高二数学上学期期末复习题
湖南省长沙市长郡湘府中学高二上学期数学期末复习试题资料(1)直线与圆
长郡湘府中学2022年高二第一学期期末复习数学资料(1)直线与圆一、单选题1.已知两条直线1l :10mx y +-=和2l :()220x m y +-+=互相垂直,则实数m 的值为( ) A .0B .1C .0或1D .22.经过点5)A 和(2,2)B -,且圆心在x 轴上的圆的一般方程为( ) A .2260x y y +-= B .2260x y y ++= C .2260x y x ++=D .2260x y x +-=3.圆224x y +=与圆2286160x y x y +--+=的位置关系是( ) A .相离B .相交C .内含D .外切4.若圆()()22:138C x y -+-=上存在四个点到直线:0l x y m ++=2m 的取值范围是( )A .6m <-B .2m >-C .62m -<<-D .6m <-或2m >- 5.已知过点()0,2的直线l 与圆心为C 的圆()()222110x y -+-=相交于A 、B 两点,若CA CB ⊥,直线l 的方程为( ) A .220x y -+= B .220x y -+=或220x y +-= C .0x = D .0x =或220x y +-=二、多选题6. 若过点(1,a ),(0,0)的直线l 1与过点(a ,3),(-1,1)的直线l 2平行,则a 的取值可以为( ) A .-2B .-1C .1D .27.(多选)已知圆x 2+y 2-2x +4y +3=0与直线x -y =1,则( ) A .圆心坐标为(1,-2) B 22C .直线与圆相交D 2 8.已知动圆22:(cos )(sin )1C x y αα-+-=,[0,2)απ∈,则( ) A .圆C 与圆224x y +=相交B .圆C 与直线cos sin 0x y αα+=相切C .若点(1,0)在动圆C 外,则4,33ππα⎛⎫∈ ⎪⎝⎭D .圆C 上一点M 满足(0,1)CM =,则M 的轨迹的长度为2π 三、填空题9.直线:10l x my m +--=被圆O ;223x y +=截得的弦长最短,则实数m =___________. 10.已知直线()110a x ay +--=与圆22(1)(1)2x y -+-=相交于A ,B 两点,则线段AB 的长为___________.11.已知圆22:240C x y ax y +-+=关于直线320x y ++=对称,(),P x y 为圆C 上一点,则2x y -的最大值为__________.12.当曲线y =240kx y k -++=有两个不同的交点时,实数k 的取值范围是____________. 四、解答题13.已知圆C 的圆心在直线20x y -=上,且与y 轴相切于点0,1. (Ⅰ)求圆C 的方程;(Ⅰ)若圆C 与直线l :0x y m -+=交于A ,B 两点,_____________,求m 的值.从下列两个条件中任选一个补充在上面问题中并作答:条件Ⅰ:120ACB ∠=︒;条件Ⅰ:AB =注:如果选择多个条件分别作答,按第一个解答计分.14.(1)圆C 的圆心在x 轴上,且经过(1,1),(1,3)A B -两点,求圆C 的方程; (2)圆C 经过(1,5),(5,5),(6,2)P Q R --三点,求圆C 的方程.15.求经过直线l1:2x﹣y+4=0和直线l2:x﹣y+5=0的交点C,并且满足下列条件的直线方程.(1)与直线x﹣4y+4=0垂直;(2)到原点的距离等于1.16.已知方程22244m0+-++=.x y x y(1)若此方程表示圆,求实数m的取值范围;(2)若m的值为(1)中能取到的最大整数,则得到的圆设为圆E,若圆E与圆F关于y轴对称,求圆F 的一般方程.参考答案:1.B【解】12l l ⊥,显然0m ≠且2m ≠,()112m m ⎛⎫∴-⨯-=- ⎪-⎝⎭,解得1m =.2.D【解】设圆的方程为()2222040x y Dx Ey F D E F ++++=+->,因为圆心在x 轴上,所以02E-=,即0E =.又圆经过点A 和(2B -,,所以222210,2(20,D F D F ⎧+++=⎪⎨+-++=⎪⎩即60,2120,D F D F ++=⎧⎨++=⎩解得6,0.D F =-⎧⎨=⎩ 故所求圆的一般方程为2260x y x +-=. 3.D【解】由题,圆224x y +=的圆心为()0,0,半径为2;圆2286160x y x y +--+=,即()()22439x y -+-=,所以圆心为()4,3,半径为3;523==+,所以两圆外切.4.C【解】由题设,(1,3)C 且半径r =:0l x y m ++=ⅠC 到:0l x y m ++=的距离d =<62m -<<-. 5.A【解】圆()()222110x y -+-=的圆心为()2,1C ,半径为r =由CA CB ⊥,且CA CB ==ABC 是以ACB ∠为直角的等腰直角三角形, 所以,点C 到直线l 的距离为cos 455d r ==若直线l 的斜率不存在,则直线l 的方程为0x =,此时点C 到直线l 的距离为2,不合乎题意; 若直线l 的斜率存在,设直线l 的方程为2y kx =+,即20kx y -+=,则有d =()220k -=,解得2k =,所以直线l 的方程为22y x =+. 6.AC【解】若直线l 1与l 2平行,则()031101a a --=---,即a (a +1)=2,故a = -2或a =1.当2a =-时,12k =-,2221k a ==-+,符合题设; 当1a =时,11k =,2211k a ==+,符合题设; 7.AD【解】把圆的方程化为标准形式得(x -1)2+(y +2)2=2,所以圆心坐标为(1,-2),2,所以圆心到直线x -y =1的距离为d 22 8.BD【解】A. 动圆22:(cos )(sin )1C x y αα-+-=圆心C ()cos ,sin αα,半径1r =, 22cos sin 1αα+=,正好为两半径差,故两圆内切,错误; B. 圆心C ()cos ,sin αα到直线cos sin 0x y αα+=22cos cos sin sin 1cos sin αααααα+=+,故圆C 与直线cos sin 0x y αα+=相切,正确;C. 点(1,0)在动圆C 外,则22(1cos )(0sin )1αα-+->,整理得1cos 2α<, 又[0,2)απ∈,解得5,33ππα⎛⎫∈ ⎪⎝⎭,错误; D.设点(),M x y ,又C ()cos ,sin αα,则()(cos 0,,sin 1)x CM y αα=--=,cos 0sin 1x y αα-=⎧∴⎨-=⎩,消去α得()2211x y +-=, 故点M 的轨迹是半径为1的圆,故轨迹的长度为2π,正确; 9.1【解】直线MN 的方程可化为10x my m +--=,由1110y x -=⎧⎨-=⎩,得11x y =⎧⎨=⎩,所以直线MN 过定点A (1,1),因为22113+<,即点A 在圆223x y +=内.当OA MN ⊥时,|MN |取最小值, 由1OA MN k k =-,得111m ⎛⎫⨯-=- ⎪⎝⎭,Ⅰ1m =,10.2【解】直线()110a x ay +--=恒过()1,1点,圆()()22112x y -+-=的圆心()1,1,2,直线恒过圆的圆心,所以直线交圆的弦长为直径,所以线段AB 的长为22 11.20【解】方程22240x y ax y +-+=可化为()()22224x a y a -++=+,所以圆22:240C x y ax y +-+=的圆心为(),2C a -因为圆22:240C x y ax y +-+=关于直线320x y ++=对称,所以()3220a +⨯-+=,所以4a =,令2z x y =-≤所以1010z -≤,所以020z ≤≤,所以2x y -的最大值为20, 12.3[1,)4--【解】因为y ()2204y x y +=≥,其表示圆心为()0,0,半径为2的圆的上半部分; 因为240kx y k -++=,即()42y k x -=+, 其表示过点()2,4A -,且斜率为k 的直线. 在同一坐标系下作图如下:不妨设点()2,0B ,AB 直线斜率为1k ,且过点A 与圆相切的直线斜率为2k数形结合可知:要使得曲线y 240kx y k -++=有两个不同的交点, 只需12k k k ≤<即可. 容易知:140122k -==---; 不妨设过点A 与224x y +=相切的直线方程为()242y k x -=+, 2=,解得234k =-,故31,4k ⎡⎫∈--⎪⎢⎣⎭.13.【解】(Ⅰ)设圆心坐标为(),C a b ,半径为r .由圆C 的圆心在直线20x y -=上,知:2a b =. 又Ⅰ圆C 与y 轴相切于点0,1,Ⅰ1b =,2a =,则02r a =-=.Ⅰ圆C 的圆心坐标为()2,1,则圆C 的方程为()()22214x y -+-=.(Ⅰ)如果选择条件Ⅰ:120ACB ∠=︒,而2CA CB ==, Ⅰ圆心C 到直线l 的距离1d =,则21111m d -+==+,解得21m =或21--.如果选择条件Ⅰ:23AB =2CA CB ==, Ⅰ圆心C 到直线l 的距离1d =,则21111m d -+==+,解得21m =或21--.14.【解】(1)(1,1),(1,3)A B -的中点为(0,2),因为3111(1)AB k -==--,所以线段AB 的中垂线的斜率为1-,所以线段AB 的中垂线的方程为2y x -=-, 当0y =时,2x =,则圆心为(2,0)22(21)(01)10++- 所以所求圆的方程为22(2)10x y -+=; (2)设圆的方程为220x y Dx Ey F ++++=,则125502525550364620D E F D E F D E F +-++=⎧⎪++++=⎨⎪++-+=⎩,解得4220D E F =-⎧⎪=-⎨⎪=-⎩, 所以圆的方程为2242200x y x y +---=.15.【解】(1)由于直线l 2:x ﹣y +5=0与直线x ﹣4y +4=0不垂直故设所求直线为()()2450x y x y λ-++-+=,故()()21450x y λλλ+-+++=, 因为此直线与直线x ﹣4y +4=0垂直,故()()2410λλ+++=,故65λ=-,故所求直线为4100x y +-=.(2)由于原点到直线l 2:x ﹣y +5=0的距离12d =≠故设所求直线为()()2450x y x y λ-++-+=,故()()21450x y λλλ+-+++=, 221(2)(1)d λλ==+++ 解得1λ=-或1123-故直线方程为:10x -=或3512370x y -+=16.【解】(1)若此方程表示圆,则22(2)4440m -+-⨯>,解得54m <. (2)由(1)可知m =1,此时圆E :22+2+4+4=0x y x y -, 圆心坐标为E (1,-2),半径为1, 因为圆F 和圆E 关于y 轴对称,所以圆F 圆心坐标是(-1,-2),半径是1,故圆F 方程为(x +1)2+(y +2)2=1,化为一般方程为:22+2+4+4=0x y x y .。
上海第五十四中学数学高二上期末复习题(含解析)
一、选择题1.(0分)[ID :13326]如图阴影部分为曲边梯形,其曲线对应函数为1xy e =-,在长方形内随机投掷一颗黄豆,则它落在阴影部分的概率是( )A .23e - B .13e - C .43e- D .53e- 2.(0分)[ID :13303]如果数据121x +、221x +、、21n x +的平均值为5,方差为16,则数据:153x -、253x -、、53n x -的平均值和方差分别为( )A .1-,36B .1-,41C .1,72D .10-,1443.(0分)[ID :13301]己知某产品的销售额y 与广告费用x 之间的关系如下表:若求得其线性回归方程为 6.5ˆˆyx a =+,其中ˆˆa y bx =-,则预计当广告费用为6万元时的销售额是( ) A .42万元B .45万元C .48万元D .51万元4.(0分)[ID :13294]随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面四种说法正确的是( ).①1月至8月空气合格天数超过20天的月份有5个 ②第二季度与第一季度相比,空气合格天数的比重下降了 ③8月是空气质量最好的一个月 ④6月的空气质量最差 A .①②③B .①②④C .①③④D .②③④5.(0分)[ID :13285]设A 为定圆C 圆周上一点,在圆周上等可能地任取一点与A 连接,求弦长超过半径2倍的概率( )A .34 B .35C .13D .126.(0分)[ID :13284]下列赋值语句正确的是( ) A .s =a +1 B .a +1=s C .s -1=a D .s -a =17.(0分)[ID :13280]执行如图所示的程序框图,若输出的结果为63,则判断框中应填入的条件为( )A .4i ≤B .5i ≤C .6i ≤D .7i ≤8.(0分)[ID :13275]某程序框图如图所示,该程序运行后输出的S 的值是( )A .1010B .2019C .2020D .30309.(0分)[ID :13270]在R 上定义运算:A()1B A B =-,若不等式()x a -()1x a +<对任意的实数x ∈R 恒成立,则实数a 的取值范围是()A .11a -<<B .02a <<C .1322a -<< D .3122a -<< 10.(0分)[ID :13260]要从其中有50个红球的1000个形状相同的球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为( ) A .5个B .10个C .20个D .45个11.(0分)[ID :13253]类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .41312.(0分)[ID :13252]赵爽是我国古代数学家、天文学家大约在公元222年赵爽为《周碑算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的)类比“赵爽弦图”,赵爽弦图可类似地构造如图所示的图形,它是由个3全等的等边三角形与中间的一个小等边三角形组成的一个大等边三角形,设DF =2AF ,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .2√1313B .413C .2√77D .4713.(0分)[ID :13240]如图,在圆心角为直角的扇形OAB 中,分别以,OA OB 为直径作两个半圆,在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .21π-B .122π- C .2πD .1π14.(0分)[ID :13264]已知具有线性相关的两个变量,x y 之间的一组数据如下表所示:x0 1234y 2.2 4.3 4.5 4.8 6.7若,x y 满足回归方程 1.5ˆˆyx a =+,则以下为真命题的是( ) A .x 每增加1个单位长度,则y 一定增加1.5个单位长度 B .x 每增加1个单位长度,y 就减少1.5个单位长度 C .所有样本点的中心为(1,4.5) D .当8x =时,y 的预测值为13.515.(0分)[ID :13229]2路公共汽车每5分钟发车一次,小明到乘车点的时刻是随机的,则他候车时间不超过两分钟的概率是( ) A .25B .35C .23D .15二、填空题16.(0分)[ID :13405]执行如图所示的伪代码,若输出的y 的值为10,则输入的x 的值是________.17.