解决线性规划问题的基本步骤
线性规划问题的单纯形法求解步骤

线性规划问题的单纯形法求解步骤线性规划是一种优化问题,它的解决方法有很多种,在这里我们来介绍其中一种常用的方法——单纯形法。
我们将介绍单纯形法的求解步骤,以帮助读者更好地理解和掌握这种求解方法。
1. 建立数学模型任何一个线性规划问题的解决都需要先进行建模。
我们将问题转换成数学模型,然后使用数学方法进行求解。
线性规划问题的一般形式为:max cxs.t.Ax ≤ bx ≥ 0其中,c、x、b、A都是向量或矩阵,x≥0表示各变量都是非负数。
其中c表示目标函数,A和b表示约束条件。
2. 计算初始基可行解我们需要从初始点开始,逐步优化目标函数。
但是,在开始优化前我们需要先找到一个基可行解。
基可行解的定义是:如果所有非基变量的取值都是0,并且所有基变量的取值都是非负的,则该解被称为基可行解。
当基可行解找到后,我们就可以开始进行优化。
3. 确定进入变量在单纯形法中,每次迭代中我们都需要找到进入变量。
进入变量是指,通过操作非基变量可以使得目标函数增加的变量。
我们需要找到一个使得目标函数增加最多的非基变量,将其称为进入变量。
4. 确定离开变量在确定进入变量后,我们需要确定一个离开变量。
离开变量是指,通过操作基变量可以使得目标函数增加的变量。
我们需要找到一个离开变量,使得当进入变量增加到某个值时,该离开变量的值为0。
这样,我们就找到了一个最小的正根比率,使得通过基本变量出基到进入变量变为零而得到的新解是可行的。
5. 交换变量接下来,我们需要将已选定的进入变量和离开变量进行交换。
此时,我们将进入变量转变为基变量,离开变量转变为非基变量。
通过这种交换,我们还需要调整我们的基向量。
由于这个交换,我们将得到一个新的基可行解,并且它可以比之前的解更好。
6. 重复迭代我们需要重复上述步骤,直到我们找到最优解。
重复迭代意味着我们将不断查找新的进入变量和离开变量,并进行变量交换。
这种找到最优解的过程可能非常复杂,但是单纯形法的效率很高,通常可以在很短的时间内找到最优解。
人教版高中数学必修5第三章不等式 3.3.2 简单的线性规划问题

钢板张数最少?
分
A规格 B规格 C规格 张数
析: 第一种钢板
2
1
1
x
列 第二种钢板
1
2
3
y
表 成品块数 2x y x 2y x 3y
解:设需截第一种钢板x张,第二种钢板y张,共需截
这两种钢板共z张,则
2x y 15,
x x
2y 3y
18, 27,
x 0,
分析:对应无数个点,即直线与边界线重合时. 作出可行域,结合图形,看直线 l : y ax z
与哪条边界线重合时,可取得最大值.
解:当直线 l : y ax z 与边界
线重合时,有无数个点,
使函数值取得最大值,
此时有 kl kAC .
3
3
k AC
5
, kl
a
ห้องสมุดไป่ตู้. 5
问题的最优解.
(1)在上述问题中,如果每生产一件甲产品
获利3万元,每生产一件乙产品获利2万元,
又当如何安排生产才能获得最大利润?
(2)由上述过程,你能得出最优解与可行域之间的关 系吗?
设生产甲产品x件乙产品y件时,工厂获得的利润为
z,则z=3x+2y.
把z 3x 2 y变形为y 3 x z ,这是斜率为 3 ,
利用平移的方法找出与可行域有公共点 且纵截距最大或最小的直线;
(3)求:通过解方程组求出最优解; (4)答:作出答案. 最优解一般在可行域的顶点处取得.
x 4 y 3, 例2 已知x, y满足 3x 5 y 25,设z ax y(a 0),
简单的线性规划问题(附答案)

