直流电动机双闭环控制系统的设计仿真设计
双闭环直流电机调速系统的SIMULINK仿真实验
双闭环直流电机调速系统的SIMULINK仿真实验魏小景张晓娇刘姣(自动化0602班)摘要:采用工程设计方法对双闭环直流调速系统进行设计,选择调节器结构,进行参数的计算和校验;给出系统动态结构图,建立起动、抗负载扰动的Matlab Simulink 仿真模型.分析系统起动的转速和电流的仿真波形 ,并进行调试 ,使双闭环直流调速系统趋于合理与完善。
关键词:双闭环调速系统;调节器;Matlab Simulink建模仿真1.引言双闭环直流调速系统是目前直流调速系统中的主流设备,具有调速范围宽、平稳性好、稳速精度高等优点,在理论和实践方面都是比较成熟的系统,在拖动领域中发挥着极其重要的作用。
由于直流电机双闭环调速是各种电机调速系统的基础,直流电机双闭环调速系统的工程设计主要是设计两个调节器。
调节器的设计一般包括两个方面:第一选择调节器的结构,以确保系统稳定,同时满足所需的稳态精度. 第二选择调节器的参数,以满足动态性能指标。
本文就直流电机调速进行了较系统的研究,从直流电机的基本特性到单闭环调速系统,然后进行双闭环直流电机设计方法研究,最后用实际系统进行工程设计,并采用Matlab/Sim-ulink进行仿真。
2.基本原理和系统建模为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串联连接. 把转速调节器ASR 的输出当作电流调节器ACR 的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置GT ,TA为电流传感器,TG 为测速发电机. 从闭环结构上看,电流调节环在里面,叫做内环,转速调节环在外边叫做外环,这样就形了转速、图1 直流电机双闭环调速系统的动态结构图3.系统设计调速系统的基本数据如下:晶闸管三相桥式全控整流电路供电的双闭环直流调速系统, 系统参数:直流电动机:220,13.6,1480/m in,0.131/(/m in)e V A r C V r =,允许过载倍数1.5λ=;晶闸管装置:76s K =;电枢回路总电阻: 6.58R =Ω;时间常数:0.018l T s =,0.25m T s =;反馈系数:0.00337/(/min)V r α=,0.4/V A β=;反馈滤波时间常数:0.005oi T s =,0.005on T s =。
双闭环直流调速系统设计及仿真
双闭环直流调速系统设计及仿真一转速、电流双闭环控制系统一般来说,我们总希望在最大电流受限制的情况下,尽量发挥直流电动机的过载能力,使电力拖动控制系统以尽可能大的加速度起动,达到稳态转速后,电流应快速下降,保证输出转矩与负载转矩平衡,进入稳定运行状态[1]。
这种理想的起动过程如图1所示。
nnt图1 转速调节系统理想起动过程为实现在约束条件快速起动,关键是要有一个使电流保持在最大值的恒流过程。
根据反馈控制规律,要控制某个量,就要引入这个量的负反馈。
因此很自然地想到要采用电流负反馈控制过程。
这里实际提到了两个控制阶段。
起动过程中,电动机转速快速上升,而要保持电流恒定,只需电流负反馈;稳定运行过程中,要求转矩保持平衡,需使转速保持恒定,应以转速负反馈为主。
如何才能做到使电流、转速两种负反馈在不同的控制阶段发挥作用呢?答案是采用转速、电流双闭环控制系统。
如图2所示。
图2 双闭环直流调速控制系统原理图参考双闭环的结构图和一些电力电子的知识,采用机理分析法可以得到双闭环系统的动态结构图。
如图3所示。
图3 双闭环直流调速系统动态结构图在转速环、电流环的反馈通道和输入端增加了转速滤波、电流滤波和给定滤波环节。
因为电流检测信号中常含有交流成分,须加低通滤波,其滤波时间常数按需要而定。
滤波环节可以抑制检测信号中的交流分量,但同时也个反馈检测信号带来延迟。
所以在给定信号通道中加入一个给定滤波环节,使给定信号与反馈信号同步,并可使设计简化。
由测速发电机得到的转速反馈电压含有电机的换向纹波,因此也需要滤波,其时间常数用表示[2]。
二双闭环控制系统起动过程分析前面已经指出,设置双闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析双闭环调速系统的动态性能时,有必要先探讨它的起动过程。
双闭环调速系统突加给定电压由静止状态起动时,转速和电流的过渡过程如图4所示。
由于在起动过程中转速调节器ASR 经历了不饱和、饱和、退饱和三个阶段,整个过渡过程也就分为三个阶段,在图中表以Ⅰ、Ⅱ和Ⅲ。
直流电动机双闭环调速系统设计
1 设计方案论证电流环调节器方案一,采用PID调节器,PID调节器是最理想的调节器,能够平滑快速调速,但在实际应用过程中存在微分冲击,将对电机产生较大的冲击作用,一般要小心使用。
方案二,采用PI调节器,PI调节器能够做到无静差调节,且电路较PID调节器简单,故采用方案二。
转速环调节器方案一,采用PID调节器,PID调节器是最理想的调节器,能够平滑快速调速,但在实际应用过程中存在微分冲击,将对电机产生较大的冲击作用,一般要小心使用。
方案二,采用PI调节器,PI调节器能够做到无静差调节,且电路较PID调节器简单,故采用方案二。
2双闭环调速控制系统电路设计及其原理综述随着现代工业的开展,在调速领域中,双闭环控制的理念已经得到了越来越广泛的认同与应用。
相对于单闭环系统中不能随心所欲地控制电流和转矩的动态过程的弱点。
双闭环控制那么很好的弥补了他的这一缺陷。
双闭环控制可实现转速和电流两种负反应的分别作用,从而获得良好的静,动态性能。
其良好的动态性能主要表达在其抗负载扰动以及抗电网电压扰动之上。
正由于双闭环调速的众多优点,所以在此有必要对其最优化设计进展深入的探讨和研究。
本次课程设计目的就是旨在对双闭环进展最优化的设计。
整流电路本次课程设计的整流主电路采用的是三相桥式全控整流电路,它可看成是由一组共阴接法和另一组共阳接法的三相半波可控整流电路串联而成。
共阴极组VT1、VT3和VT5在正半周导电,流经变压器的电流为正向电流;共阳极组VT2、VT4和VT6在负半周导电,流经变压器的电流为反向电流。
变压器每相绕组在正负半周都有电流流过,因此,变压器绕组中没有直流磁通势,同时也提高了变压器绕组的利用率。
三相桥式全控整流电路多用于直流电动机或要求实现有源逆变的负载。
为使负载电流连续平滑,有利于直流电动机换向及减小火花,以改善电动机的机械特性,一般要串入电感量足够大的平波电抗器,这就等同于含有反电动势的大电感负载。
三相桥式全控整流电路的工作原理是当a=0°时的工作情况。
双闭环直流电机调速的matlab仿真
双闭环直流电机调速系统的设计与MATLAB 仿真双闭环调速系统的工作原理转速控制的要求和调速指标生产工艺对控制系统性能的要求经量化和折算后可以表达为稳态和动态性能指标。
设计任务书中给出了本系统调速指标的要求。
深刻理解这些指标的含义是必要的,也有助于我们构想后面的设计思路。
