12OG⊥QR,垂足分别为E,F,G,连接DE,DF,DG..可得tanα=.tanβ=,tanγ=.由已知可得:OE>OG>OF.即可得出.【解答】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,6,0),D(0,0,6),B(3 ==,﹣3,0).Q,=(0,3,6.,R),=(,,6,0),=,设平面PDR的法向量为=(x,y,z),则,可得,可得=,取平面ABC的法向量=(0,0,1).则cos==,取α=arccos.同理可得:β=arccos.γ=arccos.∵>>.∴α<γ<β.解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,OG⊥QR,垂足分别为E,F,G,连接DE,DF,DG.设OD=h.则tanα=.同理可得:tanβ=,tanγ=.由已知可得:OE>OG>OF.∴tanα<tanγ<tanβ,α,β,γ为锐角.∴α<γ<β.故选:B.13【点评】本题考查了空间角、空间位置关系、正四面体的性质、法向量的夹角公式,考查了推理能力与计算能力,属于难题.10.(4分)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD 交于点O,记I=•,I=•,I=•,则()123A.I<I<I123B.I<I<I132C.I<I<I312D.I<I<I213【考点】9O:平面向量数量积的性质及其运算.【专题】31:数形结合;48:分析法;5A:平面向量及应用.【分析】根据向量数量积的定义结合图象边角关系进行判断即可.【解答】解:∵AB⊥BC,AB=BC=AD=2,CD=3,14∴AC=2,∴∠AOB=∠COD>90°,由图象知OA<OC,OB<OD,∴0>•>•,•>0,即I<I<I,312故选:C.【点评】本题主要考查平面向量数量积的应用,根据图象结合平面向量数量积的定义是解决本题的关键.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.(4分)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S,S=.66【考点】CE:模拟方法估计概率.【专题】31:数形结合;4O:定义法;5B:直线与圆.【分析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.【解答】解:如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,△AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S=6××1×1×sin60°=.6故答案为:.15【点评】本题考查了已知圆的半径求其内接正六边形面积的应用问题,是基础题.12.(6分)已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2=5,ab= 2.【考点】A5:复数的运算.【专题】34:方程思想;35:转化思想;5N:数系的扩充和复数.【分析】a、b∈R,(a+bi)2=3+4i(i是虚数单位),可得3+4i=a2﹣b2+2abi,可得3=a2﹣b2,2ab=4,解出即可得出.【解答】解:a、b∈R,(a+bi)2=3+4i(i是虚数单位),∴3+4i=a2﹣b2+2abi,∴3=a2﹣b2,2ab=4,解得ab=2,,.则a2+b2=5,故答案为:5,2.【点评】本题考查了复数的运算法则、复数的相等、方程的解法,考查了推理能力与计算能力,属于基础题.13.(6分)已知多项式(x+1)3(x+2)2=x5+a x4+a x3+a x2+a x+a,则a=16,123454 a=4.5【考点】DA:二项式定理.【专题】11:计算题;35:转化思想;5P:二项式定理.【分析】利用二项式定理的展开式,求解x的系数就是两个多项式的展开式中x 16与常数乘积之和,a就是常数的乘积.5【解答】解:多项式(x+1)3(x+2)2=x5+a x4+a x3+a x2+a x+a,12345(x+1)3中,x的系数是:3,常数是1;(x+2)2中x的系数是4,常数是4,a=3×4+1×4=16;4a=1×4=4.5故答案为:16;4.【点评】本题考查二项式定理的应用,考查计算能力,是基础题.14.(6分)已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结△C D,则BDC的面积是,cos∠BDC=.【考点】HT:三角形中的几何计算.【专题】11:计算题;35:转化思想;44:数形结合法;58:解三角形.