(0分)[ID :13403]已知四棱锥P ABCD -的所有顶点都在球O 的球面上,PA ⊥底面ABCD ,底面ABCD 为正方形, 2.PA AB ==现在球O 的内部任取一点,则该点取自四棱锥P ABCD -的内部的概率为______.18.(0分)[ID :13400]某程序框图如图所示,若输入的4t =,则输出的k =______.19.(0分)[ID :13388]某单位有职工900人,其中青年职工450人,中年职工270人,老年职工180人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为10人,则样本容量为________.20.(0分)[ID :13369]阅读如图所示的程序框图,运行相应的程序,则输出n 的值为___________21.(0分)[ID:13359]某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样法抽取一个容量为45的样本,那么从高一、高二、高三各年级抽取人数分别为.22.(0分)[ID:13357]为弘扬我国优秀的传统文化,某小学六年级从甲、乙两个班各选出7名学生参加成语知识竞赛,他们取得的成绩的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则yx的值为__________.23.(0分)[ID:13338]执行如图所示的程序框图,若1ln2a=,22be=,ln22c=(其中e是自然对数的底),则输出的结果是__________.24.(0分)[ID :13332]某种活性细胞的存活率(%)y 与存放温度()x C ︒之间具有线性相关关系,样本数据如下表所示: 存放温度()x C ︒ 10 4 -2 -8 存活率(%)y20445680经计算得回归直线的斜率为-3.2.若存放温度为6C ︒,则这种细胞存活率的预报值为__________%.25.(0分)[ID :13333]为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,,第五组,如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组没有疗效的有6人,则第三组中有疗效的人数为__________.三、解答题26.(0分)[ID :13490]据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改革”引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3 000人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表: 态度调查人群 应该取消 应该保留 无所谓 在校学生 2100人 120人 y 人 社会人士500人x 人z 人已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.06. (1)现用分层抽样的方法在所有参与调查的人中抽取300人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人,然后从这6人中随机抽取2人,求这2人中恰好有1个人为在校学生的概率.27.(0分)[ID :13463]某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,现用一种新配方做试验,生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果: 质量指标值 [)75,85[)85,95[)95,105[)105,115[)115,125频数62638228(1)将答题卡上列出的这些数据的频率分布表填写完整,并补齐频率分布直方图; (2)估计这种产品质量指标值的平均值(同一组中的数据用该组区间的中点值作代表)与中位数(结果精确到0.1). 质量指标值分组频数 频率 [)75,8560.06[)85,95[)95,105[)105,115[)115,125合计100128.(0分)[ID:13445]某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需要看不同类型的书籍,为了合理配备资源,现对小区看书人员进行年龄调查,随机抽取了一天40名读书者进行调查. 将他们的年龄分成6段:[)[)[)[)[)[)20,30,30,40,40.50,50,60,60,70,70,80,后得到如图所示的频率分布直方图,问:30,60的人数;(1)在40名读书者中年龄分布在[)(2)估计40名读书者年龄的平均数和中位数.29.(0分)[ID:13443]为庆祝新中国成立70周年,某市工会组织部分事业单位职工举行“迎国庆,广播操比赛”活动.现有200名职工参与了此项活动,将这200人按照年龄(单位:岁)分组:第一组[15,25),第二组[25,35),第三组[35,45),第四组[45,55),第五组[55,65],得到的频率分布直方图如图所示.记事件A为“从这200人中随机抽取一人,其年龄不低于35岁”,已知P(A)=0.75.(1)求,a b的值;(2)在第二组、第四组中用分层抽样的方法抽取6人,再从这6人中随机抽取2人作为活动的负责人,求这2人恰好都在第四组中的概率.30.(0分)[ID:13453]某中学随机抽取部分高一学生调査其每日自主安排学习的时间(单位:分钟),并将所得数据绘制成如图所示的频率分布直方图,其中自主安排学习时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(1)求直方图中x的值;(2)现采用分层抽样的方式从每日自主安排学习时间不超过40分钟的学生中随机抽取6人,若从这6人中随机抽取2人进行详细的每日时间安排调查,求抽到的2人每日自主安排学习时间均不低于20分钟的概率.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.A3.C4.A5.D6.A7.B8.D9.C10.A11.C12.B13.A14.D15.A二、填空题16.3【解析】【分析】分析出算法的功能是求分段函数的值根据输出的值为10分别求出当时和当时的值即可【详解】由程序语句知:算法的功能是求的值当时解得(或不合題意舍去);当时解得舍去综上的值为3故答案为3【17.【解析】【分析】根据条件求出四棱锥的条件和球的体积结合几何概型的概率公式进行求解即可【详解】四棱锥扩展为正方体则正方体的对角线的长是外接球的直径即即则四棱锥的条件球的体积为则该点取自四棱锥的内部的概18.【解析】【分析】根据题意执行循环结构的程序框图逐次计算即可得到答案【详解】由题意执行程序框图:可得;第一循环不满足条件;第二次循环不满足条件;第三次循环不满足条件;第四次循环不满足条件;第五次循环不19.20【解析】青年职工中年职工老年职工三层之比为所以样本容量为故答案为20点睛:本题主要考查了分层抽样方法及其应用分层抽样中各层抽取个数依据各层个体数之比来分配这是分层抽样的最主要的特点首先各确定分层20.4【解析】由程序框图可知:S=2=0+(﹣1)1×1+(﹣1)2×2+(﹣1)3×3+(﹣1)4×4因此当n=4时满足判断框的条件故跳出循环程序故输出的n的值为4故答案为421.151020【解析】试题分析:抽取比例为45900=120∴300×120=15200×120=10400×120=2 0抽取人数依次为151020考点:分层抽样22.35【解析】79+78+80+80+x+85+92+967=85解得x=5根据中位数为83可知y=3故yx=35 23.(注:填也得分)【解析】分析:执行如图所示的程序框图可知该程序的功能是输出三个数的大小之中位于中间的数的数值再根据指数函数与对数函数的性质得到即可得到输出结果详解:由题意执行如图所示的程序框图可知该24.34【解析】分析:由题意求出代入公式求值从而得到回归直线方程代入代入即可得到答案详解:由题意设回归方程由表中数据可得:;代入回归方程可得当时可得故答案为34点睛:该题考查的是有关回归直线的有关问题在25.12【解析】分析:由频率=以及直方图可得分布在区间第一组与第二组共有20人的频率即可求出第三组中有疗效的人数得到答案详解:由直方图可得分布在区间第一组和第二组共有20人分布唉区间第一组与第二组的频率三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D【解析】 【分析】通过定积分可求出空白部分面积,于是利用几何概型公式可得答案. 【详解】由题可知长方形面积为3,而长方形空白部分面积为:()()11001|2x x e dx e x e -=-=-⎰,故所求概率为25133e e---=,故选D. 【点睛】本题主要考查定积分求几何面积,几何概型的运算,难度中等.2.A解析:A 【解析】 【分析】计算出数据1x 、2x 、、n x 的平均值x 和方差2s 的值,然后利用平均数和方差公式计算出数据153x -、253x -、、53n x -的平均值和方差.【详解】 设数据1x 、2x 、、n x 的平均值为x ,方差为2s ,由题意()()()()121221212121215n n x x x x x x x nn++++++++=+=+=,得2x =,由方差公式得()()()()()()22212212121212121n x x x x x x n⎡⎤⎡⎤⎡⎤+-+++-++++-+⎣⎦⎣⎦⎣⎦()()()2221224416n x x x x x x s n⎡⎤-+-++-⎢⎥⎣⎦===,24s ∴=. 所以,数据153x -、253x -、、53n x -的平均值为()()()12535353n x x x n-+-+-()1235535321n x x x x n+++=-=-=-⨯=-,方差为()()()()()()22212535353535353n x x x x x x n⎡⎤⎡⎤⎡⎤---+---++---⎣⎦⎣⎦⎣⎦()()()2221229936n x x x x x x s n⎡⎤-+-++-⎢⎥⎣⎦===. 故选:A.本题考查平均数与方差的计算,熟练利用平均数与方差的公式计算是解题的关键,考查计算能力,属于中等题.3.C解析:C 【解析】 【分析】由已知求得样本点的中心的坐标,代入线性回归方程求得ˆa,则线性回归方程可求,取6x =求得y 值即可.【详解】()10123425x =++++=,()11015203035225y =++++=,样本点的中心的坐标为()2,22,代入ˆˆa yb x =-,得22 6.529a =-⨯=.y ∴关于x 得线性回归方程为 6.59y x =+.取6x =,可得6.56948(y =⨯+=万元). 故选:C . 【点睛】本题考查线性回归方程的求法,考查计算能力,是基础题.4.A解析:A 【解析】在A 中,1月至8月空气合格天数超过20谈的月份有:1月,2月,6月,7月,8月, 共5个,故A 正确;在B 中,第一季度合格天数的比重为2226190.8462312931++≈++;第二季度合格天气的比重为1913250.6263303130++≈++,所以第二季度与第一季度相比,空气达标天数的比重下降了,所以B 是正确的;在C 中,8月空气质量合格天气达到30天,是空气质量最好的一个月,所以是正确的; 在D 中,5月空气质量合格天气只有13天,5月份的空气质量最差,所以是错误的, 综上,故选A .5.D解析:D 【解析】 【分析】的图象的测度,再代入几何概型计算公式求解,即可得【详解】根据题意可得,满足条件:“弦的长度超过2R 对应的弧”, 其构成的区域为半圆NP , 则弦长超过半径2倍的概率12NP P ==圆的周长,【点睛】本题主要考查了几何概型的概率计算中的“几何度量”,对于几何概型的“几何度量”可以线段的长度比、图形的面积比、几何体的体积比等,且这个“几何度量”只与“大小”有关,与形状和位置无关,着重考查了分析问题和解答问题的能力.6.A解析:A【解析】赋值语句的格式为“变量=表达式”,“=”的左侧只能是单个变量,B 、C 、D 都不正确.选A.7.B解析:B 【解析】 【分析】模拟执行程序框图,依次写出每次循环得到的,i S 的值,当输出的63S =时,退出循环,对应的条件为5i ≤,从而得到结果. 【详解】当=11S i =,时,不满足输出条件,故进行循环,执行循环体; 当1123,2S i =+==,不满足输出条件,故进行循环,执行循环体; 当2327,3S i =+==,不满足输出条件,故进行循环,执行循环体; 当37215,4S i =+==,不满足输出条件,故进行循环,执行循环体; 当415231,5S i =+==,不满足输出条件,故进行循环,执行循环体; 当313263,6S i =+==,满足输出条件,故判断框中应填入的条件为5i ≤, 故选B. 【点睛】该题考查的是有关程序框图的问题,根据题意写出判断框中需要填入的条件,属于简单题目.8.D解析:D 【解析】 【分析】模拟程序框图的运行过程,得出该程序运行后输出的算式S 是求数列的和,且数列每四项和是定值,由此得出S 的值. 【详解】模拟程序框图的运行过程,得出该程序运行后输出的算式: 由于cos,42xy T π==,且循环数为0,-1,0,1123420132014201520162017201820192020...+++++++(01210141)+...+(0+1201410120161)(01201810120201)S a a a a a a a a a a a a =++++=+-+++++-+++++++-+++++20206=30304=⨯故选:D 【点睛】本题考查了程序框图的循环结构,考查了学生逻辑推理,数学运算的能力,属于中档题. 9.C解析:C 【解析】 【分析】根据新运算的定义, ()x a -()x a +22x x a a =-++-,即求221x x a a -++-<恒成立,整理后利用判别式求出a 范围即可【详解】A()1B A B =-∴()x a -()x a +()()()()22=11x a x a x a x a x x a a --+=--+-=-++-⎡⎤⎣⎦()x a -()1x a +<对于任意的实数x ∈R 恒成立,221x x a a ∴-++-<,即2210x x a a -++--<恒成立,()()2214110a a ∴∆=-⨯-⨯--<,1322a ∴-<<故选:C 【点睛】本题考查新定义运算,考查一元二次不等式中的恒成立问题, 当x ∈R 时,利用判别式是解题关键10.A解析:A【解析】应抽取红球的个数为5010051000⨯= ,选A. 点睛:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .11.C解析:C 【解析】 【分析】由题意求出AB =,所求概率即为DEF ABCS P S=,即可得解.【详解】由题意易知120ADB ∠=,AF FD BD ==,由余弦定理得22222cos1207AB AD BD AD BD BD =+-⋅⋅=即AB =,所以AB =,则所求概率为217DEF ABCSFD P SAB ⎛⎫=== ⎪⎝⎭. 故选:C. 【点睛】本题考查了几何概型概率的求法和余弦定理的应用,属于中档题.12.B解析:B 【解析】 【分析】由题意可得,设DF =2AF =2,求得AC =√13,由面积比的几何概型,可知在大等边三角形中随机取一点,则此点取自小等边三角形的概率,即可求解. 【详解】由题意可得,设DF =2AF =2,可得CF =3,在ΔACF 中,由余弦定理得AC =√12+32−2×1×3cos1200=√13, 所以S ΔDEF =12×2×2sin600=√3,S ΔABC =12×√13×√13sin600=13√34,由面积比的几何概型,可知在大等边三角形中随机取一点,则此点取自小等边三角形的概率是p =S ΔDEFS ΔABC =√313√34=413,故选B.