在以下四项中,前两项属于稳态性能指标,后两项属于动态性能指标调速范围D 生产机械要求电动机提供的最高转速和最低转速之比叫做调速范围,即m inm axn n D =(1-1) 静差率s 当系统在某一转速下运行时,负载由理想空载增加到额定值所对应的转速降落,与理想空载转速之比,称作静差率,即%1000⨯∆=n n s nom(1-2) 静差率是用来衡量调速系统在负载变化下转速的稳定度的。
跟随性能指标 在给定信号R (t )的作用下,系统输出量C (t )的变化情况可用跟随性能指标来描述。
具体的跟随性能指标有下列各项:上升时间r t ,超调量σ,调节时间s t .抗扰性能指标 此项指标表明控制系统抵抗扰动的能力,它由以下两项组成:动态降落%max C ∆,恢复时间v t .调速系统的两个基本方面在理解了本设计需满足的各项指标之后,我们会发现在权衡这些基本指标,即1) 动态稳定性与静态准确性对系统放大倍数的要求; 2) 起动快速性与防止电流的冲击对电机电流的要求。
采用转速负反馈和PI 调节器的单闭环调速系统,在保证系统稳定的条件下,实现转速无静差,解决了第一个问题。
但是,如果对系统的动态性能要求较高,例如要求快速启制动,突加负载动态速降小等等,则单闭环系统就难以满足要求。
这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流和转矩。
在电机最大电流受限的条件下,希望充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流为允许的最大值,使电力拖动系统尽可能用最大的加速度起动,到达稳态后,又让电流立即降低下来,使转速马上与负载相平衡,从而转入稳态运行。
双闭环直流调速系统的设计与仿真毕业设计论文
本科毕业设计(论文)题目:双闭环直流调速系统的设计与仿真研究Graduation Design (Thesis)Design and Simulation of Double Loop DC Motor Control SystemByWu JieSupervised byAssociate Prof. Zhang zhenyanDepartment of Automation EngineeringNanjing Institute of TechnologyMay, 2014摘要为了提高运动控制系统在实际工程中的应用效率,本文介绍了直流调速系统的工程设计方法[1],利用 MATLAB软件,对直流调速系统进行数学建模和系统仿真的研究。
所给出的仿真方法,可以灵活地调节系统的参数,从而获得理想的设计结果,并对设计出的系统进行分析。
建立调节器工程设计方法所遵循的原则是:1)概念清楚、易懂。
2)计算公式简明、好记。
3)不仅给出参数计算公式,而且指明参数调节方向。
4)能考虑饱和非线性控制的情况,同时给出简单的计算公式。
5)适合于各种可以简化成典型系统的反馈控制系统[2]。
由于这个课题相对简单,我在里面加入了相关性的内容以丰富本课题的广度和深度。
在本设计中,我加入了三种简单的单闭环直流调速系统,并且通过对它们进行仿真分析,比较找出了它们的不足之处,从而更明显地体现了双闭环直流调速系统的优越性。
并且通过对两种典型的双闭环直流调速系统进行仿真分析,从而更好地理解和运用双闭环直流调速系统[3]。
关键词:直流电动机;双闭环调速;MATLAB;仿真;直流调速系统;直流脉宽调制;工程设计方法ABSTRACTIn order to raise application efficiency of the motion control system in actual project ,this article discussed the engineering design methods of the speed-governing system of DC motor. The mathematical modeling and system simulation of direct current governor system are researched by means of MATLAB platform . The simulation method can adjust the system controller parameters flexibly, so as to achieve the ideal design results, and the design of the system are analyzed.A controller design method is the principles of:(1)The concept of clear, easy to understand.(2)Simple formula, easy to remember.(3)Not only gives the parameter calculation formula, and indicates the parameter adjustment direction.(4)Can consider the saturation nonlinear control, and gives a simple formula.(5)Suitable for all kinds of feedback control systems can be simplified into a typical system.Because this subject is relatively simple, I joined the correlation content inside to enrich the breadth and depth of the subject. In this design, I added three simple single loop DC speed regulation system, and then analyze them, compared to find their deficiencies, and thus more clearly showed the superiority of double closed loop DC speed regulating system. And through the simulation analysis of two kinds of typical double loop DC speed control system, so as to better understand and use the double loop DC speed control system.Keywords: DC motor, double closed loop,MATLAB,Simulation,V-M,PWM-M,The engineering design method目录摘要 (I)ABSTRACT (II)第一章绪论 (1)1.1 课题研究背景 (1)1.2 直流调速系统国内外研究现状 (1)1.3 研究双闭环直流调速系统的意义 (2)1.4 论文的主要研究内容 (2)第二章仿真软件以及相关硬件简介 (3)2.1 MATLAB/Simulink仿真平台 (3)2.2 仿真的数值算法 (3)2.3 工程设计法 (4)2.4 直流电动机 (4)第三章简单闭环调速系统的设计与仿真 (5)3.1 单闭环有静差转速负反馈调速系统的设计与仿真 (5)3.2 单闭环无静差转速负反馈调速系统的设计与仿真 (11)3.3 带电流截止负反馈的转速反馈系统的设计与仿真 (13)3.4 简单闭环调速系统的优缺点比较 (15)第四章转速、电流双闭环直流调速系统的设计与仿真 (17)4.1 转速、电流双闭环调速系统的设计与仿真 (17)4.2 V-M直流调速系统的设计与仿真 (19)4.3 PWM-M直流调速系统的设计与仿真 (26)第五章总结与展望 (34)致谢 (35)参考文献 (36)第一章绪论1.1 课题研究背景在现代化的工业生产过程中,许多生产机械要求在一定的范围内进行速度的平滑调节,并且要求有良好的稳态、动态性能[4]。