【分析】如图,取BC得中点E,根据勾股定理求出AE,再求出△SABC,再根据△SBDC =△SABC即可求出,根据等腰三角形的性质和二倍角公式即可求出【解答】解:如图,取BC得中点E,∵AB=AC=4,BC=2,∴BE=BC=1,AE⊥BC,∴AE==,∴△SABC=BC AE=×2×=,∵BD=2,∴△SBDC =△SABC=,∵BC=BD=2,∴∠BDC=∠BCD,∴∠ABE=2∠BDC 在△R t ABE中,∵cos∠ABE==,17( |∴cos∠ABE=2cos 2∠BDC﹣1= ,∴cos∠BDC=故答案为:,,【点评】本题考查了解三角形的有关知识,关键是转化,属于基础题15. 6 分)已知向量 、 满足| |=1,|=2,则| + |+| ﹣ |的最小值是 4 ,最大值是.【考点】3H :函数的最值及其几何意义;91:向量的概念与向量的模.【专题】11:计算题;31:数形结合;44:数形结合法;51:函数的性质及应用.【分析】通过记∠AOB=α(0≤α≤π),利用余弦定理可可知| + |=| ﹣ |=,进而换元,转化为线性规划问题,计算即得结论.【解答】解:记∠AOB=α,则 0≤α≤π,如图,由余弦定理可得:、| + |=| ﹣ |=令 x=,,,y= ,则 x 2+y 2=10(x 、y≥1),其图象为一段圆弧 MN ,如图,令 z=x+y ,则 y=﹣x+z ,则直线 y=﹣x+z 过 M 、N 时 z 最小为 z =1+3=3+1=4,min18当直线y=﹣x+z与圆弧MN相切时z最大,由平面几何知识易知z即为原点到切线的距离的倍,max倍,也就是圆弧MN所在圆的半径的所以z=×=.max.综上所述,|+|+|﹣|的最小值是4,最大值是故答案为:4、.【点评】本题考查函数的最值及其几何意义,考查数形结合能力,考查运算求解能力,涉及余弦定理、线性规划等基础知识,注意解题方法的积累,属于中档题.16.(4分)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有660种不同的选法.(用数字作答)【考点】D9:排列、组合及简单计数问题.【专题】11:计算题;32:分类讨论;4O:定义法;5O:排列组合.【分析】由题意分两类选1女3男或选2女2男,再计算即可【解答】解:第一类,先选1女3男,有C3C1=40种,这4人选2人作为队长和6219副队有A2=12种,故有40×12=480种,4第二类,先选2女2男,有C2C2=15种,这4人选2人作为队长和副队有A2=12624种,故有15×12=180种,根据分类计数原理共有480+180=660种,故答案为:660【点评】本题考查了分类计数原理和分步计数原理,属于中档题17.(4分)已知a∈R,函数f(x)=|x+﹣a|+a在区间[1,4]上的最大值是5,则a的取值范围是(﹣∞,].【考点】3H:函数的最值及其几何意义.【专题】11:计算题;35:转化思想;49:综合法;51:函数的性质及应用.【分析】通过转化可知|x+﹣a|+a≤5且a≤5,进而解绝对值不等式可知2a﹣5≤x+≤5,进而计算可得结论.【解答】解:由题可知|x+﹣a|+a≤5,即|x+﹣a|≤5﹣a,所以a≤5,又因为|x+﹣a|≤5﹣a,所以a﹣5≤x+﹣a≤5﹣a,所以2a﹣5≤x+≤5,又因为1≤x≤4,4≤x+≤5,所以2a﹣5≤4,解得a≤,故答案为:(﹣∞,].【点评】本题考查函数的最值,考查绝对值函数,考查转化与化归思想,注意解题方法的积累,属于中档题.三、解答题(共5小题,满分74分)18.(14分)已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).20f f(Ⅰ)求 f ()的值.(Ⅱ)求 f (x )的最小正周期及单调递增区间.【考点】3G :复合函数的单调性;GF :三角函数的恒等变换及化简求值;H1:三角函数的周期性;H5:正弦函数的单调性.【专题】35:转化思想;4R :转化法;57:三角函数的图像与性质.【分析】利用二倍角公式及辅助角公式化简函数的解析式,(Ⅰ)代入可得:f ()的值.(Ⅱ)根据正弦型函数的图象和性质,可得 f (x )的最小正周期及单调递增区间【解答】解:∵函数 (x )=sin 2x ﹣cos 2x ﹣2 sinx cosx=﹣ sin2x ﹣cos2x=2sin(2x+(Ⅰ)f ())=2sin (2× + )=2sin =2,(Ⅱ)∵ω=2,故 T=π,即 f (x )的最小正周期为 π,由 2x+x∈[﹣∈[﹣ +2kπ, +2kπ],k∈Z 得:+kπ,﹣ +kπ],k∈Z,故 (x )的单调递增区间为[﹣ +kπ,﹣ +kπ]或写成[kπ+ ,kπ+ ],k∈Z.【点评】本题考查的知识点是三角函数的化简求值,三角函数的周期性,三角函数的单调区间,难度中档.19.(15 分)如图,已知四棱锥 P ﹣ABCD ,△PAD 是以 AD 为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB ,E 为 PD 的中点.