【点睛】本题主要考查了面积比的几何概型,以及余弦定理的应用,其中解答中认真审题、把在大等边三角形中随机取一点,取自小等边三角形的概率转化为面积比的几何概型是解答的关键,着重考查了推理与运算能力,属于基础题.13.A解析:A 【解析】试题分析:设扇形OAB 半径为,此点取自阴影部分的概率是112π-,故选B. 考点:几何概型.【方法点晴】本题主要考查几何概型,综合性较强,属于较难题型.本题的总体思路较为简单:所求概率值应为阴影部分的面积与扇形的面积之比.但是,本题的难点在于如何求阴影部分的面积,经分析可知阴影部分的面积可由扇形面积减去以为直径的圆的面积,再加上多扣一次的近似“椭圆”面积.求这类图形面积应注意切割分解,“多还少补”.14.D解析:D 【解析】 【分析】利用回归直线过样本点中心可求回归方程,根据该方程可得正确的选项. 【详解】由 1.5y x a =+,得x 每增一个单位长度,y 不一定增加1.5,而是大约增加1.5个单位长度,故选项,A B 错误; 由已知表格中的数据,可知0123425x ++++==,2.2 4.3 4.5 4.8 6.74.55y ++++==,回归直线必过样本的中心点()2,4.5,故C 错误; 又4.5 1.52 1.5ˆˆaa =⨯+⇒=,∴回归方程为 1.5 1.5y x =+, 当8x =时,y 的预测值为1.58 1.513.5⨯+=,故D 正确, 故选:D. 【点睛】本题考查线性回归方程的性质及应用,注意回归直线过(),x y ,本题属于基础题.15.A解析:A 【解析】分析:根据已知中某公共汽车站每隔5分钟有一辆车通过,我们可以计算出两辆车间隔的时间对应的几何量长度为5,然后再计算出乘客候车时间不超过2分钟的几何量的长度,然后代入几何概型公式,即可得到答案详解::∵公共汽车站每隔5分钟有一辆车通过当乘客在上一辆车开走后3分钟内到达候车时间会超过2分钟 ∴乘客候车时间不超过2分钟的概率为53255P -== . 故选A .点睛:本题考查的知识点是几何概型,其中计算出所有事件和满足条件的事件对应的几何量的值是解答此类问题的关键二、填空题16.3【解析】【分析】分析出算法的功能是求分段函数的值根据输出的值为10分别求出当时和当时的值即可【详解】由程序语句知:算法的功能是求的值当时解得(或不合題意舍去);当时解得舍去综上的值为3故答案为3【 解析:3 【解析】 【分析】分析出算法的功能是求分段函数22,31,3x x y x x <⎧=⎨+≥⎩的值,根据输出的值为10 ,分别求出当3x <时和当3x ≥时的x 值即可. 【详解】由程序语句知:算法的功能是求22,31,3x x y x x <⎧=⎨+≥⎩的值, 当3x ≥时,2110y x =+=,解得3x =(或3- ,不合題意舍去); 当3x <时,210y x ==,解得5x = ,舍去, 综上,x 的值为3,故答案为3 . 【点睛】本题主要考查条件语句以及算法的应用,属于中档题 .算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.17.【解析】【分析】根据条件求出四棱锥的条件和球的体积结合几何概型的概率公式进行求解即可【详解】四棱锥扩展为正方体则正方体的对角线的长是外接球的直径即即则四棱锥的条件球的体积为则该点取自四棱锥的内部的概【解析】 【分析】根据条件求出四棱锥的条件和球的体积,结合几何概型的概率公式进行求解即可.四棱锥P ABCD -扩展为正方体, 则正方体的对角线的长是外接球的直径,即2R =,即R =则四棱锥的条件1822233V =⨯⨯⨯=,球的体积为343π⨯=,则该点取自四棱锥P ABCD -的内部的概率89P π==,故答案为:9π【点睛】本题主要考查几何概型的概率的计算,结合条件求出四棱锥和球的体积是解决本题的关键.本题考查了几何概型概率的求法;在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域Ω上任置都是等可能的,而对于角度而言,则是过角的顶点的一条射线落在Ω的区域(事实也是角)任一位置是等可能的.18.【解析】【分析】根据题意执行循环结构的程序框图逐次计算即可得到答案【详解】由题意执行程序框图:可得;第一循环不满足条件;第二次循环不满足条件;第三次循环不满足条件;第四次循环不满足条件;第五次循环不解析:【解析】 【分析】根据题意,执行循环结构的程序框图,逐次计算,即可得到答案. 【详解】由题意执行程序框图:可得0S =, 8k =; 第一循环,不满足条件,8S =,7k =; 第二次循环,不满足条件,1S =,6k =; 第三次循环,不满足条件,5S =,5k =; 第四次循环,不满足条件0S =,4k =; 第五次循环,不满足条件4S =,3k =, 第六次循环,满足条件,输出3k =. 【点睛】本题主要考查了循环结构的程序框图的计算输出问题,其中解答中根据给定的程序框图,逐次循环,逐次计算,注意把握判定条件是解答的关键,着重考查了推理与运算能力,属于基础题.19.20【解析】青年职工中年职工老年职工三层之比为所以样本容量为故答案为20点睛:本题主要考查了分层抽样方法及其应用分层抽样中各层抽取个数依据各层个体数之比来分配这是分层抽样的最主要的特点首先各确定分层【解析】青年职工、中年职工、老年职工三层之比为5:3:2,所以样本容量为1020 12,故答案为20.点睛:本题主要考查了分层抽样方法及其应用,分层抽样中各层抽取个数依据各层个体数之比来分配,这是分层抽样的最主要的特点,首先各确定分层抽样的个数,分层后,各层的抽取一定要考虑到个体数目,选取不同的抽样方法,但一定要注意按比例抽取,牢记分层抽样的特点和方法是解答的关键,着重考查了学生的分析问题和解答问题的能力.20.4【解析】由程序框图可知:S=2=0+(﹣1)1×1+(﹣1)2×2+(﹣1)3×3+(﹣1)4×4因此当n=4时满足判断框的条件故跳出循环程序故输出的n 的值为4故答案为4解析:4【解析】由程序框图可知:S=2=0+(﹣1)1×1+(﹣1)2×2+(﹣1)3×3+(﹣1)4×4,因此当n=4时,满足判断框的条件,故跳出循环程序.故输出的n的值为4.故答案为4.21.151020【解析】试题分析:抽取比例为45900=120∴300×120=15200×120=1 0400×120=20抽取人数依次为151020考点:分层抽样解析:15,10,20【解析】试题分析:抽取比例为45900=120∴300×120=15,200×120=10,400×120=20,抽取人数依次为15,10,20考点:分层抽样22.35【解析】79+78+80+80+x+85+92+967=85解得x=5根据中位数为83可知y=3故yx=35解析:35【解析】79+78+80+80+x+85+92+967=85,解得x=5,根据中位数为83,可知y=3,故yx=35.23.(注:填也得分)【解析】分析:执行如图所示的程序框图可知该程序的功能是输出三个数的大小之中位于中间的数的数值再根据指数函数与对数函数的性质得到即可得到输出结果详解:由题意执行如图所示的程序框图可知该解析:ln22(注:填c也得分).【解析】分析:执行如图所示的程序框图可知,该程序的功能是输出,,a b c 三个数的大小之中,位于中间的数的数值,再根据指数函数与对数函数的性质,得到b c a <<,即可得到输出结果.详解:由题意,执行如图所示的程序框图可知,该程序的功能是输出,,a b c 三个数的大小之中,位于中间的数的数值, 因为212ln 2,,ln 22a b c e ===,则221ln 21132ln 2e <<<<,即b c a <<, 所以此时输出ln 22c =. 点睛:识别算法框图和完善算法框图是近年高考的重点和热点.解决这类问题:首先,要明确算法框图中的顺序结构、条件结构和循环结构;第二,要识别运行算法框图,理解框图解决的问题;第三,按照框图的要求一步一步进行循环,直到跳出循环体输出结果,完成解答.近年框图问题考查很活,常把框图的考查与函数和数列等知识考查相结合.24.34【解析】分析:由题意求出代入公式求值从而得到回归直线方程代入代入即可得到答案详解:由题意设回归方程由表中数据可得:;代入回归方程可得当时可得故答案为34点睛:该题考查的是有关回归直线的有关问题在解析:34 【解析】分析:由题意求出,x y ,代入公式求值^a ,从而得到回归直线方程,代入6x =代入即可得到答案.详解:由题意,设回归方程 3.2ˆ,ˆyx a =-+ 由表中数据可得:1,50x y ==;代入回归方程可得ˆ53.2a=. 当6x =时,可得3.2653.234y =-⨯+=,故答案为34.点睛:该题考查的是有关回归直线的有关问题,在解题的过程中,涉及到的知识点有回归直线过均值点,即样本中心点,利用题中所给的表格中的数据,计算得出相应的量,代入式子求得对应的结果.25.12【解析】分析:由频率=以及直方图可得分布在区间第一组与第二组共有20人的频率即可求出第三组中有疗效的人数得到答案详解:由直方图可得分布在区间第一组和第二组共有20人分布唉区间第一组与第二组的频率解析:12 【解析】 分析:由频率=频数样本容量,以及直方图可得分布在区间第一组与第二组共有20人的频率,即可求出第三组中有疗效的人数得到答案.。
高二数学上学期期末复习题1
高二数学上学期期末复习题二(理科)(2013.12)1.命题“存在0x ∈R ,02x ≤0”的否定是( )A.不存在0x ∈R, 02x >0B.存在0x ∈R, 02x ≥0C.对任意的x ∈R, 2x≤0 D.对任意的x ∈R, 2x>0 【答案】D2.如图,若图中直线l 1, l 2, l 3的斜率分别为k 1, k 2, k 3,则A .k 1<k 2<k 3B .k 3<k 1<k 2 C.k 3<k 2<k 1 D.k 1<k 3<k 2 【答案】B3.已知双曲线2222:1x y C a b-=(0,0)a b >>,则C 的渐近线方程为( )(A )14y x =± (B )13y x =±(C )12y x =±(D )y x =±【答案】C ;4.若直线(2m 2+m -3)x +(m 2-m )y =4m -1在x 轴上的截距为1,则实数m 等于( )A .1B .2C .-12D .2或-12解析:当2m 2+m -3≠0时,在x 轴上截距为错误!=1,即2m 2-3m -2=0, ∴m =2或m =-错误!. 答案:D5.已知椭圆C 的左、右焦点坐标分别是(-2,0),(2,0),离心率是63,则椭圆C 的方程为 ( ).A.x 23+y 2=1 B .x 2+y 23=1 C.x 23+y 22=1 D.x 2+y 2=1 解析 因为错误!=错误!,且c =错误!,所以a =错误!,b =错误!=1.所以椭圆C 的方程为错误!+y 2=1. 答案 A 6.如图,在正方体1111D C B A ABCD -,若11AA z y x BD ++=,则x y z ++的值为 ( )A .3 B .1 C .-1 D .-3 【答案】B7.设a R ∈,则“1a =”是“直线1:210l ax y +-=与直线2:(1)40l x a y +++=平行”的( )A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件【答案】A88.给出下列互不相同的直线l 、m 、n 和平面α、β、γ的三个命题:①若l 与m 为异面直线,l ⊂α,m ⊂β,则α∥β. ②若α∥β,l ⊂α,m ⊂β,则l ∥m . ③若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n .其中真命题的个数为( ) A .3 B .2 C .1 D .0解析:①中α与β也可能相交,∴①错;在②中l 与m 也可能异面,∴②错,③正确. 答案:C9.设m ,n 为两条直线,α,β为两个平面,则下列四个命题中,正确的命题是( ) A .若m ⊂α,n ⊂α,且m ∥β,n ∥β,则α∥β B .若m ∥α,m ∥n ,则n ∥α C .若m ∥α,n ∥α,则m ∥nD .若m ,n 为两条异面直线,且m ∥α,n ∥α,m ∥β,n ∥β,则α∥β 答案:D10.长方体ABCD —A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A.1010B.3010C.21510D.31010答案:B11.已知抛物线22y px =的焦点F 与双曲线22179x y -=的右焦点重合,抛物线的准线与x轴的交点为K ,点A 在抛物线上且|||AK AF =,则△AFK 的面积为(A )4 (B )8 (C )16 (D )32 【答案】D【解析】双曲线的右焦点为(4,0),抛物线的焦点为(,0)2p ,所以42p=,即8p =。
高二数学上学期期末复习备考黄金30题 专题03 小题好拿分(提升版,30题)苏教版
专题03 小题好拿分(提升版,30题)一、填空题1.已知椭圆22221x y a a b +=>>(b0)A 为左顶点,点,M N 在椭圆C 上,其中M 在第一象限, M 与右焦点的连线与x 轴垂直,且4?10AM AN k k +=,则直线MN 的方程为_______.【答案】y x =答案:y x=2.已知椭圆22:143x yC+=的右顶点为A, 点()2,4M,过椭圆C上任意一点P作直线MA的垂线,垂足为H,则2PM PH+的最小值为_________.【答案】23.如图,在平面直角坐标系xOy中,F是椭圆的右焦点,直线与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率为_____.【答案】【解析】设右焦点F(c,0),将直线方程代入椭圆方程可得,可得由可得,即有化简为,由,即有,由故答案为.4.如图,在平面直角坐标系xOy中,F1,F2分别是椭圆(a>b>0)的左、右焦点,B,C分别为椭圆的上、下顶点,直线BF2与椭圆的另一个交点为D,若,则直线CD的斜率为_____.【答案】5.在△ABC中,,BC=2,D是BC的一个三等分点,则AD的最大值是_____.【答案】【解析】如图建立坐标系,如图的外接圆满足∵若取最大值,在同一直线上,设点坐标为解得的外接圆的圆心故答案为6.已知线段AB 的长为2,动点C 满足CA CB μ⋅=(μ为常数, 1μ>-),且点C 始终不在以B 为圆心12为半径的圆内,则μ的范围是_________. 【答案】][35144⎛⎫--⋃+∞ ⎪⎝⎭,,7.已知半径为的动圆经过圆的圆心,且与直线相交,则直线被圆截得的弦长最大值是__________. 【答案】8.(文科选做)如图,在棱长为1的正方体ABCD-A 1B 1C 1D 1中,点E 、F 分别是棱BC ,CC 1的中点,P 是侧面BCC 1B 1内一点,若A 1P ∥平面AEF ,则线段A 1P 长度的取值范围是_____。
高二上学期数学期末复习练习10