直流双环系统(三)的设计及仿真分析(三)(DOC)
课程设计题目直流双环系统(三)的设计及仿真分析(三)学院自动化学院专业自动化专业班级1005班姓名指导教师刘芙蓉2014 年01 月10 日课程设计任务书学生姓名: 专业班级: 自动化1005班 指导教师: 刘芙蓉 工作单位: 自动化学院题 目: 直流双环系统(三)的设计及仿真分析(三) 初始条件:双闭环调速系统,其整流装置采用三相桥式全控整流电路。
系统基本数据如下:直流电动机: U nom =220V ,I nom =136A ,n nom =1460r/min ,0.132min/e C V r =,允许过载倍数 1.5λ=,额定转速时的给定电压*10,n U V =调节器ASR,ACR饱和输出电压*10im U V =。
时间常数:T L =0.03s ,T m =0.18s ,晶闸管装置放大倍数:K S =40,电枢回路总电阻:R=0.5Ω。
要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 试对该系统进行动态参数设计。
设计指标:稳态无静差,电流超调量5%i σ≤;空载起动到额定转速时的转速超调量20%n σ≤,过渡过程时间0.1s t s ≤。
画出系统结构框图并计算:(1) 电流反馈系数β和转速反馈系数α;(2) 设计电流调节器,计算电阻和电容的数值(取040R k =Ω);(3) 设计转速调节器,计算电阻和电容的数值(取040R k =Ω);(4) 让电机带载(带一半额定负载)启动到额定转速,观察并录下电机的转速、电流等的波形,并进行分析。
时间安排:2013.12.25布置课程设计题目2013.12.26 - 2013.12.29 完成课程设计2013.12.30 – 2014.1.3 撰写课程设计报告2014.1.6 答辩并上交报告指导教师签名: 年 月 日系主任(或责任教师)签名: 年 月 日摘要 (1)直流双闭环控制系统的设计 (2)1直流双环系统工作原理 (2)1.1直流双环系统的组成框图 (2)1.2直流双环系统的数学模型 (3)1.2.1直流双环系统的稳态(静态)数学模型 (3)1.2.2直流双环系统的动态数学模型 (3)1.3直流双环系统的动态过程描述 (4)2调节器的工程设计方法概述 (6)3直流双环系统的动态设计与校验 (6)3.1直流双环系统电流环设计 (6)3.1.1电流环调节器结构选择 (6)3.1.2电流环调节器参数计算 (7)3.1.3电流环设计校验近似条件 (7)3.1.4计算电流调节器电阻和电容 (8)3.2直流双环系统转速环设计 (9)3.2.1转速环调节器结构选择 (9)3.2.2转速环调节器参数计算 (9)3.2.3转速环设计校验近似条件 (10)3.2.4计算转速调节器电阻和电容 (10)4直流双环系统MATLAB/SIMULINK仿真 (12)4.1直流双环系统电流环仿真 (12)4.2直流双环系统总体仿真 (13)5心得体会 (16)参考文献 (17)运动控制系统是以机械运动的驱动设备——电动机为控制对象、以控制器为核心、以电力电子功率变换装置为执行机构、在自动控制理论的指导下组成的电气传动自动控制系统。
转速电流双闭环直流调速系统仿真与设计
运动控制系统课程设计题目:转速电流双闭环直流调速系统仿真与设计转速电流双闭环直流调速系统仿真与设计1. 设计题目转速电流双闭环直流调速系统仿真与设计2. 设计任务已知某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下:1)直流电动机:160V、120A、1000r/min、C e=r,允许过载倍数λ=2)晶闸管装置放大系数:K s=303)电枢回路总电阻:R=Ω4)时间常数:T l=,T m=,转速滤波环节时间常数T on取5)电压调节器和电流调节器的给定电压均为10V试按工程设计方法设计双闭环系统的电流调节器和转速调节器,并用Simulink建立系统模型,给出仿真结果;系统要求:1)稳态指标:无静差2)动态指标:电流超调量σi ≤5%;空载起动到额定转速时超调量σn ≤10%3. 设计要求根据电力拖动自动控制理论,按工程设计方法设计双闭环调速系统的步骤如下:1)设计电流调节器的结构和参数,将电流环校正成典型I型系统;2)在简化电流环的条件下,设计速度调节器的结构和参数,将速度环校正成典型II型系统;3)进行Simulink仿真,验证设计的有效性;4.设计内容1 设计思路:带转速负反馈的单闭环系统,由于它能够随着负载的变化而相应的改变电枢电压,以补偿电枢回路电阻压降的变化,所以相对开环系统它能够有效的减少稳态速降;当反馈控制闭环调速系统使用带比例放大器时,它依靠被调量的偏差进行控制的,因此是有静差率的调速系统,而比例积分控制器可使系统在无静差的情况下保持恒速,实现无静差调速;对电机启动的冲击电流以及电机堵转时的堵转电流,可以用附带电流截止负反馈作限流保护,但这并不能控制电流的动态波形;按反馈的控制规律,采用某个物理量的负反馈就可以保持该基本量基本不变,采用电流负反馈就应该能够得到近似的恒流过程;另外,在单闭环调速系统中,用一个调节器综合多种信号,各参数间相互影响,难于进行调节器的参数调速;例如,在带电流截止负反馈的转速负反馈的单闭环系统中,同一调节器担负着正常负载时的速度调节和过载时的电流调节,调节器的动态参数无法保证两种调节过程均具有良好的动态品质;按照电机理想运行特性,应该在启动过程中只有电流负反馈,达到稳态转速后,又希望只有转速反馈,双闭环调速系统的静特性就在于当负载电流小于最大电流时,转速负反馈起主要作用,当电流达到最大值时,电流负反馈起主要作用,得到电流的自动保护;2双闭环调速系统的组成:a.系统电路原理图图2-1为转速、电流双闭环调速系统的原理图;图中两个调节器ASR和ACR 分别为转速调节器和电流调节器,二者串级连接,即把转速调节器的输出作为电流调节器的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置;电流环在内,称之为内环;转速环在外,称之为外环;两个调节器输出都带有限幅,ASR的输出限幅什U im决定了电流调节器ACR 的给定电压最大值U im,对就电机的最大电流;电流调节器ACR输出限幅电压U cm 限制了整流器输出最大电压值,限最小触发角α;图2-1 双闭环调速系统电路原理图b.