高中物理曲线运动典型例题解析
高考必备物理曲线运动技巧全解及练习题(含答案)及解析
高考必备物理曲线运动技巧全解及练习题(含答案)及解析一、高中物理精讲专题测试曲线运动1.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x=v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.2.如图所示,水平实验台A 端固定,B 端左右可调,将弹簧左端与实验平台固定,右端 有一可视为质点,质量为2kg 的滑块紧靠弹簧(未与弹黄连接),弹簧压缩量不同时, 将滑块弹出去的速度不同.圆弧轨道固定在地面并与一段动摩擦因素为0.4的粗糙水平地面相切D 点,AB 段最长时,BC 两点水平距离x BC =0.9m,实验平台距地面髙度h=0.53m ,圆弧半径R=0.4m ,θ=37°,已知 sin37° =0.6, cos37° =0.8.完成下列问題:(1)轨道末端AB 段不缩短,压缩弹黄后将滑块弹出,滑块经过点速度v B =3m/s ,求落到C 点时速度与水平方向夹角;(2)滑块沿着圆弧轨道运动后能在DE 上继续滑行2m,求滑块在圆弧轨道上对D 点的压力大小:(3)通过调整弹簧压缩量,并将AB 段缩短,滑块弹出后恰好无碰撞从C 点进入圆弧 轨道,求滑块从平台飞出的初速度以及AB 段缩短的距离. 【答案】(1)45°(2)100N (3)4m/s 、0.3m 【解析】(1)根据题意C 点到地面高度0cos370.08C h R R m =-=从B 点飞出后,滑块做平抛运动,根据平抛运动规律:212C h h gt -= 化简则0.3t s =根据 BC B x v t = 可知3/B v m s =飞到C 点时竖直方向的速度3/y v gt m s == 因此tan 1y Bv v θ==即落到圆弧C 点时,滑块速度与水平方向夹角为45° (2)滑块在DE 阶段做匀减速直线运动,加速度大小fa g mμ== 根据222E D DE v v ax -=联立两式则4/D v m s =在圆弧轨道最低处2DN v F mg m R-= 则100N F N = ,即对轨道压力为100N .(3)滑块弹出恰好无碰撞从C 点进入圆弧轨道,说明滑块落到C 点时的速度方向正好沿着轨迹该出的切线,即0tan yv v α''= 由于高度没变,所以3/y y v v m s '== ,037α=因此04/v m s '= 对应的水平位移为01.2AC x v t m ='= 所以缩短的AB 段应该是0.3AB AC BC x x x m ∆=-=【点睛】滑块经历了弹簧为变力的变加速运动、匀减速直线运动、平抛运动、变速圆周运动,匀减速直线运动;涉及恒力作用的直线运动可选择牛顿第二定律和运动学公式;而变力作用做曲线运动优先选择动能定理,对匀变速曲线运动还可用运动的分解利用分运动结合等时性研究.3.如图所示,光滑的水平平台上放有一质量M =2kg ,厚度d =0.2m 的木板,木板的左端放有一质量m =1kg 的滑块(视为质点),现给滑块以水平向右、的初速度,木板在滑块的带动下向右运动,木板滑到平台边缘时平台边缘的固定挡板发生弹性碰撞,当木板与挡板发生第二次碰撞时,滑块恰好滑到木板的右端,然后水平飞出,落到水平地面上的A点,已知木板的长度l=10m,A点到平台边缘的水平距离s=1.6m,平台距水平地面的高度h=3m,重力加速度,不计空气阻力和碰撞时间,求:(1)滑块飞离木板时的速度大小;(2)第一次与挡板碰撞时,木板的速度大小;(结果保留两位有效数字)(3)开始时木板右端到平台边缘的距离;(结果保留两位有效数字)【答案】(1) (2)v=0.67m/s (3)x=0.29m【解析】【分析】【详解】(1)滑块飞离木板后做平抛运动,则有:解得(2)木板第一次与挡板碰撞后,速度方向反向,速度大小不变,先向左做匀减速运动,再向右做匀加速运动,与挡板发生第二次碰撞,由匀变速直线运动的规律可知木板两次与挡板碰撞前瞬间速度相等.设木板第一次与挡板碰撞前瞬间,滑块的速度大小为,木板的速度大小为v由动量守恒定律有:,木板第一与挡板碰后:解得:v=0.67m/s(3)由匀变速直线运动的规律:,,由牛顿第二定律:解得:x=0.29m.【点睛】对于滑块在木板上滑动的类型,常常根据动量守恒定律和能量守恒定律结合进行研究.也可以根据牛顿第二定律和位移公式结合求出运动时间,再求木板的位移.4.如图所示,ABCD是一个地面和轨道均光滑的过山车轨道模型,现对静止在A处的滑块施加一个水平向右的推力F,使它从A点开始做匀加速直线运动,当它水平滑行2.5 m时到达B点,此时撤去推力F、滑块滑入半径为0.5 m且内壁光滑的竖直固定圆轨道,并恰好通过最高点C,当滑块滑过水平BD部分后,又滑上静止在D处,且与ABD等高的长木板上,已知滑块与长木板的质量分别为0.2 kg、0.1 kg,滑块与长木板、长木板与水平地面间的动摩擦因数分别为0.3、,它们之间的最大静摩擦力均等于各自滑动摩擦力,取g=10 m/s2,求:(1)水平推力F的大小;(2)滑块到达D点的速度大小;(3)木板至少为多长时,滑块才能不从木板上掉下来?在该情况下,木板在水平地面上最终滑行的总位移为多少?【答案】(1)1N(2)(3)t=1 s ;【解析】【分析】【详解】(1)由于滑块恰好过C点,则有:m1g=m1从A到C由动能定理得:Fx-m1g·2R=m1v C2-0代入数据联立解得:F=1 N(2)从A到D由动能定理得:Fx=m1v D2代入数据解得:v D=5 m/s(3)滑块滑到木板上时,对滑块:μ1m1g=m1a1,解得:a1=μ1g=3 m/s2对木板有:μ1m1g-μ2(m1+m2)g=m2a2,代入数据解得:a2=2 m/s2滑块恰好不从木板上滑下,此时滑块滑到木板的右端时恰好与木板速度相同,有:v共=v D-a1tv共=a2t,代入数据解得:t =1 s此时滑块的位移为:x 1=v D t -a 1t 2,木板的位移为:x 2=a 2t 2,L =x 1-x 2,代入数据解得:L =2.5 m v 共=2 m/s x 2=1 m达到共同速度后木板又滑行x ′,则有:v 共2=2μ2gx ′,代入数据解得:x ′=1.5 m木板在水平地面上最终滑行的总位移为:x 木=x 2+x ′=2.5 m点睛:本题考查了动能定理和牛顿第二定律、运动学公式的综合运用,解决本题的关键理清滑块和木板在整个过程中的运动规律,选择合适的规律进行求解.5.地面上有一个半径为R 的圆形跑道,高为h 的平台边缘上的P 点在地面上P′点的正上方,P′与跑道圆心O 的距离为L (L >R ),如图所示,跑道上停有一辆小车,现从P 点水平抛出小沙袋,使其落入小车中(沙袋所受空气阻力不计).问:(1)当小车分别位于A 点和B 点时(∠AOB=90°),沙袋被抛出时的初速度各为多大? (2)要使沙袋落在跑道上,则沙袋被抛出时的初速度在什么范围内?(3)若小车沿跑道顺时针运动,当小车恰好经过A 点时,将沙袋抛出,为使沙袋能在B 处落入小车中,小车的速率v 应满足什么条件?【答案】(1)()2A gv L R h =-22()2B g L R v h+=(2)0((L R v L R -≤≤+(3)1(41)0,1,2,3...)2v n n π=+= 【解析】 【分析】 【详解】(1)沙袋从P 点被抛出后做平抛运动,设它的落地时间为t ,则h=12gt 2解得t =(1) 当小车位于A 点时,有x A =v A t=L-R (2)解(1)(2)得v A =(L-R当小车位于B 点时,有B B x v t ==3)解(1)(3)得Bv (2)若小车在跑道上运动,要使沙袋落入小车,最小的抛出速度为v 0min =v A =(L-R 4) 若当小车经过C 点时沙袋刚好落入,抛出时的初速度最大,有x c =v 0max t="L+R" (5)解(1)(5)得 v 0max =(L+R所以沙袋被抛出时的初速度范围为(L-R ≤v 0≤(L+R (3)要使沙袋能在B 处落入小车中,小车运动的时间应与沙袋下落时间相同 t AB =(n+14)2Rv π(n=0,1,2,3…)(6)所以t AB解得v=12(4n+1)n=0,1,2,3…). 【点睛】本题是对平抛运动规律的考查,在分析第三问的时候,要考虑到小车运动的周期性,小车并一定是经过14圆周,也可以是经过了多个圆周之后再经过14圆周后恰好到达B 点,这是同学在解题时经常忽略而出错的地方.6.如图所示,粗糙水平地面与半径 1.6m R =的光滑半圆轨道BCD 在B 点平滑连接, O 点是半圆轨道BCD 的圆心, B O D 、、三点在同一竖直线上,质量2kg m =的小物块(可视为质点)静止在水平地面上的A 点.某时刻用一压缩弹簧(未画出)将小物块沿AB 方向水平弹出,小物块经过B 点时速度大小为10m/s (不计空气阻力).已知10m AB x =,小物块与水平地面间的动摩擦因数=0.2μ,重力加速度大小210m/s g =.求:(1)压缩弹簧的弹性势能;(2)小物块运动到半圆轨道最高点时,小物块对轨道作用力的大小; (3)小物块离开最高点后落回到地面上的位置与B 点之间的距离. 【答案】(1)140J (2)25N (3)4.8m 【解析】(1)设压缩弹簧的弹性势能为P E ,从A 到B 根据能量守恒,有212P B AB E mv mgx μ=+ 代入数据得140J P E =(2)从B 到D ,根据机械能守恒定律有2211222B D mv mv mg R =+⋅ 在D 点,根据牛顿运动定律有2Dv F mg m R+=代入数据解得25N F =由牛顿第三定律知,小物块对轨道作用力大小为25N (3)由D 点到落地点物块做平抛运动竖直方向有2122R gt = 落地点与B 点之间的距离为D x v t = 代入数据解得 4.8m x =点睛:本题是动能定理、牛顿第二定律和圆周运动以及平抛运动规律的综合应用,关键是确定运动过程,分析运动规律,选择合适的物理规律列方程求解.7.如图所示,表面光滑的长方体平台固定于水平地面上,以平台外侧的一边为x 轴,在平台表面建有平面直角坐标系xoy ,其坐标原点O 与平台右侧距离为d=1.2m 。