简单的线性规划问题(附答案)简单的线性规划问题[学习目标]知识点一线性规划中的基本概念知识点二线性规划问题1.目标函数的最值线性目标函数z=ax+by(b≠0)对应的斜截式直线方程是y=-ab x+zb,在y轴上的截距是zb,当z变化时,方程表示一组互相平行的直线.当b>0,截距最大时,z取得最大值,截距最小时,z取得最小值;当b<0,截距最大时,z取得最小值,截距最小时,z取得最大值.2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即,(1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解.(3)求:解方程组求最优解,进而求出目标函数的最大值或最小值.(4)答:写出答案.知识点三简单线性规划问题的实际应用1.线性规划的实际问题的类型(1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大;(2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有:①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小?②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大?③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤(1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法.(2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.(3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案.题型一求线性目标函数的最值例1 已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,则z =3x +y 的最大值为( )A .12B .11C .3D .-1答案 B 解析 首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y =-3x +z 经过点A时,z 取得最大值.由⎩⎨⎧ y =2,x -y =1⇒⎩⎨⎧x =3,y =2,此时z =3x +y =11.跟踪训练1 (1)x ,y 满足约束条件⎩⎪⎨⎪⎧ x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一...,则实数a 的值为( ) A.12或-1 B .2或12C .2或1D .2或-1(2)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,x +2y -8≤0,x ≥0,则z =3x +y 的最小值为________.答案 (1)D (2)1解析 (1)如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2;当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.(2)由题意,作出约束条件组成的可行域如图所示,当目标函数z =3x +y ,即y =-3x +z 过点(0,1)时z 取最小值1.题型二 非线性目标函数的最值问题例2 设实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,求 (1)x 2+y 2的最小值;(2)y x 的最大值.解 如图,画出不等式组表示的平面区域ABC ,(1)令u =x 2+y 2,其几何意义是可行域ABC 内任一点(x ,y )与原点的距离的平方.过原点向直线x +2y -4=0作垂线y =2x ,则垂足为⎩⎨⎧x +2y -4=0,y =2x 的解,即⎝ ⎛⎭⎪⎪⎫45,85, 又由⎩⎨⎧ x +2y -4=0,2y -3=0,得C ⎝ ⎛⎭⎪⎪⎫1,32, 所以垂足在线段AC 的延长线上,故可行域内的点到原点的距离的最小值为|OC |= 1+⎝ ⎛⎭⎪⎪⎫322=132,所以,x 2+y 2的最小值为134.(2)令v =yx ,其几何意义是可行域ABC 内任一点(x ,y )与原点相连的直线l 的斜率为v ,即v =y -0x -0.由图形可知,当直线l 经过可行域内点C 时,v 最大,由(1)知C ⎝⎛⎭⎪⎪⎫1,32,所以v max =32,所以y x 的最大值为32.跟踪训练2 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1,则(x +3)2+y 2的最小值为________.答案10解析画出可行域(如图所示).(x+3)2+y2即点A(-3,0)与可行域内点(x,y)之间距离的平方.显然AC长度最小,∴AC2=(0+3)2+(1-0)2=10,即(x+3)2+y2的最小值为10.题型三线性规划的实际应用例3某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克、B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A,B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是多少? 解 设每天分别生产甲产品x 桶,乙产品y 桶,相应的利润为z 元,于是有⎩⎪⎨⎪⎧x +2y ≤12,2x +y ≤12,x ≥0,y ≥0,x ∈N ,y ∈N ,z=300x +400y ,在坐标平面内画出该不等式组表示的平面区域及直线300x +400y =0,平移该直线,当平移到经过该平面区域内的点(4,4)时,相应直线在y 轴上的截距达到最大,此时z =300x +400y 取得最大值, 最大值是z =300×4+400×4=2 800, 即该公司可获得的最大利润是2 800元. 反思与感悟 线性规划解决实际问题的步骤:①分析并根据已知数据列出表格;②确定线性约束条件;③确定线性目标函数;④画出可行域;⑤利用线性目标函数(直线)求出最优解;⑥实际问题需要整数解时,应适当调整,以确定最优解. 跟踪训练3 预算用2 000元购买单价为50元的桌子和20元的椅子,希望使桌子和椅子的总数尽可能的多,但椅子数不少于桌子数,且不多于桌子数的1.5倍,问桌子、椅子各买多少才行? 解 设桌子、椅子分别买x 张、y 把,目标函数z =x +y ,把所给的条件表示成不等式组,即约束条件为⎩⎪⎪⎨⎪⎪⎧50x +20y ≤2 000,y ≥x ,y ≤1.5x ,x ≥0,x ∈N *,y ≥0,y ∈N *.由⎩⎨⎧50x +20y =2 000,y =x ,解得⎩⎪⎨⎪⎧x =2007,y =2007,所以A 点的坐标为⎝⎛⎭⎪⎪⎫2007,2007. 由⎩⎨⎧50x +20y =2 000,y =1.5x ,解得⎩⎨⎧x =25,y =752,所以B 点的坐标为⎝⎛⎭⎪⎪⎫25,752.所以满足条件的可行域是以A ⎝⎛⎭⎪⎪⎫2007,2007,B ⎝⎛⎭⎪⎪⎫25,752,O (0,0)为顶点的三角形区域(如图).由图形可知,目标函数z =x +y 在可行域内的最优解为B ⎝⎛⎭⎪⎪⎫25,752,但注意到x ∈N *,y ∈N *,故取⎩⎨⎧x =25,y =37.故买桌子25张,椅子37把是最好的选择.1.若直线y =2x 上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( ) A .-1 B .1 C.32D .22.某公司招收男职员x 名,女职员y 名,x 和y需满足约束条件⎩⎪⎨⎪⎧5x -11y ≥-22,2x +3y ≥9,2x ≤11,x ∈N *,y ∈N *,则z =10x+10y 的最大值是( ) A .80 B .85 C .90 D .953.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≤1,x ≤1,x +y ≥1,则z =x 2+y 2的最小值为________.一、选择题1.若点(x, y )位于曲线y =|x |与y =2所围成的封闭区域, 则2x -y 的最小值为()A .-6B .-2C .0D .22.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为( )A .-4B .0 C.43D .43.实数x ,y 满足⎩⎪⎨⎪⎧x ≥1,y ≥0,x -y ≥0,则z =y -1x 的取值范围是( )A .[-1,0]B .(-∞,0]C .[-1,+∞)D .[-1,1)4.若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a 的整点(x ,y )(整点是指横、纵坐标都是整数的点)恰有9个,则整数a 的值为( )A .-3B .-2C .-1D .05.已知x ,y 满足⎩⎪⎨⎪⎧x ≥1,x +y ≤4,x +by +c ≤0,目标函数z=2x +y 的最大值为7,最小值为1,则b ,c 的值分别为( )A .-1,4B .-1,-3C .-2,-1D .-1,-26.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥5,x -y +5≥0,x ≤3,使z=x +ay (a >0)取得最小值的最优解有无数个,则a 的值为( )A .-3B .3C .-1D .1二、填空题7.若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≤2,y ≤2,x +y ≥2,则z =x+2y 的取值范围是________.8.已知-1≤x +y ≤4且2≤x -y ≤3,则z =2x -3y 的取值范围是________(答案用区间表示). 9.已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎪⎨⎪⎧0≤x ≤2,y ≤2,x ≤2y 给定.若M (x ,y )为D 上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为________.10.满足|x |+|y |≤2的点(x ,y )中整点(横纵坐标都是整数)有________个.11.设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为________. 三、解答题12.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -4y ≤-3,3x +5y ≤25,x ≥1,目标函数z =2x -y ,求z 的最大值和最小值.13.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x 的图象上存在区域D 上的点,求a 的取值范围.14.某家具厂有方木料90 m3,五合板600 m2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m3,五合板2 m2,生产每个书橱需要方木料0.2 m3,五合板1 m2,出售一张方桌可获利润80元,出售一个书橱可获利润120元.(1)如果只安排生产书桌,可获利润多少?(2)如果只安排生产书橱,可获利润多少?(3)怎样安排生产可使所得利润最大?当堂检测答案1.答案 B解析如图,当y=2x经过且只经过x+y-3=0和x=m的交点时,m取到最大值,此时,即(m,2m)在直线x +y-3=0上,则m=1.2.答案 C解析该不等式组表示的平面区域为如图所示的阴影部分.由于x ,y ∈N *,计算区域内与⎝⎛⎭⎪⎪⎫112,92最近的点为(5,4),故当x =5,y =4时,z 取得最大值为90.3.答案 12解析实数x ,y 满足的可行域如图中阴影部分所示,则z 的最小值为原点到直线AB 的距离的平方,故z min =⎝ ⎛⎭⎪⎫122=12.课时精练答案一、选择题1.答案 A解析画出可行域,如图所示,解得A(-2,2),设z=2x-y,把z=2x-y变形为y=2x-z,则直线经过点A时z取得最小值;所以z min=2×(-2)-2=-6,故选A.2.答案 D解析作出可行域,如图所示.联立⎩⎨⎧ x +y -4=0,x -3y +4=0,解得⎩⎨⎧x =2,y =2.当目标函数z =3x -y 移到(2,2)时,z =3x -y 有最大值4. 3.答案 D解析 作出可行域,如图所示,y -1x的几何意义是点(x ,y )与点(0,1)连线l 的斜率,当直线l 过B (1,0)时k l 最小,最小为-1.又直线l 不能与直线x -y =0平行,∴k l <1.综上,k ∈[-1,1).4.答案 C解析不等式组所表示的平面区域如图阴影部分所示,当a=0时,只有4个整点(1,1),(0,0),(1,0),(2,0).当a=-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)5个整点.故选C.5.答案 D解析由题意知,直线x+by+c=0经过直线2x +y=7与直线x+y=4的交点,且经过直线2x +y=1和直线x=1的交点,即经过点(3,1)和点(1,-1),∴⎩⎨⎧ 3+b +c =0,1-b +c =0,解得⎩⎨⎧b =-1,c =-2.6.答案 D解析 如图,作出可行域,作直线l :x +ay =0,要使目标函数z =x +ay (a >0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x +y =5重合,故a =1,选D.二、填空题 7.答案 [2,6]解析 如图,作出可行域,作直线l :x +2y =0,将l 向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故z 的取值范围为[2,6].8.答案 [3,8] 解析 作出不等式组⎩⎨⎧-1≤x +y ≤4,2≤x -y ≤3表示的可行域,如图中阴影部分所示.在可行域内平移直线2x -3y =0,当直线经过x -y =2与x +y =4的交点A (3,1)时,目标函数有最小值z min =2×3-3×1=3;当直线经过x +y =-1与x -y =3的交点B (1,-2)时,目标函数有最大值z max =2×1+3×2=8.所以z ∈[3,8]. 9.答案 4解析 由线性约束条件⎩⎪⎨⎪⎧0≤x ≤2,y ≤2,x ≤2y画出可行域如图中阴影部分所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,目标函数的图象过点(2,2)时,z 最大,将点(2,2)代入z =2x +y ,得z 的最大值为4.10.答案13解析 |x |+|y |≤2可化为⎩⎪⎨⎪⎧x +y ≤2 (x ≥0,y ≥0),x -y ≤2 (x ≥0,y <0),-x +y ≤2 (x <0,y ≥0),-x -y ≤2 (x <0,y <0),作出可行域为如图正方形内部(包括边界),容易得到整点个数为13个. 11.答案 21解析 作出可行域(如图),即△ABC 所围区域(包括边界),其顶点为A (1,3),B (7,9),C(3,1)方法一∵可行域内的点都在直线x+2y-4=0上方,∴x+2y-4>0,则目标函数等价于z=x+2y-4,易得当直线z=x+2y-4在点B(7,9)处,目标函数取得最大值z max=21.方法二z=|x+2y-4|=|x+2y-4|5·5,令P(x,y)为可行域内一动点,定直线x+2y-4=0,则z=5d,其中d为P(x,y)到直线x+2y-4=0的距离.由图可知,区域内的点B与直线的距离最大,故d的最大值为|7+2×9-4|5=215.故目标函数z max=215·5=21.三、解答题12.解z=2x-y可化为y=2x-z,z的几何意义是直线在y轴上的截距的相反数,故当z取得最大值和最小值时,应是直线在y轴上分别取得最小和最大截距的时候.作一组与l0:2x-y=0平行的直线系l,经上下平移,可得:当l移动到l1,即经过点A(5,2)时,z max=2×5-2=8.当l移动到l2,即过点C(1,4.4)时,z min=2×1-4.4=-2.4.13.解先画出可行域,如图所示,y=a x必须过图中阴影部分或其边界.∵A(2,9),∴9=a2,∴a=3.∵a>1,∴1<a≤3.14.解由题意可画表格如下:(1)设只生产书桌x张,可获得利润z元,则⎩⎪⎨⎪⎧0.1x ≤90,2x ≤600,z =80x ,x ≥0⇒⎩⎪⎨⎪⎧x ≤900,x ≤300,x ≥0⇒0≤x ≤300. 所以当x =300时,z max =80×300=24 000(元), 即如果只安排生产书桌,最多可生产300张书桌,获得利润24 000元.(2)设只生产书橱y 个,可获得利润z 元,则⎩⎪⎨⎪⎧0.2y ≤90,1·y ≤600,z =120y ,y ≥0⇒⎩⎪⎨⎪⎧y ≤450,y ≤600,y ≥0⇒0≤y ≤450. 所以当y =450时,z max =120×450=54 000(元), 即如果只安排生产书橱,最多可生产450个书橱,获得利润54 000元.(3)设生产书桌x 张,书橱y 个,利润总额为z 元,则⎩⎪⎨⎪⎧0.1x +0.2y ≤90,2x +y ≤600,x ≥0,y ≥0⇒⎩⎪⎨⎪⎧x +2y ≤900,2x +y ≤600,x ≥0,y ≥0.z =80x +120y .在平面直角坐标系内作出上面不等式组所表示的平面区域,即可行域(如图).作直线l :80x +120y =0,即直线l :2x +3y =0. 把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,此时z =80x +120y 取得最大值.由⎩⎨⎧x +2y =900,2x +y =600,解得,点M 的坐标为(100,400).所以当x=100,y=400时,z max=80×100+120×400=56 000(元).因此,生产书桌100张、书橱400个,可使所得利润最大.。
线性规划问题(Linear Programming)