高二上学期数学期末复习练习十1、给出命题:“已知a 、b 、c 、d 是实数,若,a b c d a c b d ≠≠+≠+且则”.对原命题、逆命题、否命题、逆否命题而言,其中真命题( ) A.0个 B.1个 C.2个 D.4个2.在△ABC 中,a =2b cos C ,则该三角形一定是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰或直角三角形3.若m 是2和8的等比中项,则圆锥曲线122=+my x 的离心率是( ) A.23B. 5C.23 或 25 D. 23或5 4.若)9,2,1(),3,1,2(y x -==,且//,则A .1,1==y xB .21,21-==y x C .23,61-==y x D .23,61=-=y x 5.已知,06165:,09:22>+->-x x q x p 则p 是q 的 ( )A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件6.在平行六面体ABCD A B C D ''''-,O '是上底面的中心,设=a ,= AD b ,'=AA c ,则AO ' =A .c b a 212121++ B .c b a ++2121 C .++21 D . ++217.关于x 的不等式ax -b >0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( )A .(-∞,-1)∪(3,+∞)B .(-1,3)C .(1,3)D .(-∞,1)∪(3,+∞)8.一条线段的长等于10,两端点A 、B 分别在x 轴和y 轴上滑动,M 在线段AB 上且AM →=4MB →,则点M 的轨迹方程是( ) A .x 2+16y 2=64 B .16x 2+y 2=64 C .x 2+16y 2=8 D .16x 2+y 2=8 9.设x ,y >0,且x +2y =3,则1x +1y的最小值为 A .2B.32 C .1+223D .3+2 2 10.锐角ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,若2C A =,则ca的取值范围是(A)(B)1,((C)2) (D)1,2()11.若不等式012≥++ax x 对于一切)21,0(∈x 成立,则a 的最小值是 ( )A.0B.-2C. 25- D.-312. 设P 是双曲线x 2a 2-y 2b 2 =1(a >0 ,b >0)上的点,F 1、F 2是焦点,双曲线的离心率是54 ,且∠F 1PF 2=90°,△F 1PF 2面积是9,则a + b = A. 4 B. 5 C. 6D. 7PDCBA13.设变量x,y 满足约束条件⎪⎩⎪⎨⎧≥-≥-≤+113y y x y x ,则目标函数y x z 24+=的最大值为14.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程是y =,它的一个焦点与抛物线216y x =的焦点相同,则双曲线的方程为 . 15.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若,,a b c 成等差数列, 030B =,ABC ∆的面积为32,则b =16.已知数列{n a }满足⎪⎩⎪⎨⎧-=+.(,2a (,21为奇数)为偶数),n n n nn a n a a a 若13=a ,则1a 的所有可能的取值为 17.已知命题p :关于x 的不等式01)1(2≤+-+x a x 的解集为空集φ;命题q :函数xa y )1(-=为增函数,若命题q p ∧为假命题,q p ∨为真命题,求实数a 的取值范围. 18.在ABC ∆中,角A B C 、、所对的边分别为abc 、、且bcB A 2tan tan 1=+. (1)求角A ;(2)已知6,27==bc a ,求b c +的值. 19.已知函数9()(3)3f x x x x =+>- (I )求函数()f x 的最小值; (II )若不等式()71tf x t ≥++恒成立,求实数t 的取值范围。
高二上学期文科数学期末总复习
高二上学期文科数学期末总复习一、选择题:每小题5分,共60分(1)直线3410x y +-=的斜率是 ( )(A)34 (B)43 (C) 34- (D) 43-(2)不等式“2a b c +>”成立的一个充分条件是( )(A )c b c a >>或(B )c b c a <>且(C )b c a >且(3)双曲线2224x y -=的离心率是( )(4)已知1a >,则11a a +-的最小值是 ( )(A )(B 1 (C )(5)直线120l y --=与2:10l x +=的夹角( ) (A )6π (B )4π (C )3π (D )2π2x ≤⎧x y =-的取值范围是( )2,2)的双曲线方程是( )1=(C )22128x y -=(D )221312x y -= ) 32⎫<⎬⎭ (C) 322x x ⎧⎫-<<⎨⎬⎩⎭ (D) {}1x x <(9)若椭圆221259x y +=上 的一点P 到左准线的距离为25.,则点P 到右焦点的距离是( )(A )258(B )92 (C )163 (D )8(10)若直线210x ay +-=与直线(31)10a x ay --+=平行,则a 的值是 ( )(A )0 (B )16 (C )13 (D )3(11)设经过双曲线22149x y -=左焦点的直线l 与双曲线交于点A 、B ,若6AB =,则这样的直线有 ( )(A )1 条 (B )2条 (C )3条 (D )4条 (12)设点2222(3,1)1(0)x y P a b a b-+=>>在椭圆的左准线上,过点P 且方向为(2,5)a =-的光线经直线2y =-是( )(A )22132x y += (B )22143x y += (C )25x 二、填空题(13)圆22(1)1x y -+=的圆心到直线y =的距离是(14)若直线41ax y +=与直线(1)1x a y +-=-(15)以双曲线221169x y =-(16)一段长为L 米的篱笆围成一个一边靠墙的矩形菜园,则这个菜园的最大面积是_________ 三、解答题:(17)解下列不等式:(Ⅰ)3≤|x -2|<9.(Ⅱ)261513121x x x -+>+.5)x -的最大值(2)已知x , y ∈( 0,+∞) 且 2x +3y=1,求 1x + 1y的最小值(19)已知圆C 同时满足两个条件:①圆心是直线x y 2=与052=-+y x 的交点;②直线03534=-+y x 与圆C 相切. 求圆C 的方程.(20)(本题12分)如图,已知矩形ABCD 的两条对 角线的交点为E (1,0),且AB 与BC 所在的直线 方程分别为:05053=+-=-+y ax y x 与 (1)求a 的值;(2)求DA 所在的直线方程及CD 所在的直线方程。
四川省成都市2023-2024学年高二上学期期末复习数学试题(三)含解析
成都高2025届高二期末考试数学复习试题(三)(答案在最后)一、单选题(共8个小题,每个小题5分,共40分)1.设直线l sin 20y θ++=,则直线l 的倾斜角的取值范围是()A.[)0,πB.πππ2π,,3223⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦C.π2π,33⎡⎤⎢⎥⎣⎦D.π2π0,,π33⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭U 【答案】D 【解析】【分析】根据直线斜率的范围求倾斜角的取值范围.sin 20y θ++=的倾斜角为[)0πa a Î,,,则由直线可得tan a q =Î,所以π2π0,,π33a 轾轹÷Î犏÷犏臌滕,故选:D2.能够使得圆x 2+y 2-2x +4y +1=0上恰有两个点到直线2x +y +c =0距离等于1的c 的一个值为()A.2B.C.3D.【答案】C 【解析】【分析】利用圆心到直线的距离大于1且小于3,列不等式求解即可.【详解】由圆的标准方程()()22124x y -++=,可得圆心为()1,2-,半径为2,根据圆的性质可知,当圆心到直线的距离大于1且小于3时,圆上有两点到直线20x y c ++=的距离为1,由()1,3d =可得(c ∈-⋃,经验证,3c =∈,符合题意,故选C.【点睛】本题主要考查圆的标准方程,点到直线距离公式的距离公式以及圆的几何性质,意在考查数形结合思想的应用,属于中档题.3.若椭圆的中心为原点,对称轴为坐标轴,短轴的一个端点与两焦点构成个正三角形,焦点到椭圆上点的)A.221129x y +=B.221129x y +=或221912x y +=C.2213612x y += D.以上都不对【答案】B 【解析】【分析】由短轴的一个端点与两焦点构成个正三角形可得b =,由焦点到椭圆上点的最短距离为a c -,结合222a b c =+可得.【详解】由题意,当椭圆焦点在x 轴上,设椭圆方程为:22221x ya b+=,由题意b =,a c -=所以2a c ===,c =a =,3b =,所以椭圆方程为:221129x y +=,当椭圆焦点在y 轴上时,同理可得:221912x y+=,故选:B4.某市经济开发区的经济发展取得阶段性成效,为深入了解该区的发展情况,现对该区两企业进行连续11个月的调研,得到两企业这11个月利润增长指数折线图(如下图所示),下列说法正确的是()A.这11个月甲企业月利润增长指数的平均数没超过82%B.这11个月的乙企业月利润增长指数的第70百分位数小于82%C.这11个月的甲企业月利润增长指数较乙企业更稳定D.在这11个月中任选2个月,则这2个月乙企业月利润增长指数都小于82%的概率为411【答案】C 【解析】【分析】根据折线图估算AC ,对于B 项把月利润增长指数从小到大排列,计算1170⨯%=7.7可求,对于D 项用古典概型的概率解决.【详解】显然甲企业大部分月份位于82%以上,故利润增长均数大于82%,A 不正确;乙企业润增长指数按从小到大排列分别是第2,1,3,4,8,5,6,7,9,11,10又因为1170⨯%=7.7,所以从小到大排列的第8个月份,即7月份是第70百分位,从折线图可知,7月份利润增长均数大于82%,故B 错误;观察折现图发现甲企业的数据更集中,所以甲企业月利润增长指数较乙企业更稳定,故C 正确;P (2个月乙企业月利润增长指数都小于82%)26211C 3C 11==,故D 错误.故选:C.5.已知空间三点(4,1,9),(10,1,6),(2,4,3)A B C -,则下列结论不正确的是()A.||||AB AC =B.点(8,2,0)P 在平面ABC 内C.AB AC ⊥D.若2AB CD =,则D 的坐标为31,5,2⎛⎫-- ⎪⎝⎭【答案】D 【解析】【分析】根据空间两点距离公式判断A ,根据数量积的坐标运算判断B ,根据共面向量基本定理判断C ,根据向量的坐标运算判断D.【详解】因为||7AB ==,||7AC ==,故A 正确;因为(6,2,3)(2,3,6)126180AB AC →→⋅=--⋅--=--+=,所以AB AC ⊥,故C 正确;因为(6,2,3),(2,3,6)AB AC →→=--=--,(4,1,9)AP →=-,所以(4,1,9)AP AB AC →→→=+=-,所以点(8,2,0)P 在平面ABC 内,故B 正确;因为92(1,9,))(62(22,31,8,,),92AB CD ==------=-- ,显然不成立,故D 错误.故选:D6.已知某人收集一个样本容量为50的一组数据,并求得其平均数为70,方差为75,现发现在收集这些数据时,其中得两个数据记录有误,一个错将80记录为60,另一个错将70记录为90,在对错误得数据进行更正后,重新求得样本的平均数为X ,方差为2s ,则()A.270,75X sB.270,75X s ><C.270,75X s =>D.270,75X s =<【答案】D 【解析】【分析】根据平均数与方差的定义判断.【详解】因为80706090+=+,因此平均数不变,即70X =,设其他48个数据依次为1248,,,a a a ,因此()()()()()222221248707070607090705075a a a -+-++-+-+-=⨯ ,()()()()()22222212487070708070707050a a a s -+-++-+-+-=⨯ ,()250751004001004000s -=--=-<,∴275s <,故选:D .7.如图所示,在直三棱柱111ABC A B C -中,ACBC ⊥,且3BC =,4AC =,13CC =,点P 在棱1AA 上,且三棱锥A PBC -的体积为4,则直线1BC 与平面PBC 所成角的正弦值等于()A.4B.4C.5D.5【答案】C 【解析】【分析】利用锥体的体积公式可求得2PA =,然后以点C 为坐标原点,CB 、CA 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得直线1BC 与平面PBC 所成角的正弦值.【详解】由已知得1AA ⊥底面ABC ,且AC BC ⊥,所以111344332A PBC P ABC ABC V V S PA PA --==⨯⨯=⨯⨯⨯⨯=△,解得2PA =.如图所示,以点C 为坐标原点,CB 、CA 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则()0,0,0C 、()0,4,2P 、()3,0,0B 、()10,0,3C ,则()3,0,0CB = ,()0,4,2CP = ,()13,0,3BC =-.设平面BCP 的法向量为(),,n x y z =,则由00n CB n CP ⎧⋅=⎨⋅=⎩可得30420x y z =⎧⎨+=⎩,即020x y z =⎧⎨+=⎩,得0x =,令1y =,得2z =-,所以()0,1,2n =-为平面BCP 的一个法向量.设直线1BC 与平面PBC 所成的角为θ,则11110sin cos ,5n BC n BC n BC θ⋅=<>==⋅.故选:C.【点睛】方法点睛:求直线与平面所成角的方法:(1)定义法,①作,在直线上选取恰当的点向平面引垂线,确定垂足的位置是关键;②证,证明所作的角为直线与平面所成的角,证明的主要依据是直线与平面所成角的概念;③求,利用解三角形的知识求角;(2)向量法,sin cos ,AB n AB n AB nθ⋅=<>=⋅ (其中AB 为平面α的斜线,n为平面α的法向量,θ为斜线AB 与平面α所成的角).8.已知F 1,F 2分别为双曲线C :221412x y -=的左、右焦点,E 为双曲线C 的右顶点.过F 2的直线与双曲线C的右支交于A ,B 两点(其中点A 在第一象限),设M ,N 分别为△AF 1F 2,△BF 1F 2的内心,则ME NE -的取值范围是()A.44,33⎛⎫-⎪⎝⎭B.,33⎛⎫- ⎪ ⎪⎝⎭C.3333,55⎛⎫- ⎪⎪⎝⎭ D.,33⎛⎫- ⎪ ⎪⎝⎭【答案】B 【解析】【分析】利用平面几何和内心的性质,可知M ,N 的横坐标都是a ,得到MN ⊥x 轴,设直线AB 的倾斜角为θ,有22,22-∠=∠=EF M EF N πθθ,根据θ∈(60∘,90∘],将ME NE -表示为θ的三角函数可求得范围.【详解】解:设1212,,AF AF F F 上的切点分别为H 、I 、J ,则1122||||,,===AH AI F H F J F J F I .由122AF AF a -=,得()()12||||2+-+=AH HF AI IF a ,∴122-=HF IF a ,即122-=JF JF a.设内心M 的横坐标为0x ,由JM x ⊥轴得点J 的横坐标也为0x ,则()()002c x c x a +--=,得0x a =,则E 为直线JM 与x 轴的交点,即J 与E 重合.同理可得12BF F △的内心在直线JM 上,设直线AB 的领斜角为θ,则22,22-∠=∠=EF M EF N πθθ,||||()tan()tan 22--=---ME NE c a c a πθθcos sin 2cos 222()()()sin tan sin cos 22⎛⎫ ⎪=-⋅-=-=-⎪ ⎪⎝⎭c a c a c a θθθθθθθ,当2πθ=时,||||0ME NE -=;当2πθ≠时,由题知,2,4,===b a c a,因为A ,B 两点在双曲线的右支上,∴233ππθ<<,且2πθ≠,所以tan θ<tan θ>,∴3133tan 3θ-<<且10tan θ≠,∴44343||||,00,tan 33⎛⎫⎛⎫-=∈- ⎪ ⎪⎝⎭⎝⎭ME NE θ,综上所述,44343||||,tan 33⎛⎫-=∈- ⎪⎝⎭ME NE θ.