高考物理曲线运动题20套(带答案)及解析
高考物理曲线运动题20套(带答案)及解析一、高中物理精讲专题测试曲线运动1.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x=v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.2.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。
杆静止时,小环靠在杆上,细绳方向竖直;当杆绕竖直轴以角速度ω旋转时,如图所示,小环与Q 点等高,细绳恰好被绷断。
重力加速度g =10m /s 2,忽略一切摩擦。
求:(1)杆静止时细绳受到的拉力大小T ;(2)细绳断裂时杆旋转的角速度大小ω; (3)小环着地点与O 点的距离D 。
【答案】(1)5N (2)53/rad s (3)1.6m 【解析】 【详解】(1)杆静止时环受力平衡,有2T =mg 得:T =5N(2)绳断裂前瞬间,环与Q 点间距离为r ,有r 2+d 2=(L -r )2 环到两系点连线的夹角为θ,有d sin L r θ=-,rcos L rθ=- 绳的弹力为T 1,有T 1sinθ=mg T 1cosθ+T 1=m ω2r 得53/rad s ω=(3)绳断裂后,环做平抛运动,水平方向s =vt竖直方向:212H d gt -=环做平抛的初速度:v =ωr小环着地点与杆的距离:D 2=r 2+s 2 得D =1.6m 【点睛】本题主要是考查平抛运动和向心力的知识,解答本题的关键是掌握向心力的计算公式,能清楚向心力的来源即可。
高中物理曲线运动试题经典及解析
高中物理曲线运动试题经典及解析一、高中物理精讲专题测试曲线运动1.光滑水平轨道与半径为R 的光滑半圆形轨道在B 处连接,一质量为m 2的小球静止在B 处,而质量为m 1的小球则以初速度v 0向右运动,当地重力加速度为g ,当m 1与m 2发生弹性碰撞后,m 2将沿光滑圆形轨道上升,问:(1)当m 1与m 2发生弹性碰撞后,m 2的速度大小是多少?(2)当m 1与m 2满足21(0)m km k =>,半圆的半径R 取何值时,小球m 2通过最高点C 后,落地点距离B 点最远。
【答案】(1) 2m 1v 0/(m 1+m 2) (2) R =v 02/2g (1+k )2 【解析】 【详解】(1)以两球组成的系统为研究对象, 由动量守恒定律得:m 1v 0=m 1v 1+m 2v 2, 由机械能守恒定律得:12m 1v 02=12m 1v 12+12m 2v 22, 解得:102122m v v m m =+;(2)小球m 2从B 点到达C 点的过程中, 由动能定理可得:-m 2g ×2R =12m 2v 2′2-12m 2v 22, 解得:2221002212224()4()41m v vv v gR gR gR m m k'=-=-=-++小球m 2通过最高点C 后,做平抛运动,竖直方向:2R =12gt 2, 水平方向:s =v 2′t ,解得:22024()161v Rs R k g=-+, 由一元二次函数规律可知,当2022(1)v R g k =+时小m 2落地点距B 最远.2.如图所示,光滑水平面AB 与竖直面内的半圆形导轨在B 点相接,导轨半径为R .一个质量为m 的物体将弹簧压缩至A 点后由静止释放,在弹力作用下物体获得某一向右速度后脱离弹簧,当它经过B 点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能完成半个圆周运动到达C点.试求:(1)弹簧开始时的弹性势能.(2)物体从B点运动至C点克服阻力做的功.(3)物体离开C点后落回水平面时的速度大小.【答案】(1)3mgR (2)0.5mgR (3)52 mgR【解析】试题分析:(1)物块到达B点瞬间,根据向心力公式有:解得:弹簧对物块的弹力做的功等于物块获得的动能,所以有(2)物块恰能到达C点,重力提供向心力,根据向心力公式有:所以:物块从B运动到C,根据动能定理有:解得:(3)从C点落回水平面,机械能守恒,则:考点:本题考查向心力,动能定理,机械能守恒定律点评:本题学生会分析物块在B点的向心力,能熟练运用动能定理,机械能守恒定律解相关问题.3.如图所示,用绝缘细绳系带正电小球在竖直平面内运动,已知绳长为L,重力加速度g,小球半径不计,质量为m,电荷q.不加电场时,小球在最低点绳的拉力是球重的9倍。
高中物理曲线运动经典练习题全集(含答案)
《曲线运动》超经典试题1、关于曲线运动,下列说法中正确的是( AC )A. 曲线运动一定是变速运动B. 变速运动一定是曲线运动C. 曲线运动可能是匀变速运动D. 变加速运动一定是曲线运动【解析】曲线运动的速度方向沿曲线的切线方向,一定是变化的,所以曲线运动一定是变速运动。
变速运动可能是速度的方向不变而大小变化,则可能是直线运动。
当物体受到的合力是大小、方向不变的恒力时,物体做匀变速运动,但力的方向可能与速度方向不在一条直线上,这时物体做匀变速曲线运动。
做变加速运动的物体受到的合力可能大小不变,但方向始终与速度方向在一条直线上,这时物体做变速直线运动。
2、质点在三个恒力F1、F2、F3的共同作用下保持平衡状态,若突然撤去F1,而保持F2、F3不变,则质点( A )A.一定做匀变速运动B.一定做直线运动C.一定做非匀变速运动D.一定做曲线运动【解析】质点在恒力作用下产生恒定的加速度,加速度恒定的运动一定是匀变速运动。
由题意可知,当突然撤去F1而保持F2、F3不变时,质点受到的合力大小为F1,方向与F1相反,故一定做匀变速运动。
在撤去F1之前,质点保持平衡,有两种可能:一是质点处于静止状态,则撤去F1后,它一定做匀变速直线运动;其二是质点处于匀速直线运动状态,则撤去F1后,质点可能做直线运动(条件是F1的方向和速度方向在一条直线上),也可能做曲线运动(条件是F1的方向和速度方向不在一条直线上)。
3、关于运动的合成,下列说法中正确的是( C )A. 合运动的速度一定比分运动的速度大B. 两个匀速直线运动的合运动不一定是匀速直线运动C. 两个匀变速直线运动的合运动不一定是匀变速直线运动D. 合运动的两个分运动的时间不一定相等【解析】根据速度合成的平行四边形定则可知,合速度的大小是在两分速度的和与两分速度的差之间,故合速度不一定比分速度大。
两个匀速直线运动的合运动一定是匀速直线运动。
两个匀变速直线运动的合运动是否是匀变速直线运动,决定于两初速度的合速度方向是否与合加速度方向在一直线上。
高中物理 同步学典(1)曲线运动习题(含解析)新人教版必修第二册-新人教版高中第二册物理试题
同步学典〔1〕曲线运动1、关于曲线运动,如下说法正确的答案是( )A.做曲线运动的物体速度方向在时刻改变,故曲线运动是变速运动B.做曲线运动的物体,受到的合外力方向在不断改变C.只要物体做圆周运动,它所受的合外力一定指向圆心D.物体只要受到垂直于初速度方向的恒力作用,就一定能做匀速圆周运动2、对于做曲线运动的物体,如下说法正确的答案是( )A.其运动的位移大小等于其路程B.其位移的大小有可能等于其路程C.其位移的大小一定小于其路程D.其位移的方向仍是由初位置指向末位置3、—物体在某段时间内做曲线运动,如此在这段时间内()A.速度一定不断改变,加速度也一定不断改变B.速度一定不断改变,加速度可以不变C.速度可以不变,加速度一定不断改变D.速度可以不变,加速度也可以不变4、如下列图,物体在恒力F作用下沿曲线从A运动到B,这时,突然使它所受力反向,大小不变,即由F变为-F。
在此力作用下,物体以后的运动情况,如下说法中正确的答案是( )B运动A.物体不可能沿曲线aB运动B.物体不可能沿直线bB运动C.物体不可能沿曲线cD.物体不可能沿原曲线由B返回A5、在足球场上罚任意球时,运动员踢出的足球,在行进中绕过“人墙〞转弯进入了球门,守门员“望球莫与〞,轨迹如下列图。
关于足球在这一飞行过程中的受力方向和速度方向,如下说法中正确的答案是()A.合外力的方向与速度方向在一条直线上B.合外力的方向沿轨迹切线方向,速度方向指向轨迹内侧C.合外力方向指向轨迹内侧,速度方向沿轨迹切线方向D.合外力方向指向轨迹外侧,速度方向沿轨迹切线方向6、物体做曲线运动的条件为()A.物体运动的初速度不为零B.物体所受合外力为变力C.物体所受的合外力的方向与速度的方向不在同一条直线上D.物体所受的合外力的方向与加速度的方向不在同一条直线上7、在2016年的夏季奥运会上,我国跳水运动员获得多枚奖牌,为祖国赢得荣誉,高台跳水比赛时,运动员起跳后在空中做出各种动作,最后沿竖直方向进入水中,假设此过程中运动员头部连续的运动轨迹示意图如图中虚线所示,a、b、c、d为运动轨迹上的四个点,关于运动员头部经过这四个点时的速度方向,如下说法中正确的答案是( )A.经过a、b、c、d四个点的速度方向均可能竖直向下B.只有经过a、c两个点的速度方向可能竖直向下C.只有经过b、d两个点的速度方向可能竖直向下D.只有经过c点的速度方向可能竖直向下、、为曲线上的三8、如下列图的曲线为运动员拋出的铅球的运动轨迹(铅球视为质点),A B C点,ED为过B点的切线,关于铅球在B点的速度方向,如下说法正确的答案是( )A.沿AB的方向B.沿BC的方向C.沿BD的方向 D.沿BE的方向9、一物体由静止开始自由下落,一小段时间后突然受一恒定水平向右的风力的影响,但着地前一段时间风突然停止,如此其运动的轨迹可能是图中的哪一个( )A. B. C. D.10、某运动员在比赛中经过一水平帘道时沿N向M方向运动,速度逐渐增大,图中画出了他转弯时所受合力F的四种方向,正确的答案是( )A. B.C. D.11、如图,在灭火抢险的过程中,消防队员有时要借助消防车上的梯子爬到高处进展救人或灭火作业.为了节省救援时间,人沿梯子匀加速向上运动的同时消防车匀速后退,从地面上看,如下说法中正确的答案是( )A.消防队员做匀加速直线运动B.消防队员做匀变速曲线运动C.消防队员做变加速曲线运动D.消防队员水平方向的速度保持不变答案以与解析1答案与解析:答案:A解析:做曲线运动的物体速度方向时刻改变,所以曲线运动是变速运动,选项A正确;做曲线运动的物体,受到的合外力方向不一定不断改变,例如做平抛运动的物体合外力总是竖直向下,选项B错误;只要物体做匀速圆周运动,它所受的合外力一定指向圆心,选项C错误;物体只要受到永远垂直于初速度方向的大小不变的力作用,就一定能做匀速圆周运动,选项D 错误;应当选A.2答案与解析:答案:CD解析:做曲线运动的物体的路程一定大于位移的大小,故AB错误,C正确;位移的方向始终是由初位置指向末位置,D正确。