系统动态结构图图2-2为双闭环调速系统的动态结构框图,由于电流检测信号中常含有交流分量,须加低通滤波,其滤波时间常数T oi按需要选定;滤波环节可以抑制反馈信号中的交流分量,但同时也给反馈信号带来了延滞;为了平衡这一延滞作用,在给定信号通道中加入一个相同时间常数的惯性环节,称作给定滤波环节;其作用是:让给定信号和反馈信号经过同样的延滞,使二者在时间上得到恰当的配合,从而带来设计上的方便;由测速发电机得到的转速反馈电压含有电机的换向纹波,因此也需要滤波,滤波时间常数用T on表示;根据和电流环一样的道理,在转速给定通道中也配上时间常数为T on的给定滤波环节;T oi—电流反馈滤波时间常数T on—转速反馈滤波时间常数图2-2双闭环调速系统的动态结构图3)按工程设计方法设计双闭环系统的ACR:设计多环控制系统的一般原则是:从内环开始,一环一环地逐步向外扩展;在这里是:先从电流环入手,首先设计好电流调节器,然后把整个电流环看作是转速调节系统中的一个环节,再设计转速调节器;a.确定时间常数整流滤波时间常数T s,三相桥式电路的平均失控时间T s=;电流滤波时间常数T oi,三相桥式电路每个波头的时间是,为了基本虑平波头,应有1~2Toi=,因此取Toi=2ms=;电流环小时间常数T∑i,按小时间常数近似处理,取T∑i=T s+T oi=;b.选择电流调节器结构由设计要求:σi%≤5%,并保证系统稳态电流无误差,因此可按典型I型系统设计,电流调节器选用PI 型,其传递函数为: W ACR s =isis Ki ττ1+ c.校验近似条件电流环截止频率11.135-==s KI ci ω; 晶闸管装置传递函数近似条件为:13ci sw T ≤=,满足近似条件; 忽略反电动势对电流环影响的条件为:ci w ≥满足近似条件; 小时间常数近似条件处理条件为:ci w ≤=, 满足近似条件;d.计算调节器电阻和电容电流调节器原理如图3-1所示,按所用运算放大器取R 0=40kΩ,各电阻和电容值计算如下:,取30k; ,取;-图3-1含给定滤波与反馈滤波的PI 型电流调节器按照上述参数,电流环可以达到的动态指标为:σi %=%<5%,满足设计4按工程设计方法设计双闭环系统的ASR :a.确定时间常数电流环等效时间常数为20.0074i T s ∑=;转速滤波时间常数Ton ,根据所用测速发电机波纹情况,取Ton=; 转速环小时间常数n T ∑ 按小时间常数近似处理,取n T ∑=20.0174i T Ton s ∑+=;b .选择转速调节器结构由于设计要求无静差,转速调节器必须含有积分环节;又根据动态要求,应按典型Ⅱ型系统设计速度环,故ASR 选用PI 调节器,其传递函数为:1()n ASR nn s W s K sττ+= c.计算速度调节器参数按跟随和抗干扰性能较好的原则,取h=5,则ASR 的超前时间常数为:50.01740.087n n hT s τ∑==⨯=,转速环开环增益: 2224.39621-∑=+=s T h h K nN 于是,ASR 的比例系数: =d.校验近似条件由转速截止频率:15.341-===s n KN KNcn τωω; 电流环传递函数简化条件: ,满足简化条件; 转速环小时间常数近似条件为: ,满足近似条件;e.计算调节器电阻和电容转速调节原理图如图3-2所示,取040R k =Ω,则,取550k; ,取;图3-2含给定滤波与反馈滤波的PI 型转速调节器-按照上述参数,电流环可以达到的动态指标为:当h=5时,查表得%,虽然不满足设计要求,而实际上,突加阶跃给定时,ASR 饱和,应按退饱和的情况重新计算超调量,实际%,满足设计要求;5内、外开环对数幅频特性的比较图4-1把电流环和转速环的开环对数幅频特性画在一张图上,其中各转折频率和截止频率依次为:13.2700037.011-==∑s i T ,151.570174.011-==∑s n T , 151.34-=s cn ω,15.11087.011-=s n τ; 以上频率一个比一个小,从计算过程可以看出,这是必然的规律;因此,这样设计的双闭环系统,外环一定比内环慢;一般来说,1150~100-=s ci ω,150~20-=s cn ω;从外环的响应速度受到限制,这是按上述方法设计多环控制系统时的缺点;然而,这样一来,每个环本身都是稳定的,对系统的组成和调试工作非常有利;总之,多环系统的设计思想是:以稳为主,稳中求快;L/dBO1/-s ωiT ∑1ciωnT ∑1cn ωnτ1InI-电流内环 n-转速外环图4-1又闭环系统内环和外环的开环对数幅频特性-20-40-20-406 晶闸管的电压、电流定额计算a.晶闸管额定电压U N晶闸管额定电压必须大于元件在电路中实际承受的最大电压Um ,考虑到电网电压的波动和操作过电压等因素,还要放宽2~3倍的安全系数,即按下式选取U N =2~3Um ,式中系数2~3的取值应视运行条件,元件质量和对可靠性的要求程度而定;b.晶闸管额定电流I N为使晶闸管元件不因过热而损坏,需要按电流的有效值来计算其电流额定值;即必须使元件的额定电流有效值大于流过元件实际电流的最大有效值;可按下式计算:I N =~2K fb I MAX ;式中计算系数K fb =Kf/由整流电路型式而定,Kf 为波形系数,Kb 为共阴极或共阳极电路的支路数;当α=0时,三相全控桥电路K fb =,故计算的晶闸管额定电流为I N =~2K fb I MAX =~2 ××220×=~,取200A;7平波电抗器计算由于电动机电枢和变压器存在漏感,因而计算直流回路附加电抗器的电感量时,要从根据等效电路折算后求得的所需电感量中,扣除上述两种电感量;a.电枢电感量L M 按下式计算)(2103mH I Pn U K L NN N D M ⨯=P —电动机磁极对数,K D —计算系数,对一般无补偿电机:K D =8~12; b.整流变压器漏电感折算到次级绕组每相的漏电感L B 按下式计算)(100%2mH I U U K L dK BB •= U 2—变压器次级相电压有效值,I d —晶闸管装置直流侧的额定负载电流,K B —与整流主电路形式有关的系数;c.变流器在最小输出电流I dmin 时仍能维持电流连续时电抗器电感量L 按下式计算min2d I U K L •=, K 是与整流主电路形式有关的系数,三相全控桥K 取则L =mH.6)进行Simulink 仿真,验证设计的有效性a. 电流闭环的仿真如下图:为了研究系统的参数对动态性能的影响,分别取K I T ∑i =、、、,此时K I 的值也会随之变化,运行仿真,即可得不同K I 值的阶跃响应曲线:图6-1 KT=的阶跃响应曲线图6-2KT=的阶跃响应曲线图6-3 KT=的阶跃响应曲线图6-4 KT=的阶跃响应曲线由曲线可以看出如果要求动态响应快,可取KT=;如果要求系统超调小,则应把KT 的值取小些,可取KT<;无特殊要求,取折中值KT=,,称为最佳二阶系统;图6-1~图6-4反映了PI 调节器的参数对系统品质的影响趋势,在工程设计中,可以根据工艺的要求,直接修改PI 调节器的参数,找到一个在超调量和动态响应快慢上都较满意的电流环调节器;b. 