(Ⅰ)证明:CE∥平面 PAB ;(Ⅱ)求直线 CE 与平面 PBC 所成角的正弦值.21【考点】LS:直线与平面平行;MI:直线与平面所成的角.【专题】14:证明题;31:数形结合;41:向量法;5F:空间位置关系与距离;5G:空间角.【分析】(Ⅰ)取AD的中点F,连结EF,CF,推导出EF∥PA,CF∥AB,从而平面EFC∥平面ABP,由此能证明EC∥平面PAB.(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,推导出四边形BCDF为矩形,从而BF⊥AD,进而AD⊥平面PBF,由AD∥BC,得BC⊥PB,再求出BC⊥MF,由此能求出sinθ.【解答】证明:(Ⅰ)取AD的中点F,连结EF,CF,∵E为PD的中点,∴EF∥PA,在四边形ABCD中,BC∥AD,AD=2DC=2CB,F为中点,∴CF∥AB,∴平面EFC∥平面ABP,∵EC平面EFC,∴EC∥平面PAB.解:(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,∵PA=PD,∴PF⊥AD,推导出四边形BCDF为矩形,∴BF⊥AD,∴AD⊥平面PBF,又AD∥BC,∴BC⊥平面PBF,∴BC⊥PB,设DC=CB=1,由PC=AD=2DC=2CB,得AD=PC=2,∴PB===,BF=PF=1,∴MF=,又BC⊥平面PBF,∴BC⊥MF,22∴MF⊥平面PBC,即点F到平面PBC的距离为,∵MF=,D到平面PBC的距离应该和MF平行且相等,为,E为PD中点,E到平面PBC的垂足也为垂足所在线段的中点,即中位线,∴E到平面PBC的距离为,,在由余弦定理得CE=,设直线CE与平面PBC所成角为θ,则sinθ==.【点评】本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.20.(15分)已知函数f(x)=(x﹣)e﹣x(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】35:转化思想;48:分析法;53:导数的综合应用.【分析】(1)求出f(x)的导数,注意运用复合函数的求导法则,即可得到所求;(2)求出f(x)的导数,求得极值点,讨论当<x<1时,当1<x<时,当x>时,f(x)的单调性,判断f(x)≥0,计算f(),f(1),f(),23即可得到所求取值范围.【解答】解:(1)函数f(x)=(x﹣)e﹣x(x≥),导数f′(x)=(1﹣••2)e﹣x﹣(x﹣)e﹣x=(1﹣x+)e﹣x=(1﹣x)(1﹣)e﹣x;(2)由f(x)的导数f′(x)=(1﹣x)(1﹣)e﹣x,可得f′(x)=0时,x=1或,当<x<1时,f′(x)<0,f(x)递减;当1<x<时,f′(x)>0,f(x)递增;当x>时,f′(x)<0,f(x)递减,且x≥⇔x2≥2x﹣1⇔(x﹣1)2≥0,则f(x)≥0.由f()=e,f(1)=0,f()=e,即有f(x)的最大值为e,最小值为f(1)=0.则f(x)在区间[,+∞)上的取值范围是[0,e].【点评】本题考查导数的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导是解题的关键,属于中档题.21.(15分)如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q.(Ⅰ)求直线AP斜率的取值范围;(Ⅱ)求|PA|•|PQ|的最大值.24【考点】KI:圆锥曲线的综合;KN:直线与抛物线的综合.【专题】11:计算题;33:函数思想;49:综合法;5E:圆锥曲线中的最值与范围问题.【分析】(Ⅰ)通过点P在抛物线上可设P(x,x2),利用斜率公式结合﹣<x <可得结论;(Ⅱ)通过(I)知P(x,x2)、﹣<x<,设直线AP的斜率为k,联立直线AP、BQ方程可知Q点坐标,进而可用k表示出、,计算可知|PA||PQ|=(1+k)3(1﹣k),通过令f(x)=(1+x)3(1﹣x),﹣1<x<1,求导结合单调性可得结论.【解答】解:(Ⅰ)由题可知P(x,x2),﹣<x<,所以k==x﹣∈(﹣1,1),AP故直线AP斜率的取值范围是:(﹣1,1);(Ⅱ)由(I)知P(x,x2),﹣<x<,所以=(﹣﹣x,﹣x2),设直线AP的斜率为k,则k==x﹣,即x=k+,则AP:y=kx+k+,BQ:y=﹣x+联立直线AP、BQ方程可知Q(+,,),25•=故=( ,),又因为=(﹣1﹣k ,﹣k 2﹣k ),故﹣|PA|• |PQ|=+ =(1+k )3(k ﹣1),所以|PA|• |PQ|=(1+k )3(1﹣k ),令 f (x )=(1+x )3(1﹣x ),﹣1<x <1,则 f′(x )=(1+x )2(2﹣4x )=﹣2(1+x )2(2x ﹣1),由于当﹣1<x < 时 f′(x )>0,当 <x <1 时 f′(x )<0,故 f (x ) =f ( )=,即|PA|• |PQ|的最大值为 .max【点评】本题考查圆锥曲线的最值问题,考查运算求解能力,考查函数思想,注意解题方法的积累,属于中档题.22.