高中物理曲线运动解题技巧及练习题及解析
高中物理曲线运动解题技巧及练习题及解析一、高中物理精讲专题测试曲线运动1.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性:①若小球滑行的高度不超过圆形轨道半径R由机械能守恒定律得:()()211332m m v m m gR +≤+解得:042v gR ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3)(3)m m v m m g R++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++ 代入数值解得:045v gR ≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤在最高点有:233(3)(3)m m v F m m g R+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++ 解得:082v gR ≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR ≤或04582gR v gR ≤≤2.如图所示,水平屋顶高H =5 m ,围墙高h =3.2 m ,围墙到房子的水平距离L =3 m ,围墙外空地宽x =10 m ,为使小球从屋顶水平飞出落在围墙外的空地上,g 取10 m/s 2.求: (1)小球离开屋顶时的速度v 0的大小范围; (2)小球落在空地上的最小速度.【答案】(1)5 m/s≤v 0≤13 m/s ; (2)55m/s ; 【解析】 【分析】 【详解】(1)若v 太大,小球落在空地外边,因此,球落在空地上,v 的最大值v max 为球落在空地最右侧时的平抛初速度,如图所示,小球做平抛运动,设运动时间为t 1. 则小球的水平位移:L+x=v max t 1, 小球的竖直位移:H=gt 12 解以上两式得v max =(L+x )=(10+3)×=13m/s .若v 太小,小球被墙挡住,因此, 球不能落在空地上,v 的最小值v min为球恰好越过围墙的最高点P 落在空地上时的平抛初速度,设小球运动到P 点所需时间为t 2,则此过程中小球的水平位移:L=v min t 2 小球的竖直方向位移:H ﹣h=gt 22 解以上两式得v min =L=3×=5m/s因此v 0的范围是v min ≤v 0≤v max , 即5m/s≤v 0≤13m/s .(2)根据机械能守恒定律得:mgH+=解得小球落在空地上的最小速度:v min ′===5m/s3.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv ③小球恰能通过最高点,故2 2 vmg mR=④由②③④得W f=24 J(3)根据动能定理:22122kmg R E mv=-解得:25kE J=故本题答案是:(1)7/m s(2)24J(3)25J【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B到C的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B至C过程中小球克服阻力做的功;(3)小球离开C点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小4.如图所示,在平面直角坐标系xOy内,第Ⅰ象限的等腰直角三角形MNP区域内存在垂直于坐标平面向外的匀强磁场,y<0的区域内存在着沿y轴正方向的匀强电场22mvEqh=.一质量为m、电荷量为q的带电粒子从电场中Q点以速度v0水平向右射出,经坐标原点O射入第Ⅰ象限.已知粒子在第Ⅲ象限运动的水平方向位移为竖直方向位移的2倍,且恰好不从PN边射出磁场.已知MN平行于x轴,N点的坐标为(2h,2h),不计粒子的重力,求:⑴入射点Q的坐标;⑵磁感应强度的大小B;⑶粒子第三次经过x轴的位置坐标.【答案】(1)()2,h h--(2))221mvqh(3)(20262,0v ghg⎡⎤--⎢⎥-⎢⎥⎣⎦【解析】【分析】带电粒子从电场中Q点以速度v0水平向右射出,在第Ⅲ象限做的是类平抛运动,在第I象限,先是匀速直线运动,后是圆周运动,最后又在电场中做类斜抛运动.【详解】(1)带电粒子在第Ⅲ象限做的是类平抛运动,带电粒子受的电场力为1F 运动时间为1t ,有1F qE =202mv h=由题意得11F qE a m m== 101x v t =21112y at =解得201mv x Eq =2012mv y Eq=202mv E qh=Q 的坐标()2,h h --(2) 带电粒子经坐标原点O 射入第Ⅰ象限时的速度大小为1v0x v v =1y v at =1mv t Eq=联立解得0y v v =102v v =由带电粒子在通过坐标原点O 时,x 轴和y 轴方向速度大小相等可知,带电粒子在第I 象02v 速度大小,垂直MP 射入磁场,并在洛伦兹力作用下做匀速圆周运动,且恰好不从PN 边射出磁场.如下图所示,设圆周的半径为R,由牛顿第二定律则有20022mv q v B R= 02R qB =由图知EC 是中位线,O 1是圆心,D 点是圆周与PN 的切点,由几何知识可得,圆周半径22R =+ 解得)0221B mv qh=(3) 02v ,且抛 射角是045,如下图所示,根据斜抛运动的规律,有202x v v =cos450202y v v =sin450带电粒子在电场中飞行时间为2t 则有10222y v v t gg==带电粒子在电场中水平方向飞行距离为2x 有202222x v x v t g==带电粒子在2p 点的坐标 由几何知识可知2p 点的坐标是222h +,0)带电粒子在1p点的坐标是()22642,0v ghg⎡⎤--⎢⎥-⎢⎥⎣⎦【点睛】带电粒子在不同场中运动用不同的物理公式以及利用几何知识来计算.5.如图所示,光滑轨道CDEF是一“过山车”的简化模型,最低点D处入、出口不重合,E点是半径为0.32R m=的竖直圆轨道的最高点,DF部分水平,末端F点与其右侧的水平传送带平滑连接,传送带以速率v=1m/s逆时针匀速转动,水平部分长度L=1m.物块B静止在水平面的最右端F处.质量为1Am kg=的物块A从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E,然后与B发生碰撞并粘在一起.若B的质量是A的k倍,A B、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A与物块B的碰撞时间极短,取210/g m s=.求:(1)当3k=时物块A B、碰撞过程中产生的内能;(2)当k=3时物块A B、在传送带上向右滑行的最远距离;(3)讨论k在不同数值范围时,A B、碰撞后传送带对它们所做的功W的表达式.【答案】(1)6J(2)0.25m(3)①()21W k J=-+②()221521k kWk+-=+【解析】(1)设物块A在E的速度为v,由牛顿第二定律得:2A Avm g mR=①,设碰撞前A的速度为1v.由机械能守恒定律得:220111222A A Am gR m v m v+=②,联立并代入数据解得:14/v m s=③;设碰撞后A、B速度为2v,且设向右为正方向,由动量守恒定律得()122A Am v m m v=+④;解得:21141/13AA Bmv v m sm m==⨯=++⑤;由能量转化与守恒定律可得:()22121122A A BQ m v m m v=-+⑥,代入数据解得Q=6J⑦;(2)设物块AB 在传送带上向右滑行的最远距离为s , 由动能定理得:()()2212A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨; (3)由④式可知:214/1A A B m v v m s m m k==++⑩;(i )如果A 、B 能从传送带右侧离开,必须满足()()2212A B A B m m v m m gL μ+>+,解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+; (ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧. 在这个过程中传送带对AB 所做的功为()()2221122A B A B W m m v m m v =+-+, 解得()221521k k W k +-=+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A 、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.6.如图是节水灌溉工程中使用喷水龙头的示意图。
高中物理曲线运动典型题及答案
高中物理曲线运动典题及答案一、单选题(本大题共14小题,共56.0分)1.某一滑雪运动员从滑道滑出并在空中翻转时经多次曝光得到的照片如图所示,每次曝光的时间间隔相等。
若运动员的重心轨迹与同速度不计阻力的斜抛小球轨迹重合,A,B,C和D表示重心位置,且A和D处于同一水平高度。
下列说法正确的是A. 相邻位置运动员重心的速度变化相同B. 运动员在A、D位置时重心的速度相同C. 运动员从A到B和从C到D的时间相同D. 运动员重心位置的最高点位于B和C中间2.在光滑的水平面上,质量m=1kg的物块在的水平恒力F作用下运动,如图所示为物块的一段轨迹。
