平方根算术平方根立方根的求法习题集

合集下载

(完整版)平方根与立方根练习题

(完整版)平方根与立方根练习题

平方根立方根练习题一、填空题1.如果9=x ,那么x =________;如果92=x ,那么=x ________2.如果x 的一个平方根是7.12,那么另一个平方根是________.3.2-的相反数是 , 13-的相反数是 ;4.一个正数的两个平方根的和是________.一个正数的两个平方根的商是________.5.若一个实数的算术平方根等于它的立方根,则这个数是_________;6.算术平方根等于它本身的数有________,立方根等于本身的数有________.7.81的平方根是_______,4的算术平方根是_________,210-的算术平方根是 ;8.若一个数的平方根是8±,则这个数的立方根是 ;9.当______m 时,m -3有意义;当______m 时,33-m 有意义;10.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;11.已知0)3(122=++-b a ,则=332ab ; 12.21++a 的最小值是________,此时a 的取值是________.13.12+x 的算术平方根是2,则x =________.二、选择题14.下列说法错误的是( )A 、1)1(2=-B 、()1133-=-C 、2的平方根是2±D 、81-的平方根是9± 15.2)3(-的值是( ).A .3-B .3C .9-D .916.设x 、y 为实数,且554-+-+=x x y ,则y x -的值是( )A 、1B 、9C 、4D 、517.下列各数没有平方根的是( ).A .-﹙-2﹚B .3)3(-C .2)1(-D .11.118.计算3825-的结果是( ).A.3B.7C.-3D.-7 19.若a=23-,b=-∣-2∣,c=33)2(--,则a 、b 、c 的大小关系是( ).A.a >b >cB.c >a >bC.b >a >cD.c >b >a20.如果53-x 有意义,则x 可以取的最小整数为( ).A .0B .1C .2D .321.一个等腰三角形的两边长分别为25和32,则这个三角形的周长是( )A 、32210+B 、3425+C 、32210+或3425+D 、无法确定三、解方程22.0252=-x 23. 8)12(3-=-x 24.4(x+1)2=8 (2x-5)3=-27四、计算25.914414449⋅ 26.494 27.41613+-平方根与立方根能力提升一、选择题1. 若5x -能开偶次方,则x 的取值范围是( )A .0x ≥ B.5x > C. 5x ≥ D. 5x ≤2. 若n 为正整数,则2 )A .-1 B.1 C.±1 D.21n +3. 若正数a 的算术平方根比它本身大,则( )A.01a <<B.0a >C. 1a <D. 1a >四、解答题1.已知: 实数a 、b 满足条件0)2(12=-+-ab a 试求: )2004)(2004(1)2)(2(1)1)(1(11++++++++++b a b a b a ab 的值2.已知:33-+-x x +5=y,求x+y的立方根.3.已知:(x-1)2+z y x y ++++3=0,求x+y2-z的立方根.4.若x2=(-3)2,y3=(-2)3,求x+y的所有可能值.5.(1)如果3x+12的立方根是3,求2x+6的平方根;(2)已知一个正数的平方根是2a -1与-a +2.求a 2009的值.6.在解答“判断由线段长分别为65,2,85组成的三角形是不是直角三角形”一题中,小明是这样做的:因为2263610013625252525⎛⎫+=+= ⎪⎝⎭,而222286468252555⎛⎫⎛⎫⎛⎫=+≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以这个三角形不是直角三角形.小明的做法对吗?为什么?7.一辆卡车装满货物后,高4m ,宽3m ,这辆卡车能通过横截面如图(上方为半圆)的隧道吗?为什么?19.已知5+7的小数部分是a,5一7的小数部分是6,求(a+b)2008的值.20.已知2a一1的平方根是±3,3a+b一1的算术平方根是4,求a+2b的平方根.21.如图,在∆ABC中,∠C=90o,M是BC上的一点,MD⊥AB,垂足为点D,且AD2=AC2+BD2.试说明CM=MB.22.如图,铁路上A、B两站相距25 km,在铁显各附近有C、D两村,DA⊥AB于点A,CB⊥AB于点B.已知DA=15 km,CB=10 km,现要在铁路上建设一个土特产收购站E,要使得C、D两村到E站的距离相等,则E站应建在距A站多远处?23.如图,在正方形ABCD中,E是AD的中点,点F在DC上,且DF=14DC,试判断BE与EF的位置关系,并说明理由.。

初二平方根立方根练习题100道

初二平方根立方根练习题100道

初二平方根立方根练习题100道1. 求下列数字的平方根:a) 25b) 64c) 100d) 144e) 2562. 求下列数字的立方根:a) 8b) 27c) 64d) 125e) 2163. 求下列数字的平方根和立方根:a) 81b) 121c) 169d) 729e) 10244. 求下列数字的平方根的结果保留两位小数:a) 5b) 15c) 23d) 36e) 485. 求下列数字的立方根的结果保留两位小数:a) 8b) 27c) 64d) 125e) 2166. 计算下列各式的值:a) √9 × √16b) ∛8 × √9c) √25 ÷ √5d) ∛64 ÷∛4e) ∛27 + ∛647. 当x = 16时,求以下各式的值:a) √xb) x^(1/3)c) ∛xd) x^(1/2)8. 当y = 0.04时,求以下各式的值:a) √yb) y^(2/3)c) ∛yd) y^(1/2)9. 已知a = √16 + ∛64,求a的值。

10. 如果x = √16,y = ∛27,z = √25,分别求x、y、z的平方根和立方根。

11. 如果a = √x,b = ∛y,c = √z,求a、b、c的平方根和立方根。

12. 判断下列各式是否成立:a) √16 + ∛27 = √9 + ∛64b) √25 - ∛8 = 5 - 2c) √100 + ∛125 = 12 + 5d) √36 - ∛64 = 6 - 4e) √81 + ∛125 = 9 + 513. 求下列式子的值:a) (√4 + ∛8)²b) (√9 - ∛27)³c) (√16 + ∛64)⁴d) (√25 - ∛125)⁵e) (√36 + ∛216)⁶14. 已知 x = 0.1,求 x²和 x³的值并保留三位小数。