(15 分)已知数列{x }满足:x =1,x =x +ln (1+x )(n∈N *),证明:当 nn1 n n+1 n+1∈N *时,(Ⅰ)0<x <x ;n+1n(Ⅱ)2x ﹣x ≤n+1n;(Ⅲ) ≤x ≤n.【考点】8H :数列递推式;8K :数列与不等式的综合.【专题】15:综合题;33:函数思想;35:转化思想;49:综合法;4M :构造法;53:导数的综合应用; 54:等差数列与等比数列; 55:点列、递归数列与数学归纳法;5T :不等式.【分析】(Ⅰ)用数学归纳法即可证明,(Ⅱ)构造函数,利用导数判断函数的单调性,把数列问题转化为函数问题,即可证明,(Ⅲ)由 ≥2x ﹣x 得﹣ ≥2( ﹣ )>0,继续放缩即可证明n+1n26【解答】解:(Ⅰ)用数学归纳法证明:x>0,n当n=1时,x=1>0,成立,1假设当n=k时成立,则x>0,k那么n=k+1时,若x<0,则0<x=x+ln(1+x)<0,矛盾,k+1k k+1k+1故x>0,n+1因此x>0,(n∈N*)n∴x=x+ln(1+x)>x,n n+1n+1n+1因此0<x<x(n∈N*),n+1n(Ⅱ)由x=x+ln(1+x)得x x﹣4x+2x=xn n+1n+1n n+1n+1n n+12﹣2x+(x+2)ln(1+x),n+1n+1n+1记函数f(x)=x2﹣2x+(x+2)ln(1+x),x≥0∴f′(x)=+ln(1+x)>0,∴f(x)在(0,+∞)上单调递增,∴f(x)≥f(0)=0,因此xn+12﹣2x+(x+2)ln(1+x)≥0,n+1n+1n+1故2x﹣x≤;n+1n(Ⅲ)∵x=x+ln(1+x)≤x+x=2x,n n+1n+1n+1n+1n+1∴x≥n 由,≥2x﹣x得n+1n﹣≥2(﹣)>0,∴﹣≥2(﹣)≥…≥2n﹣1(﹣)=2n﹣2,∴x≤n,综上所述≤x≤.n【点评】本题考查了数列的概念,递推关系,数列的函数的特征,导数和函数的单调性的关系,不等式的证明,考查了推理论证能力,分析解决问题的能力,运算能力,放缩能力,运算能力,属于难题27。
三角形面积公式高中
三角形面积公式高中三角形面积公式在高中数学中是一个非常重要的概念。
它帮助我们计算三角形的面积,是解决各种相关问题的基础。
在本文中,我们将详细介绍三角形面积的计算公式及其相关概念。
三角形是由三条边和它们之间的夹角所构成。
计算三角形面积的公式基于三角形的高和底边的长度。
在高中数学中,我们主要使用以下三个公式来计算三角形的面积。
第一个公式是基于底边和高的长度。
对于任何一个三角形,我们可以通过将其底边与高相乘再除以2来计算面积。
这个公式可以表示为:面积 = (底边× 高) ÷ 2其中,底边是三角形的一条边的长度,高是从底边上的一个顶点到对应边上的垂直距离。
这个公式的推导是通过将三角形划分为两个直角三角形,并计算这两个直角三角形的面积之和得到的。
第二个公式是基于三角形的两条边和它们之间的夹角的正弦值。
对于任何一个三角形,我们可以通过将两条边的长度与夹角的正弦值相乘再除以2来计算面积。
这个公式可以表示为:面积 = (边1 × 边2 × sin(夹角)) ÷ 2其中,边1和边2是三角形的两条边的长度,夹角是这两条边之间的夹角。
这个公式的推导是基于三角形面积与正弦定理的关系。
第三个公式是基于三角形的三条边的长度。
对于任何一个三角形,我们可以通过使用海伦公式来计算其面积。
海伦公式可以表示为:面积= √[s(s-边1)(s-边2)(s-边3)]其中,s是三边之和的一半。
这个公式的推导是基于海伦定理,该定理说明一个三角形的面积可以通过它的三条边的长度来计算出来。
上述这三个公式是高中数学中计算三角形面积的基本方法,它们在不同情况下都可以使用。
比如,如果我们已知底边和高的长度,我们可以使用第一个公式来计算面积。
如果我们已知两个边和夹角的长度,我们可以使用第二个公式来计算面积。
如果我们已知三条边的长度,我们可以使用第三个公式来计算面积。
在高中数学课程中,我们还会学习一些用于计算特殊类型三角形面积的公式。
2017年高考数学—立体几何(解答+答案)
2017年高考数学—立体几何(解答+答案)1.(17全国1理18.(12分))如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=o ,求二面角A -PB -C 的余弦值.2.(17全国1文18.(12分))如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=o ,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积.如图,四棱锥P ABCD -中,侧面PAD 为等比三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点. (1)证明:直线//CE 平面PAB(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45 ,求二面角M AB D --的余弦值4.17全国2文18.(12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,90BAD ABC ∠=∠=o 。