已知物块经过P、Q两点时的速率均为v= 4m/s,用时为2s,且物块在P点的速度方向与PQ连线的夹角α=30°.关于物块的运动,下列说法正确的是( )A. 水平恒力F=4NB. 水平恒力F的方向与PQ连线成90°夹角C. 物块从P点运动到Q点的过程中最小速率为2m/sD. P、Q两点的距离为8m3.如图所示,从匀速运动的水平传送带边缘,垂直弹入一底面涂有墨汁的棋子,棋子在传送带表面滑行一段时间后随传送带一起运动.以传送带的运动方向为x轴,棋子初速度方向为y轴,以出发点为坐标原点,棋子在传送带上留下的墨迹为( )A. B. C. D.4.如图所示,水平桌面上有一涂有黑色墨水的小球,给小球一个初速度使小球向右做匀速直线运动,它经过靠近桌边的竖直木板ad边前方时,木板开始做自由落体运动。
若木板开始运动时,cd边与桌面相齐平,则小球在木板上留下的墨水轨迹是( )A. B.C. D.5.如图所示,长度为l的轻杆上端连着一质量为m的小球A(可视为质点),杆的下端用铰链固接于水平地面上的O点.置于同一水平面上的立方体B恰与A接触,立方体B的质量为M.今有微小扰动,使杆向右倾倒,各处摩擦均不计,而A与B刚脱离接触的瞬间,杆与地面夹角恰为37°(sin37°=0.6,cos37°=0.8),重力加速度为g,则下列说法正确的是( )A. A、B质量之比为27∶25B. A落地时速率为√2glC. A与B刚脱离接触的瞬间,A、B速率之比为3∶5D. A与B刚脱离接触的瞬间,B的速率为√3gl56.一带有乒乓球发射机的乒乓球台如图所示,水平台面的长和宽分别为L1和L2,中间球网高度为ℎ.发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3ℎ.不计空气的作用,重力加速度大小为g.若乒乓球的发射速率v在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v的最大取值范围是( )A. L12√g6ℎ<v<L1√g6ℎB. L14√gℎ<v<√(4L12+L22)g6ℎC. L12√g6ℎ<v<12√(4L12+L22)g6ℎD. L14√gℎ<v<12√(4L12+L22)g6ℎ7.在爆炸实验基地有一发射塔,发射塔正下方的水平地面上安装有声音记录仪。
【单元练】(必考题)高中物理必修2第五章【抛体运动或曲线运动】经典题(含答案解析)
一、选择题1.如图,x 轴沿水平方向,y 轴沿竖直方向,图中画出了从y 轴上沿x 轴正向抛出的三个小球a 、b 和c 的运动轨迹,其中b 和c 是从同一点抛出的,不计空气阻力,则( )A .a 的飞行时间比b 的长B .b 和c 的飞行时间不相同C .a 的水平速度比b 的小D .若a 、b 同时抛出,落地前它们不可能在空中相碰D解析:DAB .由题图知b 、c 的高度相同,大于a 的高度,根据h =12gt 2 得2h t g = 知b 、c 的运动时间相同,a 的飞行时间小于b 的时间。
故AB 错误;C .因为a 的飞行时间短,但是水平位移大,根据0x v t =知,a 的水平速度大于b 的水平速度。
故C 错误;D .若a 、b 同时抛出且两者能在空中相遇,则相遇时由2h t g= 知两者抛出时的高度一定相同,显然与题意相矛盾,所以a 、b 同时抛出,落地前它们不可能在空中相碰,故D 正确。
故选D 。
2.在抗洪抢险中,战士驾驶摩托艇救人。
假设江岸是平直的,洪水沿江向下游流去,水流速度为v 1,摩托艇在静水中的航速为以v 2,战士救人的地点A 离岸边最近处O 的距离为d ,如果战士想在最短时间内将人送上岸,则摩托艇登陆的地点B 离O 点的距离为( )A 22221v v -B .0 C .12dv v D .21dv v C 解析:C如图所示最短时间为2v d t = 1s v t =解得12dv s v =故选C 。
3.排球比赛中的发球是制胜的关键因素之一,提高发球质量的方法主要是控制适当的击球高度H 和击球速度,以达到较小的落地角度θ(落地时速度方向与水平地面的夹角)。
若将发出的排球的运动看成是平抛运动,且排球落在对方场地内,排球击出时的水平速度为v 0,击球位置到本方场地底线的距离为l ,如图所示。
下列判断中除给出的条件变化外,其他条件不变,忽略空气阻力,则下列说法正确的是( )A .H 越大,排球落地的角度θ越小B .接球高度一定时,H 越大,对手的反应时间越长C .同时增大l 和v 0,排球落地的角度θ增大D .同时增大H 和l 可减小排球落地的角度θB解析:B竖直方向上,排球做自由落体运动,因此有212H gt = 00tan yv gt v v θ== H 越大,t 越大,v y 越大,θ越大,故A 错误;B .对手反应的时间是从排球发出到球被接住所经历的时间,接球高度一定时,H 越大,反应时间越长,故B 正确;C .v y 不变,由0tan yv v θ=可知v 0增大时,θ减小,故C 错误;D .落地角度正切值002tan y v gH v v θ== 同时增大H 和l ,初速度不变时,θ增大,故D 错误。
曲线运动的性质与条件------高中物理模块典型题归纳(含详细答案)
曲线运动的性质与条件------高中物理模块典型题归纳(含详细答案)一、单选题1.一辆汽车在水平公路上转弯,沿曲线由M向N行驶,速度逐渐减小,下图中分别画出了汽车转弯时所受合力F的四种方向,你认为正确的是()A. B. C. D.2.如图所示,一物体在水平恒力的作用下沿光滑水平面做曲线运动,当物体从M点运动到N 点时,其速度方向恰好改变了90°,则物体从M点到N点的运动过程中,物体的速度将()A.不断增大B.不断减小C.先增大后减小D.先减小后增大3.关于曲线运动,下面叙述正确的是()A.曲线运动一定是变速运动B.变速运动一定是曲线运动C.物体做曲线运动时,所受外力的合力一定是变力D.物体做曲线运动时,所受外力的合力可能与速度方向在同一直线上4.关于物体做曲线运动的条件,下列说法正确的是()A.物体在恒力作用下不可能做曲线运动B.物体在变力作用下一定做曲线运动C.做曲线运动的物体所受的力的方向一定是变化的D.合力方向与物体速度方向既不相同、也不相反时,物体一定做曲线运动5.关于曲线运动,下列说法正确的是()A.曲线运动不一定是变速运动B.做曲线运动的物体可以没有加速度C.曲线运动可以是匀速率运动D.做曲线运动的物体加速度一定恒定不变6.一个物体在光滑水平面上沿曲线MN运动,如图所示,其中A点是曲线上的一点,虚线1、2分别是过A点的切线,已知该过程中物体所受到的合外力是恒力,则当物体运动到A点时,合外力的方向可能是()A.沿F1或F5的方向B.沿F2或F4的方向C.沿F2的方向D.不在MN曲线所决定的水平面内7.物体在几个力的作用下处于平衡状态,若撤去其中某一个力而其余力的性质(大小、方向、作用点)不变,物体的运动情况可能是()A.静止B.匀加速直线运动C.匀速直线运动D.匀速圆周运动8.如图所示,一质点做曲线运动从M点到N点速度逐渐减小,当它通过P点时,其速度和所受合外力的方向关系可能正确的是()A. B. C. D.9.若已知物体的速度方向和它所受合力的方向,如图所示,可能的运动轨迹是()A. B. C. D.10.物体在几个力作用下做匀速直线运动,今将一个力撤掉,关于质点运动的说法:()A.物体一定做匀变速运动B.物体可能做匀速直线运动C.物体做曲线运动D.物体一定做变速直线运动11.关于曲线运动,下列说法正确的是()A.曲线运动不一定是变速运动B.曲线运动可以是匀速运动C.做曲线运动的物体一定有加速度D.做曲线运动的物体加速度一定恒定不变12.如图所示,若已知物体运动初速度v0的方向及该物体受到的恒定合外力F的方向,图中虚线表示物体的运动轨迹,下列正确的是()A. B.C. D.13.下列有关曲线运动的说法错误的是()A.做匀速圆周运动的物体所受的合外力方向一定与速度方向垂直B.速度方向发生变化的运动一定是曲线运动C.曲线运动的加速度可以保持恒定D.速率保持不变的运动可以是曲线运动14.在弯道上高速行驶的赛车,突然后轮脱离赛车,关于脱离的后轮的运动情况,以下说法正确的是( )A.仍然沿着汽车行驶的弯道运动B.沿着与弯道垂直的方向飞出C.沿着脱离时轮子前进的方向做直线运动,离开弯道D.上述情况都有可能15.下列说法正确的是()A.竖直平面内做匀速圆周运动的物体,其合外力可能不指向圆心B.匀速直线运动和自由落体运动的合运动一定是曲线运动C.曲线运动的物体所受合外力一定为变力D.火车超过限定速度转弯时,车轮轮缘将挤压铁轨的外轨16.一辆汽车在水平公路上转弯,沿曲线由M向N行驶,速度逐渐减小.如图所示,分别画出了汽车转弯时所受合力的四种方向,你认为正确的是()A. B. C. D.二、多选题17.质量为m的物体,在F1、F2、F3三个共点力的作用下做匀速直线运动,保持F1、F2不变,仅将F3的方向改变90°(大小不变)后,物体可能做()A.加速度大小为的匀变速直线运动B.加速度大小为的匀变速直线运动C.匀速圆周运动D.加速度大小为的匀变速曲线运动18.如图所示,平面直角坐标系xOy与水平面平行,在光滑水平面上一做匀速直线运动的质点以速度v通过坐标原点O,速度方向与x轴正方向的夹角为α,与此同时给质点加上沿x 轴正方向的恒力F x和沿y轴正方向的恒力F y,则此后()A.因为有F x,质点一定做曲线运动B.如果F y<F x,质点相对原来的方向向y轴一侧做曲线运动C.如果F y=F x tan α,质点做直线运动D.如果F x>F y cot α,质点相对原来的方向向x轴一侧做曲线运动19.下列关于曲线运动的说法,正确的是()A.曲线运动的加速度可能为零B.曲线运动可以是匀速运动C.曲线运动可以是匀变速运动D.曲线运动一定是变速运动20.一辆汽车在水平公路上转弯,沿曲线由M向N行驶.图中分别画出了汽车转弯时所受合力F的方向,可能正确的是()A. B. C. D.21.