直线方程的应用(习题)
(完整版)直线与方程练习题及答案详解
直线与方程练习题及答案详解一、选择题1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b aB .1=-b aC .0=+b aD .0=-b a2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( )A .0B .8-C .2D .104.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限5.直线1x =的倾斜角和斜率分别是( )A .045,1 B .0135,1- C .090,不存在 D .0180,不存在6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( ) A .0≠m B .23-≠m C .1≠m D .1≠m ,23-≠m ,0≠m 二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________.2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________;若3l 与1l 关于x 轴对称,则3l 的方程为_________;若4l 与1l 关于x y =对称,则4l 的方程为___________; 3.若原点在直线l 上的射影为)1,2(-,则l 的方程为____________________。
4.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________. 5.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。
直线的参数方程及其应用举例
-.直线的参数方程及应用问题1:〔直线由点和方向确定〕求经过点P 0(00,y x ),倾斜角为α的直线l设点P(y x ,)是直线l 上任意一点,方向为直线L 的正方向〕过点P 作y P 0作x 轴的平行线,两条直线相交于Q 点.1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P| 那么P 0Q =P 0Pcos α Q P =P 2)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P| P 0Q =P 0Pcos α Q P =P 0Psin α 设P 0P =t ,t 为参数,又∵P 0Q =0x x -, 0x x -=tcos αQ P =0y y -∴0y y -=t sin α 即⎩⎨⎧+=+=ααsin cos 00t y y t x x 是所求的直线l 的参数方程∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从点P 0(00,y x )到点P(y x ,)的有向线段的数量,且|P 0P|=|t|① 当t>0时,点P 在点P 0的上方;② 当t =0时,点P 与点P 0重合;③ 当t<0时,点P 在点P 0的下方;特别地,假设直线l 的倾斜角α=0⎧+=0t x x ④ 当t>0时,点P 在点P 0的右侧; ⑤ 当t =0时,点P 与点P 0重合;⑥ 当t<0时,点P 在点P 0的左侧; 问题2:直线l 上的点与对应的参数t 是不是一 对应关系?我们把直线l 看作是实数轴, 以直线l 向上的方向为正方向,以定点 这样参数t 便和这条实数轴上的点P 一一对应关系.xx- . 问题3:P 1、P 2为直线l 上两点所对应的参数分别为t 1、t 2 ,那么P 1P 2=?,∣P 1P 2∣=?P 1P 2=P 1P 0+P 0P 2=-t 1+t 2=t 2-t 1,∣P 1P 2∣=∣ t-t ∣问题4:假设P 0为直线l 上两点P 1、P 2的中点,P 1、P 2 参数分别为t 1、t 2 ,那么t 1、t 2 根据直线l 参数方程t 的几何意义,P 1P =t 1,P 2P =t 2,∵P 0为直线l 上两点P 1、P 2的中点,∴|P 1P|=|P 2P| P 1P =-P 2P ,即t 1=-t 2, t 1t 2<0 一般地,假设P 1、P 2、P 3是直线l 上的点,所对应的参数分别为t 1、t 2、t 3,P 3为P 1、P 2 那么t 3=221t t +〔∵P 1P 3=-P 2P 3, 根据直线l 参数方程t 的几何意义,∴P 1P 3= t 3-t 1,P 2P 3=t 3-t 2,∴t 3-t 1=-(t 3-t 2,) 〕总结:1、 直线参数方程的标准式(1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=ααsin cos 00t y y t x x 〔t 为参数〕t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点.(2)假设P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2,那么P 1P 2=t 2-t 1∣P 1P 2∣=∣t 2-t 1∣(3) 假设P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3那么P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=221t t + (4)假设P 0为P 1P 2的中点,那么t 1+t 2=0,t 1·t 2<02、 直线参数方程的一般式过点P 0(00,y x ),斜率为ab k =的直线的参数方程是 ⎩⎨⎧+=+=bty y at x x 00 〔t 为参数〕 x例题:1、参数方程与普通方程的互化例1:化直线1l 的普通方程13-+y x =0为参数方程,并说明参数的几何意 义,说明∣t ∣的几何意义.解:令y=0,得x =1,∴直线1l 过定点(1,0). k =-31=-33 设倾斜角为α,tg α=-33,α=π65, cos α =-23, sin α=21 1l 的参数方程为⎪⎪⎩⎪⎪⎨⎧=-=t y t x 21231 〔t 为参数〕t 是直线1l 上定点M 0〔1,0〕到t 对应的点M(y x ,)的有向线段M M 0的数量.由⎪⎪⎩⎪⎪⎨⎧=-=-(2) 21(1) 231t y t x (1)、(2)两式平方相加,得222)1(t y x =+-∣t ∣=22)1(y x +-∣t ∣是定点M 0〔1,0〕到t 对应的点M(y x ,)的有向线段M M 0的长.点拨:求直线的参数方程先确定定点,再求倾斜角,注意参数的几何意义.例2:化直线2l 的参数方程⎩⎨⎧+=+-= t 313y t x 〔t 为参数〕为普通方程,并求倾斜角, 说明∣t ∣的几何意义.解:原方程组变形为⎩⎨⎧=-=+ (2) t31 (1) 3y t x (1)代入(2)消去参数t , 得)3(31+=-x y (点斜式) 可见k=3, tg α=3,倾斜角α=3π 普通方程为 01333=++-y x(1)、(2)两式平方相加,得2224)1()3(t y x =-++∴∣t ∣=2)1()3(22-++y x ∣t ∣是定点M 0〔3,1〕到t 对应的点M(y x ,)的有向线段M M 0的长的一半.点拨:注意在例1、例2中,参数t 的几何意义是不同的,直线1l 的参数方程 为⎪⎪⎩⎪⎪⎨⎧=-=t y t x 21231即⎪⎩⎪⎨⎧=+=ππ65sin 65cos 1t y t x 是直线方程的标准形式,(-23)2+(21)2=1, t 的几何意义是有向线段M M 0的数量.直线2l 的参数方程为⎩⎨⎧+=+-= t 313y t x 是非标准的形式,12+(3)2=4≠1,此时t 的几何意义是有向线段M M 0的数量的一半.你会区分直线参数方程的标准形式吗?例3:直线l 过点M 0〔1,3〕,倾斜角为3π,判断方程⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 233211〔t 为参数〕和方程⎩⎨⎧+=+= t331y t x 〔t 为参数〕是否为直线l 的参数方程?如果是直线l 的参数方程,指出方程中的参数t 是否具有标准形式中参数t 的几何意义.解:由于以上两个参数方程消去参数后,均可以得到直线l 的的普通方程 0333=+--y x ,所以,以上两个方程都是直线l 的参数方程,其中⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 233211 cos α =21, sin α=23,是标准形式,参数t 是有向线段M M 0的数量.,而方程⎩⎨⎧+=+= t331y t x 是非标准形式,参数t 不具有上述的几何意义. 点拨:直线的参数方程不唯一,对于给定的参数方程能区分其标准形式,会利用参数t 的几何意义解决有关问题.问题5:直线的参数方程⎩⎨⎧+=+= t 331y t x 能否化为标准形式? 是可以的,只需作参数t 的代换.(构造勾股数,实现标准化)⎩⎨⎧+=+= t 331y t x ⇔⎪⎪⎩⎪⎪⎨⎧+++=+++=))3(1()3(13 3))3(1()3(11122222222t y t x 令t '=t 22)3(1+ 得到直线l 参数方程的标准形式⎪⎪⎩⎪⎪⎨⎧'+='+=t 233211y t x t '的几何意义是有向线段 M M 0的数量.2、直线非标准参数方程的标准化一般地,对于倾斜角为α、过点M 0(00,y x )直线l 参数方程的一般式为,.⎩⎨⎧+=+=bty y at x x 00〔t 为参数〕, 斜率为a b tg k ==α(1)当22b a +=1时,那么t 的几何意义是有向线段M M 0的数量.(2) 当22b a +≠1时,那么t 不具有上述的几何意义.⎩⎨⎧+=+=bt y y at x x 00可化为⎪⎪⎩⎪⎪⎨⎧+++=+++=)()(2222022220t b a b a b y y t b a b a a x x 令t '=t b a 22+ 那么可得到标准式⎪⎪⎩⎪⎪⎨⎧'++='++=t b a b y y t b a a x x 220220 t '的几何意义是有向线段M M 0的数量.例4:写出经过点M 0〔-2,3〕,倾斜角为43π的直线l 的标准参数方程,并且 求出直线l 上与点M 0相距为2的点的坐标. 解:直线l 的标准参数方程为⎪⎩⎪⎨⎧+=+-=ππ43sin 343cos 2t y t x 即⎪⎪⎩⎪⎪⎨⎧+=--=t y t x 223222〔t 为参数〕〔1〕 设直线l 上与点M 0相距为2的点为M 点,且M 点对应的参数为t, 那么| M 0M|=|t| =2, ∴t=±2 将t 的值代入(1)式当t=2时,M 点在 M 0点的上方,其坐标为〔-2-2,3+2〕;当t=-2时,M 点在 M 0点的下方,其坐标为〔-2+2,3-2〕.点拨:假设使用直线的普通方程利用两点间的距离公式求M 点的坐标较麻烦, 而使用直线的参数方程,充分利用参数t 的几何意义求M 点的坐标较 容易.例5:直线⎩⎨⎧-=+= 20cos 420sin 3t y t x 〔t 为参数〕的倾斜角 . 解法1:消参数t,的34--x y =-ctg20°=tg110°解法2:化为标准形式:⎩⎨⎧-+=-+= 110sin )(4110cos )(3t y t t x 〔-t 为参数〕 ∴此直线的倾斜角为110°根底知识测试1:1、 求过点(6,7),倾斜角的余弦值是23的直线l 的标准参数方程.2、 直线l 的方程:⎩⎨⎧+=-=25cos 225sin 1t y t x 〔t 为参数〕,那么直线l 的倾斜角( ) A 65° B 25° C 155° D 115°3、 直线⎪⎪⎩⎪⎪⎨⎧+-=-=t y t x 521511〔t 为参数〕的斜率和倾斜角分别是( ) A) -2和arctg(-2) B) -21和arctg(-21) C) -2和π-arctg2 D) -21和π-arctg 21 4、 直线⎩⎨⎧+=+=ααsin cos 00t y y t x x 〔t 为参数〕上的点A 、B 所对应的参数分别为t 1,t 2,点P 分线段BA 所成的比为λ〔λ≠-1〕,那么P 所对应的参数是.5、直线l 的方程: ⎩⎨⎧+=+=bt y y at x x 00 〔t 为参数〕A 、B 是直线l 上的两个点,分别对应参数值t 1、t 2,那么|AB|等于( )A ∣t 1-t 2∣ B22b a +∣t 1-t 2∣ C 2221b a t t +- D ∣t 1∣+∣t 2∣ 6、 直线l :⎩⎨⎧+-=+= t 351y tx (t 为参数)与直线m :032=--y x 交于P 点,求点M(1,-5)到点P 的距离.