3.解:设每周播放连续剧甲x次,播放连续剧乙y次,收视率为z,则 约束条件为 80 x 40 y 320 x y 6 x 0 y 0
目标函数为
z=60x+20y
做出可行域如图所示: 作
l0 :3x y 0
将l向上平移,当l过M点时,z取得最大 值。
由于直线同侧的点的坐标代入Ax+By+C中,所得 2、 2、点定域(代入特殊点验证) 实数符号相同,所以只需在直线的某一侧取一个 特别地,当C≠0时常把原点作为特殊点。 特殊点代入Ax+By+C中,从所得结果的正负即可 判断Ax+By+C>0表示哪一侧的区域。
练习
1:画出下列不等式所表示的平面区域:
解:设x,y分别是计划生产甲、乙两种
混合肥料的车皮数,则x,y所满足的数
学关系式为
4 x y ≤ 10 18 x 15 y ≤ 66 x≥0 y≥0
分别画出不等式组中, 各不等式所表示的区域.
y
然后取交集,就是不等 式组所表示的区域。
10 9 8 7 6 5 4 3 2 1 O
关于x,y一次不等 式组的约束条件
2 x y 50 x 10 y 20
时,求z的最大值和最小值. 线性规 划问题
所有的
任何一个满足 不等式组的 (x,y)
可行解
可行域
解线性规划问题的步骤:
1.找: 找出线性约束条件、目标函数; 2.画:画出线性约束条件所表示的可行域; 3.移:在线性目标函数所表示的一组平行线 中,利用平移的方法找出与可行域有公共点 且纵截距最大或最小的直线; 4.求:通过解方程组求出最优解; 5.答:作出答案。
线性规划问题的图解法

单纯形法的计算(jìsuàn)步骤
单纯形法的思路(sīlù)
找出一个(yī ɡè)初始可行解
4x1
16
可行(kěxíng)域
单纯形法的进一步讨论(tǎolùn)-人工变量法
第四十三页,共51页。
单纯形法的计算(jìsuàn)步骤
是否最优 故人(gùrén)为添加两个单位向量,得到人工变量单纯形法数学模型:
量作为换出变量。
L
min
bi a ik
a ik
0
第二十九页,共51页。
单纯形法的计算(jìsuàn)步骤
③ 用换入变量(biànliàng)xk替换基变量(biànliàng)中的换出变量 (biànliàng),得到一个新的基。对应新的基可以找出一个新的基可 行解,并相应地可以画出一个新的单纯形表。
: X (1) K和X (2) K
X X (1) (1 ) X (2) (0 1)
则X为顶点(dǐngdiǎn).
(wèntí)
的 几
第四页,共51页。
凸组合(zǔhé):
意线 义性
规 划 问 题 的 几 何
设X(1) ,..., X (k)是n维向量空间中的k个点,
若存在1,..., k ,且0 i 1, i 1,2,..., k,
A
1 域2 3
D
| E|
45
4 x2 16 x1 + 2x2 8
|||| 6789
x1
第九页,共51页。
❖图解法
目标(mùbiāo)函数 Max Z = 2x1 + 3x2
x2 9—
8—
7—
6—
5—
4—
线性规划的定义及解题方法

线性规划的定义及解题方法线性规划是一种数学建模技术,旨在解决在约束条件下,寻求最优解的问题。
它的实际应用十分广泛,例如管理学、经济学、物流学等领域。
线性规划可以分为单目标和多目标两种,但其中比较常见的是单目标线性规划。
本文将从线性规划的定义、模型建立、求解方法等方面阐述其原理与应用。
一、线性规划的定义线性规划的定义是:在有限约束条件下,目标函数为线性的最优化问题。
它通过数学模型的建立,将涉及到的变量、约束条件与目标函数转化为线性等式或不等式的形式,从而寻找最优解。
通常,线性规划的目标是最大化或最小化某个变量,可以用以下的形式去表示:$$Z=C_1X_1+C_2X_2+……+C_nX_n $$其中,$Z$为目标函数值,$X_1, X_2,……,X_n$为待求变量,$C_1, C_2,……,C_n$为相应的系数。
在线性规划中,会涉及到许多变量,这些变量需要受到一些限制。
这些限制可以用不等式或等式来表示,这些方程式被称为约束条件。
例如:$$A_1X_1+A_2X_2+……+A_nX_n≤B$$$$X_i≥0, i=1,2,……, n $$这两个方程就代表了一些约束条件,例如目标函数系数的和不能超过某个值,若$X_i$为生产的产品数量,则需保证产量不能小于零等。
这些约束条件用于限制变量的取值范围,而目标函数则用于求解最优解。
二、线性规划的模型建立在建立线性规划模型时,需要考虑几个要素:1. 决策变量:它是模型求解的关键。
决策变量是指在模型中未知的数量,也就是需要我们寻找最优解的那些变量。
2. 目标函数:确定目标函数,既要知道最大化还是最小化,还要知道哪些变量是影响目标函数的。
3. 约束条件:约束条件通常是一组等式或不等式,代表问题的限制。
例如在一个工厂中最大的生产量、原材料的数量限制、人工的数量等等,这些都是约束条件。
4. 模型的参数:模型参数是指约束条件的系数和模型中的常数。
它们是从现实问题中提取出来的,由于模型的解法通常是数学的,因此需要具体的数值。
线性规划问题的两种求解方式