15. 如果 a² + b² = 25,且 a = 3,b = 4,求 a³和 b³的值。

初二上册平方根和立方根的练习题

初二上册平方根和立方根的练习题

初二上册平方根和立方根的练习题在初中数学中,平方根和立方根是常见的数学概念。

学好这两个概念,不仅可以提升数学能力,还能应用到实际生活中。

下面是一些平方根和立方根的练习题,帮助大家更好地理解和掌握这两个概念。

练习题一:平方根计算1. 计算√16 + √25 = ?解答:√16 = 4,√25 = 5,所以√16 + √25 = 4 + 5 = 9。

2. 计算√121 - √49 = ?解答:√121 = 11,√49 = 7,所以√121 - √49 = 11 - 7 = 4。

3. 计算√36 × √64 = ?解答:√36 = 6,√64 = 8,所以√36 × √64 = 6 × 8 = 48。

练习题二:立方根计算1. 计算∛8 + ∛27 = ?解答:∛8 = 2,∛27 = 3,所以∛8 + ∛27 = 2 + 3 = 5。

2. 计算∛64 - ∛125 = ?解答:∛64 = 4,∛125 = 5,所以∛64 - ∛125 = 4 - 5 = -1。

3. 计算∛216 ×∛64 = ?解答:∛216 = 6,∛64 = 4,所以∛216 ×∛64 = 6 × 4 = 24。

练习题三:平方根和立方根混合计算1. 计算√36 + ∛27 = ?解答:√36 = 6,∛27 = 3,所以√36 + ∛27 = 6 + 3 = 9。

2. 计算√9 × ∛64 = ?解答:√9 = 3,∛64 = 4,所以√9 × ∛64 = 3 × 4 = 12。

3. 计算√25 ÷ ∛64 = ?解答:√25 = 5,∛64 = 4,所以√25 ÷ ∛64 = 5 ÷ 4 = 1.25。

通过对以上练习题的计算,相信大家对平方根和立方根的计算方法有了更深入的了解。

不过要注意,在实际考试或应用中,可能会出现更复杂的题目,需要进一步掌握计算的技巧和方法。

算术平方根、平方根与立方根练习题

算术平方根、平方根与立方根练习题

算术平方根、平方根与立方根练习题 姓名:‗‗‗‗‗‗‗‗‗1、一般地,如果一个正数x 的平方等于a ,即‗‗‗‗‗‗‗‗‗‗,那么这个正数x 叫做a 的‗‗‗‗‗‗‗‗‗,记为‗‗‗‗‗‗‗,读作‗‗‗‗‗‗‗‗‗‗,a 叫做‗‗‗‗‗‗‗‗‗,如3²=9,则3是9的‗‗‗‗‗‗‗‗‗,记为‗‗‗‗‗‗‗‗‗‗‗‗‗‗。

0的算术平方根是‗‗‗‗‗‗;1的算术平方根是‗‗‗‗‗。

‗‗‗‗‗‗‗‗数没有算术平方根;被开方数是‗‗‗‗‗‗‗数;算术平方根是‗‗‗‗‗‗‗数。

2、算术平方根等于它本身的数是‗‗‗‗‗‗‗‗‗。

被开方数越大,对应的算术平方根也‗‗‗‗‗。

3、(-5)²的算术平方根是‗‗‗‗‗;0.49的算术平方根的相反数是‗‗‗‗‗‗。

4、81的算术平方根是‗‗‗‗‗。

16的算术平方根是‗‗‗‗‗。

5、求下列各数的算术平方根。

(1)0.0625; (2)0; (3)2)41(-; (4)16、计算(1)41.4 (2)25111(3)151722-7、已知35.14=3.788,x =378.8,则x=‗‗‗‗‗‗‗‗‗。

8、已知a ,b 为两个连续整数,且a <7<b ,则a+b=‗‗‗‗‗。

比较大小:215-‗‗‗21。

9、(1)(-3)²=‗‗‗‗‗;(2))3(2π-=‗‗‗‗‗‗‗‗‗‗;(3)若4-x =3,则x=‗‗‗‗‗。

10、若x ,y 为实数,且2+x +2-y =0,则)2016(y x 的值为‗‗‗‗‗‗‗‗。

平方根:1、一般地,如果一个数x 的平方等于a ,即‗‗‗‗‗‗‗‗‗‗,那么这个数x 叫做a 的‗‗‗‗‗‗‗‗‗或‗‗‗‗‗‗‗‗‗,数a 的平方根可记作‗‗‗‗‗‗,如)3(2±=9,所以‗‗‗‗‗是9的平方根,记为‗‗‗‗‗‗‗‗‗‗‗‗‗‗。