例6:直线l 过点P 〔2,0〕,斜率为34,直线l和抛物线x y 22=相交于A 、B 两点,设线段AB 的中点为M,求: (1)P 、M 两点间的距离|PM|; (2)M 点的坐标; (3)线段AB 的长|AB|解:(1)∵直线l 过点P 〔2,0〕,斜率为34,设直线的倾斜角为α,tg α=34 cos α =53, sin α=54∴直线l 的标准参数方程为⎪⎩⎪⎨⎧=+=t y t x 54532〔t 为参数〕* ∵直线l 和抛物线相交,将直线的参数方程代入抛物线方程x y 22=中,整理得 8t 2-15t -50=0 Δ=152+4×8×50>0,设这个二次方程的两个根为t 1、t 2,由韦达定理得 t 1+t 2=815, t 1t 2=425- ,由M 为线段AB 的中点,根据t 的几何意义,得| PM|=221t t +=1615 ∵中点M 所对应的参数为t M =1615,将此值代入直线的标准参数方程*, M 点的坐标为⎪⎩⎪⎨⎧=•==•+=4316155416411615532y x 即 M 〔1641,43〕 (3) |AB|=∣t 2-t 1∣= 222114)(t t t t -+=7385 点拨:利用直线l 的标准参数方程中参数t 的几何意义,在解决诸如直线l 上两点间的距离、直线l 上某两点的中点以及与此相关的一些问题时,比用直线l 的普通方程来解决显得比拟灵活和简捷. 例7:直线l 经过点P 〔1,-33〕,倾斜角为3π, (1)求直线l 与直线l ':32-=x y 的交点Q 与P 点的距离| PQ|;(2)求直线l 和圆22y x +=16的两个交点A ,B 与P 点的距离之积.解:(1)∵直线l 经过点P 〔1,-33〕,倾斜角为3π,∴直线l 的标准参数方 程为⎪⎩⎪⎨⎧+-=+=3sin 333cos 1ππt y t x ,即⎪⎪⎩⎪⎪⎨⎧+-=+=t y t x 2333211〔t 为参数〕代入直线l ':32-=x y 得032)2333()211(=-+--+t t 整理,解得t=4+23 t=4+23即为直线l 与直线l '的交点Q 所对应的参数值,根据参数t 的几 何意义可知:|t|=| PQ|,∴| PQ|=4+23.(2) 把直线l 的标准参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+=t y t x 2333211〔t 为参数〕代入圆的方程22y x +=16,得16)2333()211(22=+-++t t ,整理得:t 2-8t+12=0, Δ=82-4×12>0,设此二次方程的两个根为t 1、t 2 那么t 1t 2=12根据参数t 的几何意义,t 1、t 2 分别为直线和圆22y x +=16的两个交点A, B 所对应的参数值,那么|t 1|=| PA|,|t 2|=| PB|,所以| PA|·| PB|=|t 1 t 2|=12点拨:利用直线标准参数方程中的参数t 的几何意义解决距离问题、距离的乘- . 积〔或商〕的问题,比使用直线的普通方程,与另一曲线方程联立先求得交点坐标再利用两点间的距离公式简便.例8:设抛物线过两点A(-1,6)和B(-1,-2),对称轴与x 轴平行,开口向右, 直线y=2x +7被抛物线截得的线段长是410,求抛物线方程.解:由题意,得抛物线的对称轴方程为y=2.设抛物线顶点坐标为〔a ,2〕 方程为(y ―2)2=2P(x -a ) (P>0) ①∵点B(-1,-2)在抛物线上,∴(―2―2)2=2P(-1-a )a P=-8-P 代入① 得(y ―2)2=2P x +2P+16 ②将直线方程y=2x +7化为标准的参数方程tg α=2,α为锐角,cos α =51, sin α=52 得⎪⎪⎩⎪⎪⎨⎧+=+-=t y t x 525511〔t 为参数〕 ③ ∵直线与抛物线相交于A ,B, ∴将③代入②并化简得:75212542--+t P t =0 ,由Δ=355)6(42+-P >0,可设方程的两根为t 1、t 2, 又∵|AB|=∣t 2-t 1∣= 222114)(t t t t -+=4104354]4)212(5[2⨯+-P =(410)2 化简,得(6-P)2=100 ∴ P=16 或P=-4(舍去) 所求的抛物线方程为(y ―2)2=32x +48点拨:(1)〔对称性〕由两点A(-1,6)和B(-1,-2)的对称性及抛物线的对称性质,设出抛物线的方程〔含P 一个未知量,由弦长AB 的值求得P 〕.(2)利用直线标准参数方程解决弦长问题.此题也可以运用直线的普通方程与抛物线方程联立后,求弦长。
直线方程练习题
直线方程练习题一、选择题1. 已知直线l过点A(2,3)且与直线3x-4y+5=0平行,求直线l的方程。
A. 3x-4y-1=0B. 3x-4y+13=0C. 4x-3y+6=0D. 4x-3y-6=02. 直线l1: ax+by+c=0与直线l2: cx+dy+e=0平行,那么以下哪个条件是正确的?A. ad-bc=0B. ac-bd=0C. a/c=b/dD. a/c≠b/d3. 已知直线l的方程为y=kx+b,若该直线过点(1,0)且斜率为1,则k 的值为:A. 0B. -1C. 1D. 24. 直线方程x+y-2=0与x-y+2=0的交点坐标是:A. (0,2)B. (2,0)C. (-2,0)D. (0,-2)5. 已知直线l1: 2x-3y+4=0与直线l2: x+y-2=0,求它们之间的距离。
A. 1B. 2C. 3D. 4二、填空题1. 若直线方程为ax+by=c,且a、b不全为0,则直线的斜率k=______。
2. 直线方程y=2x+3与x轴的交点坐标为______。
3. 若直线l过点(-1,2)且斜率为-2,则直线l的方程为______。
4. 已知直线方程为x-2y+4=0,求与该直线垂直的直线方程。
5. 已知直线方程为3x+4y-5=0,求直线上点(1,-1)到该直线的距离。
三、解答题1. 已知直线l1: 2x-y+3=0与直线l2: x+y+1=0,求它们所围成的三角形的顶点坐标。
2. 已知直线l1: ax+by+c1=0与直线l2: cx+dy+c2=0相交,求交点坐标。
3. 已知直线l1: 3x+4y-7=0与直线l2: 6x-8y+15=0,判断它们是否平行或重合,并说明理由。
4. 已知直线l: y=-2x+5与x轴相交于点A,与y轴相交于点B,求点A和点B的坐标。
5. 已知直线l1: 2x-y+1=0与直线l2: x-2y+2=0,求它们所成的角的正切值。
四、证明题1. 证明:若直线l1: ax+by+c1=0与直线l2: cx+dy+c2=0垂直,则有ad+bc=0。
高中直线方程练习题
高中直线方程练习题一、选择题(每题3分,共15分)1. 直线方程 \( y = -3x + 2 \) 与 \( x \) 轴的交点坐标是:A. (0, -2)B. (0, 2)C. (2, 0)D. (-2, 0)2. 已知直线 \( l \) 过点 A(-1, 3) 且与直线 \( 2x - 3y + 4 = 0 \) 平行,求直线 \( l \) 的方程。
3. 若直线 \( 3x + 4y - 5 = 0 \) 与 \( x \) 轴相交于点 P,求点P 的坐标。
4. 直线方程 \( y = kx + b \) 与直线 \( y = 2x \) 平行,求斜率\( k \) 的值。
5. 直线 \( x - 2y + 5 = 0 \) 与 \( y \) 轴相交于点 Q,求点 Q 的坐标。
二、填空题(每题3分,共15分)6. 直线 \( 2x + y - 6 = 0 \) 与 \( x \) 轴相交于点 \( (3, 0) \),求直线的斜率。
7. 若直线 \( ax + by + c = 0 \) 与 \( x \) 轴平行,求斜率\( b \) 的值。
8. 已知直线 \( 3x - 4y + 12 = 0 \) 与 \( y \) 轴相交于点 B,求点 B 的坐标。
9. 直线方程 \( y = 5x - 1 \) 与 \( x \) 轴相交于点 R,求点 R 的坐标。
10. 若直线 \( x + y - 3 = 0 \) 与 \( y \) 轴相交于点 S,求点S 的坐标。
三、解答题(每题10分,共30分)11. 已知直线 \( l_1 \) 方程为 \( x + 2y - 4 = 0 \),直线\( l_2 \) 方程为 \( 3x - y + 1 = 0 \),求两直线的交点坐标。
12. 直线 \( l \) 经过点 M(1, 2) 并且与直线 \( y = 4x - 5 \) 垂直,求直线 \( l \) 的方程。
直线与方程练习题(精选)
直线与方程练习题一、选择题1.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( )A .0≠mB .23-≠m C .1≠m D .1≠m ,23-≠m ,0≠m 2.下列说法的正确的是( )A .经过定点()P x y 000,的直线都可以用方程()y y k x x -=-00表示B .经过定点()b A ,0的直线都可以用方程y kx b =+表示C .不经过原点的直线都可以用方程x ayb+=1表示 D .经过任意两个不同的点()()222111y x P y x P ,、,的直线都可以用方程()()()()y y x x x x y y --=--121121表示3.若()()P a b Q c d ,、,都在直线y mx k =+上,则PQ 用a c m 、、表示为( )A .()a c m ++12B .()m a c -C .a c m-+12D . a c m -+124.△ABC 中,点(4,1)A -,AB 的中点为(3,2)M ,重心为(4,2)P ,则边BC 的长为( )A .5B .4C .10D .85.若动点P 到点(1,1)F 和直线340x y +-=的距离相等,则点P 的轨迹方程为( )A .360x y +-=B .320x y -+=C .320x y +-=D .320x y -+=6.直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( )A.[]2,2- B.(][)+∞⋃-∞-,22,C.[)(]2,00,2⋃- D.()+∞∞-,7.直线x -2y +1=0关于直线x =1对称的直线方程是( )A .x +2y -1=0B .2x +y -1=0C .2x +y -3=0D .x +2y -3=08.若y =a |x |的图象与直线y =x +a (a >0)有两个不同交点,则a 的取值范围是( )A .0<a <1B .a >1C .a >0且a ≠1D .a =19.直线xcos θ+y +m =0的倾斜角范围是( )A. 3,44ππ⎡⎤⎢⎥⎣⎦B. 30,,44πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭C.0,4π⎡⎤⎢⎥⎣⎦D.3,,4224ππππ⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦10已知点)2,1(-A ,)2,2(-B ,)3,0(C ,若点),(b a M )0(≠a 是线段AB 上的一点,则直线CM 的斜率的取值范围是( ) (A)[-25,1] (B)[-25,0]∪(0,1) (C)[-1,25] (D) ][)+∞⋃--∞,125,(11.已知直线l 过点P(-2,1),且倾斜角α满足sin α+cos α=-51,则l 的方程是( )(A)3x +4y +2=0 (B)3x -4y -2=0 (C)3x -4y +2=0或3x +4y +2=0 (D)3x +4y -10=0 12.点P (x ,y )在直线x +2y +1=0上移动,函数f(x ,y )=2x +4y 的最小值是 ( )(A)22(B) 2 (C)22(D)4213.若动点),(),(2211y x B y x A 、分别在直线1l :07=-+y x 和2l :05=-+y x 上移动,则AB 中点M 到原点距离的最小值为( )A .23B .32C .33D .24 14.点A (1,3),B (5,-2),点P 在x 轴上使|AP |-|BP |最大,则P 的坐标为( )A. (4,0)B. (13,0)C. (5,0)D. (1,0)15.设a,b,c 分别是△ABC 中,角A ,B ,C 所对边的边长,则直线sinA ·x+ay+c =0与bx-sinB ·y+sinC =0的位置关系是( )A.平行B.重合C.垂直D.相交但不垂直16过点P (1,2)且与原点O 距离最大的直线l 的方程( ).A.250x y +-= B. 240x y +-= C.370x y +-= D.350x y +-=二、填空题1.光线从点(2,1)A 出发射入y 轴上点Q , 再经y 轴反射后过(4,3)B , 则点Q 的坐标是2.已知ABC ∆的顶点(2,1),(6,3)B C -,其垂心为(3,2)H -,则顶点A 的坐标是 .3.