若已知物体的速度方向和它所受合力的方向,如图所示,可能的运动轨迹是()A. B. C. D.22.一质点以水平向右的恒定速度v通过P点时受到一个恒力F的作用,则此后该质点的运动轨迹可能是图中的()A.aB.bC.cD.d23.如图所示为一个做匀变速曲线运动的质点的轨迹示意图,已知在B点时的速度与加速度相互垂直,则下列说法中正确的是()A.D点的速率比C点的速率小B.A点的加速度与速度的夹角大于90°C.A点的加速度比D点的加速度大D.从A到D加速度与速度的夹角一直减小24.关于曲线运动下列说法中正确的是()A.某点瞬时速度的方向就在曲线上该点的切线上B.曲线运动一定是变速运动C.做曲线运动的物体的速度方向时刻改变D.曲线运动不一定是变速运动25.关于曲线运动的速度,下列说法正确的是()A.速度的大小与方向都在时刻变化B.速度的方向不断发生变化,速度的大小不一定发生变化C.速度的大小不断发生变化,速度的方向不一定发生变化D.质点在某一点的速度方向是在曲线的这一点的切线方向26.物体受到几个外力的作用而做匀速直线运动,如果撤去其中的一个力而保持其余的力的大小方向都不变,则物体可能做()A.匀减速直线运动B.匀速圆周运动C.匀加速直线运动D.匀加速曲线运动答案一、单选题1.【答案】C【解析】【解答】解:汽车从M点运动到N,曲线运动,必有些力提供向心力,向心力是指向圆心的;汽车同时减速,所以沿切向方向有与速度相反的合力;向心力和切线合力与速度的方向的夹角要大于90°,所以选项ABD错误,选项C正确.故答案为C.【分析】汽车在水平的公路上转弯,所做的运动为曲线运动,故在半径方向上合力不为零且是指向圆心的;又是做减速运动,故在切线上合力不为零且与瞬时速度的方向相反,分析这两个力的合力,即可看出那个图象时对的.2.【答案】D【解析】【解答】曲线运动的轨迹在速度方向与合力方向之间,对M、N点进行分析可知开始时恒力与速度夹角为钝角,后来夹角为锐角,则物体的速度先减小后增大,D符合题意。
高中物理曲线运动21个典型题
高中物理曲线运动21个典型题典型例题1——关于飞机轰炸飞机在离地面720m的高度,以70的速度水平飞行,为了使飞机上投下的炸弹落在指定的轰炸目标上,应该在离轰炸目标的水平距离多远的地方投弹?(不计空气阻力取)可以参考媒体展示飞机轰炸目标的整个过程以及分析,帮助理解.解:设水平距离为子弹飞行的时间:水平距离典型例题2——关于变速运动火车上的平抛运动在平直轨道上以的加速度匀加速行驶的火车上,相继下落两个物体下落的高度都是2.45m.间隔时间为1s.两物体落地点的间隔是2.6m,则当第一个物体下落时火车的速度是多大?(取)分析:如图所示、第一个物体下落以的速度作平抛运动,水平位移,火车加速到下落第二个物体时,已行驶距离.第二个物体以的速度作平抛运动水平位移.两物体落地点的间隔是2.6m.解:由位置关系得:物体平抛运动的时间:由以上三式可得点评:解本题时,作出各物体运动情况的草图对帮助分析题意十分重要.先后作平抛运动的物体因下落高度相同,所以运动的时间相同,但下落的时间不同于火车加速度运动的时间,不要混淆.典型例题3——关于三维空间上的平抛运动分析光滑斜面倾角为,长为,上端一小球沿斜面水平方向以速度抛出(如图所示),小球滑到底端时,水平方向位移多大?解:小球运动是合运动,小球在水平方向作匀速直线运动,有①沿斜面向下是做初速度为零的匀加速直线运动,有②根据牛顿第二定律列方程③由①,②,③式解得说明:中学阶段研究的曲线运动一定是两维空间(即平面上的)情况,因此,该题首先分析在斜面上的分运动情况.研究曲线运动必须首先确定分运动,然后根据“途径”处理.典型例题4——关于小船过河的一系列问题一艘小船在200m宽的河中横渡到对岸,已知水流速度是2m/s,小船在静水中的速度是4m/s,求:①当船头始终正对着对岸时,小船多长时间到达对岸,小船实际运行了多远?②如果小船的路径要与河岸垂直,应如何行驶?消耗的时间是多少?③如果小船要用最短时间过河,应如何?船行最短时间为多少?【分析与解答】①在解答本题的时候可由此提问:船头始终正对河岸代表什么含义.(①题的答案:50秒,下游100米)②路径与河岸垂直——船的实际运动——船的合运动(在两个分运动的中间,并与河岸垂直)(②题的答案:与上游河岸成60°,57.7s)③分析本题,可以得到求t最小的方法:1、河宽一定,要想使时间最少应使垂直河岸方向的分速度最大,即正对河岸航行,则.2、或者由三个式子一一分析.一定,又有最小值,即河宽,便可以求出渡河最短时间.(③题的答案:50s)典型例题5——关于拉船分运动的分解判断在高处拉低处小船时,通常在河岸上通过滑轮用钢绳拴船,若拉绳的速度为4m/s,当拴船的绳与水平方向成60°时,船的速度是多少?(8m/s)【分析与解答】:在分析船的运动时,我们发现船的运动产生了两个运动效果:绳子在不断缩短;而且绳子与河岸的夹角不断减小,所以我们可以将船的运动——实际运动——合运动分解成沿绳子方向的运动和垂直绳子方向所做的圆周运动,因此可以将船的运动分为:1、船沿水平方向前进——此方向为合运动,求合速度v.2、小船的运动可以看成为沿绳子缩短方向的运动和垂直绳子方向做圆周运动的合运动.所以根据题意,船的速度大小与绳子的运行速度之间的关系是:典型例题6——关于汽车通过不同曲面的问题分析一辆质量t的小轿车,驶过半径m的一段圆弧形桥面,求:(重力加速度)(1)若桥面为凹形,汽车以20m/s的速度通过桥面最低点时,对桥面压力是多大?(2)若桥面为凸形,汽车以10m/s的速度通过桥面最高点时,对桥面压力是多大?(3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力?解:(1)汽车通过凹形桥面最低点时,在水平方向受到牵引力F和阻力f.在竖直方向受到桥面向上的支持力和向下的重力,如图(甲)所示.圆弧形轨道的圆心在汽车上方,支持力与重力的合力为,这个合力就是汽车通过桥面最低点时的向心力,即.由向心力公式有:,解得桥面的支持力大小为根据牛顿第三定律,汽车对桥面最低点的压力大小是N.(2)汽车通过凸形桥面最高点时,在水平方向受到牵引力F和阻力f,在竖直方向受到竖直向下的重力和桥面向上的支持力,如图(乙)所示.圆弧形轨道的圆心在汽车的下方,重力与支持力的合力为,这个合力就是汽车通过桥面顶点时的向心力,即,由向心力公式有,解得桥面的支持力大小为根据牛顿第三定律,汽车在桥的顶点时对桥面压力的大小为N.(3)设汽车速度为时,通过凸形桥面顶点时对桥面压力为零.根据牛顿第三定律,这时桥面对汽车的支持力也为零,汽车在竖直方向只受到重力G作用,重力就是汽车驶过桥顶点时的向心力,即,由向心力公式有,解得:汽车以30 m/s的速度通过桥面顶点时,对桥面刚好没有压力.典型例题7——细绳牵引物体做圆周运动的系列问题一根长的细绳,一端拴一质量的小球,使其在竖直平面内绕绳的另一端做圆周运动,求:(1)小球通过最高点时的最小速度?(2)若小球以速度通过周围最高点时,绳对小球的拉力多大?若此时绳突然断了,小球将如何运动.【分析与解答】(1)小球通过圆周最高点时,受到的重力必须全部作为向心力,否则重力G 中的多余部分将把小球拉进圆内,而不能实现沿竖直圆周运。
高中物理 曲线运动 典型例题(含答案)【经典】
第四章 曲线运动第一讲:曲线运动条件和运动特点、运动的合成与分解考点一:运动的合成与分解 1、(多选)质量为m =2 kg 的物体在光滑的水平面上运动,在水平面上建立xOy 坐标系,t =0时物体位于坐标系的原点O.物体在x 轴和y 轴方向的分速度vx 、vy 随时间t 变化的图线如图甲、乙所示.则( ). A .t =0时,物体速度的大小为3 m/s 答案 ADB .t =8 s 时,物体速度的大小为4 m/sC .t =8 s 时,物体速度的方向与x 轴正向夹角为37°D .t =8 s 时,物体的位置坐标为(24 m,16 m)2.(多选)在一光滑水平面内建立平面直角坐标系,一物体从t =0时刻起,由坐标原点O(0,0)开始运动,其沿x 轴和y 轴方向运动的速度—时间图象如图甲、乙所示,下列说法中正确的是( ).答案 AD A .前2 s 内物体沿x 轴做匀加速直线运动B .后2 s 内物体继续做匀加速直线运动,但加速度沿y 轴方向C .4 s 末物体坐标为(4 m,4 m)D .4 s 末物体坐标为(6 m,2 m) 3.(单选)如图,从广州飞往上海的波音737航班上午10点到达上海浦东机场,若飞机在降落过程中的水平分速度为60 m/s ,竖直分速度为6 m/s ,已知飞机在水平方向做加速度大小等于2 m/s2的匀减速直线运动,在竖直方向做加速度大小等于0.2 m/s2的匀减速直线运动,则飞机落地之前( ).答案 D A .飞机的运动轨迹为曲线B .经20 s 飞机水平方向的分速度与竖直方向的分速度大小相等C .在第20 s 内,飞机在水平方向的分位移与竖直方向的分位移大小相等D .飞机在第20 s 内,水平方向的平均速度为21 m/s4、(多选)质量为0.2 kg 的物体在水平面上运动,它的两个正交分速度图线分别如图甲、乙所示,由图可知( )A .最初4 s 内物体的位移为8 2 m 答案 ACB .从开始至6 s 末物体都做曲线运动C .最初4 s 内物体做曲线运动,接下来的2 s 内物体做直线运动D .最初4 s 内物体做直线运动,接下来的2 s 内物体做曲线运动 5、(单选)各种大型的货运站中少不了旋臂式起重机,如图所示,该起重机的旋臂保持不动,可沿旋臂“行走”的天车有两个功能,一是吊着货物沿竖直方向运动,二是吊着货物沿旋臂水平运动.现天车吊着货物正在沿水平方向向右匀速行驶,同时又启动天车上的起吊电动机,使货物沿竖直方向做匀减速运动.此时,我们站在地面上观察到货物运动的轨迹可能是下图中的( ). 答案 D6.汽车静止时,车内的人从矩形车窗ABCD 看到窗外雨滴的运动方向如图图线①所示.在汽车从静止开始匀加速启动阶段的t 1、t 2两个时刻,看到雨滴的运动方向分别如图线②③所示.E 是AB 的中点.