(1) 证明:直线//BC 平面PAD ; (2) 若PCD ∆的面积为27,求四棱锥P ABCD -的体积。
如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形.ABDCBD ??,AB BD =.(1)证明:平面ACD ^平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分.求二面角D AE C --的余弦值.6.(17全国3文19.(12分))如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.DABCE7.(17北京理(16)(本小题14分))如图,在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,//PD 平面,6,4MAC PA PD AB ===(I )求证:M 为PB 的中点; (II )求二面角B PD A --的大小;(III )求直线MC 与平面BDP 所成角的正弦值.8.(17北京文(18)(本小题14分))如图,在三棱锥P ABC -中,,,,2PA AB PA BC AB BC PA AB BC ⊥⊥⊥===,D 为线段AC 的中点,E 为线段PC 上一点.(Ⅰ)求证:PA BD ⊥;(Ⅱ)求证:平面BDE ⊥平面PAC ;(Ⅲ)当//PA 平面BDE 时,求三棱锥E BCD -的体积.9.(17山东理17.)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120︒得到的,G 是»DF的中点. (Ⅰ)设P 是»CE上的一点,且AP BE ⊥,求CBP ∠的大小; (Ⅱ)当3AB =,2AD =,求二面角E AG C --的大小.10.(17山东文(18)(本小题满分12分))由四棱柱1111ABCD A B C D -截去三棱锥111C B CD -后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,1A E ⊥平面ABCD, (Ⅰ)证明:1A O ∥平面11B CD ;(Ⅱ)设M 是OD 的中点,证明:平面1A EM ⊥平面11B CD .11.(17天津理(17)(本小题满分13分))如图,在三棱锥P -ABC 中,PA ⊥底面ABC ,90BAC ∠=︒.点D ,E ,N 分别为棱PA ,P C ,BC 的中点,M 是线段AD 的中点,PA =AC =4,AB =2.(Ⅰ)求证:MN ∥平面BDE ; (Ⅱ)求二面角C -EM -N 的正弦值;(Ⅲ)已知点H 在棱PA 上,且直线NH 与直线BE 所成角的余弦值为7,求线段AH 的长.12.(17天津文(17)(本小题满分13分))如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(Ⅰ)求异面直线AP 与BC 所成角的余弦值; (Ⅱ)求证:PD ⊥平面PBC ;(Ⅲ)求直线AB 与平面PBC 所成角的正弦值.如图,已知四棱锥P–ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.14.(17江苏15.(本小题满分14分))-中,AB⊥AD,BC⊥BD,平如图,在三棱锥A BCD面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年高考数学题型解法设计:立体几何中的三角形面积
主编:宁永辉老师 主编单位:高考150分
主编部门:《出题人与答题人合体》项目部
【第一种三角形面积计算】:直角三角形。
如下图所示:
【题目分析】:
【面积计算】:ABC ∆的面积:ab AC BC S ABC 2
1
||||21=⨯⨯=∆。
【第二种三角形面积计算】:等腰三角形。
如下图所示:
【题目分析】:
【面积计算】:
【第三种三角形面积计算】:三角形的中线。
如下图所示:
【题目分析】:
【面积计算】:
【第四种三角形面积计算】:等边三角形。
如下图所示:
【题目分析】:
【面积计算】:
【第五种三角形面积计算】:直角梯形中三角形。
如下图所示:
【题目分析】:
【面积计算】:
【第六种三角形面积计算】:普通三角形。
如下图所示:
【题目分析】:
【面积计算】:。