转速环的仿真设计在增加转速环调节后,转速环开环传递函数如下: )1()1()(n 2n N n ++=∑s T s s K s W τ 校正后的调速系统动态结构框图如下所示:其中me n n N T C R K K βτα=;在matlab中搭建好系统的模型,如下图:转速环的仿真设计为满足系统在不同需求下的跟随性与抗扰行能要求,取h的之分别为:3、5、7、9. 用matlab仿真结果如下:图7-1h=3时的阶跃响应曲线图7-2h=5时的阶跃响应曲线图7-3h=7时的阶跃响应曲线图7-4h=9时的阶跃响应曲线由图可以看出:h值越小,动态降落也越小,恢复时间、调节时间也短,抗扰性能也越好,但是,从h<5以后,由于震荡剧烈h越小,恢复时间反而延长,综合起来看,h=5是最佳选择,也即最佳三阶系统;对电流环与转速环都是根据实际需要调节参数的,对比Ⅰ型、Ⅱ型系统可以发现:Ⅰ型系统可以在跟随性上做到超调小,但抗扰性能差;而Ⅱ型系统超调却相对较大,抗扰性能较好;5.设计心得a.通过该次设计,更加熟悉掌握了电流转速双闭环直流调速系统的结构组成以及它的工作原理,加深了对开环、闭环有静差、无静差调速的理解---闭环结构保证系统的稳定性与抗干扰能力;无静差调速则保证系统有较低的稳态误差;b.由此也初步掌握双闭环调节器的整个设计过程,其基本思想是先内环再外环;在结构框图的处理过程中有多处近似处理,简化了传递函数,从而使问题得到简化,因此称为被称为“工程设计方法”,这意味着在实际的应用中,在可以大大简化分析过程却很小影响分析结果的方法是很有价值的;从开环到闭环、从闭环无静差到有静差、从单环到双环着一些列的变化显示人们人知的渐进性;仿真是自己临时捡起matlab课本重新回顾才完成的,仿真的直观的证明了最佳二阶、三阶系统的参数,并再一次体现了matlab在控制中的重要作用,的确是一个很强大的仿真工具;整个仿真过程也加深了自己对电力拖动控制相关知识理解程度,相当于也许经过证明的才是最可靠的;d.由于水平有限,设计中肯定有许多错误和不足的地方,敬请老师指正;6.参考文献【1】陈伯时,电力拖动自动控制系统;机械工业出版社;【2】李荣生,电气传动控制设计指导;;。
“双闭环控制直流电动机调速系统”数字仿真实验
“双闭环控制直流电动机调速系统”数字仿真实验24、SIMULINK建模我们借助SIMULINK,根据上节理论计算得到的参数,可得双闭环调速系统的动态结构图如下所示:图7 双闭环调速系统的动态结构图(1)系统动态结构的simulink建模①启动计算机,进入MATLAB系统检查计算机电源是否已经连接,插座开关是否打开,确定计算机已接通,按下计算机电压按钮,打开显示器开关,启动计算机。
打开Windows开始菜单,选择程序,选择MATAB6.5.1,选择并点击MATAB6.5.1,启动MATAB程序,如图8,点击后得到下图9:图8选择MATAB程序图9 MATAB6.5.1界面点击smulink 中的continuous,选择transfor Fc n(传递函数)就可以编辑系统的传递函数模型了,如图10。
图10 smulink界面②系统设置选择smulink界面左上角的白色图标既建立了一个新的simulink模型,系统地仿真与验证将在这个新模型中完成,可以看到在simulink目录下还有很多的子目录,里面有许多我们这个仿真实验中要用的模块,这里不再一一介绍,自介绍最重要的传递函数模块的设置,其他所需模块参数的摄制过程与之类似。
将transfor Fc n(传递函数)模块用鼠标左键拖入新模型后双击transfor Fc n(传递函数)模块得到图11,开始编辑此模块的属性。
图11参数表与模型建立参数对话栏第一和第二项就是我们需要设置的传递函数的分子与分母,如我们需要设置电流环的控制器的传递函数:0.01810.0181()0.2920.0180.062ACR s s W s s s++=⋅=,这在对话栏的第一栏写如:[0.018 1],第二栏为:[0.062 0]。
点击OK ,参数设置完成。
如图12。
图12传递函数参数设置设置完所有模块的参数后将模块连接起来既得到图7所示的系统仿真模型。
在这里需要注意的是,当我们按照理论设计的仿真模型得到的实验波形与理想的波形有很大的出入。
直流电动机转速电流双闭环控制系统的设计精选(38页)
Harbin Institute of Technology
f直流电动机转速/电流双闭环控制系统设计
—x系统建模
L1电动机的数学槟型 1.2晶闸管整流装置的数学模型 L3双闭环调速系统的数学模型
二、电流环与转速环调节器设计 2.1双
闭环控制的目的 2-2关于积分调节器的饱和非线性问题 2-3 ASR与ACK的工程设计方法
L2晶闸锌笹流装哲.的数学模型
1.3双闭坏调速系统的数学模型
二、 电流环与转速环调节器设计
2.1双闭环控制的的
2,2关于积分调节器的_ 械性问题
23 ASR±JACR的工程设计方法
三、 仿真实验
3.1起动特性
,
V 四、结论
/
流电动机转速/电流双闭环拧制系统设计
系统建模与仿真
在图4-7中给出了控制系统的PI控制规律动态过程, 从中我们可知:
三、 仿真实验
3.1起动特性
系统建模与仿真
d
Harbin Institute of Technology
1山:流电动机转速/电流双闭环控制系统设计
系统建模与仿真
系统中采用三相桥式晶闸管整流装置,基本参数如下, 直流电动机:220Vr 13.6A, 1480r7min,Ce=0.l31V/ (r/min),允许 过载倍数 a=15;晶闸管装置:Ks=76t电枢回路总电阻! /e=6.58Qs 时初常数: 77=0.0l8s,Tm=0.25s;反馈系数:a=0.00337V/ (r/min), /SM).4V/A:反馈滤 波时间常数:7b/=0.005s, 7b«=0(005s P
E = Cen (额定励磁F的感应电动势) (中顿动力学定伴.忽略醐擦
m t额定励磁卜的电磁转斯)
直流电动机双闭环调速系统MATLAB仿真实验报告
本科上机大作业报告课程名称:电机控制姓名:学号:学院:电气工程学院专业:电气工程及其自动化指导教师:提交日期:20年月日一、作业目的1.熟悉电机的控制与仿真;2.熟悉matlab和simulink等相关仿真软件的操作;3.熟悉在仿真中各参数变化和不同控制器对电机运行的影响。
二、作业要求对直流电动机双闭环调速进行仿真1.描述每个模块的功能2.仿真结果分析:包括转速改变、转矩改变下电机运行性能,并解释相应现象3.转速PI调节器参数对电机运行性能的影响4.电流调节器改用PI调节器三、实验设备MATLAB、simulink四、实验原理1.双闭环系统结构如图:该系统通过电流负反馈和速度负反馈两个反馈闭环实现对电机的控制,其内环是电流控制环,外环是转速控制环。
内环由电流调节器LT,晶闸管移相触发器CF,晶闸管整流器和电动机电枢回路所组成。
电流调节器的给定信号un。
与电机电枢回路的电流反馈信号相比较,其差值送人电流调节器.由调节器的输出通过移相触发器控制整流桥的输出电压。