已知直线31y kx k =++.(33x -≤≤)上的点都在x 轴上方,则实数k 的取值范围是 .4.将直线1y x =绕它上面一点(115°得到的直线方程是 .5.已知直线l 在y 轴上的截距为-3,且它与两坐标轴围成的三角形的面积为6,则直线l 的方程 .6.直线1l :220x my m +--=,2l :10mx y m +--=,当m = 时,12l l ⊥7.(1)若a b c -+=,则直线ax by c ++=必经过一个定点是 .(2)已知直线方程为(2+λ)x +(1-2λ)y +4-3λ=0必过定点 .8.(1)已知1122234,234x y x y -=-=,则过点1122(,),(,)A x y B x y 的直线l 的方程是(2)一直线被两直线1l :460x y ++=,2l :3560x y --=截得的线段的中点恰好是坐标原点,则该直线方程是9.已知直线l 过点(3,-1),且与两轴围成一个等腰直角三角形,则l 的方程为 .10.已知点(3,8)A -、(2,2)B ,点P 是x 轴上的点,当AP PB+最小时点P的坐标是 . 11.若y =kx2x +3y -6=0的交点位于第一象限,直线l 的倾斜角的取值范围 .12.已知(1,0)(1,0)M N -、,点P 为直线210x y --=上的动点.则22PM PN +的最小值 . 13.已知函数()f x =,设,a b R ∈,且a b ≠,则|()()|f a f b -,||a b -的大小关系 .14.直线2x -y -4=0上一点P 与两定点A (4,-1),B (3,4)的距离之差的最大值是 15.在函数24y x =的图象上一点P 到直线45y x =-的最短的距离是 .16.直线30x y +=上一点P 到原点的距离与到直线320x y +-=的距离相等.则点P 的坐标 17.△ABC 中,(3,3),(2,2),(7,1)A B C --. 则∠A的平分线AD 所在直线的方程是 .18.已知点P 到两个定点M (-1,0)、N (1,0,点N 到直线PM 的距离为1.则直线PN 的方程 .19.光线从A (-3,4)点射出,到x 轴上的B 点后,被x 轴反射到y 轴上的C 点,又被y 轴反射,这时反射线恰好过点D (-1,6),则BC 所在直线的方程是 .20.已知直线,32:1+=x y l若2l 与1l 关于y 轴对称,则2l 的方程为__________ ;若3l 与1l 关于x 轴对称,则3l 的方程为_________ . 若4l 与1l 关于x y =对称,则4l 的方程为___________ ;22.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________.23.直线l 过原点,且平分□ABCD 的面积,若B (1, 4)、D (5, 0),则直线l 的方程是 .24.方程1=+y x 所表示的图形的面积为_________。
直线的方程练习题(中职)
直线的方程练习题1.已知A(-4,5),B(8,1),则AB中点的坐标是线段AB的长度是2.已知M(0,3),N(2,3),线段MN的长度是MN中点的坐标是3.若点B(5,6),线段BC的中点坐标是O(2,1),点C的坐标是4.已知∆ABC的三个顶点坐标分别为A(2,-2)、B(0,1)、C(1,4),BC边上的中线AD长度是5.若点R(1,1)、S(a,3),且线段SR=2√5,则a=6.已知直线的倾斜角是120°,该直线的斜率是7.若直线l经过点A(1,-2)、B(4,2),斜率是8.已知一条直线经过M(1,√3)、N(2,2√3)该直线的倾斜角是9.若直线平行于x轴,该直线的斜率为;若垂直于x轴,则斜率10.已知直线经过点P(5,-4)、Q(a,-3),倾斜角是45°,则a的值是11.若直线经过点A(2,-1),且斜率为3,直线的方程是12.直线经过两点A(1,4),B(-2,5),直线的方程是13.经过点(-7,1)且垂直于x轴的直线方程是14.经过点(5,3)且平行于x轴的直线方程是15.若直线的方程是3x+5y-8=0,直线在x轴上的截距是;在y轴上的截距是16.已知直线的方程是x+2y+5=0,方程的斜截式是;17.已知三角形三个顶点的坐标分别为A(4,1)、B(2,3)、C(-2,5),则AC边上的中线DC的方程是18.若直线的的方程是y=-2x-5,该直线的斜率是,纵截距是19.若点(a,1)在直线3x+y-6=0上,则a=20.判断点(2,-3)是否在直线2x+y+1=0上,选填(“是”或“不是”)21.已知直线的横截距是3,纵截距是-1,直线的方程是22.判断下列直线的位置关系(选填:“相交不垂直”、“垂直”、“平行”、“重合”)(1).l1:x+y=0,l2:2x−3y+1=0; (2).l1:y=−x−2,l2:2x+2y+4=0(3).l1:−3x=2y,l2:4x−3y−1=0; (4).l1:y=3,l2:x+2=0(5).l1:x+y=0,l2:2x−3y+1=0; (6).l1:y=−3x−4,l2:x−3y+4=0(7).l1:2x+5y−8=0,l2:x−y+1=0; (8).l1:x−y−1=0,l2:2x−2y−2=023.直线2x+3y-6=0与x-2y+1=0的交点坐标是24.已知直线l1的倾斜角是30度,则过点(3,1)且垂直于l1的直线方程是25.过点(-3,2),平行于直线4x-2y+1=0的直线方程是26. 过点(-3,2),且垂直于直线4x-2y+1=0的直线方程是27. 已知∆ABC的三个顶点坐标分别为A(2,-2)、B(0,1)、C(1,4),BC边上的高AD的方程是28.若直线y=3x-1与直线x+ay+2=0垂直,则实数a的值是29.点(3,2)到直线6x-8y+7=0的距离是30.设P为y轴上一点,且P到直线3x-4y+6=0的距离为5,则点P的坐标是31. 已知∆ABC的三个顶点坐标分别为A(2,-2)、B(0,1)、C(1,4),求∆ABC的面积。
直线方程习题
4 直 例 、 线 l过 P( 4,1)且 x、y正 轴 正 点 与 正 的 正 A、B两 , 点 1 求 ( ) S∆OAB的 的 的 的 线 的 的 的 直 2 ( )l在 坐 轴 在 在 两 标 在 在 在 l方 ; 方
的 的 的 的 l方 的 的 的 方
(3)当|PA||PB| 的的的的时直线 y的方方 当 的的的的时直线l 的方方.
的 的 的 的 l方 的 的 的 方
(3)当|PA||PB| 的的的的时直线 y的方方 当 的的的的时直线l 的方方.
解( )由题意知直线l斜率存在 1
B
•
设直线方方为y − 1 = k ( x − 4) 1 ∴ A(4 − ,0), B (0,1 − 4k ) (k < 0) k
P(4,1 )
A
0
直线方程的习题课
直线的方方:
( )点斜式:y − y0 = k ( x − x0 ) 1
斜在式:y = kx + b
y − y1 x − x1 (2)两点式: = y2 − y1 x2 − x1
x y 在在式: + = 1 a b
(3)一般式:Ax + By + C = 0
直线
, l1 : y = k1 x + b1,l2 : y = k 2 x + b2 的条件是什么? (2)l1 ⊥ l2 的条件是什么? )
•
P(4,1 )
A x
|PA||PB|= | PA || PB |= − PA • PB = −(a − 4,−1) • (−4, b − 1) = 4a + b − 17
4 1 4b 4a = (4a + b)( + ) − 17 = + ≥8 a b a b
直线方程的应用
(14/5,7/5)
且由题意知, k<0.
S AOB
1 2
(1
2k )(2
1) k
1 2
4
(
4k )
(
1) k
4,
当且仅当 4k 1 ,即k 1 时取最小值,
k
2
故l 的方程为y 1 1 ( x 2),即x 2 y 4 0. 2
一、线段中点坐标公式
1、已知点A(6,0),O(0,0),则线段OA中点M的坐 标是( 3,0 )
4.直线与二元一次方程的关系: 直线的方程都是二元一次方程;
任何一个关于x,y的二元一次方程都表 示一条直线。
问题2:直线方程归纳
名称 已知条件
标准方程
使用范围
点斜式
斜率k和一点
P0 ( x0 , y0 )
y
y0
k( x x0 )
不包括y轴及与 y轴平行的直线
斜截式
斜率k和y轴 上的截距b
y kx b
22
二、对称问题 1、点与点的中心对称
练1:点A(6,-3)关于点P(1,-2)的对称点A/ 的坐标是( -4,-1)
练2:过点P(1,3)与两坐标轴交成的线段以 P为中点的直线方程_____
分析:用中点坐标公式可求的直线在坐 标轴的截距分别为2和6用截距式写出方 程为x/2+y/6=1即3x+y-6=0
2、直线关于点的中心对称问题 例1:求直线2x-3y+6=0关于点A(1,2)对 称的直线方程
方法:用相关点法——设直线上的点为 P(x1,y1),点P关于A点的对称点为P/(x,y),利 用中点坐标公式推出用x,y表示x1,y1的表 达式后代入直线方程化简即可.
直线系方程的应用——从一道课本习题说起
代 人④ 得直 线 AC的方 程是 4 +5 z 一2 =0 0 .
彝 昱
示 A2 z+ B2 + C = 0 z .
■, ’, .
盏
萎釜 言
线 系 方 程 也 可 以 表 ) ( ∈R , —O ≠0 时, 2 一O , )当 , 直
一
① ②
、( +7 )+ ( 一 1 ) /2 。 7 / r
整 理 可得 f3 +3 — fl 5 , 2 3 ~5 4 f 1 I
o n 1
.
3 0 一6 . z +5 o —0
。一
由① 、 ②解得 z 一一 6 。 3,
解得 =等或 :÷. = =
f 2 7 )×5 ( —2 2 × 7 4 (+ + 7 1 ) — 一 f
M 点 的 坐 标 为 ( , 。 ,依 题 意 , 点 的 坐 标 为 。 Y ) N
( z , 一 o 一 0 。 )
因为 M El,所 以
4 0 0 :0 + +6 . 因为 NEZ , 以 所
③
④
已知 直线 z : z 1A1 +B Y 1 1 +C =0与 z: X 2A2 + B2 +C —0相交 , 明方 程 A1 2 证 z+B1 +C + Y AA z ( +B2 +C ) ( Y 一0 ∈R) 示 过 z 表 1与 l 交 点 的 。
直线 方程 .
直线 方 程是 3 一1 一1 . z 2 —0 人教 A 必 修2 三章 直线 与 方 程 习题 3 3 组第 第 、A
4 : 题
2 )直线 AC是 过 AB 与 AH 的交 点 且 与 B 垂 H
直 的直线 , 可设 AC方程 是 过 AB 与 AH 交 点 的直线 系方 程 、
直线方程练习题
直线方程练习题一、选择题1. 下列哪个方程表示经过点(2, 3)且斜率为2的直线?A. y = 2x + 1B. y = 2x 1C. y = 2x + 3D. y = 2x 3A. y = 3B. x = 3C. y = xD. y = 2x + 13. 两条直线y = 2x + 1和y = 2x + 3的关系是:A. 平行B. 相交C. 重合D. 垂直二、填空题1. 经过点(1, 2)和点(3, 4)的直线方程是______。
2. 斜率为1,y轴截距为3的直线方程是______。
3. 两条直线y = 2x + 1和y = 2x 3的交点坐标是______。
三、解答题1. 已知直线l经过点A(2, 3)和B(4, 5),求直线l的方程。
2. 设直线l的斜率为k,且经过点(1, 1)和点(3, 5),求k的值。
3. 已知直线l1:2x + 3y + 1 = 0和直线l2:3x 2y 6 = 0,求这两条直线的交点坐标。
4. 证明:若直线l1和直线l2的斜率分别为k1和k2,且k1k2 = 1,则直线l1垂直于直线l2。
5. 设直线l1:y = 2x + 1,直线l2:y = x + 3,求这两条直线的夹角。
四、综合题1. 已知直线l1:y = 2x + 1,直线l2:y = 2x + 3,求直线l1和直线l2的对称轴方程。
2. 在平面直角坐标系中,求过点(1, 2)、(3, 4)和(5, 6)的直线方程。
3. 已知直线l1:2x + 3y + 1 = 0和直线l2:3x 2y 6 = 0,求这两条直线的平行线方程。
4. 设直线l1:y = kx + b经过点(1, 2)和点(3, 4),求k和b的值。
5. 在平面直角坐标系中,求过点(2, 3)、斜率为1的直线与x轴、y轴围成的三角形面积。
五、判断题1. 若直线l的方程为y = mx + b,则m表示直线l的截距,b表示直线l的斜率。
()2. 两条直线的斜率相等,则这两条直线一定平行。
()直线方程的应用
3.已知直线l 的倾斜角为α,sinα+cosα=1/5,则l 的斜率k
=_______-_4_/3_.