则( ) A .t2=2t 1 B .t 2=2t 1 C .t 2=5t 1D .t 2=3t 1 答案 A解析 静止时,雨滴相对于地面做的是竖直向下的直线运动,设雨滴的速度为v0,汽车匀加速运动后,在t1时刻,看到的雨滴的运动方向如图线②,设这时汽车的速度为v1,这时雨滴水平方向相对于汽车的速度大小为v1,方向向左,在t2时刻,设汽车的速度为v2,则雨滴的运动方向如图线③,雨滴水平方向相对于汽车速度大小为v2,方向水平向左,根据几何关系,v1OA =v0AB ,v2OA =v012AB ,得v2=2v1,汽车做匀加速运动,则由v =at 可知,t2=2t1,A 项正确.7.一物体在光滑水平面上运动,它在x 方向和y 方向上的两个分运动的速度—时间图象如图所示. (1)判断物体的运动性质;(2)计算物体的初速度大小;(3)计算物体在前3 s 内和前6 s 内的位移大小.答案 (1)匀变速曲线运动 (2)50 m/s (3)3013m 180 m8.如图所示,为一次洪灾中,德国联邦国防军的直升机在小城洛伊宝根运送砂袋.该直升机A 用长度足够长的悬索(重力可忽略不计)系住一质量m =50 kg 的砂袋B ,直升机A 和砂袋B 以v0=10 m/s 的速度一起沿水平方向匀速运动,某时刻开始将砂袋放下,在5 s 时间内,B 在竖直方向上移动的距离以y =t2(单位:m)的规律变化,取g =10 m/s2.求在5 s 末砂袋B 的速度大小及位移大小.答案 10 2 m/s 25 5 m9、如图所示,在竖直平面内的xOy 坐标系中,Oy 竖直向上,Ox 水平向右.设平面内存在沿x 轴正方向的恒定风力.一小球从坐标原点沿Oy 方向竖直向上抛出,初速度为v0=4 m/s ,不计空气阻力,到达最高点的位置如图中M 点所示(坐标格为正方形,g =10 m/s2)求:(1)小球在M 点的速度v1;(2)在图中定性画出小球的运动轨迹并标出小球落回x 轴时的位置N ; (3)小球到达N 点的速度v2的大小.答案 (1)6 m/s (2)见解析图 (3)410 m/s解析 (1)设正方形的边长为x0. 竖直方向做竖直上抛运动,有v0=gt1,2x0=v02t1水平方向做匀加速直线运动,有3x0=v12t1. 解得v1=6 m/s.(2)由竖直方向的对称性可知,小球再经过t1到x 轴,水平方向做初速度为零的匀加速直线运动,所以回到x 轴时落到x =12处,位置N 的坐标为(12,0).(3)到N 点时竖直分速度大小为v0=4 m/s 水平分速度vx =a 水平tN =2v1=12 m/s , 故v2=v 20+v 2x =410 m/s.考点二:绳(杆)端速度分解模型(结合受力和机械能守恒)1、如图所示,人用绳子通过定滑轮以不变的速度0v 拉水平面上的物体A ,当绳与水平方向成θ角时,求物体A 的速度。
(物理)高考物理曲线运动试题(有答案和解析)
(物理)高考物理曲线运动试题( 有答案和解析 )一、高中物理精讲专题测试曲线运动1.以下列图,在风洞实验室中,从 A 点以水平速度 v0向左抛出一个质最为m 的小球,小球抛出后所受空气作用力沿水平方向,其大小为F,经过一段时间小球运动到 A 点正下方的 B 点处,重力加速度为 g,在此过程中求(1)小球离线的最远距离;(2) A、 B 两点间的距离;(3)小球的最大速率 v max.【答案】(1)mv22m2 gv2( 3)v0F24m2g2 0(2)0F2F F 2【解析】【解析】(1)依照水平方向的运动规律,结合速度位移公式和牛顿第二定律求出小球水平方向的速度为零时距墙面的距离;(2)依照水平方向向左和向右运动的对称性,求出运动的时间,抓住等时性求出竖直方向A、 B 两点间的距离;(3)小球到达 B 点时水平方向的速度最大,竖直方向的速度最大,则 B 点的速度最大,依照运动学公式结合平行四边形定则求出最大速度的大小;【详解】(1)将小球的运动沿水平方向沿水平方向和竖直方向分解水平方向: F=ma x2v0= 2a x x m解得:x m=mv2 2F(2)水平方向速度减小为零所需时间t1=v 0a x总时间 t= 2t1竖直方向上:y= 1 gt2= 2m2 gv022 F 2(3)小球运动到 B 点速度最大v x=v0V y=gtv max= v x2v y2=vF 24m2g 2 F【点睛】解决此题的要点将小球的运动的运动分解,搞清分运动的规律,结合等时性,运用牛顿第二定律和运动学公式进行求解.2.以下列图,在竖直平面内有一倾角θ=37°的传达带BC.已知传达带沿顺时针方向运行的速度 v=4 m/s , B、 C两点的距离 L=6 m。
一质量 m=0.2kg 的滑块(可视为质点)从传达带上端 B 点的右上方比 B 点高 h=0. 45 m 处的 A 点水平抛出,恰好从 B 点沿 BC方向滑人传达带,滑块与传达带间的动摩擦因数μ,取重力加速度g=10m/s 2, sin37 = °,cos37°。
高中物理曲线运动的技巧及练习题及练习题(含答案)含解析
高中物理曲线运动的技巧及练习题及练习题( 含答案 ) 含分析一、高中物理精讲专题测试曲线运动1.如下图,一箱子高为H.底边长为L,一小球从一壁上沿口 A 垂直于箱壁以某一初速度向对面水平抛出,空气阻力不计。
设小球与箱壁碰撞前后的速度大小不变,且速度方向与箱壁的夹角相等。
(1)若小球与箱壁一次碰撞后落到箱底处离 C 点距离为,求小球抛出时的初速度v0;(2)若小球正好落在箱子的 B 点,求初速度的可能值。
【答案】( 1)( 2)【分析】【剖析】(1)将整个过程等效为完好的平抛运动,联合水平位移和竖直位移求解初速度;(2)若小球正好落在箱子的 B 点,则水平位移应当是2L 的整数倍,经过平抛运动公式列式求解初速度可能值。
【详解】(1)本题能够当作是无反弹的完好平抛运动,则水平位移为: x==v0t竖直位移为: H= gt2解得: v0=;(2)若小球正好落在箱子的 B 点,则小球的水平位移为:x′=2nL( n= 1.2.3 )同理: x′=2nL=v′H=20t,gt ′解得:( n= 1.2.3 )2.圆滑水平面AB 与竖直面内的圆形导轨在 B 点连结,导轨半径R= 0.5 m,一个质量m= 2 kg 的小球在 A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能 Ep= 49 J,如下图.松手后小球向右运动离开弹簧,沿圆形轨道向上运动恰能经过最高点 C, g 取 10 m/s 2.求:(1)小球离开弹簧时的速度大小;(2)小球从 B 到 C 战胜阻力做的功;(3)小球走开 C 点后落回水平面时的动能大小.【答案】(1)7m / s( 2)24J( 3)25J 【分析】【剖析】【详解】(1)依据机械能守恒定律12E p=mv1 ?①12Ep=7m/s ②v =m(2)由动能定理得- mg·2R- W f=1mv221mv12③22小球恰能经过最高点,故mg m v22④R由②③④得W f=24 J(3)依据动能定理:mg 2R E k 1mv22 2解得: E k25J故本题答案是:( 1)7m / s( 2)24J( 3)25J【点睛】(1)在小球离开弹簧的过程中只有弹簧弹力做功,依据弹力做功与弹性势能变化的关系和动能定理能够求出小球的离开弹簧时的速度v;(2)小球从 B 到 C 的过程中只有重力和阻力做功,依据小球恰巧能经过最高点的条件获得小球在最高点时的速度 ,进而依据动能定理求解从 B 至 C 过程中小球战胜阻力做的功 ;(3)小球走开 C 点后做平抛运动 ,只有重力做功,依据动能定理求小球落地时的动能大小3.如下图,质量为M4kg 的平板车P的上表面离地面高h 0.2m,质量为 m 1kg 的小物块 Q (大小不计,可视为质点)位于平板车的左端,系统本来静止在圆滑水平川面上,一不行伸长的轻质细绳长为R 0.9m ,一端悬于Q正上方高为R处,另一端系一质量也为 m 的小球(大小不计,可视为质点)。
物理曲线运动专题练习(及答案)含解析
物理曲线运动专题练习(及答案)含解析一、高中物理精讲专题测试曲线运动1.一质量M =0.8kg 的小物块,用长l =0.8m 的细绳悬挂在天花板上,处于静止状态.一质量m =0.2kg 的粘性小球以速度v 0=10m/s 水平射向小物块,并与物块粘在一起,小球与小物块相互作用时间极短可以忽略.不计空气阻力,重力加速度g 取10m/s 2.求:(1)小球粘在物块上的瞬间,小球和小物块共同速度的大小; (2)小球和小物块摆动过程中,细绳拉力的最大值; (3)小球和小物块摆动过程中所能达到的最大高度. 【答案】(1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 【解析】(1)因为小球与物块相互作用时间极短,所以小球和物块组成的系统动量守恒.0)(mv M m v =+共得:=2.0/v m s 共(2)小球和物块将以v 共 开始运动时,轻绳受到的拉力最大,设最大拉力为F ,2()()v F M m g M m L-+=+共 得:15F N =(3)小球和物块将以v 共为初速度向右摆动,摆动过程中只有重力做功,所以机械能守恒,设它们所能达到的最大高度为h ,根据机械能守恒:21+)()2m M gh m M v =+共(解得:0.2h m =综上所述本题答案是: (1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 点睛:(1)小球粘在物块上,动量守恒.由动量守恒,得小球和物块共同速度的大小. (2)对小球和物块合力提供向心力,可求得轻绳受到的拉力(3)小球和物块上摆机械能守恒.由机械能守恒可得小球和物块能达到的最大高度.2.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 322gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .3.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过98s 再次回到C 点。
高中物理曲线运动题20套(带答案)含解析