线性规划问题的两种求解⽅式线性规划问题的两种求解⽅式线性规划是运筹学中研究较早、发展较快、应⽤⼴泛、⽅法较成熟的⼀个重要分⽀,它是辅助⼈们进⾏科学管理的⼀种数学⽅法。
线性规划所研究的是:在⼀定条件下,合理安排⼈⼒物⼒等资源,使经济效果达到最好。
⼀般地,求线性⽬标函数在线性约束条件下的最⼤值或最⼩值的问题,统称为线性规划问题。
解决线性规划问题常⽤的⽅法是图解法和单纯性法,⽽图解法简单⽅便,但只适⽤于⼆维的线性规划问题,单纯性法的优点是可以适⽤于所有的线性规划问题,缺点是单纯形法中涉及⼤量不同的算法,为了针对不同的线性规划问题,计算量⼤,复杂繁琐。
在这个计算机⾼速发展的阶段,利⽤Excel建⽴电⼦表格模型,并利⽤它提供的“规划求解”⼯具,能轻松快捷地求解线性模型的解。
⽆论利⽤哪种⽅法进⾏求解线性规划问题,⾸先都需要对线性规划问题建⽴数学模型,确定⽬标函数和相应的约束条件,进⽽进⾏求解。
从实际问题中建⽴数学模型⼀般有以下三个步骤;1、根据所求⽬标的影响因素找到决策变量;2、由决策变量和所求⽬标的函数关系确定⽬标函数;3、由决策变量所受的限制条件确定决策变量所要满⾜的约束条件。
以下是分别利⽤单纯形法和Excel表格中的“规划求解”两种⽅法对例题进⾏求解的过程。
例题:某⼯⼚在计划期内要安排⽣产I、II两种产品,已知⽣产单位产品所需的设备台时分别为1台时、2台时,所需原材料A分别为4单位、0单位,所需原材料B分别为0单位、4单位,⼯⼚中设备运转最多台时为8台时,原材料A、B的总量分别为16单位、12单位。
每⽣产出I、II产品所获得的利润为2和3,问I、II两种产品的⽣产数量的哪种组合能使总利润最⼤?这是⼀个典型的产品组合问题,现将问题中的有关数据列表1-1如下:表1-1I II 限量设备 1 2 8台时原材料A 4 0 16单位原材料B 0 4 12单位所获利润 2 3⾸先对例题建⽴数学模型。
问题的决策变量有两个:产品I的⽣产数量和产品II的⽣产数量;⽬标是总利润最⼤;需满⾜的条件是:(1)两种产品使⽤设备的台时<= 台时限量值(2) ⽣产两种产品使⽤原材料A、B的数量<= 限量值(3)产品I、II的⽣产数量均>=0。
单纯形法求解线性规划的步骤