返回
4.直线l 在x,y轴上截距的倒数和为常数1/m,则直线过定 点___(_m__,m__) ___.
B
直的直线; 若B=0,则x C,它表示一条与x轴垂
A
直的直线.
直线方程的选择
(1)待定系数法是求直线方程的最基本、 最常用的方法,但要注意选择形式,一般 地已知一点,可以待定斜率k,但要注意 讨论斜率k不存在的情形,如果已知斜率 可以选择斜截式待定截距等;
(2)直线方程的几种特殊形式都有其使用 的局限性,解题过程中要能够根据不同的 题设条件,灵活选用恰当的直线形式求直 线方程。
b 2a
由
1 a
2 b
1
解得
a b
2 4
所以当且仅当a=2且b=4时,△OAB的面
积S取最小值4. 此时,直线的方程为 x y 1 ,
24
即2x+y-4=0.
练习题: 1.如果AC<0,BC<0,那么直线 Ax+By+C=0不通过( C )
(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
都满足方程2x+3y+1=0,
所以过Q1(a1,b1),Q2(a2,b2)两点的直 线方程是2x+3y+1=0.
例4.过点P(1,2)作直线l,交x,y轴的正 半轴于A、B两点,求使△OAB面积取得 最小值时直线l的方程.
练习题----直线的方程
练习题----直线的方程一.选择题(共18小题)1.下列命题中真命题为()A.过点P(x0,y0)的直线都可表示为y﹣y0=k(x﹣x0)B.过两点(x1,y1),(x2,y2)的直线都可表示为(x﹣x1)(y2﹣y1)=(y﹣y1)(x2﹣x1)C.过点(0,b)的所有直线都可表示为y=kx+bD.不过原点的所有直线都可表示为2.已知点M是直线l:2x﹣y﹣4=0与x轴的交点,过M点作直线l的垂线,得到的垂线的直线方程是()A.x﹣2y﹣2=0 B.x﹣2y+2=0 C.x+2y﹣2=0 D.x+2y+2=03.直线l只经过第一、三、四象限,则直线l的斜率k()A.大于零B.小于零 C.大于零或小于零 D.以上结论都有可能4.已知两点O(0,0),A(1,0),直线l:x﹣2y+1=0,P为直线l上一点.则|PO|+|PA|最小值为() A. B.C.D.5.直线x+a2y+6=0和(a﹣2)x+3ay+2a=0无公共点,则a的值是()A.3 B.0 C.﹣1 D.0或﹣16.平行于直线l:x+2y﹣3=0,且与l的距离为2的直线的方程为()A.x+2y+7=0 B.x+2y﹣13=0或x+2y+7=0C.x+2y+13=0 D.x+2y+13=0或x+2y﹣7=07.已知三条直线2x﹣3y+1=0,4x+3y+5=0,mx﹣y﹣1=0不能构成三角形,则实数m的取值集合为()A.{﹣,} B.{,﹣} C.{﹣,,} D.{﹣,﹣,}8.经过点A(1,2)并且在两个坐标轴上的截距的绝对值相等的直线方程为()A.y=2x或x﹣y+1=0 B.y=2x,x+y﹣3=0C.x+y﹣3=0,或x﹣y+1=0 D.y=2x,或x+y﹣3=0,或x﹣y+1=09.点A(1,3)关于直线y=kx+b对称的点是B(﹣2,1),则直线y=kx+b在x轴上的截距是()A.﹣ B.C.﹣ D.10.经过点A(2,3)且与直线2x﹣y+1=0垂直的直线方程为()A.2x﹣y﹣1=0 B.x+2y﹣8=0 C.x+2y﹣1=0 D.x﹣2y﹣8=011.在同一平面直角坐标系中,直线l1:ax+y+b=0和直线l2:bx+y+a=0有可能是()A.B.C. D.12.若直线l1:mx+2y+1=0与直线l2:x+y﹣2=0互相垂直,则实数m的值为()A.2 B.﹣2 C.D.﹣13.若直线y=﹣2mx﹣6与直线y=(m﹣3)x+7平行,则m的值为()A.﹣1 B.1或﹣1 C.1 D.314.方程(1+4k)x﹣(2﹣3k)y+(2﹣14k)=0所确定的直线必经过点()A.(2,2)B.(﹣2,2)C.(﹣6,2)D.()15.已知A(﹣3,8)和B(2,2),在x轴上有一点M,使得|AM|+|BM|为最短,那么点M的坐标为()A.(﹣1,0)B.(1,0)C.()D.()16.已知实数x,y满足2x+y+5=0,那么的最小值为()A.B. C.2 D.217.动点P在直线x+y﹣4=0上,动点Q在直线x+y=8上,则|PQ|的最小值为()A. B.2 C.D.218.直线l过P(1,2),且A(2,3),B(4,﹣5)到l的距离相等,则直线l的方程是()A.4x+y﹣6=0 B.x+4y﹣6=0C.3x+2y﹣7=0或4x+y﹣6=0 D.2x+3y﹣7=0或x+4y﹣6=0二.填空题(共4小题)19.若直线l1:ax+2y+6=0与直线l2:x+(a﹣1)y+(a2﹣1)=0平行且不重合,则a的值是.20.若过点P(1﹣a,1+a)和Q(3,2a)的直线的倾斜角α为钝角,则实数a的取值范围为.21.如果AC<0,BC>0,那么直线Ax+By+C=0不通过第象限.22.已知点A(1,1),B(4,2),若直线l:mx﹣y﹣1=0与线段AB相交,则实数m的取值范围为.练习题----直线的方程参考答案与试题解析一.选择题(共18小题)1.下列命题中真命题为()A.过点P(x0,y0)的直线都可表示为y﹣y0=k(x﹣x0)B.过两点(x1,y1),(x2,y2)的直线都可表示为(x﹣x1)(y2﹣y1)=(y﹣y1)(x2﹣x1)C.过点(0,b)的所有直线都可表示为y=kx+bD.不过原点的所有直线都可表示为【解答】解:当直线不过原点且直线和x轴垂直时,直线的斜率k不存在,如直线 x=3 等,选项A、C、D不正确,过两点(x1,y1),(x2,y2)的直线,当直线斜率存在且不等于0时,方程为,即(x﹣x1)(y2﹣y1)=(y﹣y1)(x2﹣x1).当直线斜率不存在时,x1=x2 ,方程为 x=x1,可以写成(x﹣x1)(y2﹣y1)=(y﹣y1)(x2﹣x1)的形式.当直线斜率等于0时,y1=y2 ,方程为 y=y1,可以写成(x﹣x1)(y2﹣y1)=(y﹣y1)(x2﹣x1)的形式.综上,只有选项B正确,故选 B.2.已知点M是直线l:2x﹣y﹣4=0与x轴的交点,过M点作直线l的垂线,得到的垂线的直线方程是()A.x﹣2y﹣2=0 B.x﹣2y+2=0 C.x+2y﹣2=0 D.x+2y+2=0【解答】解:在2x﹣y﹣4=0中,令y=0,解得x=2,∴M(2,0).∵k l=2,∴所求的垂线所在的直线的斜率k=﹣,故所求的垂线所在的直线方程是:y=﹣(x﹣2),整理,得x+2y﹣2=0.故选C.3.直线l只经过第一、三、四象限,则直线l的斜率k()A.大于零B.小于零C.大于零或小于零D.以上结论都有可能【解答】解:设直线l方程为y=kx+b,∵直线l只经过第一、三、四象限,∴直线交x轴于点(﹣,0),交y轴于(0,b)且﹣>0,b<0,解之得k>0,即直线的斜率k是一个大于0的数故选:A4.已知两点O(0,0),A(1,0),直线l:x﹣2y+1=0,P为直线l上一点.则|PO|+|PA|最小值为()A.B.C.D.【解答】解:设O(0,0)关于直线l的对称点为B(a,b),则由图中位置关系可得⇒,∴B(﹣,),当点P在直线AB上时,|PO|+|PA|最小,且最小值为|AB|==.故选B.5.直线x+a2y+6=0和(a﹣2)x+3ay+2a=0无公共点,则a的值是()A.3 B.0 C.﹣1 D.0或﹣1【解答】解:当a=0时,两直线方程分别为x+6=0和x=0,显然无公共点;当a≠0时,,解得a=﹣1.所以a=0或﹣1.故选D.6.平行于直线l:x+2y﹣3=0,且与l的距离为2的直线的方程为()A.x+2y+7=0 B.x+2y﹣13=0或x+2y+7=0C.x+2y+13=0 D.x+2y+13=0或x+2y﹣7=0【解答】解:设与直线l:x+2y﹣3=0平行的直线方程为x+2y+m=0,由,解得:m=﹣13或m=7.∴所求直线方程为x+2y﹣13=0或x+2y+7=0.故选:B.7.已知三条直线2x﹣3y+1=0,4x+3y+5=0,mx﹣y﹣1=0不能构成三角形,则实数m的取值集合为()A.{﹣,}B.{,﹣}C.{﹣,,}D.{﹣,﹣,}【解答】解:∵三条直线不能围成一个三角形,∴(1)l1∥l3,此时m=;l2∥l3,此时m=﹣;(2)三点共线时也不能围成一个三角形2x﹣3y+1=0与4x+3y+5=0交点是(﹣1,﹣)代入mx﹣y﹣1=0,则m=﹣.故选:D.8.经过点A(1,2)并且在两个坐标轴上的截距的绝对值相等的直线方程为()A.y=2x或x﹣y+1=0 B.y=2x,x+y﹣3=0C.x+y﹣3=0,或x﹣y+1=0 D.y=2x,或x+y﹣3=0,或x﹣y+1=0【解答】解:经过点A(1,2)并且在两个坐标轴上的截距的绝对值相等的直线:当截距为0时,直线过原点:y=2x;当斜率为1时,直线方程:x﹣y+1=0;当斜率为﹣1时,直线方程:x+y﹣3=0.综上所述,直线方程为y=2x或x+y﹣3=0或x﹣y+1=0.故选D.9.点A(1,3)关于直线y=kx+b对称的点是B(﹣2,1),则直线y=kx+b在x轴上的截距是()A.﹣ B.C.﹣ D.【解答】解:由题意知,解得k=﹣,b=,∴直线方程为y=﹣x+,其在x轴上的截距为﹣×(﹣)=.故选D.10.经过点A(2,3)且与直线2x﹣y+1=0垂直的直线方程为()A.2x﹣y﹣1=0 B.x+2y﹣8=0 C.x+2y﹣1=0 D.x﹣2y﹣8=0【解答】解:设与直线2x﹣y+1=0垂直的直线方程为x+2y+m=0,把点A(2,3)代入可得:2+6+m=0,解得m=﹣8.∴要求的直线方程为:x+2y﹣8=0.故选:B.11.在同一平面直角坐标系中,直线l1:ax+y+b=0和直线l2:bx+y+a=0有可能是()A.B.C. D.【解答】解:直线l1:ax+y+b=0和直线l2:bx+y+a=0分别化为:l1:y=﹣ax﹣b,l2:y=﹣bx﹣a.由方程看到:l1的斜率﹣a与l2的截距相同,l1的截距﹣b与l2的斜率相同.据此可判断出:只有B满足上述条件.故选:B.12.若直线l1:mx+2y+1=0与直线l2:x+y﹣2=0互相垂直,则实数m的值为()A.2 B.﹣2 C.D.﹣【解答】解:∵直线l1:mx+2y+1=0与直线l2:x+y﹣2=0互相垂直,∴m×1+2×1=0,解得m=﹣2.故选:B.13.若直线y=﹣2mx﹣6与直线y=(m﹣3)x+7平行,则m的值为()A.﹣1 B.1或﹣1 C.1 D.3【解答】解:若直线y=﹣2mx﹣6与直线y=(m﹣3)x+7平行,则﹣2m=m﹣3,解得:m=1,故选:C.14.方程(1+4k)x﹣(2﹣3k)y+(2﹣14k)=0所确定的直线必经过点()A.(2,2) B.(﹣2,2)C.(﹣6,2)D.()【解答】解:方程(1+4k)x﹣(2﹣3k)y+(2﹣14k)=0,化为(x﹣2y+2)+k(4x+3y ﹣14)=0解得故选A.15.