故选:B.二、多选题(共4个小题,每个小题5分,共20分)9.已知甲罐中有五个相同的小球,标号为1,2,3,4,5,乙罐中有四个相同的小球,标号为1,4,5,6,现从甲罐、乙罐中分别随机抽取1个小球,记事件A =“抽取的两个小球标号之和大于6”,事件B =“抽取的两个小球标号之积小于6”,则()A.事件A 与事件B 是互斥事件B.事件A 与事件B 不是对立事件C.事件A B ⋃发生的概率为1920D.事件A 与事件B 是相互独立事件【答案】ABC 【解析】【分析】由两球编号写出事件,A B 所含有的基本事件,同时得出所有的基本事件,然后根据互斥事件、对立事件的定义判断AB ,求出A B ⋃的概率判断C ,由公式()()()P AB P A P B =判断D .【详解】甲罐中小球编号在前,乙罐中小球编号在后,表示一个基本事件,事件A 含有的基本事件有:16,25,26,34,35,36,44,45,46,54,55,56,共12个,事件B 含有的基本事件有:11,14,15,21,31,41,51,共7个,两者不可能同时发生,它们互斥,A 正确;基本事件15发生时,事件,A B 均不发生,不对立,B 正确;事件A B ⋃中含有19个基本事件,由以上分析知共有基本事件20个,因此19()20P A B =,C 正确;123()205P A ==,7()20P B =,()0P AB =()()P A P B ≠,,A B 不相互独立,D 错.故选:ABC .10.在如图所示试验装置中,两个长方形框架ABCD 与ABEF 全等,1AB =,2BC BE ==,且它们所在的平面互相垂直,活动弹子,M N 分别在长方形对角线AC 与BF 上移动,且(0CM BN a a ==<<,则下列说法正确的是()A.AB MN⊥ B.MN 2C.当MN 的长最小时,平面MNA 与平面MNB 所成夹角的余弦值为13D .()25215M ABN a V-=【答案】ABC 【解析】【分析】建立空间直角坐标系,写出相应点的坐标,利用空间向量数量积的运算即可判断选项A ;利用空间两点间距离公式即可判断选项B ;根据二面角的余弦值推导即可判断选项C ;根据棱锥的体积计算公式即可判断选项D .【详解】由题意可知:,,BA BC BE 两两互相垂直,以点B 为坐标原点,,,BA BE BC为,,x y z 轴正方向,建立空间直角坐标系,建系可得525525,0,2,,,05555a a a a M N ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭()25250,,2,1,0,055a a MN BA ⎛⎫∴=-= ⎪ ⎪⎝⎭,0,AB MN AB MN ∴⋅=∴⊥,故选项A 正确;又MN===∴当2a=时,min||MN=,故选项B正确;当MN最小时,,,2a M N=分别是,AC BF的中点,取MN中点K,连接AK和BK,,AM AN BM BN==,,AK MN BK MN∴⊥⊥,AKB∠∴是二面角A MN B--的平面角.BMN中,,2BM BN MN===,可得2BK==,同理可得2AK=,由余弦定理可得331144cos322AKB∠+-==,故选项C 正确;2125252522365515M ABN ABNa aV S h-⎛⎫-=⨯⨯=⨯-=⎪⎪⎝⎭,故选项D错误.故选:ABC.11.抛物线有如下光学性质:由其焦点射出的光线经拋物线反射后,沿平行于拋物线对称轴的方向射出.反之,平行于拋物线对称轴的入射光线经拋物线反射后必过抛物线的焦点.已知抛物线2:,C y x O=为坐标原点,一束平行于x轴的光线1l从点41,116P⎛⎫⎪⎝⎭射入,经过C上的点()11,A x y反射后,再经C上另一点()22,B x y 反射后,沿直线2l 射出,经过点Q ,则()A.PB 平分ABQ ∠B.121y y =-C.延长AO 交直线14x =-于点D ,则,,D B Q 三点共线D.2516AB =【答案】ACD 【解析】【分析】对于A ,根据题意求得()1,1A ,11,164B ⎛⎫- ⎪⎝⎭,从而证得PA AB =,结合平面几何的知识易得PB 平分ABQ ∠;对于B ,直接代入12,y y 即可得到1214y y =-;对于C ,结合题意求得11,44D ⎛⎫-- ⎪⎝⎭,由,,D B Q 的纵坐标相同得,,D B Q 三点共线;对于D ,由选项A 可知2516AB =.【详解】根据题意,由2:C y x =得1,04F ⎛⎫⎪⎝⎭,又由//PA x 轴,得()1,1A x ,代入2:C y x =得11x =(负值舍去),则()1,1A ,所以141314AF k ==-,故直线AF 为4134y x ⎛⎫=- ⎪⎝⎭,即4310x y --=,依题意知AB 经过抛物线焦点F ,故联立24310x y y x --=⎧⎨=⎩,解得11614x y ⎧=⎪⎪⎨⎪=-⎪⎩,即11,164B ⎛⎫- ⎪⎝⎭,对于A ,412511616PA =-=,2516AB =,故PA AB =,所以APB ABP ∠=∠,又因为//PA x 轴,//BQ x 轴,所以//PA BQ ,故APB PBQ =∠∠,所以ABP PBQ ∠=∠,则PB 平分ABQ ∠,故A 正确;对于B ,因为12141,y y =-=,故1214y y =-,故B 错误;对于C ,易得AO 的方程为y x =,联立14y x x =⎧⎪⎨=-⎪⎩,故11,44D ⎛⎫-- ⎪⎝⎭,又//BQ x 轴,所以,,D B Q 三点的纵坐标都相同,则,,D B Q 三点共线,故C 正确;对于D ,由选项A 知2516AB =,故D 正确.故选:ACD..12.己知椭圆222:1(02)4x y C b b+=<<的左,右焦点分别为1F ,2F ,圆22:(2)1M x y +-=,点P 在椭圆C 上,点Q 在圆M 上,则下列说法正确的有()A.若椭圆C 和圆M 没有交点,则椭圆C的离心率的取值范围是2,1⎛⎫⎪ ⎪⎝⎭B.若1b =,则||PQ 的最大值为4C.若存在点P 使得213PF PF =,则0b <≤D.若存在点Q使得12QF =,则1b =【答案】ACD 【解析】【分析】A 根据已知,数形结合得01b <<时椭圆C 和圆M 没有交点,进而求离心率范围;B 令(,)P x y ,求得||MP =,结合椭圆有界性得max ||MP =即可判断;C 由题设123,1PF PF ==,令(,)P x y,进而得到((222291x y x y⎧++=⎪⎨⎪-+=⎩,结合点在椭圆上得到公共解(0,2]x =求范围;D将问题化为圆心为的圆与圆22:(2)1M x y +-=有交点.【详解】由椭圆C 中2a =,圆M 中圆心(0,2)M ,半径为1,如下图示,A :由于02b <<,由图知:当01b <<时椭圆C 和圆M 没有交点,此时离心率,12e ⎛⎫⎪ ⎪⎝==⎭,对;B :当1b =时,令(,)P x y,则||MP =,而224(1)x y =-,所以||MP =,又11y -≤≤,故max ||MP =所以||PQ1+,错;C :由1224PF PF a +==,若213PF PF =,则123,1PF PF ==,由12(F F ,令(,)P x y ,且2221)(4x y b =-,则((222291x y x y⎧++=⎪⎨⎪+=⎩,即2222(4)200(4)120b x b x ⎧-+-=⎪⎨--+=⎪⎩,所以(0,2]x =,则23b ≤,且02b <<,故0b <≤D :令(,)Q x y,若12QF =,所以2222(3[(]x y x y +=-+,则222(4)0x b y -+-+=,所以222(3(4)x y b -+=-,Q轨迹是圆心为的圆,而(0,2)M与的距离为,要使点Q 存在,则1|1-≤≤,可得22(1)0b -≤,且02b <<,即1b =,对;故选:ACD【点睛】关键点点睛:对于C ,根据已知得到123,1PF PF ==,设(,)P x y ,利用两点距离公式得到方程组,求出公共解(0,2]x =为关键;对于D ,问题化为圆心为的圆与圆22:(2)1M x y +-=有交点为关键.三、填空题(共4个小题,每个小题5分,共20分)13.若直线1x y +=与直线2(1)40m x my ++-=平行,则这两条平行线之间的距离是__.【答案】322【解析】【分析】由题意结合直线平行的性质可得2m =-,再由平行线间的距离公式即可得解.【详解】 直线1x y +=与直线2(1)40m x my ++-=平行,∴2(1)4111m m +-=≠-,解得2m =-,故直线1x y +=与直线2(1)40m x my ++-=即为直线10x y +-=与直线20x y ++=,2=,故答案为:2.【点睛】本题考查了直线平行性质的应用,考查了平行线间距离公式的应用,属于基础题.14.曲线1y =+与直线l :y =k (x -2)+4有两个交点,则实数k 的取值范围是________.【答案】53124,纟çúçú棼【解析】【分析】首先画出曲线表示的半圆,再判断直线l 是过定点()24,的直线,利用数形结合判断k 的取值范围.【详解】直线l 过点A (2,4),又曲线1y =+0,1)为圆心,2为半径的半圆,如图,当直线l 与半圆相切,C 为切点时,圆心到直线l 的距离d =r,2=,解得512k =.当直线l 过点B (-2,1)时,直线l 的斜率为()413224-=--,则直线l 与半圆有两个不同的交点时,实数k 的取值范围为53124,纟çúçú棼.故答案为:53124,纟çúçú棼15.数学兴趣小组的四名同学各自抛掷骰子5次,分别记录每次骰子出现的点数,四名同学的部分统计结果如下:甲同学:中位数为3,方差为2.8;乙同学:平均数为3.4,方差为1.04;丙同学:中位数为3,众数为3;丁同学:平均数为3,中位数为2.根据统计结果,数据中肯定没有出现点数6的是______同学.【答案】乙【解析】【分析】假设出现6点,利用特例法,结合平均数和方差的计算公式,即可求解.【详解】对于甲同学,当投掷骰子出现结果为1,2,3,3,6时,满足中位数为3,平均数为:()11233635x =++++=,方差为()()()()()22222211323333363 2.85S ⎡⎤-+-+-+-+-⎣⎦==,可以出现点数6;对于乙同学,若平均数为3.4,且出现点数6,则方差221(6 3.4) 1.352 1.045S >-=>,所以当平均数为3.4,方差为1.04时,一定不会出现点数6;对于丙同学,当掷骰子出现的结果为1,2,3,3,6时,满足中位数为3,众数为3,可以出现点数6;对于丁同学,当投掷骰子出现的结果为2,2,2,3,6时,满足平均数为3,中位数为2,可以出现点数6.综上,根据统计结果,数据中肯定没有出现点数6的是乙同学.故答案为:乙16.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,离心率为e ,点P 在椭圆上,连接1PF 并延长交C 于点Q ,连接2QF ,若存在点P 使2PQ QF =成立,则2e 的取值范围为___________.【答案】)11,1⎡-⎣【解析】【分析】设11,QF m PF n ==,所以存在点P 使2PQ QF =等价于()2min0,PQ QF -≤由2112am n b +=可求222PQ QF m n a -=+-的最小值,求得22b a的范围,从而得到2e 的取值范围.【详解】设11,QF m PF n ==,则22QF a m =-.显然当P 靠近右顶点时,2PQ QF >,所以存在点P 使2PQ QF =等价于()22min0,22PQ QF PQ QF m n a -≤-=+-,在12PF F △中由余弦定理得22221121122cos PF PF F F PF F F θ=+-⋅⋅,即()2222422cos a n n c n c θ-=+-⋅⋅,解得2cos b n a c θ=-,同理可得2cos b m a c θ=+,所以2112a m n b +=,所以()(2223112223222b b b n m m n m n a m n a m n a +⎛⎫⎛⎫+=++=++≥ ⎪ ⎝⎭⎝⎭,所以22min1)(22)22b m n a a a++-=-,当且仅当n =时等号成立.由221)202b a a+-≤得2212b a ≤-,所以2111e -≤<.故答案为:)11,1⎡-⎣【点睛】关键点点睛:求离心率范围关键是建立,,a b c 的不等式,此时将问题转化为()2min0PQ QF -≤,从而只需求222PQ QF m n a -=+-的最小值,求最小值的方法是结合焦半径性质211112aPF QF b+=使用基本不等式求解.四、解答题(共7个题,17题10分,18题—22题每题12分,共70分)17.在平面直角坐标系xOy 中,存在四点()0,1A ,()7,0B ,()4,9C ,()1,3D .(1)求过A ,B ,C 三点的圆M 的方程,并判断D 点与圆M 的位置关系;(2)若过D 点的直线l 被圆M 截得的弦长为8,求直线l 的方程.【答案】(1)228870x y x y +--+=,D 在圆M 内;(2)43130x y +-=或1x =.【解析】【分析】(1)设出圆的一般方程,利用待定系数法计算可得圆的方程,把D 坐标代入圆的方程判定位置关系即可;(2)对直线分类讨论,设出直线方程,利用直线与圆相交,已知弦长求直线方程.【小问1详解】设圆M 方程为220x y Dx Ey F ++++=,把A ,B ,C 三点坐标代入可得:10,4970,1681490,E F D F D E F ++=⎧⎪++=⎨⎪++++=⎩解得8D =-,8E =-,7F =,所以圆M 方程是228870x y x y +--+=,把D 点坐标代入可得:1982470+--+<,故D 在圆M 内;【小问2详解】由(1)可知圆M :()()224425x y -+-=,则圆心()4,4M ,半径=5r ,由题意可知圆心到直线l 的距离是3,当直线l 斜率存在时,设直线l 方程为:()1330y k x kx y k =-+⇒-+-=,3=,解得43k =-,故直线l 的方程为43130x y +-=;当直线l 斜率不存在时,则直线l 方程为:1x =,此时圆心到直线l 的距离是3,符合题意.综上所述,直线l 的方程为43130x y +-=或1x =.18.我校举行的“青年歌手大选赛”吸引了众多有才华的学生参赛.为了了解本次比赛成绩情况,从中抽取了50名学生的成绩作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:频率分布表组别分组频数频率第1组[50,60)80.16第2组[60,70)a ▓第3组[70,80)200.40第4组[80,90)▓0.08第5组[90,100]2b 合计▓▓(1)求出a ,b ,x ,y 的值;(2)在选取的样本中,从成绩是80分以上的同学中随机抽取2名同学参加元旦晚会,求所抽取的2名同学中至少有1名同学来自第5组的概率;(3)根据频率分布直方图,估计这50名学生成绩的中位数、平均数和方差(同一组的数据用该组区间的中点值作代表).【答案】(1)a =16,b =0.04,x =0.032,y =0.004(2)35(3)中位数为70.5,平均数为70.2,方差为96.96【解析】【分析】(1)利用频率=100%⨯频数样本容量,及频率组距表示频率分布直方图的纵坐标即可求出a ,b ,x ,y ;(2)由(2)可知第四组的人数,已知第五组的人数是2,利用组合的计算公式即可求出从这6人中任选2人的种数,再分两类分别求出所选的两人来自同一组的情况,利用互斥事件的概率和古典概型的概率计算公式即可得出.(3)根据频率分布直方图,估计这50名学生成绩的中位数、平均数和方差.