在这个电压的作用下电机的电流及转矩将相应地发生变化。
电流反馈信号可以通过直流互感器取白肖流电枢回路,也可以用交流互感器取自整流桥的交流输人电流,然后经整流面得。
这两种办法所得结果相同,但后者应用较多,因为交流互感器结构比较简单。
当电流调节器的给定信号u n大于电流反馈信号uf,其差值为正时,经过调节器控制整流桥的移相角α,使整流输出电压升高,电枢电流增大。
反之,当给定信号u n 小于电流反馈信号时,使整流桥输出电压降低,电流减小,它力图使电枢电流与电流给定值相等。
外环是速度环,其中有一个速度调节器ST,在调节器的输入端送入一个速度给定信号u g,由它规定电机运行的转速。
另一个速度反馈信号u fn米自与电机同轴的测速发电机TG。
这个速度给定信号和实际转速反馈信号之差输人到速度调节器,由速度调节器的输出信号u n作电流调节器输人送到电流调节器,通过前面所讲的电流调节环的控制作用调节电机的.电枢电流Ia和转矩T ,使电机转速发生变化,最后达到转速的给定值。
实验三 使用power system模块的直流双闭环系统仿真
实验三参考
使用power system模块的直流双闭环系统仿真(参考)
(做教材双闭环的元件級仿真,此例仅为参考)
W N=30Kw;U N=220V;I N=136A;n N=1460r/min;4极;Ra=0.21Ω;GD2=22.5N.m2;;
励磁电压U f=220V;励磁电流I f=1.5A;
整流器内阻R rec=0.5Ω;平波电抗器L d=20mH
使用V-M三相全波整流桥。
以实验二的晶闸管、直流电动机系统为基础,设计一个转速电流双闭环控制的调速系统,设计指标为电流超调σi≤5%,空载起动到额定转速时的转速超调量σn≤10%,过载倍数λ=1.5,取电流反馈滤波时间常数T oi=0.002s,转速反馈滤波时间常数T on=0.01s。
取转速调节器和电流调节器的饱和值为12V,输出限幅值为10V,额定转速时转速给定U*n=10V。
仿真观察系统的转速、电流响应和设定参数变化对系统响应的影响。
PI ASR调节器参数,其中非线性为正负10,
PI ACR调节器参数,其中非线性为正负10,
电感Ld设置:L= 10e-03(或20mH)
直流电机参数设置:。
直流电动机双闭环调速系统MATLAB仿真实验报告
直流电动机双闭环调速系统MATLAB仿真实验报告
实验目的:
本实验旨在设计并实现直流电动机的双闭环调速系统,并使用MATLAB进行仿真实验,验证系统的性能和稳定性。
实验原理:
直流电动机调速系统是通过改变电机的输入电压来实现调速的。
双闭环调速系统采用了速度环和电流环两个闭环控制器,其中速度环的输入为期望转速和实际转速的误差,输出为电机的电流设定值;电流环的输入为速度环输出的电流设定值和实际电流的误差,输出为电机的输入电压。
实验步骤:
1.建立直流电动机的数学模型。
2.设计速度环控制器。
3.设计电流环控制器。
4.进行系统仿真实验。
实验结果:
经过仿真实验,得到了直流电动机双闭环调速系统的性能指标,包括上升时间、峰值过渡性能和稳态误差等。
同时,还绘制了调速曲线和相应的控制输入曲线,分析了调速系统的性能和稳定性。
实验结论:
通过对直流电动机双闭环调速系统的仿真实验,验证了系统的性能和
稳定性。
实验结果表明,所设计的双闭环控制器能够实现快速且稳定的直
流电动机调速,满足了实际工程应用的需求。
实验心得:
本实验通过使用MATLAB进行仿真实验,深入理解了直流电动机的双
闭环调速系统原理和实现方式。
通过实验,我不仅熟悉了MATLAB的使用,还掌握了直流电动机的调速方法和控制器设计的原则。
同时,实验中遇到
了一些问题,比如系统的超调过大等,通过调整控制器参数和优化系统结
构等方法,最终解决了这些问题。
通过本次实验,我对直流电动机调速系
统有了更加深入的理解,为之后的工程应用打下了坚实的基础。
双闭环直流电动机调速系统设计及MATLAB仿真
双闭环直流电动机调速系统设计及M A T L A B仿真(共21页)-本页仅作为预览文档封面,使用时请删除本页-目录1、引言..................................................错误!未定义书签。
二、初始条件:...........................................错误!未定义书签。
三、设计要求:...........................................错误!未定义书签。
四、设计基本思路.........................................错误!未定义书签。
五、系统原理框图.........................................错误!未定义书签。
六、双闭环调速系统的动态结构图...........................错误!未定义书签。
七、参数计算.............................................错误!未定义书签。
1. 有关参数的计算 ...................................错误!未定义书签。
2. 电流环的设计 .....................................错误!未定义书签。
3. 转速环的设计 .....................................错误!未定义书签。
七、双闭环直流不可逆调速系统线路图.......................错误!未定义书签。
1.系统主电路图 ......................................错误!未定义书签。
2.触发电路 ..........................................错误!未定义书签。
3.控制电路 ..........................................错误!未定义书签。
实验三 双闭环直流调速系统MATLAB仿真
实验三双闭环直流调速系统MATLAB仿真
一、实验目的
1.掌握双闭环直流调速系统的原理及组成;
2.掌握双闭环直流调速系统的仿真。
二、实验原理
一、实验内容
基本数据如下:
直流电动机:220V, 136A, 1460r/min.Ce=0.132Vmin/r.允许过载倍数为1.5;晶闸管装置放大系数: Ks=40;Ts=0.0017s;
电枢回路总电阻: ;
时间常数: ;
电流反馈系数: ;
电流反馈滤波时间常数: ;
电流反馈系数: ;
转速反馈系数α=0.007vmin/r
转速反馈滤波时间常数:
设计要求:设计电流调节器, 要求电流无静差, 电流超调量。
转速无静差, 空载起动到额定负载转速时转速超调量。
并绘制双闭环调速系统的动态结构图。
四、实验步骤
1. 根据原理和内容搭建电路模型;
2. 设置各元器件的参数;
3. 设置仿真参数:仿真时间设为0.06s;计算方法为ode15或ode23。
4. 仿真实现。
五、实验报告
1.Idl=0和Idl=136A时电流和转速的输出波形
2.讨论PI 调节器参数对系统的影响.