单纯形法求解线性规划的步骤1>初始化将给定的线性规划问题化成标准形式,并建立一个初始表格,它最右边的单元格都是非负的(否则无解),接下来的m列组成一个m*m的单元矩阵(目标行的单元格则不必满足这一条件),这m列确定了初始的基本可行解的基本变量,而表格中行用基本变量来表示2>最优化测试如果目标行的所有单元格都是非负的(除了最右列中代表目标函数值的那个单元格),就可以停止了,该表格代表了一个最优解,它的基本变量的值在最右列中,而剩下的非基本变量都为03>确定输入变量从目标行的前n个单元格中选择一个负的单元格(选择绝对值最大的那个)该单元格所在的列确定的输入变量及主元列4>确定分离变量对于主元列的每个正单元格,求出θ比率(如果主元格的单元格为负或为0,说明该问题是无解的,算法终止),找出θ比率最小的列,改行确定了分离变量和主元行5>建立下一张表格将主元行的所有单元格除以主元得到新的主元行,包括主元行在内的每一行,要减去改行主元列单元格和新主元行的成绩(除主元行为1外,这一步将主元列的所有单元格变成0).把主元列的变量名进行代换,得到新的单纯形表,返回第一步为求简单在本程序中,需要自己建立标准矩阵(比如加入松弛变量等工作需要用户自己完成),程序的输入有两种方式:1:指定行和列,由用户自行输入每一个元素 SimpleMatrix(introw=0,int col=0);2:直接在主程序中初始化一个二维数组,然后利用构造函数 SimpleMatrix(introw,int col,double **M) 来初始化和处理(本程序所用的实例用的是这种方法)程序中主要的函数以及说明~SimpleMatrix();销毁动态分配的数组.用于很难预先估计矩阵的行和列,所以在程序中才了动态的内存分配.需要重载析构函数bool Is_objectLine_All_Positive(); //判断目标行是否全部为非负数,最后一列不作考虑这个函数用来判断是否已经存在最优解bool Is_MainCol_All_Negative(int col);//判断主元列是否全部为负数或零这个函数用来判断线性规划是否是无解的bool Is_column_all_Positive(int col); //判断col列中是否全部为正(不包括目标行)用来判断线性规划是否存在最优解,因为如果最后一列如果有负数的化,就无解了,算法终止int InColumn(); //确定输入变量用来判断主元所在的列int DepartRow(int col); //确定分离变量(寻找主元)用来确定主元所在的行void MainItem_To_1(int row,int col); //将主元所在的行做处理,使主元变为1void SubMatrixLine(int row1,int row2,intcol);//将矩阵的其他行做处理,矩阵的两行相减这个函数是在主元行已经做处理以后调用,目的是是矩阵的其他行主元列的元素变成0.其中row2为主元所在的行,col为主元所在的列,row1为要处理的行void PrintAnswer(); //输出矩阵的最优解int GetRows(); //返回矩阵的行数int GetCols(); //返回矩阵的列数double GetItem(int row,int col); //返回矩阵第row行,第col列的元素源代码//SimpleMatrix.h#ifndef SIMPLEMATRIX_H_#define SIMPLEMATRIX_H_class SimpleMatrix{public:SimpleMatrix(int row=0,int col=0);SimpleMatrix(int row,int col,double **M);~SimpleMatrix();bool Is_objectLine_All_Positive(); //判断目标行是否全部为非负数,最后一列不作考虑 bool Is_MainCol_All_Negative(int col);//判断主元列是否全部为负数或零bool Is_column_all_Positive(int col); //判断col列中是否全部为正(不包括目标行)int InColumn(); //确定输入变量int DepartRow(int col); //确定分离变量(寻找主元)void MainItem_To_1(int row,int col); //将主元所在的行做处理,使主元变为1void SubMatrixLine(int row1,int row2,int col);//将矩阵的其他行做处理,矩阵的两行相减 void PrintAnswer(); //输出矩阵的最优解int GetRows(); //返回矩阵的行数int GetCols(); //返回矩阵的列数double GetItem(int row,int col); //返回矩阵第row行,第col列的元素private:int rowLen; //标准矩阵的行数int colLen; //标准矩阵的列数double **data; //一个二维数组,指向标准矩阵的数据成员void init(int rows,int cols); //动态分配一个rows行,cols列的二维数组};#end if//SimpleMatrix.cpp#include <iostream>#include <cmath>#include "SimpleMatrix.h"using namespace std;void SimpleMatrix::init(int rows,int cols){if(rows>0&&cols>0){rowLen=rows;colLen=cols;data = new double *[rows];for (int i=0;i<rows;i++){data[i]=new double[cols];}}elsecout<<"矩阵的行.列数不合法"<<endl;}SimpleMatrix::SimpleMatrix(int row,int col){init(row,col);for(int i=0;i<rowLen;i++){cout<<"请输入矩阵中第"<<i+1<<"行的系数"<<endl; for(int j=0;j<colLen;j++)cin>>data[i][j];}}SimpleMatrix::SimpleMatrix(int row,int col,double **M) {rowLen=row;colLen=col;init(row,col);for (int i=0;i<row;i++)for(int j=0;j<col;j++){data[i][j]=*((double*)M+col*i+j); ;}}SimpleMatrix::~SimpleMatrix(){if(colLen*rowLen != 0 ){for(int i=rowLen-1;i>=0;i--){if (data[i]!=NULL)if (data!=NULL)delete[] data;}}bool SimpleMatrix::Is_objectLine_All_Positive(){for(int i=0;i<colLen-1;i++)if(data[rowLen-1][i]<0)return false;return true;}bool SimpleMatrix::Is_MainCol_All_Negative(int col) {for(int i=0;i<rowLen;i++)if(data[i][col]>0)return false;return true;}bool SimpleMatrix::Is_column_all_Positive(int col) {for(int i=0;i<rowLen-1;i++){if(data[i][col-1]<0)return false;}return true;}int SimpleMatrix::InColumn(){int count=0;for(int i=0;i<colLen-1;i++){int temp=GetItem(rowLen-1,i);if(temp>=0){count++;}elsebreak;}double maxItem=fabs(GetItem(rowLen-1,count)); int index_col;for(i=0;i<colLen-1;i++){double temp=GetItem(rowLen-1,i);if(temp<0){maxItem=fabs(temp);index_col=i;}}}return index_col;}int SimpleMatrix::DepartRow(int col){int index_row;int count=0;for(int i=0;i<rowLen;i++){if(data[i][col]<0)count++;elsebreak;}double minItem=data[count][colLen-1]/data[count][col]; index_row=count;double temp;for(i=0;i<rowLen-1;i++){temp=data[i][col];if(temp>0){temp=data[i][colLen-1]/temp;if(temp<minItem){minItem=temp;index_row=i;}}}return index_row;}void SimpleMatrix::MainItem_To_1(int row,int col){double temp=GetItem(row,col);//double temp=data[row-1][col-1];for (int i=0;i<colLen;i++){data[row][i]/=temp;}}void SimpleMatrix::SubMatrixLine(int row1,int row2,int col) {double temp=GetItem(row1,col);//double temp=data[row1-1][col-1];double*tempLine=new double[colLen];for(int i=0;i<colLen;i++){tempLine[i]=data[row2][i];}for(i=0;i<colLen;i++){data[row1][i]=data[row1][i]-temp*tempLine[i];}delete[]tempLine;}int SimpleMatrix::GetRows(){return rowLen;}int SimpleMatrix::GetCols(){return colLen;}double SimpleMatrix::GetItem(int row,int col){return data[row][col];}void SimpleMatrix::PrintAnswer(){//先确定单位矩阵中1的位置for (int i=0;i<GetRows();i++)for (int j=0;j<GetRows();j++){if(1==data[i][j]){int index_col=j;cout<<"x"<<index_col+1<<"="<<data[i][colLen-1]<<" ";}}cout<<endl;cout<<"取得最优解,并且最优值为"<<data[rowLen-1][colLen-1];}//单纯形法.cpp#include <iostream>#include "SimpleMatrix.h"using namespace std;int main(){double M[4][7]={{5,3,1,1,0,0,9},{-5,6,15,0,1,0,15},{2,-1,1,0,0,-1,5},{-10,-15,-12,0,0,0,}}; SimpleMatrix Matrix(4,7,(double **)M);if(Matrix.Is_column_all_Positive(5)) //判断是否存在最优解{bool p=Matrix.Is_objectLine_All_Positive(); //判断主元列是否全部为正,确定是否已经取得最优解 while(!p){int col=Matrix.InColumn(); //确定主元所在的行if(Matrix.Is_MainCol_All_Negative(col)) //确定线性规划的解是否为无解的{cout<<"线性规划问题是无界的,没有最优解"<<endl;exit(EXIT_FAILURE);}else{int mainRow=Matrix.DepartRow(col); //确定主元所在的行Matrix.MainItem_To_1(mainRow,col); //将主元所在的行做变换,使主元变成1int i=0;while(i<Matrix.GetRows()){if(i!=mainRow){Matrix.SubMatrixLine(i,mainRow,col); //处理矩阵中其他的行,使主元列的元素为0i++;}else{i++;}}}for(int i=0;i<Matrix.GetRows();i++) //输出变换以后的矩阵,判断是否正确处理{for (int j=0;j<Matrix.GetCols();j++){cout<<Matrix.GetItem(i,j)<<" ";}cout<<endl;}p=Matrix.Is_objectLine_All_Positive();}Matrix.PrintAnswer();}elsecout<<"线性规划无解"<<endl;return0;}。
线性规划问题的图解法

j
0 0 j c j c i a ij
bi 其中: i a kj 0 a kj
单纯形法的计算步骤
例1.8 用单纯形法求下列线性规划的最优解
max Z 3 x1 4 x 2 2 x1 x 2 40 x1 3 x 2 30 x , x 0 1 2
A
0
E
| 5
| 6
| 7
| 8
| 9
x1
图解法
9— 8—
目标函数 Max Z = 2x1 + 3x2
约束条件 x1 + 2x2 8
4x1 16 4x2 12 x1、 x2 0
x2
7—
6— 5—
4x1 16
C 4 x2 16
4 —B
3— 2— 1—
D
| 1 | 2 | 3 | 4
4—
3— 2— 1— 0
x1
图解法
9— 8—
目标函数 Max Z = 2x1 + 3x2
约束条件 x1 + 2x2 8
4x1 16 4x2 12 x1、 x2 0
x2
7—
6— 5—
4x1 16 4 x2 12 x1 + 2x2 8
4—
3— 2— 1— 0
可行域
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
x2
X1 + 1.9X2 = 11.4 (≤)
8=5X1+4X2 此点是唯一最优解 ( 0, 2)
D
43=5X1+4X2
可行域
线性规划问题标准化