高中物理曲线运动题20套(带答案)含解析一、高中物理精讲专题测试曲线运动1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】 【分析】(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v -解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2dB B v m g m R=由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J2.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 322gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .3.儿童乐园里的弹珠游戏不仅具有娱乐性还可以锻炼儿童的眼手合一能力。
高中物理必修二曲线运动难题典型题带答案
高中物理必修二曲线运动一.选择题(共25小题)1.物理学中有些问题的结论不一定必须通过计算才能验证,有时只需要通过一定的分析就可以判断结论是否正确.如图所示,AB为倾角为θ的斜面,小球从A点以初速度v0(方向与斜面成α角)抛出,恰好落到斜面底端的B点,不计空气阻力,则AB两点间的距离为()A.B.C.D.2.如图甲所示,一轻杆一端固定在O点,另一端固定一小球,在竖直平面内做半径为R的圆周运动.小球运动到最高点时,杆与小球间弹力大小为F N,小球在最高点的速度大小为v,F N﹣v2图象如图乙所示.下列说法正确的是()A.当地的重力加速度大小为B.小球的质量为C.当v2=c时,杆对小球弹力方向向上D.若v2=2b,则杆对小球弹力大小为2a3.如图所示,O为斜面的底端,在O点正上方的A、B两点分别以初速度v A、v B正对斜面抛出两个小球,结果两个小球都垂直击中斜面,击中的位置分别为P、Q(图中未标出)。
OB=AB,空气阻力忽略不计,则()A.OP=OQ B.OP=4OQ C.v A=v B D.v A=v B4.汽车以速度v0沿平直的水平面向右匀速运动,通过定滑轮(不计滑轮的质量和摩擦)把质量为M的重物向上提起,某时刻汽车后面的绳子与水平方向的夹角为θ,如图所示。
则下列说法正确的是()A.此时重物的速度大小为v=v0sinθB.重物上升的速度越来越小C.由于汽车做匀速运动,所以重物也是匀速上升D.绳子中的拉力大于重物的重力5.如图所示是一个玩具陀螺。
a、b和c是陀螺上的三个点。
当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是()A.a、b 和c 三点的线速度大小相等B.a、b 和c 三点的角速度相等C.a、b 的角速度比c 的大D.c 的线速度比a、b 的大6.如图所示,套在竖直细杆上的轻环A由跨过定滑轮的不可伸长的轻绳与重物B相连,施加外力让A沿杆以速度v 匀速上升,从图中M位置上升至与定滑轮的连线处于水平N位置,已知AO与竖直杆成θ角,则()A.刚开始时B的速度为B.A匀速上升时,重物B也匀速下降C.重物B下降过程,绳对B的拉力大于B的重力D.A运动到位置N时,B的速度最大7.质量为m的物体P置于倾角为θ1的固定光滑斜面上,轻细绳跨过光滑定滑轮分别连接着P与小车,P与滑轮间的细绳平行于斜面,小车以速率v水平向右做匀速直线运动。
高中物理《曲线运动》练习题(附答案解析)
高中物理《曲线运动》练习题(附答案解析)学校:___________姓名:___________班级:___________ 一、单选题1.下列关系式中不是利用物理量之比定义新的物理量的是()A.FEq=B.pEqϕ=C.Fam=D.tθω=2.一船以恒定的速率渡河,水速恒定(小于船速)。
要使船垂直河岸到达对岸,则()A.船应垂直河岸航行B.船的航行方向应偏向上游一侧C.船不可能沿直线到达对岸D.河的宽度一定时,船垂直到对岸的时间是任意的3.如图所示,一杂技演员驾驶摩托车沿半径为R的圆周做线速度大小为v的匀速圆周运动。
若杂技演员和摩托车的总质量为m,其所受向心力大小为()A.mvRB.2mvRC.22mvRD.2mvR4.如图所示,细线一端固定在A点,另一端系着小球。
给小球一个初速度,使小球在水平面内做匀速圆周运动,关于该小球的受力情况,下列说法中正确的是()A.受重力、向心力作用B.受细线拉力、向心力作用C.受重力、细线拉力作用D.受重力、细线拉力和向心力作用5.下列现象或措施中,与离心运动有关的是()A.汽车行驶过程中,乘客要系好安全带B.厢式电梯张贴超载标识C.火车拐弯处设置限速标志D.喝酒莫开车,开车不喝酒6.把地球设想成一个半径为地球半径R=6 400km的拱形桥,如图所示,汽车在最高点时,若恰好对“桥面”压力为0,g=9.8m/s2,则汽车的速度为()A.7.9m/s B.7.9m/h C.7.9km/s D.7.9km/h7.光滑平面上一运动质点以速度v通过原点O,v与x轴正方向成α角(如图所示),与此同时对质点加上沿x轴正方向的恒力Fx和沿y轴正方向的恒力Fy,则()A.因为有Fx,质点一定做曲线运动B.如果Fy>Fx,质点向y轴一侧做曲线运动C.质点不可能做直线运动D.如果Fy<Fx tanα,质点向x轴一侧做曲线运动8.在2022年2月5日北京冬奥会上,我国选手运动员在短道速滑比赛中的最后冲刺阶段如图所示,设甲、乙两运动员在水平冰面上恰好同时到达虚线PQ,然后分别沿半径为r1和r2(r2>r1)的滑道做匀速圆周运动,运动半个圆周后匀加速冲向终点线。
高中物理(曲线运动与守恒定律相结合考察)部分高考题和练习及解析
1.一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为 。
初始时,传送带与煤块都是静止的。
现让传送带以恒定的加速度a 0开始运动,当其速度达到v 0后,便以此速度做匀速运动。
经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。
求此黑色痕迹的长度。
解析:根据“传送带上有黑色痕迹”可知,煤块与传送带之间发生了相对滑动,煤块的加速度a 小于传送带的加速度a 0。
根据牛顿定律,可得a=μg设经历时间t ,传送带由静止开始加速到速度等于v 0,煤块则由静止加速到v ,有v 0=a 0t v=at由于a<a 0,故v<v 0,煤块继续受到滑动摩擦力的作用。
再经过时间t',煤块的速度由v 增加到v 0,有v=v+at'此后,煤块与传送带运动速度相同,相对于传送带不再滑动,不再产生新的痕迹。
设在煤块的速度从0增加到v 0的整个过程中,传送带和煤块移动的距离分别为s 0和s ,有s 0=12 a 0t 2+v 0t' s=v 022a传送带上留下的黑色痕迹的长度 l =s 0-s 由以上各式得 l =v 02(a 0-μg)2μa 0g2.甲乙两运动员在训练交接棒的过程中发现:甲经短距离加速后能保持9 mis 的速度跑完全程:乙从起跑后到接棒前的运动是匀加速的,为了确定乙起跑的时机,需在接力区前适当的位置设置标记,在某次练习中,甲在接力区前S 0-13.5 m 处作了标记,并以V-9 m/s 的速度跑到此标记时向乙发出起跑口令,乙在接力区的前端听到口令时起跑,并恰好在速度达到与甲相同时被甲追上,完成交接棒,已知接力区的长度为L=20m. 求:(1)此次练习中乙在接棒前的加速度a.(2)在完成交接棒时乙离接力区末端的距离.解析:(1)设经过时间t ,甲追上乙,则根据题意有vt-vt/2=13.5将v=9m/s 代入得到:t=3s, 再有 v=at 解得:a=3m/s 2(2)在追上乙的时候,乙走的距离为s, 则:s=at 2/2 代入数据得到 s=13.5m所以乙离接力区末端的距离为∆s=20-13.5=6.5m3.如图所示,质量为m的由绝缘材料制成的球与质量为M=12m的金恪示并挂悬挂。
高中物理曲线运动技巧 阅读训练策略及练习题(含答案)及解析
高中物理曲线运动技巧阅读训练策略及练习题(含答案)及解析一、高中物理精讲专题测试曲线运动1.如图所示,水平屋顶高H=5 m,围墙高h=3.2 m,围墙到房子的水平距离L=3 m,围墙外空地宽x=10 m,为使小球从屋顶水平飞出落在围墙外的空地上,g取10 m/s2.求:(1)小球离开屋顶时的速度v0的大小范围;(2)小球落在空地上的最小速度.【答案】(1)5 m/s≤v0≤13 m/s;(2)55m/s;【解析】【分析】【详解】(1)若v太大,小球落在空地外边,因此,球落在空地上,v的最大值v max为球落在空地最右侧时的平抛初速度,如图所示,小球做平抛运动,设运动时间为t1.则小球的水平位移:L+x=v max t1,小球的竖直位移:H=gt12解以上两式得v max=(L+x)=(10+3)×=13m/s.若v太小,小球被墙挡住,因此,球不能落在空地上,v的最小值v min为球恰好越过围墙的最高点P落在空地上时的平抛初速度,设小球运动到P点所需时间为t2,则此过程中小球的水平位移:L=v min t2小球的竖直方向位移:H﹣h=gt22解以上两式得v min=L=3×=5m/s因此v0的范围是v min≤v0≤v max,即5m/s≤v0≤13m/s.(2)根据机械能守恒定律得:mgH+=解得小球落在空地上的最小速度:v min′===5m/s2.如图所示,半径R=2.5m的竖直半圆光滑轨道在B点与水平面平滑连接,一个质量m=0.50kg 的小滑块(可视为质点)静止在A点.一瞬时冲量使滑块以一定的初速度从A点开始运动,经B点进入圆轨道,沿圆轨道运动到最高点C,并从C点水平飞出,落在水平面上的D点.经测量,D、B间的距离s1=10m,A、B间的距离s2=15m,滑块与水平面的动摩擦因数 ,重力加速度.求:(1)滑块通过C点时的速度大小;(2)滑块刚进入圆轨道时,在B点轨道对滑块的弹力;(3)滑块在A点受到的瞬时冲量的大小.