正数有‗‗‗‗个平方根,它们‗‗‗‗‗‗‗‗‗,0的平方根是‗‗‗。

七年级数学平方根立方根试题

七年级数学平方根立方根试题

七年级数学平方根立方根试题一、平方根相关试题。

1. 求16的平方根。

- 解析:- 一个正数有两个平方根,它们互为相反数。

- 因为(±4)^2 = 16,所以16的平方根是±4。

2. 若x^2 = 25,求x的值。

- 解析:- 因为x^2 = 25,根据平方根的定义,x是25的平方根。

- 又因为(±5)^2 = 25,所以x = ±5。

3. √(49)的值是多少?- 解析:- √(49)表示49的算术平方根。

- 因为7^2 = 49,所以√(49)=7。

4. 计算√(0.09)。

- 解析:- 因为0.3^2 = 0.09,所以√(0.09)=0.3。

5. 若√(a)=3,求a的值。

- 解析:- 因为√(a)=3,根据算术平方根的定义,a = 3^2 = 9。

6. 求√(frac{1){16}}的值。

- 解析:- 因为((1)/(4))^2=(1)/(16),所以√(frac{1){16}}=(1)/(4)。

7. 一个正数的平方根是2a - 1和- a+2,求这个正数。

- 解析:- 一个正数的两个平方根互为相反数。

- 所以2a - 1+( - a + 2)=0。

- 化简得2a - 1 - a+2 = 0,即a+1 = 0,解得a=-1。

- 则其中一个平方根为2a - 1 = 2×(-1)-1=-3。

- 所以这个正数为( - 3)^2 = 9。

8. 已知√(x - 1)+√(1 - x)=y + 4,求x,y的值。

- 解析:- 要使√(x - 1)和√(1 - x)有意义,则x - 1≥slant0且1 - x≥slant0。

- 所以x - 1 = 0,即x = 1。

- 当x = 1时,√(x - 1)+√(1 - x)=0,则y+4 = 0,解得y=-4。

9. 比较√(3)与1.7的大小。

- 解析:- 因为(√(3))^2 = 3,1.7^2 = 2.89。

(完整版)平方根与立方根练习题

(完整版)平方根与立方根练习题

平方根立方根练习题一、填空题1.如果9=x ,那么x =________;如果92=x ,那么=x ________2.如果x 的一个平方根是7.12,那么另一个平方根是________.3.2-的相反数是 , 13-的相反数是 ;4.一个正数的两个平方根的和是________.一个正数的两个平方根的商是________.5.若一个实数的算术平方根等于它的立方根,则这个数是_________;6.算术平方根等于它本身的数有________,立方根等于本身的数有________.7.81的平方根是_______,4的算术平方根是_________,210-的算术平方根是 ;8.若一个数的平方根是8±,则这个数的立方根是 ;9.当______m 时,m -3有意义;当______m 时,33-m 有意义;10.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;11.已知0)3(122=++-b a ,则=332ab ; 12.21++a 的最小值是________,此时a 的取值是________.13.12+x 的算术平方根是2,则x =________.二、选择题14.下列说法错误的是( )A 、1)1(2=-B 、()1133-=-C 、2的平方根是2±D 、81-的平方根是9± 15.2)3(-的值是( ).A .3-B .3C .9-D .916.设x 、y 为实数,且554-+-+=x x y ,则y x -的值是( )A 、1B 、9C 、4D 、517.下列各数没有平方根的是( ).A .-﹙-2﹚B .3)3(-C .2)1(-D .11.118.计算3825-的结果是( ).A.3B.7C.-3D.-7 19.若a=23-,b=-∣-2∣,c=33)2(--,则a 、b 、c 的大小关系是( ).A.a >b >cB.c >a >bC.b >a >cD.c >b >a20.如果53-x 有意义,则x 可以取的最小整数为( ).A .0B .1C .2D .321.一个等腰三角形的两边长分别为25和32,则这个三角形的周长是( )A 、32210+B 、3425+C 、32210+或3425+D 、无法确定三、解方程22.0252=-x 23. 8)12(3-=-x 24.4(x+1)2=8 (2x-5)3=-27四、计算25.914414449⋅ 26.494 27.41613+-平方根与立方根能力提升一、选择题1. 若5x -能开偶次方,则x 的取值范围是( )A .0x ≥ B.5x > C. 5x ≥ D. 5x ≤2. 若n 为正整数,则2 )A .-1 B.1 C.±1 D.21n +3. 若正数a 的算术平方根比它本身大,则( )A.01a <<B.0a >C. 1a <D. 1a >四、解答题1.已知: 实数a 、b 满足条件0)2(12=-+-ab a 试求: )2004)(2004(1)2)(2(1)1)(1(11++++++++++b a b a b a ab 的值2.已知:33-+-x x +5=y,求x+y的立方根.3.已知:(x-1)2+z y x y ++++3=0,求x+y2-z的立方根.4.若x2=(-3)2,y3=(-2)3,求x+y的所有可能值.5.(1)如果3x+12的立方根是3,求2x+6的平方根;(2)已知一个正数的平方根是2a -1与-a +2.求a 2009的值.6.在解答“判断由线段长分别为65,2,85组成的三角形是不是直角三角形”一题中,小明是这样做的:因为2263610013625252525⎛⎫+=+= ⎪⎝⎭,而222286468252555⎛⎫⎛⎫⎛⎫=+≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以这个三角形不是直角三角形.小明的做法对吗?为什么?7.一辆卡车装满货物后,高4m ,宽3m ,这辆卡车能通过横截面如图(上方为半圆)的隧道吗?为什么?19.已知5+7的小数部分是a,5一7的小数部分是6,求(a+b)2008的值.20.已知2a一1的平方根是±3,3a+b一1的算术平方根是4,求a+2b的平方根.21.如图,在∆ABC中,∠C=90o,M是BC上的一点,MD⊥AB,垂足为点D,且AD2=AC2+BD2.试说明CM=MB.22.如图,铁路上A、B两站相距25 km,在铁显各附近有C、D两村,DA⊥AB于点A,CB⊥AB于点B.已知DA=15 km,CB=10 km,现要在铁路上建设一个土特产收购站E,要使得C、D两村到E站的距离相等,则E站应建在距A站多远处?23.如图,在正方形ABCD中,E是AD的中点,点F在DC上,且DF=14DC,试判断BE与EF的位置关系,并说明理由.。

小学生数学习题练习平方根和立方根计算

小学生数学习题练习平方根和立方根计算

小学生数学习题练习平方根和立方根计算数学是小学生学习中必不可少的一门学科,而其中的平方根和立方根计算则是数学中的重要内容之一。

通过练习这些习题,小学生们可以更好地理解平方根和立方根的概念,并提高他们的数学计算能力和逻辑思维能力。

本文将提供一些适合小学生练习的平方根和立方根计算题。

1. 求平方根平方根是一个数学运算,表示一个数的平方根。

如√25 = 5,表示25的平方根为5。

让我们从简单的例子开始练习,计算下列各题的平方根:1) √16 = 42) √49 = 73) √81 = 92. 求平方根的近似值在计算平方根时,有时候会遇到非完全平方数。

这时,我们需要求平方根的近似值。

以下为你提供一些平方根的近似计算练习题:1) √2 ≈ 1.412) √5 ≈ 2.243) √10 ≈ 3.163. 求立方根立方根是一个数学运算,表示一个数的立方根。

如³√27 = 3,表示27的立方根为3。

让我们练习一些求立方根的题目:1) ³√8 = 22) ³√27 = 33) ³√64 = 44. 求立方根的近似值与求平方根的情况类似,有时候需要求立方根的近似值。

以下为你提供一些立方根的近似计算练习题:1) ³√2 ≈ 1.262) ³√5 ≈ 1.713) ³√10 ≈ 2.155. 综合练习在这个练习中,我们将综合运用平方根和立方根的知识。

计算下列各题:1) √16 + ³√8 = 4 + 2 = 62) ³√64 - √25 = 4 - 5 = -13) ²√9 × ³√27 = 3 × 3 = 9通过以上练习,小学生们可以锻炼他们的计算能力,提高他们对平方根和立方根的理解。

这些习题不仅能够帮助他们掌握平方根和立方根的计算,还能培养他们的逻辑思维和解决问题的能力。

尽管平方根和立方根的概念对于小学生来说可能有些抽象,但通过反复的练习,他们会掌握它们的计算方法并逐渐提高他们的数学运算能力。

初中数学解立方根与平方根练习题及答案

初中数学解立方根与平方根练习题及答案

初中数学解立方根与平方根练习题及答案1. 求平方根a) √64 =b) √144 =c) √25 =d) √169 =答案:a) √64 = 8b) √144 = 12c) √25 = 5d) √169 = 132. 求平方根(化简根式)a) √12 =b) √18 =c) √27 =d) √48 =答案:a) √12 = 2√3c) √27 = 3√3d) √48 = 4√33. 求立方根a) ∛8 =b) ∛64 =c) ∛125 =d) ∛729 =答案:a) ∛8 = 2b) ∛64 = 4c) ∛125 = 5d) ∛729 = 94. 求立方根(化简根式)a) ∛27 =b) ∛54 =c) ∛128 =d) ∛216 =答案:b) ∛54 = 3∛2c) ∛128 = 2∛2d) ∛216 = 65. 综合练习:求平方根与立方根a) ∜256 =b) ∛512 =c) 2√3 + 3√2 =d) 4∛3 - ∛48 =答案:a) ∜256 = 4b) ∛512 = 8c) 2√3 + 3√2 = 5√2 + 2√3d) 4∛3 - ∛48 = 3∛2通过以上练习题,我们可以加深对于求平方根和立方根的理解。