τi =TL,s
i i K R
T KT Kp βτ•∑=
…………………………取KT=0.5 转速环设计成典型二型系统
h =5, T 087.0)2(=+==∑∑on i n n T T h hT τ Kn=7.112)1(=∑+=
n
RT h CeTm
h Kn αβ
取11.7 , 11.7/0.087。
直流电机双闭环PID调速系统仿真设计
目录直流电机双闭环PID调速系统仿真 (1)1 转速、电流双闭环直流调速系统的组成及工作原理 (2)2 双闭环调速系统的动态数学模型 (2)3 调节器的设计 (4)3.1 电流调节器的设计 (4)3.2 转速调节器的设计 (6)4 搭建模型 (8)5 参数计算 (10)5.1 参数的直接计算 (10)5仿真具体参数 (13)6 仿真结果 (13)7 结束语 (14)8 参考文献 (16)直流电机双闭环PID调速系统仿真摘要在工程的应用中,直流电动机的占有很大的比例,同时对于直流系统的调速要求日益增长。
在直流调速系统中比较成熟并且比较广泛的是双闭环调速系统,本文对于直流双闭环的PID调速系统作简要的设计,同时利用Matlab/Simulink 仿真软件进行仿真处理。
关键词: 直流双闭环 PID调速在现代化的工业生产过程中,许多生产机械要求在一定的范围内进行速度的平滑调节,并且要求有良好的稳态、动态性能。
而直流调速系统调速范围广、静差率小、稳定性好,过载能力大,能承受频繁的冲击负载,可实现频率的无级快速起制动和反转等良好的动态性能,能满足生产过程自动化系统中各种不同的特殊运行要求。
在高性能的拖动技术领域中,相当长时期内几乎都采用直流电力拖动系统。
开环直流调速由于自身的缺点几乎不能满足生产过程的要求,在应用广泛地双闭环直流调速系统中,PID控制已经得到了比较成熟的应用。
Matlab是目前国际上流行的一种仿真工具,它具有强大的矩阵分析运算和编程功能,建模仿真可视化功能Simulink是Matlab五大公用功能之一,他是实现动态系统仿真建模的一个集成环境,具有模块化、可重载、图形化编程、可视化及可封装等特点,可以大大提高系统仿真的效率和可靠性。
Simulink提供了丰富的模型库供系统仿真使用,它的仿真工具箱可用来解决某些特定类型的问题,也包括含有专门用于电力电子与电气传动学科仿真研究的电气系统模型库。
此外,用户可根据自己的需要开发并封装模型以扩充现有的模型库。
西安科技大学 双闭环直流调速系统的课程设计(MATLAB仿真)
任务书1.设计题目转速、电流双闭环直流调速系统的设计2.设计任务某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为:直流电动机:U n=440V,I n=365A,n N=950r/min,R a=0.04,电枢电路总电阻R=0.0825,电枢电路总电感L=3.0mH,电流允许过载倍数=1.5,折算到电动机飞轮惯量GD2=20Nm2。
晶闸管整流装置放大倍数K s=40,滞后时间常数T s=0.0017s电流反馈系数=0.274V/A (10V/1.5IN)转速反馈系数=0.0158V min/r (10V/nN)滤波时间常数取T oi=0.002s,T on=0.01s===15V;调节器输入电阻R a=40k3.设计要求(1)稳态指标:无静差(2)动态指标:电流超调量5%;采用转速微分负反馈使转速超调量等于0。
目录任务书 (I)目录 (II)前言 (1)第一章双闭环直流调速系统的工作原理 (2)1.1 双闭环直流调速系统的介绍 (2)1.2 双闭环直流调速系统的组成 (3)1.3 双闭环直流调速系统的稳态结构图和静特性 (4)1.4 双闭环直流调速系统的数学模型 (5)1.4.1 双闭环直流调速系统的动态数学模型 (5)1.4.2 起动过程分析 (6)第二章调节器的工程设计 (9)2.1 调节器的设计原则 (9)2.2 Ⅰ型系统与Ⅱ型系统的性能比较 (10)2.3 电流调节器的设计 (11)2.3.1 结构框图的化简和结构的选择 (11)2.3.2 时间常数的计算 (12)2.3.3 选择电流调节器的结构 (13)2.3.4 计算电流调节器的参数 (13)2.3.5 校验近似条件 (14)2.3.6 计算调节器的电阻和电容 (15)2.4 转速调节器的设计 (15)2.4.1 转速环结构框图的化简 (15)2.4.2 确定时间常数 (17)2.4.3 选择转速调节器结构 (17)2.4.4 计算转速调节器参数 (17)2.4.5 检验近似条件 (18)2.4.6 计算调节器电阻和电容 (19)第三章Simulink仿真 (20)3.1 电流环的仿真设计 (20)3.2 转速环的仿真设计 (21)3.3 双闭环直流调速系统的仿真设计 (22)第四章设计心得 (24)参考文献 (25)前言许多生产机械要求在一定的范围内进行速度的平滑调节,并且要求具有良好的稳态、动态性能。
双闭环直流调速系统设计及仿真
双闭环直流调速系统设计及仿真———————————————————————————————— 作者:———————————————————————————————— 日期:1绪论直流调速是现代电力拖动自动控制系统中开展较早的技术。
在20世纪60年代,随着晶闸管的出现,现代电力电子和控制理论、计算机的结合促进了电力传动控制技术研究和应用的繁荣。
晶闸管-直流电动机调速系统为现代工业提供了高效、高性能的动力。
尽管目前交流调速的迅速开展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢送。
但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反响控制理论根底上的直流调速原理也是交流调速控制的根底[1]。
现在的直流和交流调速装置都是数字化的,使用的芯片和软件各有特点,但根本控制原理有其共性。
对于那些在实际调试过程中存在很大风险或实验费用昂贵的系统,一般不允许对设计好的系统直接进展实验。
然而没有经过实验研究是不能将设计好的系统直接放到生产实际中去的。
因此就必须对其进展模拟实验研究。
当然有些情况下可以构造一套物理装置进展实验,但这种方法十分费时而且费用又高,而且在有的情况下物理模拟几乎是不可能的。
近年来随着计算机的迅速开展,采用计算机对控制系统进展数学仿真的方法已被人们采纳。
但是长期以来,仿真领域的研究重点是仿真模型的建立这一环节上,即在系统模型建立以后要设计一种算法。
以使系统模型等为计算机所承受,然后再编制成计算机程序,并在计算机上运行。
因此产生了各种仿真算法和仿真软件[2]。
由于对模型建立和仿真实验研究较少,因此建模通常需要很长时间,同时仿真结果的分析也必须依赖有关专家,而对决策者缺乏直接的指导,这样就大大阻碍了仿真技术的推广应用。
MATLAB提供动态系统仿真工具Simulink,那么是众多仿真软件中最强大、最优秀、最容易使用的一种。
它有效的解决了以上仿真技术中的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要传统的直流电机一直在电机驱动系统中占据主导地位,但由于其本身固有的机械换向器和电刷导致电机容量有限、噪音大和可靠性不高,因而迫使人们探索低噪音、高效率并且大容量的驱动电机。
随着电力电子技术和微控制技术的迅猛发展成熟起来的直流无刷电机具有体积小、重量轻、效率高、噪音低、容量大且可靠性高的特点,从而使其极有希望代替传统的直流电机成为电机驱动系统的主流。
首先,从电机本体和控制角度出发,阐述了直流无刷电机在实际应用中需要解决的关键性问题:电磁转矩脉动。
详细分析了电磁转矩脉动产生的各种原因,特别是分析了相电流换向所产生的纹波转矩脉动。
其次,本文对无刷直流电动机的工作原理进行了详尽的分析,建立了三相无刷直流电动机的数学模型。
并利用MATLAB/SIMULINK软件建立了三相无刷直流电动机的控制系统仿真模型。
仿真模型采样的是电机控制系统中常用的双环系统(转速一电流双闭环控制)。
为了提高系统的静动态特性,转速外环采用PI调节器,电流环采用PI调节器。
转子位置通过直流无刷电机感应电势检溺,仿真结果表明了该仿真模型控制系统与理论分析完全吻合,从而证明了模型的有效性。
然后,初步设计了伺服系统的原理图。
以PID控制器作为整个控制电路的核心,一台40w的直流无刷电机作为被控对象,完成了伺服系统的转速控制。
最后,对未来的工作给予了展望,并对全文的容进行了总结。