线性规划问题标准化线性规划是一种用于优化问题的数学方法,它可以帮助我们找到最佳的决策方案。
在实际应用中,线性规划问题可能会受到各种约束条件的限制,这时就需要对线性规划问题进行标准化处理,以便更好地进行求解。
本文将介绍线性规划问题标准化的方法和步骤。
首先,我们需要明确线性规划问题的标准形式。
线性规划问题的标准形式如下:\[。
\begin{array}{ll}。
\text { maximize } & c^{T} x \\。
\text { subject to } & A x \leq b \\。
& x \geq 0。
\end{array}。
\]其中,c是一个n维向量,x是n维变量向量,A是m×n的矩阵,b是m维向量。
这个问题的目标是找到一个满足所有约束条件的x,使得c^Tx的值最大。
接下来,我们将介绍线性规划问题的标准化步骤。
首先,我们需要将不等式约束转化为等式约束。
这可以通过引入松弛变量来实现。
假设原始的不等式约束为A x ≤ b,我们可以引入一个非负的松弛变量s,将不等式约束转化为等式约束,A x + s = b。
这样,我们就将原始的不等式约束转化为了等式约束。
其次,我们需要将目标函数转化为标准形式。
如果原始的线性规划问题是最小化问题,我们可以通过将目标函数乘以-1来转化为最大化问题。
假设原始的目标函数为最小化c^Tx,我们可以将其转化为最大化-c^Tx。
最后,我们需要将变量的非负约束加入到等式约束中。
假设原始的变量x有非负约束,我们可以引入非负的松弛变量x+和x-,将变量的非负约束转化为等式约束,x = x+ x-。
这样,我们就将变量的非负约束加入到了等式约束中。
通过以上步骤,我们就可以将原始的线性规划问题转化为标准形式。
接下来,我们可以利用标准形式的线性规划问题进行求解,得到最优解。
在实际应用中,线性规划问题的标准化可以帮助我们更好地理解和求解问题,提高工作效率,取得更好的效果。
线性规划化为标准型

线性规划化为标准型线性规划是运筹学中的一种重要方法,它在资源分配、生产计划、物流管理等领域有着广泛的应用。
将线性规划问题化为标准型是解决线性规划问题的基本步骤之一,本文将介绍线性规划问题的标准型及其转化方法。
一、线性规划问题的标准型。
线性规划问题的标准型是指将原始的线性规划问题转化为一种特定形式的数学模型。
线性规划问题的标准型通常具有以下形式:\[。
\begin{array}{ll}。
\text { Maximize } & c^{T} x \\。
\text { subject to } & A x=b \\。
& x \geq 0。
\end{array}。
\]其中,$x$是一个$n$维向量,表示决策变量;$c$是一个$n$维向量,表示目标函数的系数;$A$是一个$m \times n$的矩阵,$b$是一个$m$维向量,表示约束条件的系数。
在标准型中,约束条件通常包括等式约束和非负约束。
二、将线性规划问题转化为标准型的方法。
1. 将不等式约束转化为等式约束。
对于原始的线性规划问题,如果存在不等式约束,可以通过引入松弛变量将其转化为等式约束。
例如,对于不等式约束$a^{T} x \leq b$,可以引入松弛变量$y$,得到等式约束$a^{T} x+y=b$,其中$y \geq 0$。
2. 将目标函数转化为最大化形式。
如果原始的线性规划问题是最小化形式,可以通过取其相反数转化为最大化形式。
例如,对于最小化问题$\min c^{T} x$,可以转化为最大化问题$\max -c^{T} x$。
3. 引入人工变量。
对于原始的线性规划问题,如果约束条件中存在非负约束,可以通过引入人工变量将其转化为等式约束。
例如,对于非负约束$x \geq 0$,可以引入人工变量$y$,得到等式约束$x+y=b$,其中$y \geq 0$。
三、实例分析。
考虑以下线性规划问题:\[。
\begin{array}{ll}。
线性规划通过线性规划解决实际问题

线性规划通过线性规划解决实际问题线性规划是一种数学优化方法,广泛应用于解决实际问题。
它能够帮助我们合理安排资源,最大化利益或最小化成本。
通过线性规划,我们可以得到一个最优的决策方案。
一、线性规划的基本概念和原理线性规划是一种在约束条件下求解线性目标函数的优化问题。
它的基本概念包括决策变量、目标函数和约束条件。
1. 决策变量: 在线性规划中,我们需要定义一些决策变量,它们代表着我们需要做出的决策或者选择的方案。
2. 目标函数: 目标函数是线性规划中需要优化的目标,可以是最大化利润、最小化成本等。
3. 约束条件: 约束条件是限制线性规划问题的条件,可以是资源的限制、技术要求等。
线性规划的原理是通过建立数学模型,将实际问题转化为数学问题,然后通过求解数学模型来得到最优解。
二、线性规划的应用领域线性规划在实际中有着广泛的应用领域,下面举几个例子来说明:1. 生产计划: 一家制造厂需要决定如何安排生产计划,以最大化利润。
线性规划可以帮助厂商确定每种产品的生产数量,以及每种产品所需要的资源和人力安排。
2. 运输调度: 一个物流公司需要决定如何合理地调度运输车辆,以最小化运输成本。
线性规划可以帮助物流公司确定各个仓库之间的物流路径和货物的运输量。
3. 资源分配: 一个学校需要决定如何合理地分配教职工和学生的资源,以最大化教育效益。
线性规划可以帮助学校确定教职工的安排和学生的班级编排。
三、线性规划的解决步骤解决线性规划问题一般需要以下几个步骤:1. 建立模型: 根据实际问题,将问题转化为线性规划模型,包括确定决策变量、目标函数和约束条件。
2. 求解方法: 使用线性规划方法,如单纯形法、对偶法等,求解线性规划模型,得到最优解。
3. 解释结果: 对最优解进行解释和分析,确定最优决策方案。
四、线性规划方法的优势和局限性线性规划方法有一定的优势和局限性。
1. 优势:线性规划方法是一种成熟、有效、可靠的数学方法,能够提供合理的决策方案。
线性规划基本知识

线性规划基本知识线性规划是一种数学优化方法,用于在给定限制条件下最大或最小化线性目标函数。
它是现代数学、工程学和运筹学的基础之一,被广泛应用于制造业、金融、交通、物流等领域。
本文将介绍线性规划的基础知识,包括线性规划问题的表达方式、标准形式、单纯形法求解以及对偶理论等。
一、线性规划问题的表达方式线性规划问题的表达方式通常包含以下部分:1. 决策变量:表示求解问题时需要确定的变量,通常用x1、x2、......、xn表示。
2. 目标函数:表示优化的目标,通常是一个线性函数,用c1x1+c2x2+......+cnxn表示。
3. 约束条件:表示限制决策变量的取值范围,通常是线性等式或不等式,用a11x1+a12x2+......+a1nxn≤b1、a21x1+a22x2+......+a2nxn≤b2、......、am1x1+am2x2+......+amnxn≤bm 表示。
其中,决策变量x1、x2、......、xn的取值范围可以是非负实数集合、整数集合或者其他特定取值范围。
二、线性规划的标准形式通常情况下,线性规划问题都可以通过一些变换,转化为标准形式进行求解。
标准形式的线性规划问题包括以下三个部分:1. 最大化或最小化的目标函数2. 约束条件,所有约束条件都是小于等于号3. 决策变量的取值范围,所有决策变量都是非负实数三、单纯形法求解线性规划问题单纯形法是线性规划问题最常用的求解方法之一,它是一种迭代的过程,通过一系列基本变换(基本可行解、进入变量、离开变量、更新表格)逐步接近最优解。
单纯形法求解线性规划问题的步骤如下:1. 将线性规划问题转化为标准形式。
2. 确定一个初始可行解。
3. 计算第一行表格的系数,并找出最小的系数所在的列,作为进入变量。
4. 确定离开变量,通过将所有正数元素对应的值除以对应进入变量的系数,找到最小的元素所在的行,作为离开变量所在行。
5. 更新表格,完成一次迭代。
6. 重复第三至第五步,直至得到最优解或者确定问题无可行解或是无界问题。
线性规划图解法