求平方根就是找到一个数,它的平方等于被开方的数;而求立方根则是找到一个数,它的立方等于被开方的数。

在解决这些问题时,我们需要掌握一些基本的化简根式的方法。

例如,当根号下的数可以被平方数整除时,我们可以将其化简为一个整数乘以根号下的平方数。

希望通过这些练习题和答案的提供,能够帮助同学们更好地理解和掌握求解平方根和立方根的方法,提高数学解题的能力。

(完整版)平方根、算术平方根、立方根练习题

(完整版)平方根、算术平方根、立方根练习题

1、121的平方根是_________,算术平方根_________.
2、 4.9×10³的算术平方根是_________.
3、(-2)²的平方根是_________,算术平方根是_________.
4、0的算术平方根是_________,立方根是_________.
5、-√3是_________的平方根.
6、64的平方根的立方根是_________.
7、如果丨x丨=9,那么x=________;如果x²=9,那么________
8、一个正数的两个平方根的和是_____.一个正数的两个平方根的商是________.
9、算术平方根等于它本身的数有____,立方根等于本身的数有_____.
10、若一个实数的算术平方根等于它的立方根,则这个数是________;
11、√81的平方根是_______,√4的算术平方根是_________,
10-²的算术平方根是_______;
12、若一个数的平方根是±10,则这个数的立方根是_________;
13、当m_______时,有意义;
当m_______时,有意义;
14、若一个正数的平方根是2a-1和-a+2,则a=_______,
这个正数是_______;
15、√a+1+2的最小值是________,此时a的取值是________.
16、2x+1的算术平方根是2,则x=________.。

《平方根》《立方根》《有理数》习题精选精练

《平方根》《立方根》《有理数》习题精选精练

八年级数学上(人教版) 《平方根》精练 【知识要点】1、平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根式),2、算术平方根:3、平方根的性质:(1)一个正数有 个平方根,它们 ; (2)0 平方根,它是 ; (3) 没有平方根. 4、重要公式:(1)=2)(a (2){==a a 25、平方表:【典型例题】例1、判断下列说法正确的个数为( ) ① -5是-25的算术平方根; ② 6是()26-的算术平方根; ③ 0的算术平方根是0; ④ 0.01是0.1的算术平方根;⑤ 一个正方形的边长就是这个正方形的面积的算术平方根. A .0 个 B .1个 C .2个 D .3个 例2、36的平方根是( )A 、6B 、6±C 、 6D 、6± 例3、下列各式中,哪些有意义?(1)5 (2)2- (3)4- (4)2)3(- (5)310-例4、一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( ) A .()1+a B .()1+±a C .12+aD .12+±a 例5、求下列各式中的x :(1)0252=-x (2)4(x+1)2-169=0【巩固练习】 一、选择题1. 9的算术平方根是( )A .-3B .3C .±3D .81 2.下列计算正确的是( )A ±2B C.636=± D.992-=- 3.下列说法中正确的是( )A .9的平方根是3B 2 24. 64的平方根是( )A .±8B .±4C .±2D 5. 4的平方的倒数的算术平方根是( )A .4B .18C .-14D .146.下列结论正确的是( ) A 6)6(2-=-- B 9)3(2=- C 16)16(2±=- D 251625162=⎪⎪⎭⎫ ⎝⎛--7.以下语句及写成式子正确的是( ) A 、7是49的算术平方根,即749±= B 、7是2)7(-的平方根,即7)7(2=- C 、7±是49的平方根,即749=±D 、7±是49的平方根,即749±= 8.下列语句中正确的是( )A 、9-的平方根是3-B 、9的平方根是3C 、 9的算术平方根是3±D 、9的算术平方根是39.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根;(4)9的平方根是3,其中正确的有( )A .3个B .2个C .1个D .4个 10.下列语句中正确的是( )A 、任意算术平方根是正数B 、只有正数才有算术平方根C 、∵3的平方是9,∴9的平方根是3D 、1-是1的平方根11.下列说法正确的是( )A .任何数的平方根都有两个B .只有正数才有平方根C .一个正数的平方根的平方仍是这个数D .2a 的平方根是a ± 12.下列叙述中正确的是( ) A .(-11)2的算术平方根是±11B .大于零而小于1的数的算术平方根比原数大C .大于零而小于1的数的平方根比原数大D .任何一个非负数的平方根都是非负数 13.25的平方根是( )A 、5B 、5-C 、5±D 、5± 14.36的平方根是( )A 、6B 、6±C 、 6D 、 6± 15.当≥m 0时,m 表示( ) A .m 的平方根B .一个有理数C .m 的算术平方根D .一个正数16.用数学式子表示“169的平方根是43±”应是( )A .43169±= B .43169±=±C .43169= D .43169-=-17.算术平方根等于它本身的数是( )A 、 1和0B 、0C 、1D 、 1±和0 18.0196.0的算术平方根是( )A 、14.0B 、014.0C 、14.0±D 、014.0± 19.2)6(-的平方根是( )A 、-6B 、36C 、±6D 、±620.下列各数有平方根的个数是( )(1)5; (2)(-4)2; (3)-22; (4)0; (5)-a 2; (6)π; (7)-a 2-1 A .3个 B .4个 C .5个 D .6个21.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5± 22.下列说法错误的是( )A. 1的平方根是1B. –1的立方根是-1C.2是2的平方根 D. –3是2)3(-的平方根23.下列命题正确的是( ) A .49.0的平方根是0.7 B .0.7是49.0的平方根 C .0.7是49.0的算术平方根 D .0.7是49.0的运算结果24.若数a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是( ) A .a B .a - C .2a - D .3a25.3612892=x ,那么x 的值为( ) A .1917±=x B .1917=xC .1817=xD .1817±=x26.下列各式中,正确的是( ) A.2)2(2-=- B. 9)3(2=-C. 39±=±D. 393-=- 27.下列各式中正确的是( ) A .12)12(2-=- B .6218=⨯ C .12)12(2±=-D .12)12(2=-±28.若a 、b 为实数,且471122++-+-=a a ab ,则b a +的值为( )(A) 1± (B) 4 (C) 3或5 (D) 529.若9,422==b a ,且0<ab ,则b a -的值为 ( )(A) 2- (B) 5± (C) 5 (D) 5-30.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ; 31.满足的整数x 是 32.已知一个正方形的边长为a ,面积为S ,则( ) A.a S =B.S 的平方根是aC.a 是S 的算术平方根D.S a ±=33. 若a 和a -都有意义,则a 的值是( ) A.0≥a B.0≤a C.0=a D.0≠a 34.22)4(+x 的算术平方根是( ) A 、 42)4(+x B 、22)4(+x C 、42+x D 、42+x35.2)5(-的平方根是( ) A 、 5± B 、 5 C 、5- D 、5±36.下列各式中,正确的是( ) A. 2)2(2-=- B. 9)3(2=- C. 39±=± D. 393-=-37.下列各式中正确的是( )A .12)12(2-=-B .6218=⨯C .12)12(2±=-D .12)12(2=-±38.下列各组数中互为相反数的是( )A 、2)2(2--与 B 、382--与 C 、2)2(2-与 D 、22与-二、填空题:1.如果x 的平方等于a ,那么x 就是a 的 ,所以的平方根是 2.非负数a 的平方根表示为3.因为没有什么数的平方会等于 ,所以负数没有平方根,因此被开方数一定是 4_______;9的平方根是_______.5的平方根是 ,25的平方根记作 ,结果是 6.非负的平方根叫 平方根 7.2)8(-= , 2)8(= 。