关键词:无刷直流电动机;转矩脉动;PID控制器AbstractConventional DC motor always takes up dominant position in driving system,butits inherent mechanical commutator and brush bring on limited capability,low reliability and big noise.These shortcoming necessitate US to develope lower noise,high efficiency and big capability driving motor.With the development of the power electronicsand micro—control technique,permanent—magnet brushless DC motor possesses small volume,light weight,high efficiency,low noise,big capability and reliability,so it is hopeful to become main motor in drive system.Fuzzy controller has the advantage of robust trait and strong anti-jamming merit.First,from the point of view of motor and control,the paper expounds all kinds of cause of brushless dc motor’s ripple toque.Especially,analyzes the cause of commutation ripple torque.Second,mathematical model is presented based on the the operating principle of BLDCM,which is analyzed in detail.This paper introduces software matlab/simulink and how to use it.Simulation model of three—phase BLDCM is set up and performed.The control system is virtually a dual closed—loop system with current controller’s inner loop and speed controller as outer loop.speed controller adopts fuzzy。
PI regulator and current controller adopts PI regultor.We estimate rotationcomplete speed control through a 40w—brushless dc motor.Keywords:BLDCM;Torque Ripple;PID controller目录1 绪论 (1)1.1本课题的研究意义 (1)1.2直流电动机闭环控制的研究现状 (3)1.3容安排 (4)2 直流电机的工作原理和控制系统模型 (5)2.1直流电动机的工作原理 (5)2.2BLDC系统模型的建立 (7)3 PID调节器设计原理 (9)3.1双闭环直流调速系统原理 (9)3.2调节器的工程设计方法 (10)3.2.1电流调节器的设计 (12)3.2.2转速调节器的设计 (14)4 直流电机控制系统的仿真分析 (17)4.1动态仿真工具SIMULINK简介 (17)4.2三相无刷直流电动机的数学模型 (19)4.3直流电机控制系统模型的建立 (22)4.3.1 电压方程 (23)4.3.2 转矩方程 (24)4.3.4 等效电路 (24)4.3.5 BLDCM本体模块 (25)4.3.6 电流滞环控制模块 (27)4.3.7 速度控制模块 (29)4.3.8 参考电流模块 (30)4.3.9 转矩计算模块 (31)4.3.10 转速计算模块 (32)4.3.11 电压逆变器模块 (32)4.4仿真结果 (33)4.5本章小结 (35)5 结论与展望 (36)致 (37)参考文献 (38)1 绪论1.1 本课题的研究意义直流电动机具有线性机械特性、调速围广、启动转矩大、控制电路简单和效率高等诸多优点,因此长期以来一直广泛地应用在各种驱动装置和饲服系统中。
但是直流电动机均采用电刷,用机械换向器进行换向,因为机械电刷和换向器存在着相对的机械摩擦,由此带来它结构复杂、可靠性差、变化的接触电阻、噪声、火花、无线电干扰以及寿命短等致命弱点,再加上制造成本高及维修困难等缺点,影响了直流电动机的调速精度和性能,从而限制了它的应用围。
因此人们长期以来,一直在寻找一种不用电刷和换向器的直流电机。
随着电力电子技术、计算机技术、现代控制理论以及稀土永磁材料技术的飞速发展,这种设想逐步成为现实。
自1958年美国通用电气公司研制成功第一个工业应用的普通晶闸管,主关断器件从晶闸管发展到了有自关断能力的大功率半导体开关器件(全控性器件):电力晶体管(GTR),可关断晶闸管(GTO),电力场效应晶体管(MOSFET),绝缘栅极双极性晶体管(IGBT),高频大功率静电感应晶体管(SIT),静电感应式晶体管(SITH),场控晶体管(MCT)等。
可以说电力电子技术在等等的几十年里飞速发展,使功率半导体器件的性能得以大大提高,同时其驱动电路也获得了迅速发展。
电力电子技术和微电子技术的发展也带动着功率集成电路P/C(分为高压化,高频化,小型化等创造了有利的条件,这些都为直流无刷直流电机的驱动控制电路的提高开辟了新的方向。
稀土永磁材料技术也对直流无刷电机本体的发展起着巨大的推动作用。
采用稀土永磁材料的直流无刷电机不仅具有可靠性高i3J、维修方便、结构简单、特性好、易散热、转速不受机械换向限制、噪声小,而且具有磁能积高、矫顽力Hc高、剩磁Br大等优点。
伴随着这些新的电力电子器件,高性能的数字集成电路以及先进的控制理论的应用,直流无刷直流电机调速控制部件功能日益完善,所需的控制部件数目愈来愈少,控制器件的体积也越来越小,控制器件的可靠性提高而成本愈来噪音、重量轻等一系列优点,又具备直流电动机的运行效率高、无励磁损耗以及调速性能好等诸多优点,因而直流无刷电机的应用围不再局限于传统的工业领域,在当令国民经济的各个领域得到了广泛的应用。
例如在计算机外围设备(软驱、光驱、硬盘等)、办公自动化设备(打印机、复印机、绘图仪等)、家电(洗衣机、空调、风扇等)、音像设备(VCD、摄像机、录像机等)、汽车、电动自行车、数控机床、雷达和各种军用武器随动系统、机器人、柔性制造系统、大规模集成电路制造、激光加工、医疗设备等领域得到了广泛的应用。
无刷直流电动机因为用半导体电子开关换向器替代了机械式换向器及电刷可靠性高,无需维护,寿命长,噪声低,功率密度大。
特别是它的转动惯量小转子损耗相对于异步电动机小得多。
当输出功率相同时,无刷直流电机所需要的整流器利逆变器容量小,因此自身体积也小,更适合于空间有限的场合。
也正是因为无刷直流电机有如此多的优点,所以使它成为了新一代电动伺服系统的主角。
由于无刷直流电动机在工业上的应用愈来愈广泛,它的进一步推广将显著的提高我国的能源利用水平,改变我国高污染,低效率的能源利用状态。
稀土资源优势,弥补我国在能源利用水平上的差距,将是一件很有意义的工作。
早在1917年,Boliger就提出了用整流管代替有刷直流电机的机械换向器,从而诞生了无刷直流电机的基本思想。
早在1934年,就出现过电子管线路代替机械滑动接触的无换向器直流电动机。
但由于当时电子器件的技术水平和制造成本的限制,这种电动机并没有得到发展。
1955年美国D•哈里森等人首次申请了应用晶体管换向代替电动机机械换向器换向的专利,这就是现代无刷直流电动机的雏形,它有功率放大部分,信号检测部分,磁极体和开关电路组成。
其工作原理是:当转子旋转时,在信号绕组中感应出周期性的信号电势,此信号电势分别使晶体管轮流导通,这样就使功率绕组轮流馈电,即实现了换流。
但是,当转子不转时,信号绕组不能产生感应电势,晶体管无偏置,功率绕组也就无法馈电,所以这种无刷直流电动机没有启动转矩,因此,没有产品化。
1978年,原联邦德国MANNESMANN公司的indramat分布在汉诺威贸易展览会上正式推出其MAC永磁无刷直流电动机及其驱动系统,标志着永磁无刷直流电动机真正进入了实用阶段。
20世纪80年代以来,国外对无刷直流电动机展开了深入的研究。
随着大功率半导体器件、电力电子技术、微电子技术、数字信号处理技术、现代控制理论的发展以及高性能永磁材料的不断出现,如今的永磁无刷直流电动机系统已经成为直流电动机、功率驱动器、检测元件、控制软件与硬件于一体的典型的机电一体化产品,体现了当今工程科学领域的许多最新成果。