下面我们分析一下简单的情况—— 只有两个决策 变量的线性规划问题,这时可以通过图解的方法来 求解。图解法具有简单、直观、便于初学者窥探线 性规划基本原理和几何意义等优点。
精选课件
图解法
Page 2
一、线性规划的图解法(解的几何表示)
对于只有两个变量的线性规划问题,可以在二维直角坐标 平面上作图表示线性规划问题的有关概念,并求解。
X1 + 1.9X2 = 10.2 (≤)
8=5X1+4X2 此点是唯一最优解 (0,2)
D可行域
43=5X1+4X2
max Z
X1 + 1.9X2 = 3.8(≥)
min Z
o
L0: 0=5X1+4X2
精选课件
X1 - 1.9X2 = 3.8 (≤)
Page 18
x1
图解法
x2
6 3x1+x2=6(≥) 4
X = X1 + (1- ) X2 则必定有X = X1 = X2,则称X为S的一个顶点。
精选课件
图解法
Page 24
可以证明,线性规划的可行域以及最优解有以下 性质:
(1)、若线性规划的可行域非空,则可行域必定为一凸集;
(2)、线性规划问题的基本可行解对应于可行域的顶点;
(3)、若可行域有界,线性规划问题的目标函数一定可以在 其可行域的顶点上达到最优,或在可行域的某个顶点(唯一最 优解)或在某两个顶点及其连线上(无穷多最优解)得到。
2x1+ x2 50 z = 50x1+30x2= 1350
z = 50x1+30x2= 900
(15, 20)
单纯形法求解线性规划的步骤

单纯形法求解线性规划的步骤1>初始化将给定的线性规划问题化成标准形式,并建立一个初始表格,它最右边的单元格都是非负的(否则无解),接下来的m列组成一个m*m的单元矩阵(目标行的单元格则不必满足这一条件),这m列确定了初始的基本可行解的基本变量,而表格中行用基本变量来表示2>最优化测试如果目标行的所有单元格都是非负的(除了最右列中代表目标函数值的那个单元格),就可以停止了,该表格代表了一个最优解,它的基本变量的值在最右列中,而剩下的非基本变量都为03>确定输入变量从目标行的前n个单元格中选择一个负的单元格(选择绝对值最大的那个)该单元格所在的列确定的输入变量及主元列4>确定分离变量对于主元列的每个正单元格,求出θ比率(如果主元格的单元格为负或为0,说明该问题是无解的,算法终止),找出θ比率最小的列,改行确定了分离变量和主元行5>建立下一张表格将主元行的所有单元格除以主元得到新的主元行,包括主元行在内的每一行,要减去改行主元列单元格和新主元行的成绩(除主元行为1外,这一步将主元列的所有单元格变成0).把主元列的变量名进行代换,得到新的单纯形表,返回第一步为求简单在本程序中,需要自己建立标准矩阵(比如加入松弛变量等工作需要用户自己完成),程序的输入有两种方式:1:指定行和列,由用户自行输入每一个元素SimpleMatrix(introw=0,int col=0);2:直接在主程序中初始化一个二维数组,然后利用构造函数SimpleMatrix(introw,int col,double **M) 来初始化和处理(本程序所用的实例用的是这种方法)程序中主要的函数以及说明~SimpleMatrix();销毁动态分配的数组.用于很难预先估计矩阵的行和列,所以在程序中才了动态的内存分配.需要重载析构函数bool Is_objectLine_All_Positive();其中row2为主元所在的行,col为主元所在的列,row1为要处理的行void PrintAnswer();数不合法"<<endl;}SimpleMatrix::SimpleMatrix(int row,int col){init(row,col);for(int i=0;i<rowLen;i++)cout<<"请输入矩阵中第"<<i+1<<"行的系数"<<endl; for(int j=0;j<colLen;j++)cin>>data[i][j];}?}SimpleMatrix::SimpleMatrix(int row,int col,double **M) {rowLen=row;colLen=col;init(row,col);for (int i=0;i<row;i++)for(int j=0;j<col;j++){data[i][j]=*((double*)M+col*i+j); ;}}SimpleMatrix::~SimpleMatrix(){if(colLen*rowLen != 0 ){for(int i=rowLen-1;i>=0;i--){if (data[i]!=NULL)delete[] data[i];}if (data!=NULL)delete[] data;}?}bool SimpleMatrix::Is_objectLine_All_Positive(){for(int i=0;i<colLen-1;i++)if(data[rowLen-1][i]<0)return false;return true;}bool SimpleMatrix::Is_MainCol_All_Negative(int col) {for(int i=0;i<rowLen;i++)if(data[i][col]>0)return false;return true;}bool SimpleMatrix::Is_column_all_Positive(int col){for(int i=0;i<rowLen-1;i++){return false;}return true;}int SimpleMatrix::InColumn(){int count=0;for(int i=0;i<colLen-1;i++){int temp=GetItem(rowLen-1,i);if(temp>=0){count++;}elsebreak;}double maxItem=fabs(GetItem(rowLen-1,count));int index_col;for(i=0;i<colLen-1;i++){double temp=GetItem(rowLen-1,i);if(temp<0){if(maxItem<=fabs(temp)){maxItem=fabs(temp);index_col=i;}}}return index_col;}int SimpleMatrix::DepartRow(int col){int index_row;int count=0;for(int i=0;i<rowLen;i++){if(data[i][col]<0)count++;elsebreak;}double minItem=data[count][colLen-1]/data[count][col]; index_row=count;double temp;for(i=0;i<rowLen-1;i++)temp=data[i][col];if(temp>0){temp=data[i][colLen-1]/temp;if(temp<minItem){minItem=temp;index_row=i;}}}return index_row;}void SimpleMatrix::MainItem_To_1(int row,int col){double temp=GetItem(row,col);pp#include <iostream>#include ""using namespace std;int main(){double M[4][7]={{5,3,1,1,0,0,9},{-5,6,15,0,1,0,15},{2,-1,1,0,0,-1,5},{-10,-15,-12,0,0,0,}}; SimpleMatrix Matrix(4,7,(double **)M);if(5))//判断是否存在最优解{bool p=();//判断主元列是否全部为正,确定是否已经取得最优解while(!p){int col=();//确定主元所在的行if(col))//确定线性规划的解是否为无解的{cout<<"线性规划问题是无界的,没有最优解"<<endl;exit(EXIT_FAILURE);}else{int mainRow=(col);//确定主元所在的行(mainRow,col);//将主元所在的行做变换,使主元变成1int i=0;while(i<()){if(i!=mainRow){(i,mainRow,col);//处理矩阵中其他的行,使主元列的元素为0i++;}elsei++;}}}for(int i=0;i<();i++)//输出变换以后的矩阵,判断是否正确处理{for (int j=0;j<();j++){cout<<(i,j)<<" ";}cout<<endl;}p=();}();}elsecout<<"线性规划无解"<<endl;return0;}。
线性规划法及其包含的基本步骤

线性规划法及其包含的基本步骤
线性规划是一种求解约束优化问题的有效方法,其应用非常广泛。
它的基
本思想是将一个实际问题转化为一个线性规划模型,再利用一定的技巧求解此模型,从而求得相应的最优解。
线性规划法包括以下几个基本步骤:
第一,明确求解目标,即最优化问题的目标函数。
首先,需要由运筹学家
或管理者根据需要确定最优控制变量和对应的目标函数,即要达到的目标;
第二,定义约束条件,即求解最优化问题时,各个相关参数所受的限制。
这些限制通常包括技术要求、经济条件以及管理规定等;
第三,构造模型,是将数学模型与被解决的问题结合起来,将所有的约束
条件和目标函数以适当的数学表达式结合起来,形成一个整体的模型;
第四,求解最优化问题。
通过分析模型,可以将最优化问题转化为一个求
解线性规划的问题,根据此线性规划问题的形式,利用专门的求解方法,得出该线性规划问题的可行解,便当获得最优解。
从以上,可以看出,线性规划法是从解决最优化问题的角度出发,将约束
条件和目标函数经过数学模型的转换,构造相对应的线性规划模型,再运用专门的求解方法求解,来获得最优解的一种有效方法。
它不仅被用于科学研究,而且还应用于实际工程中,如产品设计、决策分析与仿真等,大大提高了计算效率与准确率,极大地方便了实际操作。
动态规划方法求解线性规划问题