【小问1详解】由题意可知,样本容量n =8500.16=,∴b =250=0.04,第四组的频数=50×0.08=4,∴508202416a =----=.y =0.0410=0.004,x =1650×110=0.032.∴a =16,b =0.04,x =0.032,y =0.004.【小问2详解】由题意可知,第4组共有4人,记为A ,B ,C ,D ,第5组共有2人,记为X ,Y .从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学,有AB ,AC ,AD ,BC ,BD ,CD ,AX ,AY ,BX ,BY ,CX ,CY ,DX ,DY ,XY ,共15种情况.设“随机抽取的2名同学中至少有1名同学来自第5组”为事件E ,有AX ,AY ,BX ,BY ,CX ,CY ,DX ,DY ,XY 共9种情况.所以随机抽取的2名同学中至少有1名同学来自第5组的概率是P (E )=93155=.∴随机抽取的2名同学中至少有1名同学来自第5组的概率35.【小问3详解】∵[50,70)的频率为:0.160.320.48+=,[70,80)的频率为0.4,∴中位数为:0.50.48701070.50.4-+⨯=,平均数为:550.16650.32750.4850.08950.0470.2⨯+⨯+⨯+⨯+⨯=.方差为:()()()()()222225570.20.166570.20.327570.20.48570.20.089570.20.0496.96⨯+⨯+⨯+⨯+⨯﹣﹣﹣﹣﹣=.19.已知抛物线()2:20C y px p =>的焦点为F ,点0(,4)M x 在C 上,且52pMF =.(1)求点M 的坐标及C 的方程;(2)设动直线l 与C 相交于,A B 两点,且直线MA 与MB 的斜率互为倒数,试问直线l 是否恒过定点?若过,求出该点坐标;若不过,请说明理由.【答案】(1)M 的坐标为()4,4,C 的方程为24y x =;(2)直线l 过定点()0,4-.【解析】【分析】(1)利用抛物线定义求出0x ,进而求出p 值即可得解.(2)设出直线l 的方程x my n =+,再联立直线l 与抛物线C 的方程,借助韦达定理探求出m 与n 的关系即可作答.【小问1详解】抛物线2:2C y px =的准线:2px =-,于是得0522p p MF x =+=,解得02x p =,而点M 在C 上,即2164p =,解得2p =±,又0p >,则2p =,所以M 的坐标为()4,4,C 的方程为24y x =.【小问2详解】设()()1122,,,A x y B x y ,直线l 的方程为x my n =+,由24x my n y x =+⎧⎨=⎩消去x 并整理得:2440y my n --=,则()2160m n ∆=+>,124y y m +=,124y y n =-,因此,121222121212444444144444444MA MB y y y y k k y y x x y y ----⋅=⋅==⋅=--++--,化简得()121240y y y y ++=,即4n m =,代入l 方程得4x my m =+,即()40x m y -+=,则直线l 过定点()0,4-,所以直线l 过定点()0,4-.【点睛】思路点睛:直线与圆锥曲线相交,直线过定点问题,设出直线的斜截式方程,与圆锥曲线方程联立,借助韦达定理求出直线斜率与纵截距的关系即可解决问题.20.如图,在四棱锥P ABCD -中,底面ABCD 是直角梯形,AD AB ⊥,//AB DC ,PA ⊥底面ABCD ,点E 为棱PC 的中点.22AD DC AP AB ====.()1证明://BE 平面PAD .()2若F 为棱PC 上一点,满足BF AC ⊥,求二面角F AD C --的余弦值.【答案】()1证明见解析;()210.【解析】【分析】()1在PD 上找中点G ,连接AG ,EG ,利用三角形中位线性质得出12EG CD =,因为底面ABCD 是直角梯形,2CD AB =,所以能得出EG 平行且等于AB ,得出四边形ABEG 为平行四边形,再利用线面平行的判定,即可证出//BE 平面PAD ;()2根据BF AC ⊥,求出向量BF的坐标,进而求出平面FAD 和平面ADC 的法向量,代入向量夹角公式,可得二面角F AD C --的余弦值.【详解】解:()1证明:在PD 上找中点G ,连接AG ,EG ,图象如下:G 和E 分别为PD 和PC 的中点,∴EG //CD ,且12EG CD =,又 底面ABCD 是直角梯形,2CD AB =∴AB //CD ,且12AB CD =,∴AB GE //且AB GE =.即四边形ABEG 为平行四边形.∴AG E //B .AG ⊂平面PAD ,BE ⊄平面PAD ,∴//BE 平面PAD.()2以A 为原点,以AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立如图所示的空间直角坐标系,可得()1,0,0B ,()2,2,0C ,()0,2,0D ,()002P ,,,()1,1,1E ,()1,2,0BC = ,()2,2,2CP =-- ,()2,2,0AC = .由F 为棱PC 上一点,设()2,2,2CF CP λλλλ==-- ()01λ≤≤,所以()12,22,2BF BC CF λλλ=+=-- ()01λ≤≤,由BF AC ⊥,得()()2122220BF AC λλ⋅=-+-= ,解得34λ=,即113,,222BF ⎛⎫=- ⎪⎝⎭ ,()1131131,0,0,,,,222222AF AB BF ⎛⎫⎛⎫=+=+-= ⎪ ⎪⎝⎭⎝⎭,设平面FAD 的法向量为(),,n a b c = ,由00n AF n AD ⎧⋅=⎨⋅=⎩ 可得113022220a b c b ⎧++=⎪⎨⎪=⎩所以030b a c =⎧⎨+=⎩,令1c =,则3a =-,则()3,0,1n =- ,取平面ADC 的法向量为()0,0,1m = ,则二面角F AD C --的平面角α满足:cos 10m n m nα⋅===⋅ ,故二面角F AD C --的余弦值为10.【点睛】本题考查线面平行的判定,空间二面角的平面角,建立空间直角坐标系,将二面角问题转化为向量夹角问题,属于难题.21.已知O 为坐标原点,()120F -,,()220F ,,点P 满足122PF PF -=,记点P 的轨迹为曲线.E (1)求曲线E 的方程;(2)过点()220F ,的直线l 与曲线E 交于A B ,两点,求+ OA OB 的取值范围.【答案】(1)()2211.3y x x -=≥(2)[)4∞+,【解析】【分析】(1)根据双曲线的定义,易判断点P 的轨迹是双曲线的右支,求出,a b 的值,即得;(2)设出直线方程与双曲线方程联立消元得到一元二次方程,推出韦达定理,依题得出参数m 的范围,将所求式等价转化为关于m 的函数式,通过整体换元即可求出其取值范围.【小问1详解】因()120F -,,()220F ,,且动点P 满足12122PF PF F F -=<,由双曲线的定义知:曲线E 是以12F F ,为焦点的双曲线的右支,且2c =,1a =,则2223b c a =-=,故曲线E 的方程为()2211.3y x x -=≥【小问2详解】当直线l 的斜率为0时,直线l 与双曲线的右支只有一个交点,故不符题意.如图,不妨设直线l 方程为:2x my =+,设()11A x y ,,()22B x y ,,联立22213x my y x =+⎧⎪⎨-=⎪⎩,得()22311290m y my -++=,由韦达定理得1221221231931m y y m y y m -⎧+=⎪⎪-⎨⎪⋅=⎪-⎩,2121222124()443131m x x m y y m m -+=++=+=---,2212121212234(2)(2)2()431m x x my my m y y m y y m +⋅=++=+++=--.由题意:()()22212221223101243190403134031m m m x x m m x x m ⎧-≠⎪-⨯-⨯>⎪⎪⎪⎨+=->⎪-⎪+⎪⋅=->⎪-⎩,解得:210.3m ≤<OA OB +=====,令2131t m =-,因210,3m ≤<故1t ≤-,而OA OB +== ,在(],1t ∞∈--为减函数,故4OA OB +≥ ,即OA OB + 的取值范围为[)4∞+,.22.如图,已知椭圆22122:1(0)x y C a b a b+=>>与等轴双曲线2C 共顶点(±,过椭圆1C 上一点P (2,-1)作两直线与椭圆1C 相交于相异的两点A ,B ,直线PA 、PB 的倾斜角互补,直线AB 与x ,y 轴正半轴相交,分别记交点为M ,N .(1)求直线AB 的斜率;(2)若直线AB 与双曲线2C 的左,右两支分别交于Q ,R ,求NQ NR 的取值范围.【答案】(1)12-(2)11(1,9+【解析】【分析】(1)先求出椭圆方程,联立直线与椭圆方程,利用韦达定理求解A ,B 坐标,直接计算直线AB 斜率即可.(2)联立直线与双曲线的方程,利用求根公式表示出Q ,R 的坐标,化简NQ NR 的表达式,整理求出NQ NR的取值范围即可得出结果.【小问1详解】由题椭圆22122:1(0)x y C a b a b+=>>,顶点(±,可得a =(2,1)P -在椭圆1C 上,即24118b +=,得22b =,所以椭圆方程为22182x y +=,设等轴双曲线2C :222x y m -=,0m >,由题意等轴双曲线2C 的顶点为(±,可得2=8m ,所以双曲线2C 的方程为:228x y -=,因为直线PA 、PB 的倾斜角互补,且A ,B 是不同的点,所以直线PA 、PB 都必须有斜率,设直线PA 方程为(2)1y k x =--,联立22(2)1182y k x x y =--⎧⎪⎨+=⎪⎩,整理得2222(14)(168)161640k x k k x k k +-+++-=,A 和P 点横坐标即为方程两个根,可得221681+4A P k k x x k ++=,因为=2P x ,所以22882=14A k k x k +-+,代入直线PA 可得2244114A k k y k--=+,即2222882441(,)1414k k k k A k k+---++,又因为直线PA 、PB 的倾斜角互补,将k 换成k -,可得2222882441(,)1414k k k k B k k --+-++,两点求斜率可得出12AB k =-所以直线AB 的斜率为12-【小问2详解】由(1)可设直线AB 的方程:12y x n =-+,又因为直线AB 与x ,y 轴正半轴相交,则0n >,联立方程组2212182y x n x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,整理得2224480x nx n -+-=,22Δ168(48)0n n =-->,解得02n <<.联立直线AB 和双曲线方程221(02)28y x n n x y ⎧=-+<<⎪⎨⎪-=⎩,消去y 得22344320x nx n +--=,利用求根公式可得23n x -±=,所以1Q R x NQ NR x ====,又因为204n <<,所以2632n >,则11>,即29<,所以1121019NQNR+<<,所以NQNR 的取值范围为11210(1,9+【点睛】方法点睛:(1)解答直线与圆锥曲线题目时,时常把两个曲线的方程联立,消去一个未知数建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率不存在的特殊情况.。
2022-2023学年北京市中国人民大学附属中学高二上学期期末复习(一)数学试题(解析版)
2022-2023学年北京市中国人民大学附属中学高二上学期期末复习(一)数学试题一、单选题 1.已知复数2ii 1iz =++,则z =( ) A .3 BC .2D .1【答案】B【分析】首先根据复数的除法运算性质化简复数z ,再结合复数的模的概念计算即可. 【详解】()()()2i 1i 2ii i 12i 1i 1i 1i z -=+=+=+++-,则z =故选:B.2.向量(),0,1a x =,()4,,2b y =,若//a b ,则x y +的值为( ) A .0 B .1C .2D .3【答案】C【分析】根据向量平行,得到方程组,求出,x y 的值,得到答案. 【详解】由题意得:a b λ=,即4012x y λλλ=⎧⎪=⎨⎪=⎩,解得:2012x y λ⎧⎪=⎪=⎨⎪⎪=⎩, 故2x y +=. 故选:C3.若直线l 的一个方向向量为()2,2,4v =---,平面α的一个法向量为()1,1,2n =,则直线l 与平面α的位置关系是( ) A .垂直 B .平行C .相交但不垂直D .平行或线在面内【答案】A【分析】根据2n υ=-得到υ与n 共线,即可得到直线l 与平面α垂直.【详解】因为2n υ=-,所以υ与n 共线,直线l 与平面α垂直. 故选:A.4.空间,,,A B C D 四点共面,但任意三点不共线,若P 为该平面外一点且5133=--PA PB xPC PD ,则实数x 的值为( ) A .43-B .13-C .13D .43【答案】C【分析】先设AB mAC nAD =+,然后把向量AB ,AC ,AD 分别用向量PA ,PB ,PC ,PD 表示,再把向量PA 用向量PB ,PC ,PD 表示出,对照已知的系数相等即可求解. 【详解】解:因为空间A ,B ,C ,D 四点共面,但任意三点不共线, 则可设AB mAC nAD =+, 又点P 在平面外,则()()PB PA m PC PA n PD PA -=-+-,即(1)m n PA PB mPC nPD ++=-++, 则1111m nPA PB PC PD m n m n m n -=+++-+-+-,又5133=--PA PB xPC PD ,所以15131113m n mx m n n m n -⎧=⎪+-⎪⎪=-⎨+-⎪⎪=-⎪+-⎩,解得15m n ==,13x =, 故选:C .5.()2,2M 是抛物线()220y px p =>上一点,F 是抛物线的焦点,则MF =( )A .52B .3C .72D .4【答案】A【分析】将点()2,2M 代入22y px =,可得1p =,即可求出准线方程,根据抛物线的定义,抛物线上的点到焦点的距离等于到准线的距离,即可求得MF【详解】解:因为()2,2M 是抛物线()220y px p =>上一点,所以22221p p =⋅⇒=,则抛物线的准线方程为12x =-,由抛物线的定义可知,15222MF =+=, 故选:A.6.已知直线l :()()2110m x m y m ++++=经过定点P ,直线l '经过点P ,且l '的方向向量()3,2a =,则直线l '的方程为( ) A .2350x y -+= B .2350x y --= C .3250x y -+= D .3250x y --=【答案】A【分析】直线l 方程变为()210x y m x y ++++=,可得定点P ()1,1-.根据l '的方向向量()3,2a =,可得斜率为23,代入点斜式方程,化简为一般式即可.【详解】()()2110m x m y m ++++=可变形为()210x y m x y ++++=,解0210x y x y +=⎧⎨++=⎩得11x y =-⎧⎨=⎩,即P 点坐标为()1,1-.因为()23,231,3a ⎛⎫== ⎪⎝⎭,所以直线l '的斜率为23,又l '过点P ()1,1-,代入点斜式方程可得()2113y x -=+,整理可得2350x y -+=. 故选:A.7.在正方体1111ABCD A B C D -中,E 为1CC 中点,112,,,BM MC B N B B x y λ==∃∈R ,使得1A N xAM yAE =+,则λ=( ) A .12B .23C .1D .43【答案】C【分析】正方体中存在三条互相垂直的直线,故我们可以建立空间直角坐标系进行计算.