(进阶版)平方根立方根实战练习题

(进阶版)平方根立方根实战练习题

(进阶版)平方根立方根实战练习题
本练题旨在帮助您巩固和应用平方根和立方根的知识。

它包含一系列实战练题,涵盖了不同难度级别的问题。

问题1:平方根计算
请计算以下数的平方根:
1. 16
2. 25
3. 36
4. 49
5. 100
请使用合适的数学运算符计算每个数的平方根,并将结果写在下面的空格处:
1. √16 = ___
2. √25 = ___
3. √36 = ___
4. √49 = ___
5. √100 = ___
问题2:立方根计算
请计算以下数的立方根:
1. 8
2. 27
3. 64
4. 125
5. 216
请使用适当的数学运算符计算每个数的立方根,并将结果写在下面的空格处:
1. ∛8 = ___
2. ∛27 = ___
3. ∛64 = ___
4. ∛125 = ___
5. ∛216 = ___
问题3:混合计算
请计算以下数的平方根和立方根,并将结果填入表格中:
总结
通过完成上述练习题,您可以巩固和应用平方根和立方根的知识。

这些计算技巧在数学和实际生活中都有广泛的应用。

继续练习和掌握这些概念,将帮助您在数学和相关领域取得更好的成绩和表现。

祝愉快学习!。

(完整版)平方根、立方根综合练习题

(完整版)平方根、立方根综合练习题

平方根、立方根综合练习题、填空题1 .如果x 9,那么x = ___________ 如果X 9,那么x ____________2 •如果x的一个平方根是7.12,那么另一个平方根是__________ .3 .一个正数的两个平方根的和是 ___________ .一个正数的两个平方根的商是4. ________________________________________________________ 若一个实数的算术平方根等于它的立方根,则这个数是 ______________________ ;5. _________________________________ 算术平方根等于它本身的数有___ 立方根等于本身的数有 ___________________ .6 .阿的平方根是__________ ,百的算术平方根是__________ , 10 2的算术平方根是_________ ; J16的平方根是_________ ;9的立方根是 _____ ; _______ 的平方根是H 037.若一个数的平方根是8,则这个数的立方根是___________ ;8 .当m ______ 时,、3 m有意义;当m _______ 时,Vm 3有意义;9. ___________________________________________ 若一个正数的平方根是2a 1和a 2,则a __________________________________ ,这个正数是________ ;11. _________________________ a 1 2的最小值是_________ 此时a的取值是;10.已知2a 1 (b 3)212. 2x 1的算术平方根是2,则x= __________ ;13. _______________________________ .5 2的相反数是_______________ ;绝对值是 __________________________________14. 在数轴上表示______________________ .3的点离原点的距离是o二、选择题1. 9的算术平方根是()A . -3B . 3C . ± 3D . 812 •下列计算不正确的是()A. -.4=± 2 B . , ( 9)2.81=9C. 3 0.064 =0.4 D . \ 216 =-63.下列说法中不正确的是( )A . 9的算术平方根是3B . . 16的平方根是土 2C . 27的立方根是土D .立方根等于-1的实数是-14 . 3 64的平方根是( A . ± 8 B . ± 4 5.-1的平方的立方根是81A . 4 B86 .下列说法错误的是(A. ,( 1)2 1B.313C.2的平方根是D.81的平方根是7 . ..( 3)2的值是(A. 38 .设x 、y 为实数,且y则x y 的值是(A. 1B. 9C. 49.下列各数没有平方根的是D. 5 ).10. 计算' 25 3 8的结果是()A.3B.7C.-3D.-711. 若a= \3 ,b=- I —. 2 I , c= VT2)3,则a、b、c的大小关系是()A.a >b>cB.c >a>bC.b >a>cD.c > b> a12 .如果3x 5有意义,则x可以取的最小整数为().A. 0 B . 1 C . 2 D . 313. 一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A. x+1 B . x2+1 C . X+1 D . x2114. 若2m-4与3m-1是同一个数的平方根,则m的值是()A . -3B . 1C . -3 或 1D . -115 .已知x, y是实数,且.3x 4 + (y-3 ) =0,则xy的值是()9 9A . 4B . -4C . —D .--4 416 .若一个数的平方根是2m-4与3m-1,则m的值是()A . -3 B.1C.3 D . -117 .已知x, y是实数,且3x 4 +(y-3) 2=0, 则xy的值是()A . 4 B.-4C9 D .--44三、计算、求值1 .求下列各数的平方根.9 15(1) 100; (2) 0; (3)旦;(4) 1; (5) 1竺;(6) 0 . 09 .25 49A . —( —2 )B .( 3)3C ..(_1)2D . 11.13、解方程(4)、(2x-1 ) 2-169=0;(5)、丄 2(x+3) 3=4.(6)、x 3 -10= 17(7) x 2 182(8) 2x3 5(9) - (x+3) 2=8.2四.比较大小,并说理由。