【答案】(1)(2)45N(3)【解析】【详解】(1)设滑块从C点飞出时的速度为v c,从C点运动到D点时间为t滑块从C点飞出后,做平抛运动,竖直方向:2R=gt2水平方向:s1=v c t解得:v c=10m/s(2)设滑块通过B点时的速度为v B,根据机械能守恒定律mv B2=mv c2+2mgR解得:v B=10m/s设在B点滑块受轨道的压力为N,根据牛顿第二定律:N-mg=m解得:N=45N(3)设滑块从A点开始运动时的速度为v A,根据动能定理;-μmgs2=mv B2-mv A2解得:v A=16.1m/s设滑块在A点受到的冲量大小为I,根据动量定理I=mv A解得:I=8.1kg•m/s;【点睛】本题综合考查动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意分析物体运动的过程,选择正确的物理规律求解.3.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR = (2)123gRv =,253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gRv =,253gR v =4.光滑水平面AB 与一光滑半圆形轨道在B 点相连,轨道位于竖直面内,其半径为R ,一个质量为m 的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B 点进入半圆形轨道瞬间,对轨道的压力为其重力的9倍,之后向上运动经C 点再落回到水平面,重力加速度为g .求:(1)弹簧弹力对物块做的功;(2)物块离开C 点后,再落回到水平面上时距B 点的距离;(3)再次左推物块压紧弹簧,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为多少? 【答案】(1) (2)4R (3)或【解析】 【详解】(1)由动能定理得W =在B 点由牛顿第二定律得:9mg -mg =m解得W =4mgR(2)设物块经C 点落回到水平面上时距B 点的距离为S ,用时为t ,由平抛规律知 S=v c t 2R=gt 2从B 到C 由动能定理得联立知,S= 4 R(3)假设弹簧弹性势能为EP,要使物块在半圆轨道上运动时不脱离轨道,则物块可能在圆轨道的上升高度不超过半圆轨道的中点,则由机械能守恒定律知 EP≤mgR若物块刚好通过C 点,则物块从B 到C 由动能定理得物块在C 点时mg =m 则联立知:EP≥mgR .综上所述,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为 EP≤mgR 或 EP≥mgR .5.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,E 点是半径为0.32R m 的竖直圆轨道的最高点,DF 部分水平,末端F 点与其右侧的水平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m .物块B 静止在水平面的最右端F 处.质量为1A m kg =的物块A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E ,然后与B 发生碰撞并粘在一起.若B 的质量是A 的k 倍,A B 、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A 与物块B 的碰撞时间极短,取210/g m s =.求:(1)当3k =时物块A B 、碰撞过程中产生的内能; (2)当k=3时物块A B 、在传送带上向右滑行的最远距离;(3)讨论k 在不同数值范围时,A B 、碰撞后传送带对它们所做的功W 的表达式.【答案】(1)6J (2)0.25m (3)①()21W k J =-+②()221521k k W k +-=+【解析】(1)设物块A 在E 的速度为0v ,由牛顿第二定律得:20A A v m g m R=①,设碰撞前A 的速度为1v .由机械能守恒定律得:220111222A A A m gR m v m v +=②, 联立并代入数据解得:14/v m s =③;设碰撞后A 、B 速度为2v ,且设向右为正方向,由动量守恒定律得()122A A m v m m v =+④;解得:21141/13A AB m v v m s m m ==⨯=++⑤;由能量转化与守恒定律可得:()22121122A AB Q m v m m v =-+⑥,代入数据解得Q=6J ⑦; (2)设物块AB 在传送带上向右滑行的最远距离为s ,由动能定理得:()()2212A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨; (3)由④式可知:214/1A A B m v v m s m m k==++⑩;(i )如果A 、B 能从传送带右侧离开,必须满足()()2212A B A B m m v m m gL μ+>+,解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+;(ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧. 在这个过程中传送带对AB 所做的功为()()2221122A B A B W m m v m m v =+-+, 解得()221521k k W k +-=+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A 、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.6.如图所示,光滑水平面AB 与竖直面内的半圆形导轨在B 点相接,导轨半径为R .一个质量为m 的物体将弹簧压缩至A 点后由静止释放,在弹力作用下物体获得某一向右速度后脱离弹簧,当它经过B 点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能完成半个圆周运动到达C 点.试求:(1)弹簧开始时的弹性势能.(2)物体从B 点运动至C 点克服阻力做的功. (3)物体离开C 点后落回水平面时的速度大小. 【答案】(1)3mgR (2)0.5mgR (3)52mgR 【解析】试题分析:(1)物块到达B 点瞬间,根据向心力公式有:解得:弹簧对物块的弹力做的功等于物块获得的动能,所以有(2)物块恰能到达C 点,重力提供向心力,根据向心力公式有:所以:物块从B 运动到C ,根据动能定理有:解得:(3)从C 点落回水平面,机械能守恒,则:考点:本题考查向心力,动能定理,机械能守恒定律点评:本题学生会分析物块在B 点的向心力,能熟练运用动能定理,机械能守恒定律解相关问题.7.如图所示,用绝缘细绳系带正电小球在竖直平面内运动,已知绳长为L ,重力加速度g ,小球半径不计,质量为m ,电荷q .不加电场时,小球在最低点绳的拉力是球重的9倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
曲线运动及其基本研究方法典型例题精析
[例题1]关于互成角度的两个匀变速直线运动的合运动,下述说法中正确的是[ ]
A.一定是直线运动
B.一定是曲线运动
C.一定是匀变速运动
D.可能是直线运动,也可能是曲线运动
[思路点拨] 本题概念性很强,正确进行判定的关键在于搞清物体曲线运动的条件:物体
运动方向与受力方向不在同一直线上.另外题目中“两个匀变速直线运动”并没讲是否有初速
度,这在一定程度上也增大了题目的难度.
[解题过程] 若两个运动均为初速度为零的匀变速直线运动,如图5-1(A)所示,则合运动必为匀变速直线运动.
若两个运动之一的初速度为零,另一个初速度不为零,如图5-1(B)所示,则合运动必为曲线运动.
若两个运动均为初速度不为零的匀变速直线运动,则合运动又有两种情况:①合速度v与合加速度a不共线,如图5-1(C)所示.②合速度v与合加速度a恰好共线.显然前者为曲线运动,后者为直线运动.
由于两个匀变速直线运动的合加速度必恒定,故不仅上述直线运动为匀变速直线运动,上述曲线运动也为匀变速运动.
本题正确答案应为:C和D.
[小结] 正确理解物体做曲线运动的条件是分析上述问题的关键.曲线运动由于其运动方向时刻改变(无论其速度大小是否变化),必为变速运动.所以曲线运动的物体必定要受到合外力作用,以改变其运动状态.由于与运动方向沿同一直线的力,只能改变速度的大小;而与运动方向相垂直的力,才能改变物体的运动方向.故做曲线运动的物体的动力学条件应是受到与运动方向不在同一直线的外力作用.
[例题2] 一只小船在静水中速度为u,若水流速度为v,要使之渡过宽度为L的河,试分析为使渡河时间最短,应如何行驶?
[思路点拨] 小船渡河是一典型的运动合成问题.小船船头指向(即在静水中的航向)不同,合运动即不同.在该问题中易出现的一个典型错误是认为小船应按图5-2(A)所示,逆水向上渡河,原因是这种情况下渡河路程最短,故用时也最短.真是这样吗?
[解题过程] 依据合运动与分运动的等时性,设船头斜向上游并最终垂直到达对岸所需时间为tA,则
设船头垂直河岸渡河,如图5-2(B)所示,所需的时间为tB,则
比较上面两式易得知:tA>tB.又由于从A点到达对岸的所有路径中AB最短,故
[小结] (1)如果物体同时参加两个(或两个以上)分运动,可以使之依次参加各分运动,最终效果相同,即物体同时参与的分运动是相互独立的、彼此互不干扰,称之为运动的独立性原理.
(2)通过本题对两个互成角度分运动的合成的研究方法已见一斑,关键就是正确使用矢量计算法则.为使之理解更深刻,请参看下面问题.
若已知小船在静水中航速为u,水流速度为v(v>u),试用矢量运算法则研究船向何方向航行时,船被河水向下游冲的距离最小.
做有向线段AB,用以表示水流速度v,再以B端为圆心,以表示小船在静水中速度u大小的线段BC为半径做圆弧,得到图5-3.依矢量合成法则,该图中从A点向圆弧任意点C所做的有向线段,就应该是此状态下的合速度.
现从A点作圆的切线AD,(由图可知)显然有向线段AD所表示的即为向下游所冲距离最小时合速度.由图5-3也不难看出此时船头指向应由图中α角表示。