【详解】如图建系,设棱长为6,则()()()()()16,0,0,0,6,3,2,6,0,6,0,6,6,6,66A E M A N λ-()()()10,6,6,4,6,0,6,6,3A N AM AE λ=-=-=-1046,66663x y A N xAM y AE x y y λ=--⎧⎪=+∴=+⎨⎪-=⎩,解之:1λ=故选:C8.若双曲线()222:104y x C a a -=>的一条渐近线被圆()2224x y -+=所截得的弦长为165,则双曲线C的离心率为( ) A 13B 17C .53D 39 【答案】C【分析】首先确定双曲线渐近线方程,结合圆的方程可确定两渐近线截圆所得弦长相等;利用垂径定理可构造方程求得a 的值,进而根据离心率241e a +可求得结果. 【详解】由双曲线方程得:渐近线方程为2ay x =±; 由圆的方程知:圆心为()2,0,半径2r =;2a y x =与2ay x =-图象关于x 轴对称,圆的图象关于x 轴对称,∴两条渐近线截圆所得弦长相等,不妨取2ay x =,即20ax y -=,则圆心到直线距离24d a =+∴弦长为222241622445a r d a --=+,解得:32a =,∴双曲线离心率241651193e a =++. 故选:C.9.已知直线1:4360l x y -+=和直线2:1l x =-,则抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是( ) A .3716B .115C .2D .74【答案】C【分析】由=1x -是抛物线24y x =的准线,推导出点P 到直线1:4360l x y -+=的距离和到直线2:1l x =-的距离之和的最小值即为点P 到直线1:4360l x y -+=的距离和点P 到焦点的距离之和,利用几何法求最值.【详解】1x =-是抛物线24y x =的准线,P ∴到=1x -的距离等于PF .过P 作1PQ l ⊥于 Q ,则P 到直线1l 和直线2l 的距离之和为PF PQ + 抛物线24y x =的焦点(1,0)F∴过F 作11Q F l ⊥于1Q ,和抛物线的交点就是1P ,∴111PF PQ PF PQ +≤+(当且仅当F 、P 、Q 三点共线时等号成立)∴点P 到直线1:4360l x y -+=的距离和到直线2:1l x =-的距离之和的最小值就是(1,0)F 到直线4360x y -+=距离,∴最小值1FQ 4062169-+==+.故选:C .10.双曲线2221(0)16x y a a -=>的一条渐近线方程为124,,3y x F F =分别为该双曲线的左右焦点,M 为双曲线上的一点,则2116MF MF +的最小值为( ) A .2 B .4 C .8 D .14【答案】B【分析】由双曲线定义及渐近线方程得3,5a c ==,126MF MF -=,结合均值不等式、对勾函数单调性及12MF MF 、的取值范围求最小值即可. 【详解】由一条渐近线方程为43y x =得4433a a =⇒=,由双曲线定义可知,126MF MF -=,5c =.要使2116MF MF +的值最小,则1MF 应尽可能大,2MF 应尽可能小,故点M 应为双曲线右支上一点,故126MF MF -=,即216MF MF =-.故21111616662MF MF MF MF +=+-≥=,当且仅当1116MF MF =即14MF =时等号成立,此时21620MF MF =-=-<,故取不到等号. 对勾函数166y x x=+-在()0,4单调递减,在()4,+∞单调递增, ∵22MF c a ≥-=,∴1268MF MF =+≥,故当212,8MF MF ==时,2116MF MF +取得最小值为4. 故选:B.二、填空题 11.已知复数5i12iz =+,则z 的虚部为________. 【答案】1【分析】由复数除法得出2i z =+,即可得虚部 【详解】()()()5i 12i 5i 105i 2i 12i 12i 12i 5z -+====+++-,故虚部为1. 故答案为:112.若空间中有三点()()()1,0,1,0,1,1,1,2,0A B C - ,则点()1,2,3P 到平面ABC 的距离为______.【分析】求出平面ABC 的法向量,利用空间距离的向量公式去求P 到平面ABC 的距离可得答案.【详解】由()()()1,0,1,0,1,1,1,2,0A B C -可得()()1,1,21,1,1BA BC =--=-,, 设平面ABC 的一个法向量为(),,n x y z =, 则0n BA n BC ⎧⋅=⎪⎨⋅=⎪⎩ ,即200x y z x y z --=⎧⎨+-=⎩ , 令3x =,则()3,1,2n =- ,又()0,2,4PA =-- ,则点()1,2,3P 到平面ABC 的距离为289PA nn ⋅-==+,故答案为. 13.在下列命题中:①若向量,a b 共线,则向量,a b 所在的直线平行;②若向量,a b 所在的直线为异面直线,则向量,a b 一定不共面; ③若三个向量,,a b c 两两共面,则向量,,a b c 不一定共面;④已知空间的三个向量,,a b c ,则对于空间的任意一个向量p 总存在实数,,x y z 使得p xa yb zc =++. 其中正确命题的是______. 【答案】③【分析】根据共线向量和共面向量的相关定义判断即可.【详解】①若向量,a b 共线,则向量,a b 所在的直线可以重合,并不一定平行,错误;②若向量,a b 所在的直线为异面直线,由向量位置的任意性,空间中两向量可平移至一个平面内,故,a b 共面,错误;③若,,a b c 两两共面,可能为空间能作为基底的三个向量,则,,a b c 不一定共面,正确; ④只有当空间的三个向量,,a b c 不共面时,对于空间的任意一个向量p 总存在实数,,x y z 使得p xa yb zc =++,若空间中的三个向量共面,此说法不成立,错误;综上③正确, 故选:③14.已知P 、Q 分别在直线1:10l x y -+=与直线2:10l x y --=上,且1PQ l ⊥,点()4,4A -,()4,0B ,则AP PQ QB ++的最小值为___________.【答案】582+##258+【分析】利用线段的等量关系进行转化,找到AP QB +最小值即为所求.【详解】由直线1l 与2l 间的距离为2得2PQ =,过()4,0B 作直线l 垂直于1:10l x y -+=,如图,则直线l 的方程为:4y x =-+,将()4,0B 沿着直线l 2B '点,有()3,1B ', 连接AB '交直线1l 于点P ,过P 作2⊥PQ l 于Q ,连接BQ ,有//,||||BB PQ BB PQ ''=,即四边形BB PQ '为平行四边形,则||||PB BQ '=,即有||AP QB AP PB AB ''+=+=,显然AB '是直线1l 上的点与点,A B '距离和的最小值,因此AP QB +的最小值,即AP PB '+的最小值AB ',而()()22434158AB '=--+-所以AP PQ QB ++的最小值为AB PQ '+582582【点睛】思路点睛:(1)合理的利用假设可以探究取值的范围,严谨的思维是验证的必要过程. (2)转化与划归思想是解决距离最值问题中一种有效的途径. (3)数形结合使得问题更加具体和形象,从而使得方法清晰与明朗.15.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德并称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两定点Q 、P 的距离之比MQMPλ=()0,1λλ>≠,那么点M 的轨迹就是阿波罗尼斯圆.已知动点M 的轨迹是阿波罗尼斯圆,其方程为221x y +=,定点Q 为x 轴上一点,1,02P ⎛⎫- ⎪⎝⎭且2λ=,若点()1,1B ,则2MP MB +的最小值为______.【答案】10【分析】根据点M 的轨迹方程可得()2,0Q -,结合条件可得2MP MB MQ MB QB +=+≥,结合图象,即可求得.【详解】设(),0Q a ,(),M x y ,所以()22=-+MQ x a y ,又1,02P ⎛⎫- ⎪⎝⎭,所以2212MP x y ⎛⎫=++ ⎪⎝⎭.因为MQ MPλ=且2λ=,所以()2222212-+=⎛⎫++ ⎪⎝⎭x a y x y, 整理可得22242133+-++=a a x y x , 又动点M 的轨迹是221x y +=,所以24203113aa +⎧=⎪⎪⎨-⎪=⎪⎩,解得2a =-,所以()2,0Q -,又2MQ MP =, 所以2MP MB MQ MB QB +=+≥, 当且仅当,,Q M B 三点共线时,等号成立, 因为101123QB k -==+,所以直线QB 方程为:()123y x =+即320x y -+=,圆心到直线距离1015d r =<=, 即直线QB 与圆相交.(如图中的12,M M 点均满足)又因为()1,1B ,所以2MP MB +的最小值为()()22121010++-=BQ10三、解答题16.若两条相交直线1l ,2l 的倾斜角分别为1θ,2θ,斜率均存在,分别为1k ,2k ,且120k k ⋅≠,若1l ,2l 满足______(从①12θθπ+=;②12l l ⊥两个条件中,任选一个补充在上面问题中并作答),求: (1)1k ,2k 满足的关系式;(2)若1l ,2l 交点坐标为()1,1P ,同时1l 过(),2A a ,2l 过()2,B b ,在(1)的条件下,求出a ,b 满足的关系;(3)在(2)的条件下,若直线1l 上的一点向右平移4个单位长度,再向上平移2个单位长度,仍在该直线上,求实数a ,b 的值. 【答案】(1)答案见解析 (2)答案见解析 (3)答案见解析【分析】(1)依题意11tan k θ=,22tan k θ=,若选①利用诱导公式计算可得;若选②根据两直线垂直的充要条件得解;(2)首先表示出直线1l 、2l ,再将点代入方程,再结合(1)的结论计算可得;(3)按照函数的平移变换规则将直线1l 进行平移变换,即可求出1k ,从而求出直线1l 的方程,即可求出a ,再根据(1)求出直线2l 的方程,即可求出b 的值;【详解】(1)解:依题意11tan k θ=,22tan k θ=,且1θ,2θ均不为0或2π, 若选①12θθπ+=,则12θπθ=-,则()122tan tan tan θπθθ=-=-,即120k k +=; 若选②12l l ⊥,则121k k(2)解:依题意直线1l :()111y k x -=-,直线2l :()211y k x -=-,又1l 过(),2A a ,所以()1121k a -=-且1a ≠,即()111k a =-且1a ≠,又2l 过()2,B b ,所以()2211b k -=-且1b ≠,即21b k -=且1b ≠;若选①,则120k k +=,所以121b k k -==-,即()()111b a =--且1a ≠、1b ≠;若选②,则121k k ,所以()()21111b a k k -⨯=-⨯,即2b a +=且1a ≠、1b ≠;(3)解:直线1l :()111y k x -=-,将直线1l 向右平移4个单位长度,再向上平移2个单位长度得到()14121y k x -⎡⎤-=-+⎣⎦,即11215x y k k --=+,所以1152k k -+=-,解得112k =,此时直线1l :()1112y x -=-,所以()1112a =-,解得3a =;若选①,则212k =-,此时直线2l :()1112y x -=--,所以121b -=-,解得12b =;若选②,则22k =-,此时直线2l :()121y x -=--,所以12b -=-,解得1b ;17.已知1F ,2F 是椭圆C :22221(0)x y a b a b+=>>的两个焦点,P 为C 上一点.(1)若12F PF △为等腰直角三角形,求椭圆C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于9,求b 的值和a 的取值范围.【答案】1(2)3b =,)+∞【分析】(1)根据1290PF F ︒∠=或2190PF F ︒∠=或1290F PF ︒∠=进行分类讨论,通过求22ce a=来求得椭圆的离心率.(2)根据已知条件列方程求得b ,判断出22c b ≥,结合222a b c =+求得a 的取值范围. 【详解】(1)12F PF △为等腰直角三角形可知有三种情况.当1290PF F ︒∠=时,1||2PF c =,2||PF =,于是12||||1)2PF PF c a +==,得212c e a ===;当2190PF F ︒∠=时,同理求得1e =;当1290F PF ︒∠=时,则P 在椭圆短轴的端点,12||||PF PF =,12||||2PF PF a +==,解得22c e a ===所以椭圆C 1. (2)设(,)P x y ,由12F PF △的面积等于9,得12||92c y ⋅⋅=,①由12PF PF ⊥,得222x y c +=,② 再由P 在椭圆上,得22221x y a b+=,③由②③及222c b a +=,得422b y c=,又由①知242229b y c c ==,故3b =,由②③得22222()a x c b c=-,22c b ∴≥,从而2222218a b c b =+≥=,故32a ≥,3b ∴=,32a ≥时存在满足条件的点P , 故3b =,a 的取值范围为[32,).+∞18.已知直三棱柱111ABC A B C 中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的动点,BF AB ⊥.(1)证明:BF ⊥平面11EA B ;(2)当1B D 为何值时,平面11BB C C 与平面DFE 所成的夹角最小? 【答案】(1)证明见解析 (2)112B D =【分析】(1)先证明AB ⊥平面11BCC B ,由此建立空间直角坐标系,利用向量方法证明1BF EA ⊥,1BF EB ⊥,由线面垂直判定定理证明BF ⊥平面11EA B ;(2)求平面11BB C C 与平面DFE 的法向量,结合向量夹角公式求两平面的夹角余弦,再求其最小值可得1B D 的取值. 【详解】(1)因为三棱柱111ABC A B C 是直三棱柱, 所以1BB ⊥底面ABC ,AB ⊂底面ABC ,所以1BB AB ⊥.因为BF AB ⊥,1BB BF B ⋂=,1BB ⊂平面11BCC B ,BF ⊂平面11BCC B ,所以AB ⊥平面11BCC B . 所以BA ,BC ,1BB 两两垂直.以B 为坐标原点,分别以BA ,BC ,1BB 所在直线为x ,y ,z 轴建立空间直角坐标系,如图,所以()0,0,0B ,()2,0,0A ,()12,0,2A ,()10,0,2B ,()1,1,0E ,()0,2,1F , 因为()0,2,1BF =,()11,1,2EA =-,()11,1,2EB =--, 所以10BF EA ⋅=,10BF EB ⋅=, 所以1BF EA ⊥,1BF EB ⊥,因为11EA EB E ⋂=,1EA ,1EB ⊂平面11EA B , 所以BF ⊥平面11EA B .(2)由题设()(),0,202D a a ≤≤. 设平面DFE 的法向量为(),,m x y z =, 因为()1,1,1EF =-,()1,1,2DE a =--, 所以00m EF m DE ⎧⋅=⎪⎨⋅=⎪⎩,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-. 