习题范例初中数学平方根与立方根习题范例分享

习题范例初中数学平方根与立方根习题范例分享

习题范例初中数学平方根与立方根习题范例分享习题范例:初中数学平方根与立方根习题范例分享一、平方根习题范例1. 求下列各数的平方根:a) 25b) 36c) 64d) 100解答:a) 25的平方根为5,因为5 × 5 = 25b) 36的平方根为6,因为6 × 6 = 36c) 64的平方根为8,因为8 × 8 = 64d) 100的平方根为10,因为10 × 10 = 1002. 求下列各数的平方根(结果保留两位小数):a) 7b) 13c) 21d) 38解答:a) 7的平方根约等于2.65b) 13的平方根约等于3.61c) 21的平方根约等于4.58d) 38的平方根约等于6.16二、立方根习题范例1. 求下列各数的立方根:a) 8b) 27c) 64d) 125解答:a) 8的立方根为2,因为2 × 2 × 2 = 8b) 27的立方根为3,因为3 × 3 × 3 = 27c) 64的立方根为4,因为4 × 4 × 4 = 64d) 125的立方根为5,因为5 × 5 × 5 = 1252. 求下列各数的立方根(结果保留两位小数):a) 10b) 17c) 25d) 42解答:a) 10的立方根约等于2.15b) 17的立方根约等于2.57c) 25的立方根约等于2.92d) 42的立方根约等于3.48三、混合习题范例1. 求下列各数的平方根和立方根:a) 9b) 16c) 36d) 49解答:a) 9的平方根为3,立方根也为3,因为3 × 3 = 9,3 × 3 × 3 = 27b) 16的平方根为4,立方根为2,因为4 × 4 = 16,2 × 2 × 2 = 8c) 36的平方根为6,立方根为3,因为6 × 6 = 36,3 × 3 × 3 = 27d) 49的平方根为7,立方根为3,因为7 × 7 = 49,3 × 3 × 3 = 272. 求下列各数的平方根和立方根(结果保留两位小数):a) 12b) 20c) 30d) 40解答:a) 12的平方根约等于3.46,立方根约等于2.29b) 20的平方根约等于4.47,立方根约等于2.71c) 30的平方根约等于5.48,立方根约等于3.11d) 40的平方根约等于6.32,立方根约等于3.42通过以上习题范例,我们可以更好地理解平方根和立方根的概念,并熟练运用求解的方法。

平方根立方根练习题及答案

平方根立方根练习题及答案

平方根立方根练习题及答案平方根立方根练习题及答案数学是一门让人们充满好奇和挑战的学科。

在数学中,平方根和立方根是常见的概念。

平方根是指一个数的平方等于该数的数值,而立方根则是指一个数的立方等于该数的数值。

这两个概念在数学和实际生活中都有广泛的应用。

下面将介绍一些平方根和立方根的练习题及答案,帮助读者更好地理解和应用这些概念。

练习题一:求平方根1. 求下列数的平方根:a) 16b) 25c) 36d) 49e) 64解答:a) 16的平方根是4,因为4 * 4 = 16。

b) 25的平方根是5,因为5 * 5 = 25。

c) 36的平方根是6,因为6 * 6 = 36。

d) 49的平方根是7,因为7 * 7 = 49。

e) 64的平方根是8,因为8 * 8 = 64。

练习题二:求立方根2. 求下列数的立方根:a) 8b) 27c) 64d) 125e) 216解答:a) 8的立方根是2,因为2 * 2 * 2 = 8。

b) 27的立方根是3,因为3 * 3 * 3 = 27。

c) 64的立方根是4,因为4 * 4 * 4 = 64。

d) 125的立方根是5,因为5 * 5 * 5 = 125。

e) 216的立方根是6,因为6 * 6 * 6 = 216。

练习题三:混合练习3. 求下列数的平方根和立方根:a) 9b) 16c) 27d) 64e) 125解答:a) 9的平方根是3,因为3 * 3 = 9;9的立方根是1.732,约等于1.73,因为1.73 * 1.73 * 1.73 ≈ 9。

b) 16的平方根是4,因为4 * 4 = 16;16的立方根是2.519,约等于2.52,因为2.52 * 2.52 * 2.52 ≈ 16。

c) 27的平方根是5.196,约等于5.20,因为5.20 * 5.20 ≈ 27;27的立方根是3,因为3 * 3 * 3 = 27。

d) 64的平方根是8,因为8 * 8 = 64;64的立方根是4,因为4 * 4 * 4 = 64。

算术平方根--平方根--立方根测试题

算术平方根--平方根--立方根测试题

算术平方根平方根立方根测试题一.选择题1,在数5,(-3)2,-32,x2+1,-a2,-x2-4,中,也许有平方根旳个数( )A. 2 B. 3 C. 4 D.52,4旳算术平方根是( )A. 2B. 2 C. 4 D. 163,若1m故意义,则m能取旳最小整数为( )4+A.-1 B. 0 C. 1 D. -44,如果a200是一种整数,那么最小正整数a应取( )A. 20B. 5C. 1 D.25,2+a=2,则(a+2)2旳平方根是()A. 16 B. ±16 C. ±4 D. ±26.若a是(-4)2旳平方根,b旳一种平方根是2,则代数式a+b 旳值为( )A.8 B. 0 C. 8或0 D. -4或47.①一种自然数旳算术平方根是X,则它背面旳一种数旳算术平方根()A. X+1 B. X2+1 C. X+1 D. 12+X②一种自然数旳算术平方根是X,则和这个自然数相邻旳下一种自然数是( )A.X+1 B. X2+1 C. X+1 D. 12+X8. 若a2=4,b2=9,且ab<0,则a-b旳值为()A.-2 B.±5C.5D. -59. 33)2(K-=2-K,那么K旳取值范畴是( )A. K≤2 B. K≥2 C. 0≤K≤2 D. K为任意实数10. 一种数旳平方根和立方根相等,则这个数是( )A . 1 B. ±1 C. 0D.-111.若31+X=2,则(X+1)3等于( )A. 8 B. ±8C.512D. -51212. 364旳平方根是()A. 4B. ±8 C. 2 D.±213. a23-等于最大旳负整数,则a=( )9A. ±5 B.-5 C. 5 D.不存在14.下列推理不对旳旳是( )A.若a=b则3a=3b B.若a=b则a=bC.若a=b则a=b D.若3a=3b则a=b二.填空题15.若X2=(-4)2,则X=___.16.若1+X=2,则2X-1=___.17.若X+Y=0,则3X+3Y=___.18.(m-2n)3旳立方根等于___。

平方根立方根计算题50道

平方根立方根计算题50道

平方根立方根计算题50道一、平方根计算题(25道)1. 计算√(4)- 解析:因为2^2 = 4,所以√(4)=2。

2. 计算√(9)- 解析:由于3^2 = 9,所以√(9)=3。

3. 计算√(16)- 解析:因为4^2 = 16,所以√(16)=4。

4. 计算√(25)- 解析:由于5^2 = 25,所以√(25)=5。

5. 计算√(36)- 解析:因为6^2 = 36,所以√(36)=6。

6. 计算√(49)- 解析:由于7^2 = 49,所以√(49)=7。

7. 计算√(64)- 解析:因为8^2 = 64,所以√(64)=8。

8. 计算√(81)- 解析:由于9^2 = 81,所以√(81)=9。

9. 计算√(100)- 解析:因为10^2 = 100,所以√(100)=10。

10. 计算√(121)- 解析:由于11^2 = 121,所以√(121)=11。

11. 计算√(144)- 解析:因为12^2 = 144,所以√(144)=12。

12. 计算√(169)- 解析:由于13^2 = 169,所以√(169)=13。

13. 计算√(196)- 解析:因为14^2 = 196,所以√(196)=14。

14. 计算√(225)- 解析:由于15^2 = 225,所以√(225)=15。

15. 计算√(0.04)- 解析:因为0.2^2 = 0.04,所以√(0.04)=0.2。

16. 计算√(0.09)- 解析:由于0.3^2 = 0.09,所以√(0.09)=0.3。

17. 计算√(0.16)- 解析:因为0.4^2 = 0.16,所以√(0.16)=0.4。

18. 计算√(0.25)- 解析:由于0.5^2 = 0.25,所以√(0.25)=0.5。

19. 计算√(1frac{9){16}}- 解析:先将带分数化为假分数,1(9)/(16)=(25)/(16),因为((5)/(4))^2=(25)/(16),所以√(1frac{9){16}}=(5)/(4)。