已知A(﹣3,8)和B(2,2),在x轴上有一点M,使得|AM|+|BM|为最短,那么点M的坐标为()A.(﹣1,0)B.(1,0) C.()D.()【解答】解:找出点B关于x轴的对称点B′,连接AB′,与x轴的交于M点,连接BM,此时|AM|+|BM|为最短,由B与B′关于x轴对称,B(2,2),所以B′(2,﹣2),又A(﹣3,8),则直线AB′的方程为y+2=(x﹣2)化简得:y=﹣2x+2,令y=0,解得x=1,所以M(1,0)故选B16.已知实数x,y满足2x+y+5=0,那么的最小值为()A.B. C.2 D.2【解答】解:求的最小值,就是求2x+y+5=0上的点到原点的距离的最小值,转化为坐标原点到直线2x+y+5=0的距离,.故选A.17.动点P在直线x+y﹣4=0上,动点Q在直线x+y=8上,则|PQ|的最小值为()A. B.2 C.D.2【解答】解:|PQ|的最小值为两条平行线间的距离,即d==2,故选B.18.直线l过P(1,2),且A(2,3),B(4,﹣5)到l的距离相等,则直线l的方程是()A.4x+y﹣6=0 B.x+4y﹣6=0C.3x+2y﹣7=0或4x+y﹣6=0 D.2x+3y﹣7=0或x+4y﹣6=0【解答】解设所求直线为l,由条件可知直线l平行于直线AB或过线段AB的中点,…(2分)(1)AB的斜率为=﹣4,当直线l∥AB时,l的方程是y﹣2=﹣4(x﹣1),即4x+y﹣6=0.…(6分)(2)当直线l经过线段AB的中点(3,﹣1)时,l的斜率为=,l的方程是y﹣2=(x﹣1),即3x+2y﹣7=0.…(10分)故所求直线的方程为3x+2y﹣7=0或4x+y﹣6=0.…(12分)故选C.二.填空题(共4小题)19.若直线l1:ax+2y+6=0与直线l2:x+(a﹣1)y+(a2﹣1)=0平行且不重合,则a的值是﹣1.【解答】解:若直线l1:ax+2y+6=0与直线l2:x+(a﹣1)y+(a2﹣1)=0平行则a(a﹣1)﹣2=0,即a2﹣a﹣2=0解得:a=2,或a=﹣1又∵a=2时,l1:x+y+3=0与l2:x+y+3=0重合故a=﹣1故答案为:﹣120.若过点P(1﹣a,1+a)和Q(3,2a)的直线的倾斜角α为钝角,则实数a的取值范围为(﹣2,1).【解答】解:∵过点P(1﹣a,1+a)和Q(3,2a)的直线的倾斜角α为钝角,∴直线的斜率小于0,即<0,即<0,解得﹣2<a<1,故答案为(﹣2,1).21.如果AC<0,BC>0,那么直线Ax+By+C=0不通过第二象限.【解答】解:由题意直线Ax+By+C=0可化为.∵AC<0,BC>0,若C>0,则A<0,B>0,∴,,∴直线经过第一、四、三象限.若C<0,则A>0,B<0,∴,,∴直线经过第一、四、三象限.综上可得:直线Ax+By+C=0经过第一、四、三象限,不通过第二象限.故答案为:二.22.已知点A(1,1),B(4,2),若直线l:mx﹣y﹣1=0与线段AB相交,则实数m的取值范围为[,2] .【解答】解:直线l:mx﹣y﹣1=0经过定点P(0,﹣1).k PA==2,k PB==.∵直线l:mx﹣y﹣1=0与线段AB相交,∴k PA≥m≥k PB.∴2≥m≥.∴实数m的取值范围为[,2],故答案为:[,2].11。
高中数学直线方程练习题(附答案)
高中数学直线方程练习题一.选择题(共12小题)1.已知A(﹣2,﹣1),B(2,﹣3),过点P(1,5)的直线l与线段AB有交点,则l的斜率的范围是()A.(﹣∞,﹣8]B.[2,+∞)C.(﹣∞,﹣8]∪[2,+∞)D.(﹣∞,﹣8)∪(2,+∞)2.已知点A(1,3),B(﹣2,﹣1).若直线l:y=k(x﹣2)+1与线段AB相交,则k的取值范围是()A.[,+∞)B.(﹣∞,﹣2]C.(﹣∞,﹣2]∪[,+∞)D.[﹣2,]3.已知点A(﹣1,1),B(2,﹣2),若直线l:x+my+m=0与线段AB(含端点)相交,则实数m的取值范围是()A.(﹣∞,]∪[2,+∞) B.[,2] C.(﹣∞,﹣2]∪[﹣,+∞)D.[﹣,﹣2]4.已知M(1,2),N(4,3)直线l过点P(2,﹣1)且与线段MN相交,那么直线l的斜率k的取值范围是()A.(﹣∞,﹣3]∪[2,+∞)B.[﹣,]C.[﹣3,2]D.(﹣∞,﹣]∪[,+∞)5.已知M(﹣2,﹣3),N(3,0),直线l过点(﹣1,2)且与线段MN相交,则直线l的斜率k的取值范围是()A.或k≥5 B.C.D.6.已知A(﹣2,),B(2,),P(﹣1,1),若直线l过点P且与线段AB有公共点,则直线l的倾斜角的范围是()A.B.C.D.∪7.已知点A(2,3),B(﹣3,﹣2),若直线l过点P(1,1)与线段AB始终没有交点,则直线l的斜率k的取值范围是()A.<k<2 B.k>2或k<C.k>D.k<28.已知O为△ABC内一点,且,,若B,O,D三点共线,则t的值为()A.B.C.D.9.经过(3,0),(0,4)两点的直线方程是()A.3x+4y﹣12=0B.3x﹣4y+12=0 C.4x﹣3y+12=0 D.4x+3y﹣12=010.过点(3,﹣6)且在两坐标轴上的截距相等的直线的方程是()A.2x+y=0 B.x+y+3=0C.x﹣y+3=0 D.x+y+3=0或2x+y=011.经过点M(1,1)且在两轴上截距相等的直线是()A.x+y=2 B.x+y=1 C.x=1或y=1 D.x+y=2或x﹣y=012.已知△ABC的顶点A(2,3),且三条中线交于点G(4,1),则BC边上的中点坐标为()A.(5,0) B.(6,﹣1)C.(5,﹣3)D.(6,﹣3)二.填空题(共4小题)13.已知直线l1:ax+3y+1=0,l2:2x+(a+1)y+1=0,若l1∥l2,则实数a的值是.14.直线l1:(3+a)x+4y=5﹣3a和直线l2:2x+(5+a)y=8平行,则a=.15.设直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,当m=时,l1∥l2,当m=时,l1⊥l2.16.如果直线(2a+5)x+(a﹣2)y+4=0与直线(2﹣a)x+(a+3)y﹣1=0互相垂直,则a的值等于.三.解答题(共11小题)17.已知点A(1,1),B(﹣2,2),直线l过点P(﹣1,﹣1)且与线段AB始终有交点,则直线l的斜率k的取值范围为.18.已知x,y满足直线l:x+2y=6.(1)求原点O关于直线l的对称点P的坐标;(2)当x∈[1,3]时,求的取值范围.19.已知点A(1,2)、B(5,﹣1),(1)若A,B两点到直线l的距离都为2,求直线l的方程;(2)若A,B两点到直线l的距离都为m(m>0),试根据m的取值讨论直线l 存在的条数,不需写出直线方程.20.已知直线l的方程为2x+(1+m)y+2m=0,m∈R,点P的坐标为(﹣1,0).(1)求证:直线l恒过定点,并求出定点坐标;(2)求点P到直线l的距离的最大值.21.已知直线方程为(2+m)x+(1﹣2m)y+4﹣3m=0.(Ⅰ)证明:直线恒过定点M;(Ⅱ)若直线分别与x轴、y轴的负半轴交于A,B两点,求△AOB面积的最小值及此时直线的方程.22.已知光线经过已知直线l1:3x﹣y+7=0和l2:2x+y+3=0的交点M,且射到x 轴上一点N(1,0)后被x轴反射.(1)求点M关于x轴的对称点P的坐标;(2)求反射光线所在的直线l3的方程.(3)求与l3距离为的直线方程.23.已知直线l:y=3x+3求(1)点P(4,5)关于l的对称点坐标;(2)直线y=x﹣2关于l对称的直线的方程.24.已知点M(3,5),在直线l:x﹣2y+2=0和y轴上各找一点P和Q,使△MPQ 的周长最小.25.已知直线l经过点P(3,1),且被两平行直线l1;x+y+1=0和l2:x+y+6=0截得的线段之长为5,求直线l的方程.26.已知直线l:5x+2y+3=0,直线l′经过点P(2,1)且与l的夹角等于45,求直线l'的一般方程.27.已知点A(2,0),B(0,6),O为坐标原点.(1)若点C在线段OB上,且∠ACB=,求△ABC的面积;(2)若原点O关于直线AB的对称点为D,延长BD到P,且|PD|=2|BD|,已知直线L:ax+10y+84﹣108=0经过点P,求直线l的倾斜角.高中数学直线方程练习题参考答案与试题解析一.选择题(共12小题)1.(2016秋•滑县期末)已知A(﹣2,﹣1),B(2,﹣3),过点P(1,5)的直线l与线段AB有交点,则l的斜率的范围是()A.(﹣∞,﹣8]B.[2,+∞)C.(﹣∞,﹣8]∪[2,+∞)D.(﹣∞,﹣8)∪(2,+∞)【分析】利用斜率计算公式与斜率的意义即可得出.【解答】解:k PA==2,k PB==﹣8,∵直线l与线段AB有交点,∴l的斜率的范围是k≤﹣8,或k≥2.故选:C.【点评】本题考查了斜率计算公式与斜率的意义,考查了推理能力与计算能力,属于中档题.2.(2016秋•碑林区校级期末)已知点A(1,3),B(﹣2,﹣1).若直线l:y=k (x﹣2)+1与线段AB相交,则k的取值范围是()A.[,+∞)B.(﹣∞,﹣2]C.(﹣∞,﹣2]∪[,+∞)D.[﹣2,]【分析】由直线系方程求出直线l所过定点,由两点求斜率公式求得连接定点与线段AB上点的斜率的最小值和最大值得答案.【解答】解:∵直线l:y=k(x﹣2)+1过点P(2,1),连接P与线段AB上的点A(1,3)时直线l的斜率最小,为,连接P与线段AB上的点B(﹣2,﹣1)时直线l的斜率最大,为.∴k的取值范围是.故选:D.【点评】本题考查了直线的斜率,考查了直线系方程,是基础题.3.(2016秋•雅安期末)已知点A(﹣1,1),B(2,﹣2),若直线l:x+my+m=0与线段AB(含端点)相交,则实数m的取值范围是()A.(﹣∞,]∪[2,+∞) B.[,2] C.(﹣∞,﹣2]∪[﹣,+∞)D.[﹣,﹣2]【分析】利用斜率计算公式、斜率与倾斜角的关系及其单调性即可得出.【解答】解:直线l:x+my+m=0经过定点P(0,﹣1),k PA==﹣2,k PB==﹣.∵直线l:x+my+m=0与线段AB(含端点)相交,∴≤≤﹣2,∴.故选:B.【点评】本题考查了斜率计算公式、斜率与倾斜角的关系及其单调性,考查了推理能力与计算能力,属于中档题.4.(2016秋•庄河市校级期末)已知M(1,2),N(4,3)直线l过点P(2,﹣1)且与线段MN相交,那么直线l的斜率k的取值范围是()A.(﹣∞,﹣3]∪[2,+∞)B.[﹣,]C.[﹣3,2]D.(﹣∞,﹣]∪[,+∞)【分析】画出图形,由题意得所求直线l的斜率k满足k≥k PN或k≤k PM,用直线的斜率公式求出k PN和k PM的值,解不等式求出直线l的斜率k的取值范围.【解答】解:如图所示:由题意得,所求直线l的斜率k满足k≥k PN或k≤k PM,即k≥=2,或k≤=﹣3,∴k≥2,或k≤﹣3,故选:A.