动态规划方法求解线性规划问题动态规划是一种常用的优化方法,可以用来求解线性规划问题。
线性规划是一种数学建模方法,用于在给定的一组约束条件下,寻觅使目标函数最大(或者最小)的变量值。
本文将介绍动态规划方法在解决线性规划问题中的应用。
一、线性规划问题的定义和形式线性规划问题可以用下列形式来描述:目标函数:max/min Z = c₁x₁ + c₂x₂ + ... + cₙxₙ约束条件:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ其中,c₁、c₂、...、cₙ为目标函数的系数,x₁、x₂、...、xₙ为变量,a₁₁、a₁₂、...、aₙₙ为约束条件的系数,b₁、b₂、...、bₙ为约束条件的常数。
目标是找到使目标函数最大(或者最小)的变量值。
二、动态规划方法求解线性规划问题的基本思想动态规划方法可以将线性规划问题转化为一个多阶段决策问题,并通过递推的方式求解最优解。
具体步骤如下:1. 将线性规划问题转化为标准形式:将不等式约束转化为等式约束,并引入松弛变量。
2. 构建动态规划模型:定义状态和状态转移方程。
3. 初始化:确定初始状态和初始条件。
4. 递推求解:根据状态转移方程,逐步计算得到最优解。
5. 回溯得到最优解:根据递推过程中记录的状态,回溯得到最优解。
三、动态规划方法求解线性规划问题的具体步骤1. 将线性规划问题转化为标准形式:将不等式约束转化为等式约束,并引入松弛变量。
例如,将约束条件 a₁₁x₁ + a₁₂x₂ ≤ b₁转化为 a₁₁x₁ + a₁₂x₂ + x₃ = b₁,其中 x₃为松弛变量。
2. 构建动态规划模型:定义状态和状态转移方程。
定义状态:设 f(i,j) 表示前 i 个约束条件中,使得目标函数最大(或者最小)的变量值。
状态转移方程:f(i,j) = max/min { f(i-1,j), f(i-1,j-aᵢ₋₁₁x₁ - aᵢ₋₁₂x₂) +cᵢ₋₁x₁ + cᵢ₋₁x₂ }其中,f(i-1,j) 表示不使用第 i 个约束条件时的最优解,f(i-1,j-aᵢ₋₁₁x₁ -aᵢ₋₁₂x₂) + cᵢ₋₁x₁ + cᵢ₋₁x₂表示使用第 i 个约束条件时的最优解。
线性规划方法的实施步骤

线性规划方法的实施步骤引言线性规划是一种优化方法,用于求解满足一系列线性约束条件的目标函数的最优解。
本文介绍了线性规划方法的实施步骤,帮助读者了解如何使用该方法来解决实际问题。
步骤1. 确定问题在实施线性规划方法之前,需要明确解决的问题是什么。
这包括确定目标函数和约束条件。
目标函数是优化的目标,约束条件是对决策变量的限制。
明确问题是理解问题的关键第一步。
2. 建立数学模型将问题转化为数学模型是线性规划方法的关键步骤。
根据问题的特点,可以选择不同的数学模型。
常见的线性规划模型包括整数规划、混合整数规划、二次规划等。
根据实际情况选择合适的模型,并将目标函数和约束条件转化为线性方程或线性不等式。
3. 求解模型一旦建立了数学模型,就可以使用线性规划方法求解最优解。
求解的方法包括单纯形法、内点法、分支定界法等。
根据问题的规模和复杂程度选择合适的求解方法。
4. 分析结果得到最优解后,需要对结果进行分析和解释。
分析可以包括灵敏度分析和可行性分析。
灵敏度分析是指改变目标函数系数或约束条件对最优解的影响程度。
可行性分析是指检查最优解是否符合实际约束条件。
5. 实施解决方案根据最优解,制定实施方案并进行实施。
根据具体情况,可能需要调整方案以满足实际条件。
6. 监控和优化在实施解决方案后,需要进行监控和优化。
监控是指跟踪实施方案的执行情况,确保达到预期结果。
优化是指在实施过程中寻找进一步改进和优化的机会。
结论线性规划方法是一种强大的优化方法,能够帮助解决复杂的实际问题。
通过明确问题、建立数学模型、求解模型、分析结果、实施解决方案、监控和优化,我们能够有效地应用线性规划方法来解决实际问题。
希望本文的内容能够帮助读者更好地理解和应用线性规划方法。
线性规划基本思路

基本思路:基于线性规划问题的标准形,先确定一初始基可行解X0,并由此开始在保证目标函数值不下降的情况下逐次施行从一个基可行解到另一个基可行解的转换。
如此进行下去,直到取得最优解或判明问题无最优解为止。
4)基本步骤:(1)对一般线性规划问题标准化;(2)确定一初始基可行解X0;(3)若所有检验数σj ≤0( σj 为 的第j 个分量),则X0是线性规划问题的最优解,停止计算;否则转(4)(4)若存在σt <0所对应的系数列向量pt ≤O ,则线性规划问题无最优解,停止计算;否则转(5)。
(5)按最大检验数规则:确定进基变量xk 和主列pk ;再按最小比值规则:确定出基变量xl 和主元alk 。
(6)以主元alk 进行换基迭代得一新的基可行解x1,将x1 记为x0返回到(3)。
k j j j σσσ=>}0|{max lkl ik ik i i a b a a b =>}0|{min对偶关系对应表表上作业法是单纯形法在求解运输问题时的一种简化方法,其本质是单纯形法。
2)表上作业法的基本步骤:(1)找一初始的调运方案(初始基可行解);(必须满足:①产销平衡, ②数字格(基变量)的个数为:产地数+销地数-1;常用最小元素法寻找)(2)判断:计算表(产销平衡表)上空格(非基变量)的检验数,判断该方案是否为最优方案(最优解), 若是最优方案,则停止计算;否则转(3)。
(因运输问题为极小化问题,故最优性条件为:检验数σ≥0;常用位势法或闭合回路法计算检验数)(3)调整:确定某个空格和某个数字格的转换,找出新的调运方案(基可行解);转(2)。
(常用闭合回路法进行调整)(2)判断:用位势法计算空格(非基变量)检验数:①应用Cij=Ui+Vj 计算数字格(基变量)的位势Ui、Vj,并令:U1=0;②应用σij=Cij-(Ui+Vj )计算空格(非基变量)的检验数σij;③若所有空格(非基变量)的检验数σkl≥0,则停止计算, 输出最优方案;否则转(2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解决线性规划问题的基本步骤
1)求线性目标函数的在约束条件下的最值问题的求解步骤是:
①作图——画出约束条件(不等式组)所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l;
②平移——将l平行移动,以确定最优解所对应的点的位置;
③求值——解有关的方程组求出最优点的坐标,再代入目标函数,求出目标函数的最值
2)解决应用问题的基本步骤
1. 列举已知条件
2. 分别画出已知条件代表的直线或范围
3. 画出满足条件的区域
4.标出极值点
5理解目标函数的几何意义
6.求出目标函数的最值或范围。