人教版七年级数学下册《平方根和立方根》同步练习含答案

人教版七年级数学下册《平方根和立方根》同步练习含答案

第4讲 算术平方根、平方根、立方根Ⅰ、算术平方根如果一个正数x 的平方等于a ,那个这个正数x 叫做a 的算术平方根,记作_________;0的算术平方根是________Ⅱ、平方根如果一个数的平方等于a ,那个这个数叫做a 的平方根或者二次方根,记作_________;求一个数的________的运算,叫做开平方。

公式补充:①a )a (2= ②|a |a 2=一.练习:(预习自主完成)1. 81的算术平方根是( ) A .9± B .9 C .-9 D .32) A. 49- B. 23 C. 49 D. 23- 3.下列说法不正确的是( )A 、9的算术平方根是3B 、0的算术平方根是0C 、负数没有算术平方根D 、 因为2x a =,所以x 叫做a 的算术平方根4. 如果5.1=y ,那么y 的值是( ) A .2.25 B .22.5 C .2.55 D .25.55. 计算()22-的结果是( ) A .-2 B .2 C .4 D .-46. 下列各式中正确的是( )A .525±=B .()662-=-C .()222-=D .()332=-7. 下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a 的算术平方根是a ;④(π-4)的算术平方根是π-4;⑤算术平方根不可能是负数。

其中,不正确的有( )A. 2个B. 3个C. 4个D. 5个228. 已知5x 2=,则x 为( )A. 5B. -5C. ±5D. 以上都不对9.一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( )A .a+1 B .a2+1 C .a +1 D .1a 2+二、填空题:1. 一个数的算术平方根是25,这个数是______; 算术平方根等于它本身的数有______;81的算术平方根是__________。

2. 144=_____4925=________ 0025.0=_______()=2196________()=-28________3. 当______m 时,m -3有意义; 4.已知0)3b (1a 22=+++,则=32ab ________。

初二数学下册平方根与立方根计算练习题

初二数学下册平方根与立方根计算练习题

初二数学下册平方根与立方根计算练习题1. 计算平方根:(1)√16 = ____(2)√25 = ____(3)√64 = ____(4)√100 = ____(5)√144 = ____2. 计算立方根:(1)³√8 = ____(2)³√27 = ____(3)³√64 = ____(4)³√125 = ____(5)³√216 = ____3. 混合计算:(1)√36 + ³√8 = ____(2)√49 - ³√27 = ____(3)√100 × ³√64 = ____(4)√121 ÷ ³√125 = ____(5)√144 + ³√216 = ____ 4. 简化根式:(1)√12 = ____(2)√20 = ____(3)√27 = ____(4)√48 = ____(5)√75 = ____5. 分数与根式转换:(1)2√8 = ____(2)3√18 = ____(3)4√32 = ____(4)5√50 = ____(5)6√72 = ____6. 求平方根的值:(1)(√2)² = ____(2)(√3)² = ____(3)(√5)² = ____(4)(√6)² = ____(5)(√10)² = ____7. 求立方根的值:(1)(³√2)³ = ____(2)(³√3)³ = ____(3)(³√5)³ = ____(4)(³√6)³ = ____(5)(³√10)³ = ____8. 完全立方数计算:(1)√64 = ____(2)³√216 = ____(3)√729 = ____(4)³√1000 = ____(5)√4096 = ____9. 应用题:小明购买一块正方形农田,其边长为a米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平方根立方根的计算一、填空题1.如果x 的平方等于a ,那么x 就是a 的 ,所以的平方根是2.非负数a 的平方根表示为3.因为没有什么数的平方会等于 ,所以负数没有平方根,因此被开方数一定是 或者4既 的平方根是 5.非负的平方根叫 平方根6.如果9=x ,那么x =________;如果92=x ,那么=x ________; 7.若一个实数的算术平方根等于它的立方根,则这个数是_________; 8.算术平方根等于它本身的数有________,立方根等于本身的数有________.9. x ==则 ,若,x x =-=则 。

10.81的平方根是_______,4的算术平方根是_________,210-的算术平方根是 ; 11.当______m 时,m -3有意义;当______m 时,33-m 有意义;12.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ; 13.21++a 的最小值是________,此时a 的取值是________.14_______;9的平方根是_______. 15.144的算术平方根是 ,16的平方根是 ; 16.327= , 64-的立方根是 ; 17.7的平方根为 ,21.1= ;18.一个数的平方是9,则这个数是 ,一个数的立方根是1,则这个数是 ; 19.平方数是它本身的数是 ;平方数是它的相反数的数是 ; 20.当x= 时,13-x 有意义;当x= 时,325+x 有意义; 21.若164=x ,则x= ;若813=n,则n= ; 22.若3x x =,则x= ;若x x -=2,则x ; 23.若0|2|1=-++y x ,则x+y= ; 24.计算:381264273292531+-+= ;25.2)8(-= , 2)8(= 。

26.9的算术平方根是 ,16的算术平方根是 ;27.210-的算术平方根是 ,0)5(-的平方根是 ; 28.一个正数有 个平方根,0有 个平方根,负数 平方根. 29.一个数的平方等于49,则这个数是 30.16的算术平方根是 ,平方根是 31.一个负数的平方等于81,则这个负数是32.如果一个数的算术平方根是5,则这个数是 ,它的平方根是 33.25的平方根是 ; (-4)2的平方根是 。