【点评】本题考查直线的斜率公式的应用,体现了数形结合的数学思想.5.(2013秋•迎泽区校级月考)已知M(﹣2,﹣3),N(3,0),直线l过点(﹣1,2)且与线段MN相交,则直线l的斜率k的取值范围是()A.或k≥5 B.C.D.【分析】求出边界直线的斜率,作出图象,由直线的倾斜角和斜率的关系可得.【解答】解:(如图象)即P(﹣1,2),由斜率公式可得PM的斜率k1==5,直线PN的斜率k2==,当直线l与x轴垂直(红色线)时记为l′,可知当直线介于l′和PM之间时,k≥5,当直线介于l′和PN之间时,k≤﹣,故直线l的斜率k的取值范围是:k≤﹣,或k≥5故选A【点评】本题考查直线的斜率公式,涉及数形结合的思想和直线的倾斜角与斜率的关系,属中档题.6.(2004秋•南通期末)已知A(﹣2,),B(2,),P(﹣1,1),若直线l过点P且与线段AB有公共点,则直线l的倾斜角的范围是()A.B.C.D.∪【分析】先求出直线的斜率的取值范围,再根据斜率与倾斜角的关系以及倾斜角的范围求出倾斜角的具体范围.【解答】解:设直线l的斜率等于k,直线的倾斜角为α由题意知,k PB==﹣,或k PA==﹣设直线的倾斜角为α,则α∈[0,π),tanα=k,由图知0°≤α≤120°或150°≤α<180°故选:D.【点评】本题考查直线的倾斜角和斜率的关系,直线的斜率公式的应用,属于基础题.7.已知点A(2,3),B(﹣3,﹣2),若直线l过点P(1,1)与线段AB始终没有交点,则直线l的斜率k的取值范围是()A.<k<2 B.k>2或k<C.k>D.k<2【分析】求出PA,PB所在直线的斜率,数形结合得答案.【解答】解:点A(2,3),B(﹣3,﹣2),若直线l过点P(1,1),∵直线PA的斜率是=2,直线PB的斜率是=.如图,∵直线l与线段AB始终有公共点,∴斜率k的取值范围是(,2).故选:A.【点评】本题考查了直线的倾斜角和直线的斜率,考查了数形结合的解题思想方法,是基础题.8.(2017•成都模拟)已知O为△ABC内一点,且,,若B,O,D三点共线,则t的值为()A.B.C.D.【分析】以OB,OC为邻边作平行四边形OBFC,连接OF与BC相交于点E,E 为BC的中点.由,可得=2=2,点O是直线AE的中点.根据,B,O,D三点共线,可得点D是BO与AC的交点.过点O作OM∥BC交AC于点M,则点M为AC的中点.即可得出.【解答】解:以OB,OC为邻边作平行四边形OBFC,连接OF与BC相交于点E,E为BC的中点.∵,∴=2=2,∴点O是直线AE的中点.∵,B,O,D三点共线,∴点D是BO与AC的交点.过点O作OM∥BC交AC于点M,则点M为AC的中点.则OM=EC=BC,=,∴DM=MC,∴AD=AM=AC,∴t=.故选:B.【点评】本题考查了向量共线定理、向量三角形与平行四边形法则、平行线的性质,考查了推理能力与计算能力,属于中档题.9.(2016秋•沙坪坝区校级期中)经过(3,0),(0,4)两点的直线方程是()A.3x+4y﹣12=0B.3x﹣4y+12=0 C.4x﹣3y+12=0 D.4x+3y﹣12=0【分析】直接利用直线的截距式方程求解即可.【解答】解:因为直线经过(3,0),(0,4)两点,所以所求直线方程为:,即4x+3y﹣12=0.故选D.【点评】本题考查直线截距式方程的求法,考查计算能力.10.(2016秋•平遥县校级期中)过点(3,﹣6)且在两坐标轴上的截距相等的直线的方程是()A.2x+y=0 B.x+y+3=0C.x﹣y+3=0 D.x+y+3=0或2x+y=0【分析】当直线过原点时,用点斜式求得直线方程.当直线不过原点时,设直线的方程为x+y=k,把点(3,﹣6)代入直线的方程可得k值,从而求得所求的直线方程,综合可得结论.【解答】解:当直线过原点时,方程为y=﹣2x,即2x+y=0.当直线不过原点时,设直线的方程为x+y=k,把点(3,﹣6)代入直线的方程可得k=﹣3,故直线方程是x+y+3=0.综上,所求的直线方程为x+y+3=0或2x+y=0,故选:D.【点评】本题考查用待定系数法求直线方程,体现了分类讨论的数学思想,注意当直线过原点时的情况,这是解题的易错点,属于基础题.11.(2015秋•运城期中)经过点M(1,1)且在两轴上截距相等的直线是()A.x+y=2 B.x+y=1 C.x=1或y=1 D.x+y=2或x﹣y=0【分析】分两种情况考虑,第一:当所求直线与两坐标轴的截距不为0时,设出该直线的方程为x+y=a,把已知点坐标代入即可求出a的值,得到直线的方程;第二:当所求直线与两坐标轴的截距为0时,设该直线的方程为y=kx,把已知点的坐标代入即可求出k的值,得到直线的方程,综上,得到所有满足题意的直线的方程.【解答】解:①当所求的直线与两坐标轴的截距不为0时,设该直线的方程为x+y=a,把(1,1)代入所设的方程得:a=2,则所求直线的方程为x+y=2;②当所求的直线与两坐标轴的截距为0时,设该直线的方程为y=kx,把(1,1)代入所求的方程得:k=1,则所求直线的方程为y=x.综上,所求直线的方程为:x+y=2或x﹣y=0.故选:D.【点评】此题考查直线的一般方程和分类讨论的数学思想,要注意对截距为0和不为0分类讨论,是一道基础题.12.(2013春•泗县校级月考)已知△ABC的顶点A(2,3),且三条中线交于点G(4,1),则BC边上的中点坐标为()A.(5,0) B.(6,﹣1)C.(5,﹣3)D.(6,﹣3)【分析】利用三角形三条中线的交点到对边的距离等于到所对顶点的距离的一半,用向量表示即可求得结果.【解答】解:如图所示,;∵△ABC的顶点A(2,3),三条中线交于点G(4,1),设BC边上的中点D(x,y),则=2,∴(4﹣2,1﹣3)=2(x﹣4,y﹣1),即,解得,即所求的坐标为D(5,0);故选:A.【点评】本题考查了利用三角形三条中线的交点性质求边的中点坐标问题,是基础题.二.填空题(共4小题)13.(2015•益阳校级模拟)已知直线l1:ax+3y+1=0,l2:2x+(a+1)y+1=0,若l1∥l2,则实数a的值是﹣3.【分析】根据l1∥l2,列出方程a(a+1)﹣2×3=0,求出a的值,讨论a是否满足l1∥l2即可.【解答】解:∵l1∥l2,∴a(a+1)﹣2×3=0,即a2+a﹣6=0,解得a=﹣3,或a=2;当a=﹣3时,l1为:﹣3x+3y+1=0,l2为:2x﹣2y+1=0,满足l1∥l2;当a=2时,l1为:2x+3y+1=0,l2为:2x+3y+1=0,l1与l2重合;所以,实数a的值是﹣3.故答案为:﹣3.【点评】本题考查了两条直线平行,斜率相等,或者对应系数成比例的应用问题,是基础题目.14.(2015秋•天津校级期末)直线l1:(3+a)x+4y=5﹣3a和直线l2:2x+(5+a)y=8平行,则a=﹣7.【分析】根据两直线平行的条件可知,(3+a)(5+a)﹣4×2=0,且5﹣3a≠8.进而可求出a的值.【解答】解:直线l1:(3+a)x+4y=5﹣3a和直线l2:2x+(5+a)y=8平行,则(3+a)(5+a)﹣4×2=0,即a2+8a+7=0.解得,a=﹣1或a=﹣7.又∵5﹣3a≠8,∴a≠﹣1.∴a=﹣7.故答案为:﹣7.【点评】本题考查两直线平行的条件,其中5﹣3a≠8是本题的易错点.属于基础题.15.(2015秋•台州期末)设直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,当m=﹣1时,l1∥l2,当m=时,l1⊥l2.【分析】利用直线平行、垂直的性质求解.【解答】解:∵直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,l1∥l2,∴=≠,解得m=﹣1;∵直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,l1⊥l2,∴1×(m﹣2)+3m=0,解得m=;故答案为:﹣1,.【点评】本题考查实数的取值范围的求法,是基础题,解题时要认真审题,注意直线的位置关系的合理运用.16.(2016春•信阳月考)如果直线(2a+5)x+(a﹣2)y+4=0与直线(2﹣a)x+(a+3)y﹣1=0互相垂直,则a的值等于a=2或a=﹣2.【分析】利用两条直线互相垂直的充要条件,得到关于a的方程可求.【解答】解:设直线(2a+5)x+(a﹣2)y+4=0为直线M;直线(2﹣a)x+(a+3)y﹣1=0为直线N①当直线M斜率不存在时,即直线M的倾斜角为90°,即a﹣2=0,a=2时,直线N的斜率为0,即直线M的倾斜角为0°,故:直线M与直线N互相垂直,所以a=2时两直线互相垂直.②当直线M和N的斜率都存在时,k M=(,k N=要使两直线互相垂直,即让两直线的斜率相乘为﹣1,故:a=﹣2.③当直线N斜率不存在时,显然两直线不垂直.综上所述:a=2或a=﹣2故答案为:a=2或a=﹣2【点评】本题考查两直线垂直的充要条件,若利用斜率之积等于﹣1,应注意斜率不存在的情况.三.解答题(共11小题)17.(2016秋•兴庆区校级期末)已知点A(1,1),B(﹣2,2),直线l过点P (﹣1,﹣1)且与线段AB始终有交点,则直线l的斜率k的取值范围为k≤﹣3,或k≥1.【分析】由题意画出图形,数形结合得答案.【解答】解:如图,∵A(1,1),B(﹣2,2),直线l过点P(﹣1,﹣1),又,∴直线l的斜率k的取值范围为k≤﹣3,或k≥1.故答案为:k≤﹣3,或k≥1.【点评】本题考查直线的斜率,考查了数形结合的解题思想方法,是中档题.18.(2015春•乐清市校级期末)已知x,y满足直线l:x+2y=6.(1)求原点O关于直线l的对称点P的坐标;(2)当x∈[1,3]时,求的取值范围.【分析】(1)设对称后的点P(a,b),根据点的对称即可求原点O关于直线l 的对称点P的坐标.(2)根据斜率公式可知,表示的为动点(x,y)到定点(2,1)的两点的斜率的取值范围.【解答】解:(1)设原点O关于直线l的对称点P的坐标为(a,b),则满足,解得a=,b=,故;(2)当x∈[1,3]时,的几何意义为到点C(2,1)的斜率的取值范围.当x=1时,y=,当x=3时,y=,由可得A(1,),B(3,),从而k BC==,k AC==﹣,∴k的范围为(﹣∞,﹣]∪[,+∞)【点评】本试题主要是考查了直线的方程以及点关于直线对称点的坐标的求解和斜率几何意义的灵活运用.19.(2016秋•浦东新区校级月考)已知点A(1,2)、B(5,﹣1),(1)若A,B两点到直线l的距离都为2,求直线l的方程;(2)若A,B两点到直线l的距离都为m(m>0),试根据m的取值讨论直线l 存在的条数,不需写出直线方程.【分析】(1)要分为两类来研究,一类是直线L与点A(1,2)和点B(5,﹣1)两点的连线平行,一类是线L过两点A(1,2)和点B(5,﹣1)中点,分类解出直线的方程即可;(2)根据A,B两点与直线l的位置关系以及m与两点间距离5的一半比较,得到满足条件的直线.