34.9的算术平方根是 ;3-2的算术平方根是 。

35.若a 的平方根是±5,则a = 。

36.如果a 的平方根等于2±,那么_____=a ; 37.若一正数的平方根是2a-1与-a+2,则a=38.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;39.满足x 是 40.144的算术平方根是 ,16的平方根是 ; 41.327= , 64-的立方根是 ; 42.7的平方根为 ,21.1= ;43.一个数的平方是9,则这个数是 ,一个数的立方根是1,则这个数是 ; 44、平方数是它本身的数是 ;平方数是它的相反数的数是 ; 45、当x= 时,13-x 有意义;当x= 时,325+x 有意义; 46、若164=x ,则x= ;若813=n,则n= ; 47、若3x x =,则x= ;若x x -=2,则x ; 48、若0|2|1=-++y x ,则x+y= ; 49、计算:381264273292531+-+= ;二、选择题1. 9的算术平方根是( )A .-3B .3C .±3D .81 2.下列计算正确的是( )A =±2B = C.636=± D.992-=-3.下列说法中正确的是( )A .9的平方根是3B 2C.4 D. 24. 64的平方根是( )A.±8 B.±4 C.±2 D 5.4的平方的倒数的算术平方根是()A.4 B.18C.-14D.146.(05年南京市中考)9的算术平方根是()A.-3 B.3 C.±3 D.817.下列计算不正确的是()A=±2 B=8.下列说法中不正确的是()A.9的算术平方根是3 B 2 9.64的平方根是()A.±8 B.±4 C.±2 D10.4的平方的倒数的算术平方根是()A.4 B.18C.-14D.1411.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1 B.x2+1 C+1 D12.若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3 B.1 C.-3或1 D.-113.已知x,y(y-3)2=0,则xy的值是()A.4 B.-4 C.94D.-9414.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1 B.x2+1 C+1 D15.若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3 B.1 C.-3或1 D.-116.已知x,y(y-3)2=0,则xy的值是()A.4 B.-4 C.94D.-9417.下列语句中正确的是()A、任意算术平方根是正数B、只有正数才有算术平方根C、∵3的平方是9,∴9的平方根是3D、1-是1的平方根18.下列说法正确的是()A.任何数的平方根都有两个B.只有正数才有平方根C.一个正数的平方根的平方仍是这个数 D.2a的平方根是a±19.下列叙述中正确的是( ) A .(-11)2的算术平方根是±11B .大于零而小于1的数的算术平方根比原数大C .大于零而小于1的数的平方根比原数大D .任何一个非负数的平方根都是非负数20.2)5(-的平方根是( ) A 、 5± B 、 5 C 、5- D 、5± 21.下列各式中,正确的是( ) A. 2)2(2-=- B. 9)3(2=- C. 39±=± D.393-=-22.下列各式中正确的是( ) A .12)12(2-=- B .6218=⨯ C .12)12(2±=-D .12)12(2=-±23、下列各组数中互为相反数的是( )A 、2)2(2--与 B 、382--与 C 、2)2(2-与 D 、22与-24.已知一个正方形的边长为a ,面积为S ,则( ) A.a S =B.S 的平方根是aC.a 是S 的算术平方根D.S a ±=25. 若a 和a -都有意义,则a 的值是( )A.0≥aB.0≤aC.0=aD.0≠a26.若数a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是( ) A .aB .a -C .2a -D .3a27.22)4(+x 的算术平方根是( )A 、 42)4(+x B 、22)4(+x C 、42+x D 、42+x28.一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( ) A .()1+a B .()1+±a C .12+a D .12+±a29.3612892=x ,那么x 的值为( ) A .1917±=xB .1917=xC .1817=xD .1817±=x 30. 下列结论正确的是( )A 6)6(2-=--B 9)3(2=-C 16)16(2±=- D 251625162=⎪⎪⎭⎫ ⎝⎛--31.下列运算中,错误的是( )①1251144251=, ②4)4(2±=-, ③22222-=-=-,④2095141251161=+=+ (A) 1个 ( B) 2个 (C) 3个 (D) 4个32.若51=+m m ,则mm 1-的平方根是( ) (A) 2± (B) 1± (C) 1 (D) 233.若a 、b 为实数,且471122++-+-=a a ab ,则b a +的值为( )(A) 1± (B) 4 (C) 3或5 (D) 5 34、若9,422==b a ,且0<ab ,则b a -的值为 ( ) (A) 2- (B) 5± (C) 5 (D) 5-35、25的平方根是( )A 、5B 、5-C 、5±D 、5±36.36的平方根是( )A 、6B 、6±C 、 6D 、 6±37.当≥m 0时,m 表示( ) A .m 的平方根 B .一个有理数C .m 的算术平方根D .一个正数38.用数学式子表示“169的平方根是43±”应是( ) A .43169±= B .43169±=± C .43169= D .43169-=-39.算术平方根等于它本身的数是( )A 、 1和0B 、0C 、1D 、 1±和0 40.0196.0的算术平方根是( )A 、14.0B 、014.0C 、14.0±D 、014.0± 41.2)6(-的平方根是( )A 、-6B 、36C 、±6D 、±6 42. 若规定误差小于1, 那么60的估算值为( ) A. 3 B. 7 C. 8 D. 7或843. )。

A7.0~7.5之间 B6.5~7.0之间 C7.5~8.0之间 D8.0~8.5之间 44、满足53<<-x 的整数x 是( ) A 、3,2,1,0,1,2-- B 、3,2,1,0,1- C 、3,2,1,0,1,2-- D 、2,1,0,1- 45.下列各数有平方根的个数是( )(1)5;(2)(-4)2;(3)-22;(4)0;(5)-a 2;(6)π;(7)-a 2-1 A .3个B .4个C .5个D .6个46. 下列说法错误的是( )A. 1的平方根是1B. –1的立方根是-1C.2是2的平方根 D. –3是2)3(-的平方根47.下列命题正确的是( ) A .49.0的平方根是0.7 B .0.7是49.0的平方根 C .0.7是49.0的算术平方根D .0.7是49.0的运算结果48. 以下语句及写成式子正确的是( )A7是49的算术平方根,即749±= B7是2)7(-的平方根,即7)7(2=-C.7±是49的平方根,即749=±D.7±是49的平方根,即749±=49.下列语句中正确的是( )A 、9-的平方根是3-B 、9的平方根是3C 、 9的算术平方根是3±D 、9的算术平方根是350.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根;(4)9的平方根是3,其中正确的有( ) A .3个 B .2个C .1个D .4个三计算题 75.计算:(1) (2(3= (4(5)49.0381003⨯-⨯ (6)18783333-+- (7)36662101010++ (8)914420045243⨯⨯⨯(10)83122)10(973.0123+--⨯- (11))131)(951()31(32--+-(13)49.0381003⨯-⨯ (14)914420045243⨯⨯⨯ 四、综合训练76.利用平方根、立方根来解下列方程.(1)(2x-1)2-169=0; (2)4(3x+1)2-1=0; (3)274x 3-2=0; (4)12(x+3)3=4.(5)(2x-1)2-169=0; (6)4(3x+1)2-1=0;(7)0324)1(2=--x (8)x x 1225)32(2-=-(13)若12112--+-=x x y ,求x y 的值。

相关文档
最新文档