【解答】解:∵|AB|==5,|AB|>2,∴A与B可能在直线l的同侧,也可能直线l过线段AB中点,①当直线l平行直线AB时:k AB=,可设直线l的方程为y=﹣x+b依题意得:=2,解得:b=或b=,故直线l的方程为:3x+4y﹣1=0或3+4y﹣21=0;②当直线l过线段AB中点时:AB的中点为(3,),可设直线l的方程为y﹣=k(x﹣3)依题意得:=2,解得:k=,故直线l的方程为:x﹣2y﹣=0;(2)A,B两点到直线l的距离都为m(m>0),AB平行的直线,满足题意得一定有2条,经过AB中点的直线,若2m<|AB|,则有2条;若2m=|AB|,则有1条;若2m>|AB|,则有0条,∵|AB|=5,综上:当m<2.5时,有4条直线符合题意;当m=2.5时,有3条直线符合题意;当m>2.5时,有2条直线符合题意.【点评】本题考查点到直线的距离公式,求解本题关键是掌握好点到直线的距离公式与中点坐标公式,对空间想像能力要求较高,考查了对题目条件分析转化的能力20.(2015秋•眉山校级期中)已知直线l的方程为2x+(1+m)y+2m=0,m∈R,点P的坐标为(﹣1,0).(1)求证:直线l恒过定点,并求出定点坐标;(2)求点P到直线l的距离的最大值.【分析】(1)把直线方程变形得,2x+y+m(y+2)=0,联立方程组,求得方程组的解即为直线l恒过的定点.(2)设点P在直线l上的射影为点M,由题意可得|PM|≤|PQ|,再由两点间的距离公式求得点P到直线l的距离的最大值【解答】(1)证明:由2x+(1+m)y+2m=0,得2x+y+m(y+2)=0,∴直线l恒过直线2x+y=0与直线y+2=0的交点Q,解方程组,得Q(1,﹣2),∴直线l恒过定点,且定点为Q(1,﹣2).(2)解:设点P在直线l上的射影为点M,则|PM|≤|PQ|,当且仅当直线l与PQ垂直时,等号成立,∴点P到直线l的距离的最大值即为线段PQ的长度,等于=2.【点评】本题考查了直线系方程问题,考查了点到直线的距离公式,正确理解题意是关键,是中档题.21.(2010秋•常熟市期中)已知直线方程为(2+m)x+(1﹣2m)y+4﹣3m=0.(Ⅰ)证明:直线恒过定点M;(Ⅱ)若直线分别与x轴、y轴的负半轴交于A,B两点,求△AOB面积的最小值及此时直线的方程.【分析】(Ⅰ)直线方程按m集项,方程恒成立,得到方程组,求出点的坐标,即可证明:直线恒过定点M;(Ⅱ)若直线分别与x轴、y轴的负半轴交于A,B两点,说明直线的斜率小于0,设出斜率根据直线过的定点,写出直线方程,求出△AOB面积的表达式,利用基本不等式求出面积的最小值,即可得到面积最小值的直线的方程.【解答】(Ⅰ)证明:(2+m)x+(1﹣2m)y+4﹣3m=0化为(x﹣2y﹣3)m=﹣2x ﹣y﹣4.(3分)得∴直线必过定点(﹣1,﹣2).(6分)(Ⅱ)解:设直线的斜率为k(k<0),则其方程为y+2=k(x+1),∴OA=|﹣1|,OB=|k﹣2|,(8分)S△AOB=•OA•OB=|(﹣1)(k﹣2)|=|﹣|..(10分)∵k<0,∴﹣k>0,∴S=[﹣]=[4+(﹣)+(﹣k)]≥4.△AOB当且仅当﹣=﹣k,即k=﹣2时取等号.(13分)∴△AOB的面积最小值是4,(14分)直线的方程为y+2=﹣2(x+1),即y+2x+4=0.(15分)【点评】本题是中档题,考查直线恒过定点的知识,三角形面积的最小值的求法,基本不等式的应用,考查计算能力,转化思想的应用.22.(2016秋•枣阳市校级月考)已知光线经过已知直线l1:3x﹣y+7=0和l2:2x+y+3=0的交点M,且射到x轴上一点N(1,0)后被x轴反射.(1)求点M关于x轴的对称点P的坐标;(2)求反射光线所在的直线l3的方程.(3)求与l3距离为的直线方程.【分析】(1)联立方程组,求出M的坐标,从而求出P的坐标即可;(2)法一:求出直线的斜率,从而求出直线方程即可;法二:求出直线PN的方程,根据对称性求出直线方程即可;(3)设出与l3平行的直线方程,根据平行线的距离公式求出即可.【解答】解:(1)由得,∴M(﹣2,1).所以点M关于x轴的对称点P的坐标(﹣2,﹣1).…(4分)(2)因为入射角等于反射角,所以∠1=∠2.直线MN的倾斜角为α,则直线l3的斜斜角为180°﹣α.,所以直线l3的斜率.故反射光线所在的直线l3的方程为:.即.…(9分)解法二:因为入射角等于反射角,所以∠1=∠2.根据对称性∠1=∠3,∴∠2=∠3.所以反射光线所在的直线l3的方程就是直线PN的方程.直线PN的方程为:,整理得:.故反射光线所在的直线l3的方程为.…(9分)(3)设与l3平行的直线为,根据两平行线之间的距离公式得:,解得b=3,或,所以与l3为:,或.…(13分)【点评】本题考查了点对称、直线对称问题,考查求直线方程,是一道中档题.23.(2015秋•嘉峪关校级期末)已知直线l:y=3x+3求(1)点P(4,5)关于l的对称点坐标;(2)直线y=x﹣2关于l对称的直线的方程.【分析】(1)设点P(4,5)关于直线y=3x+3对称点P′的坐标为(m,n),得到关于m,n的方程组,求得m、n的值,可得P′的坐标;(2)求出交点坐标,在直线y=x﹣2上任取点(2,0),得到对称点坐标,求出直线方程即可.【解答】解:(1)设点P(4,5)关于直线y=3x+3对称点P′的坐标为(m,n),则由,求得m=﹣2,n=7,故P′(﹣2,7).(2)由,解得:交点为,在直线y=x﹣2上任取点(2,0),得到对称点为,所以得到对称的直线方程为7x+y+22=0【点评】本题主要考查求一个点关于某直线的对称点的坐标的方法,利用了垂直、和中点在对称轴上这两个条件,属于中档题.24.(2014秋•宜秀区校级期中)已知点M(3,5),在直线l:x﹣2y+2=0和y轴上各找一点P和Q,使△MPQ的周长最小.【分析】本题实际是求点M关于l的对称点M1,点M关于y轴的对称点M2,求得直线M1M2的方程,与y轴交点为Q,与直线l:x﹣2y+2=0的交点为P.【解答】解:由点M(3,5)及直线l,可求得点M关于l的对称点M1(5,1).同样容易求得点M关于y轴的对称点M2(﹣3,5).据M1及M2两点可得到直线M1M2的方程为x+2y﹣7=0.得交点P(,).令x=0,得到M1M2与y轴的交点Q(0,).解方程组x+2y﹣7=0,x﹣2y+2=0,故点P(,)、Q(0,)即为所求.【点评】本题考查直线关于直线对称的问题,三角形的几何性质,是中档题.25.(2010•广东模拟)已知直线l经过点P(3,1),且被两平行直线l1;x+y+1=0和l2:x+y+6=0截得的线段之长为5,求直线l的方程.【分析】法一如图,若直线l的斜率不存在,直线l的斜率存在,利用点斜式方程,分别与l1、l2联立,求得两交点A、B的坐标(用k表示),再利用|AB|=5可求出k的值,从而求得l的方程.法二:求出平行线之间的距离,结合|AB|=5,设直线l与直线l1的夹角为θ,求出直线l的倾斜角为0°或90°,然后得到直线方程.就是用l1、l2之间的距离及l 与l1夹角的关系求解.法三:设直线l1、l2与l分别相交于A(x1,y1),B(x2,y2),则通过求出y1﹣y2,x1﹣x2的值确定直线l的斜率(或倾斜角),从而求得直线l 的方程.【解答】解:解法一:若直线l的斜率不存在,则直线l的方程为x=3,此时与l1、l2的交点分别为A′(3,﹣4)或B′(3,﹣9),截得的线段AB的长|AB|=|﹣4+9|=5,符合题意.若直线l的斜率存在,则设直线l的方程为y=k(x﹣3)+1.解方程组得A(,﹣).解方程组得B(,﹣).由|AB|=5.得(﹣)2+(﹣+)2=52.解之,得k=0,直线方程为y=1.综上可知,所求l的方程为x=3或y=1.解法二:由题意,直线l1、l2之间的距离为d==,且直线L被平行直线l1、l2所截得的线段AB的长为5,设直线l与直线l1的夹角为θ,则sinθ==,故θ=45°.由直线l1:x+y+1=0的倾斜角为135°,知直线l的倾斜角为0°或90°,又由直线l过点P(3,1),故直线l的方程为:x=3或y=1.解法三:设直线l与l1、l2分别相交A(x1,y1)、B(x2,y2),则x1+y1+1=0,x2+y2+6=0.两式相减,得(x1﹣x2)+(y1﹣y2)=5.①又(x1﹣x2)2+(y1﹣y2)2=25.②联立①、②可得或由上可知,直线l的倾斜角分别为0°或90°.故所求的直线方程为x=3或y=1.【点评】本题是中档题,考查直线与直线的位置关系,直线与直线所成的角,直线的点斜式方程,斜率是否存在是容易出错的地方,注意本题的三种方法.26.(2009秋•重庆期末)已知直线l:5x+2y+3=0,直线l′经过点P(2,1)且与l的夹角等于45,求直线l'的一般方程.【分析】设出直线l′的斜率为k′,通过直线的夹角公式求出直线的斜率,然后求出直线的方程.【解答】解:设直线l′的斜率为k′,则,…(7分),…(10分)直线l′:7x﹣3y﹣11=0和3x+7y﹣13=0;…(13分)【点评】本题是基础题,考查直线方程的求法,夹角公式的应用,注意夹角公式与到角公式的区别,考查计算能力.27.已知点A(2,0),B(0,6),O为坐标原点.(1)若点C在线段OB上,且∠ACB=,求△ABC的面积;(2)若原点O关于直线AB的对称点为D,延长BD到P,且|PD|=2|BD|,已知直线L:ax+10y+84﹣108=0经过点P,求直线l的倾斜角.【分析】(1)依据条件求出AC的斜率,可得点C的坐标,即得边长BC,点A 的横坐标就是三角形的高,代入三角形的面积公式进行计算.(2)利用对称的特点,待定系数法求出原点O关于直线AB的对称点D的坐标,由题意可得=2,把相关向量的坐标代入,利用两个向量相等的条件求出点P的坐标,再把点P的坐标代入代入直线l的方程,求出a,即得直线l的斜率,由斜率求直线l的倾斜角.【解答】解:(1)∵点C在线段OB上,且∠ACB=,∴∠ACO=,故AC 的倾斜角为,故AC的斜率为﹣1,设点C(0,b),由﹣1=得b=2,即点C(0,2),BC=4,点A到BC的距离为2,故△ABC的面积为×4×2=4.(2)设D(m,n),点P(c,d),AB的方程+=1,即3x+y﹣6=0,由得m=,n=,故D(,),=(﹣c,﹣d),=(﹣,),由题意知,=2,∴﹣c=﹣,﹣d=,解得c=,d=﹣,故P(,﹣),把P(,﹣)代入直线l:ax+10y+84﹣108=0,得a•+10•+84﹣108=0,即得a=10.∴直线l的斜率为=﹣,故直线l的倾斜角为120°.【点评】本题考查直线的倾斜角的定义,倾斜角与斜率的关系;点关于直线的对称点的坐标求法,两个向量相等时向量坐标间的关系.。
直线的方程(5种形式+习题)原创精品
2.除了你采用的方法外,还有无其他的方法求?
1 .设点斜式方程 2 .设斜截式方程
y
3 .设两点式方程 4 .设截距式方程
l
o x
p
x+2y-2=0 或 2x+3y-6=0
练习:求满足下列条件的直线方程:
(1)试写出经过P(2,1),Q(6,-2)两点的直线的点斜 式,斜截式,两点式,截距式,一般式方程;
②若直线 l 不过第二象限,求实数 a 的范围;
a2
③若直线 l 在 x 轴和 y 轴上的截距和为0,
求出 a 的值,并求出直线方程.
1 a , 5x 5 y 2 0 2
练习1
2.方程(1+4k)x-(2-3k)y+(2-14k)=0表示 的直线必经过定点( ) (2,2)
3
3.求满足下列条件的直线方程: (1)经过点P(2,-1)且与直线2x+3y+12=0平行;
.
(2)经过点P(2,-1)且与直线2x+3y+12=0平行; 2x+3y-1=0 (3)经过点Q(-1,3)且与直线x+2y-1=0垂直; 2x-y+5=0
直线参数方程的练习题
直线参数方程的练习题直线参数方程是解决平面几何问题中常用的一种数学工具。
它通过引入参数来描述曲线的特性,帮助我们更好地理解与解决问题。
下面将通过几个练习题,来探讨直线参数方程的应用。
1. 问题描述:有一直线L,过点A(1, 2),且与直线x - y = 0平行。
求直线L的参数方程。
解答思路:由题意可知,直线L与直线x - y = 0平行,所以直线L的斜率与x - y = 0的斜率相等。
因此,我们首先需要求出直线x - y = 0的斜率。
直线x - y = 0的一般式方程为y = x,所以其斜率为1。
假设直线L的斜率也为1,设直线L的参数方程为:x = t + a,y = t + b,其中t为参数,a、b为待定常数。
由题意可知,直线L过点A(1, 2),代入参数方程可得:1 = t + a,2 = t + b.解上述方程组,可得t = -1, a = 2, b = 3。
因此,直线L的参数方程为:x = t + 2,y = t + 3.2. 问题描述:有一直线L1,它过点A(-1, 2),斜率为2,与直线x + y = 0垂直。
求直线L1的参数方程。
解答思路:直线L1过点A(-1, 2),且与直线x + y = 0垂直。
垂直直线的斜率乘积为-1,所以直线L1的斜率为-1/2。
设直线L1的参数方程为:x = t + a,y = -1/2t + b,其中t为参数,a、b为待定常数。
由题意可知,直线L1过点A(-1, 2),代入参数方程可得:-1 = t + a,2 = -1/2t + b.解上述方程组,可得t = -2, a = 1, b = 3。
因此,直线L1的参数方程为:y = -1/2t + 3.3. 问题描述:有一直线L,过点A(3, 5),且与直线x - 2y + 4 = 0垂直。
求直线L 的参数方程。
解答思路:与直线x - 2y + 4 = 0垂直的直线,可以通过求垂线的斜率来得到。
垂线的斜率是原直线斜率的负倒数。
直线方程经典练习题
直线方程经典练习题直线方程是解析几何中的基础知识之一,它在很多数学问题中都起到了重要的作用。
本文将为您介绍几个经典的直线方程练习题,通过解题过程,帮助您更好地理解直线方程的概念和应用。
1. 题目一:通过两点求直线方程已知直线上两点A(x₁,y₁)和B(x₂,y₂),求直线的方程。
解析:设直线的方程为y = kx + b,其中k为斜率,b为截距。
首先我们需要求解斜率k。
根据两点的坐标计算斜率公式:k = (y₂ - y₁) / (x₂ - x₁)。
其次,我们可通过其中一个点的坐标和斜率求解直线的截距b。
将点A的坐标代入直线方程,得到y₁ = kx₁ + b,将斜率k代入,得到b = y₁ - kx₁。
综上,我们求得直线的方程为y = kx + b,其中k和b的值可根据两点的坐标得出。
2. 题目二:通过斜率截距求直线方程已知直线的斜率k和截距b,求直线的方程。
解析:直线的方程为y = kx + b,其中k为斜率,b为截距。
已知斜率k和截距b后,直接代入方程即可求得直线的方程。
3. 题目三:通过点斜式求直线方程已知直线上一点A(x₁,y₁)和斜率k,求直线的方程。
解析:点斜式表示直线的方程为y - y₁ = k(x - x₁)。
已知点A的坐标和斜率k后,直接代入方程即可求得直线的方程。
4. 题目四:通过截距式求直线方程已知直线的x截距a和y截距b,求直线的方程。
解析:直线的方程为x / a + y / b = 1。
已知x截距a和y截距b后,直接代入方程即可求得直线的方程。
通过以上四个经典练习题的解析,我们对直线方程的计算和求解有了更深入的理解。
在实际应用中,直线方程经常被用于解决各种几何问题,如求两条直线的交点、判断点是否在直线上等等。
因此,掌握直线方程的概念和求解方法对于数学学习和应用都具有重要意义。
总结:本文通过经典直线方程练习题的解析,详细介绍了通过两点求直线方程、通过斜率截距求直线方程、通过点斜式求直线方程以及通过截距式求直线方程的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线方程的应用(习题)
➢例题示范
例1:若过点A(4,0)的直线l与圆(x-2)2+y2=1有公共点,则直线l的斜率的取值范围是_______________.
思路分析:
的位置关系为相切或相交,其中相切为临界状态.
计算直线与圆相切时直线的斜率:
如图,设圆心为点B,直线AM,AN分别与圆相切于点M,N,
则BM⊥AM,BN⊥AN,且BM=BN=1,AB=2,
所以∠MAB=∠NAB=30°,
进而可得
AM AN
k k
==
结合图形易得直线l的斜率的取值范围是[
33
-,.
例2:在平面直角坐标系xOy中,圆C的方程为x2+y2-4x=0.若直线l:y=k(x+1)上存在一点P,使过P所作的圆的两条切线相互垂直,则实数k的取值范围是_______________.
思路分析:
由题意,圆C:(x-2)2+y2=4,圆心C(2,0),半径r=2.
∵过点P的两条切线相互垂直,
∴过点P,C以及两切点组成的四边形是正方形,
∴对角线PC==
即l上存在一点到圆心的距离等于
∴圆心C到直线l:kx-y+k=0的距离小于或等于,
解得k
-≤.
➢巩固练习
1.若直线l:y kx
=2x+3y-6=0的交点位于第一象限,则直线l的倾斜角的取值范围是()
A.[30°,60°) B.[30°,90°]
C.(60°,90°) D.(30°,90°)
2.已知点M(2,-3),N(-3,-2),若直线l:y=ax-a+1与线段MN相交,则实数
a的取值范围是()
A.
3
4
4
a a-
≥≤
或B.
3
4
4
a
-≤≤
C.3
4
4
a
≤≤D.
3
4
4
a
-≤≤
3.若点P(x,y)在以A(-3,1),B(-1,0),C(-2,0)为顶点的△ABC的内部(不
包括边界),则
2
1
y
x
-
-
的取值范围是()
A.
1
[1]
2
,B.
1
(1)
2
,C.
1
[1]
4
,D.
1
(1)
4
,
4.过点A(2,1)以及两直线x-2y-3=0与2x-3y-2=0的交点的直线方程是()
A.2x+y-5=0 B.5x-7y-3=0
C.x-3y+5=0 D.7x-2y-4=0
5.过点(2,3),且到原点的距离最大的直线方程是()
A.3x+2y-12=0 B.2x+3y-13=0
C.x=2 D.x+y-5=0
6.已知点M(2,3),N(4,-5),直线l经过点P(1,2),且点M,N到直线l的
距离相等,则直线l的方程是()
A.4x+y-6=0
B.x+4y-6=0
C.3x+2y-7=0或4x+y-6=0
D.2x+3y-7=0或x+4y-6=0
7.直线2x-y+3=0关于定点M(-1,2)对称的直线方程是()
A.2x-y+1=0 B.2x-y+5=0
C.2x-y-1=0 D.2x-y-5=0
8.点P(1,5)关于直线l:x-y+1=0的对称点的坐标是()
A.(2,4) B.(4,2) C.(2,-4) D.(-4,2)
9.平行四边形ABCD的一条对角线固定在A(3,-1),C(2,-3)两点,顶点D在
直线3x-y+1=0上移动,则顶点B的轨迹方程是()
A.3x-y-20=0(x≠13)B.3x-y-10=0(x≠13)
C.3x-y-9=0(x≠-8)D.3x-y-12=0(x≠-8)
10.已知直线l:y=x+b,若圆x2+y2=4上恰有3个点到直线l的距离等于1,则b
的值为____________.
11.过原点O作圆x2+y2-6x-8y+20=0的两条切线,切点分别为P,Q,则线段PQ
的长为____________.
12.过直线0
+-=上的一点P作圆x2+y2=1的两条切线,若两切线的夹角
x y
是60°,则点P的坐标是_____________.
13.已知直线x-y+a=0与圆C:x2+y2+2x-4y-4=0相交于A,B两点,若AC⊥BC,
则实数a的值为___________.
【参考答案】
1. D
2. A
3. D
4. B
5. B
6. C
7. B
8. B
9. A
10.或
11.4
12.
13.0或6。