因为平面11BB C C 的法向量为()2,0,0BA =, 设平面11BB C C 与平面DEF 所成的夹角为θ,则()()2222633cos 22142912127222m BA m BAa a a a a θ⋅====⋅-+⨯+++-⎛⎫-+⎪⎝⎭, 当12a =时,22214a a -+取最小值为272,此时cos θ取最大值为363272=,此时11112B D A B =<,符合题意.故当112B D =时,面11BB C C 与面DFE 所成的夹角最小. 19.如图,已知动圆P 过点()11,0F -,且与圆()222:18F x y -+=内切于点N ,记动圆圆心P 的轨迹为E .(1)求E 的方程;(2)过点1F 的直线l 交E 于A 、B 两点,是否存在实数t ,使得11AB t AF BF =⋅恒成立?若存在,求出t 的值;若不存在,说明理由. 【答案】(1)2212x y +=(2)存在,且22t =【分析】(1)分析可知动点P 的轨迹是1F 、2F 为焦点,以22a 、b 的值,结合椭圆E 的焦点位置可得出椭圆E 的方程;(2)对直线l 的斜率是否存在进行分类讨论,设出直线l 的方程,与椭圆E 的方程联立,利用弦长公式以及两点间的距离求出t 的值,即可得出结论.【详解】(1)解:显然,圆2F 的半径为22P 的半径为r , 由题意可得122PF r PF r ⎧=⎪⎨=⎪⎩,所以,1212222PF PF F F +=>=,则动点P 的轨迹是1F 、2F 为焦点,以2设椭圆E 的方程为()222210x y a b a b+=>>,122F F c =,所以a =1c =,1b ==,故E 的方程为2212xy +=.(2)解:当直线l 的斜率存在时,设直线l 的方程为()1y k x =+, 设点()11,A x y 、()22,B x y ,联立方程组()22121x y y k x ⎧+=⎪⎨⎪=+⎩得()2222124220k x k x k +++-=,所以2122412k x x k +=-+,21222212k x x k -=+.12AB x -==)22112k k +=+.1AF1BF =所以()222221212112228424112122212k k x x x x k k k AF BF k --+++++++==+⋅==.所以11?AB BF =;当直线l 的斜率不存在时,直线l 的方程为=1x -, 联立方程组22121x y x ⎧+=⎪⎨⎪=-⎩,得2A ⎛-⎝⎭、1,2B ⎛- ⎝⎭.此时AB111222AF BF ⋅==,所以11AB BF=⋅. 综上,存在实数t =11AB t AF BF =⋅恒成立. 【点睛】方法点睛:求定值问题常见的方法有两种: (1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.。
高中数学-高二期末复习卷(1)
高二期末复习卷一、单选题1.已知()f x '是()f x 的导函数,()f x '的图象如图所示,则()f x 的图象只可能是()A.B.C.D.2.“m>2”是“方程22212x ym m +=+表示焦点在x 轴上的椭圆”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知等差数列{}n a 的前n 项和为n S ,且2121S =,则616a a +的值为()A .1B .2C .3D .44.若直线l :12y x m =-+与曲线C :21164x x y +=有两个公共点,则实数m 的取值范围为()A.()(0,- B.(0,C .()()2,00,2-⋃D .()0,25.已知()f x 在0x x =处可导,则()()02200lim x x f x f x x x →-⎡⎤⎡⎤⎣⎦⎣⎦-等于()A .()0f x 'B .()0f x C .()20f x '⎡⎤⎣⎦D .()()002f x f x '6.有关数据显示,2015年我国快递行业产生的包装垃圾约为400万吨.有专家预测,如果不采取措施,快递行业产生的包装垃圾年平均增长率将达到50%.由此可知,如果不采取有效措施,则从()年(填年份)开始,快递行业产生的包装垃圾超过4000万吨.(参考数据:lg 20.3010,lg 30.4771≈≈)A .2019B .2020C .2021D .20227.数列{}n a 满足154a =,211n n n a a a +=-+,*n ∈N ,则122022111a a a +++ 的整数部分是()A .1B .2C .3D .48.已知抛物线22(0)y px p =>)的焦点为F ,过F 且倾斜角为π4的直线l 与抛物线相交于A ,B 两点,12AB =,过A ,B 两点分别作抛物线的切线,交于点Q .则下列四个命题中正确的个数是()个.①QA QB ⊥;②若M (1,1),P 是抛物线上一动点,则||||PM PF +的最小值为52;③AOB (O为坐标原点)的面积为;④(,0)2PM -,则tan AMB ∠=A .1B .2C .3D .4二、多选题9.下列说法正确的是()A .已知函数3()2f x x x =+,则该函数在区间[]1,3上的平均变化率为30B .已知11(,)A x y ,22(,)B x y 在函数()y f x =图象上,若函数()f x 从1x 到2x则曲线()y f x =的割线AB 的倾斜角为3πC .已知直线运动的汽车速度V 与时间t 的关系是221V t =-,则2t =时瞬时加速度为7D .已知函数()f x x =,则(9.05) 3.008f ≈10.在底面边长为2、高为4的正四棱柱1111ABCD A B C D -中,O 为棱1A A 上一点,且111,4A O A A P Q =、分别为线段1111B D A D 、上的动点,M 为底面ABCD 的中心,N 为线段AQ 的中点,则下列命题正确的是()A .CN 与QM 共面B .三棱锥A DMN -的体积为43C .PQ QO +的最小值为322D .当11113D Q D A = 时,过,,A Q M 三点的平面截正四棱柱所得截面的周长为()82103+11.数列{}n a 满足1a a =,2131n n n a a a +=--,则下列说法正确的是()A .若1a ≠且2a ≠,数列{}n a 单调递减B .若存在无数个自然数n ,使得1n n a a +=,则1a =C .当2a >或1a <时,{}n a 的最小值不存在D .当3a =时,121111,12222n a a a ⎛⎤++⋅⋅⋅⋅⋅⋅+∈ ⎥---⎝⎦12.设F 是抛物线2:4C y x =的焦点,直线:1l x ty =+与抛物线C 交于,A B 两点,O 为坐标原点,则下列结论正确的是()A .||4AB ≥B .OA OB ⋅可能大于0C .P 为抛物线上异于A 、B 的点,直线l 与准线交于点T ,当0,t A >为第一象限的点时,若APB α∠=,PF 平分APB ∠,则π2APT +∠=αD .若在抛物线上存在唯一一点Q (异于,)A B ,使得QA QB ⊥则3t =±三、填空题13.若()f x 为可导函数,且()()0121lim 14x f x f x→--=-,则过曲线()y f x =上点()()1,1f 处的切线斜率为______.14.对于数列{}n a ,若1,n n a a +是关于x 的方程2103n n x c x -+=的两个根,且12a =,则数列{}n c 所有项的和为________.15.法国数学家加斯帕•蒙日被称为“画法几何创始人”、“微分几何之父”.他发现与椭圆相切的两条互相垂直的切线的交点的轨迹是以该椭圆中心为圆心的圆,这个圆称为该椭圆的蒙日圆.若椭圆()2222:10x y a b a bΓ+=>>的蒙日圆为2223:2C x y a +=,过C 上的动点M 作Γ的两条切线,分别与C 交于P ,Q 两点,直线PQ 交Γ于A ,B 两点,则下列说法,正确的有______.①椭圆Γ的离心率为22②MPQ 面积的最大值为232a③M 到Γ的左焦点的距离的最小值为()22a-④若动点D 在Γ上,将直线DA ,DB 的斜率分别记为1k ,2k ,则1212k k =-16.已知数列{}n a 的通项公式为4152nn n a +⎛⎫=-⋅ ⎪⎝⎭,设数列{}n a 的最大项和最小项分别为,M N ,则M N +=______.四、解答题17.已知椭圆()2222:10x y C a b a b+=>>的四个顶点构成的四边形的面积为12.(1)求椭圆C 的标准方程;(2)过椭圆C 右焦点且倾斜角为135︒的直线l 交椭圆C 于M 、N 两点,求MN 的值.18.已知双曲线2222:1(0,0)x y C a b a b -=>>,四点12346,,4,,4,333M M M M ⎛⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中恰有三点在C 上.(1)求C 的方程;(2)过点(3,0)的直线l 交C 于P ,Q 两点,过点P 作直线1x =的垂线,垂足为A .证明:直线AQ 过定点.19.如图1,在等腰直角三角形ABC 中,4AC BC ==,D 是AC 的中点,E 是AB 上一点,且DE AB ⊥.将ADE V 沿着DE 折起,形成四棱锥-P BCDE ,其中点A 对应的点为点P ,如图2.(1)在图2中,在线段PB 上是否存在一点F ,使得CF ∥平面PDE ?若存在,请求出PFPB的值,并说明理由;若不存在,请说明理由;(2)在图2中,平面PBE 与平面PCD 所成的锐二面角的大小为3π,求四棱锥-P BCDE 的体积.20.在①11a =,525S =;②35a =,917a =;③416S =,864S =这三个条件中任选一个补充在下面的横线上并解答.已知等差数列{}n a 满足________.(1)求数列{}n a 的通项公式;(2)求数列{3}n n a ⋅的前n 项和.n T (如果选择多个条件分别解答,按第一个解答计分)21.在一个有穷数列的每相邻两项之间插入这两项的和,形成新的数列,我们把这样的操作称为该数列的一次“Z 拓展”.如数列1,2第1次“Z 拓展”后得到数列1,3,2,第2次“Z 拓展”后得到数列1,4,3,5,2.设数列a 、b 、c 经过第n 次“Z 拓展”后所得数列的项数记为n P ,所有项的和记为n S .(1)求1P 、2P ;(2)若2023n P ≥,求n 的最小值;(3)是否存在实数a 、b 、c ,使得数列{}n S 为等比数列?若存在,求a 、b 、c 满足的条件;若不存在,说明理由.21.记数列{}n a 的前n 项和为111,2,34n n n n S a S S a ++=+=-.(1)求{}n a 的通项公式;(2)设2log n n n b a a =,记{}n b 的前n 项和为n T .若2(1)2n t n T -+≤对于2n ≥且*N n ∈恒成立,求实数t 的取值范围.22.已知抛物线的顶点为原点,焦点F 在x轴的正半轴,F 到直线20x +=的距离为54.点()2,2N ,不过点N 的直线l 与抛物线交于两点,A B ,且2NA NB k k +=-.(1)求抛物线方程及抛物线的准线方程(2)求证:直线AB 过定点,并求该定点坐标.高二期末复习卷(答案)一、单选题1.已知()f x '是()f x 的导函数,()f x '的图象如图所示,则()f x 的图象只可能是()2.“m>2”是“方程22212x y m m +=+表示焦点在x 轴上的椭圆”的()A .充分不必要条件B .必要不充分条件3.已知等差数列{}n a 的前n 项和为n S ,且2121S =,则616a a +的值为()A .1B .2C .3D .4【答案】B【分析】根据等差数列前n 项和公式以及等差数列的性质,可得2121S =与616a a +的关系式,即可求得结果.4.若直线l :12y x m =-+与曲线C :21164x x y +=有两个公共点,则实数m 的取值范围为()A .()(0,-B .(0,2,00,2-⋃0,2如图可知,当直线l 介于直线12y x =-和与曲线C 有两个公共点.设1l 的方程为012y x m =-+,()00m >,则有联立220116412x yy x m⎧+=⎪⎪⎨⎪=-+⎪⎩,消去x 并整理得2y 由()2200Δ4840m m =--=,解得022m =故m 的取值范围为()0,22.故选:B .5.已知()f x 在0x x =处可导,则()()02200lim x x f x f x x x →-⎡⎤⎡⎤⎣⎦⎣⎦-等于()A .()0f x 'B .()0f x C .()20f x '⎡⎤⎣⎦D .()()002f x f x '业产生的包装垃圾年平均增长率将达到50%.由此可知,如果不采取有效措施,则从()年(填年份)开始,快递行业产生的包装垃圾超过4000万吨.(参考数据:lg 20.3010,lg 30.4771≈≈)7.数列{}n a 满足154a =,211n n n a a a +=-+,*n ∈N ,则122022111a a a +++ 的整数部分是()8.已知抛物线22(0)y px p =>)的焦点为F ,过F 且倾斜角为π4的直线l 与抛物线相交于A ,B 两点,12AB =,过A ,B 两点分别作抛物线的切线,交于点Q .则下列四个命题中正确的个数是()个.①QA QB ⊥;②若M (1,1),P 是抛物线上一动点,则||||PM PF +的最小值为52;③AOB (O 为坐标原点)的面积为;④(,0)2PM -,则tan AMB ∠=二、多选题9.下列说法正确的是()A .已知函数3()2f x x x =+,则该函数在区间[]1,3上的平均变化率为30B .已知11(,)A x y ,22(,)B x y 在函数()y f x =图象上,若函数()f x 从1x 到2x 则曲线()y f x =的割线AB 的倾斜角为3πC V 与时间t 的关系是221V t =-,则2t =时瞬时加速度为7D .已知函数()f x =,则(9.05) 3.008f ≈【答案】BD10.在底面边长为2、高为4的正四棱柱1111ABCD A B C D -中,O 为棱1A A 上一点,且11,4A O A A P Q =、分别为线段1111B D A D 、上的动点,M 为底面ABCD 的中心,N 为线段AQ 的中点,则下列命题正确的是()A .CN 与QM 共面B .三棱锥A DMN -的体积为43C .PQ QO +的最小值为2D .当11113D Q D A = 时,过,,A Q M 三点的平面截正四棱柱所得截面的周长为83对于C ,如图2,展开平面点P ,交11A D 与点Q ,则此时对于D ,如图3,取11113D H D C =uuuu r uuuu r共面,即过,,A Q M 三点的正四棱柱的截面为梯形,且12233QH AC ==,所以平面截正四棱柱所得截面的周长为故选:ACD.11.数列{}n a 满足1a a =,1n n n +=--,则下列说法正确的是()A .若1a ≠且2a ≠,数列{}n a 单调递减B .若存在无数个自然数n ,使得1n n a a +=,则1a =C .当2a >或1a <时,{}n a 的最小值不存在D .当3a =时,121111,12222n a a a ⎛⎤++⋅⋅⋅⋅⋅⋅+∈ ⎥---⎝⎦【答案】ACD【分析】A 选项,根据()2110n n n a a a +=--<-求出1n a ≠,再由21311n n n a a a +=--≠求出2n a ≠,从而得到1a ≠且2a ≠,数列{}n a 单调递减,A 正确;B 选项,可举出反例;与抛物线C 交于两点,O 为坐标原点,则下列结论正确的是()A .||4AB ≥B .OA OB ⋅可能大于0C .P 为抛物线上异于A 、B 的点,直线l 与准线交于点T ,当0,t A >为第一象限的点时,若APB α∠=,PF 平分APB ∠,则π2APT +∠=α对于D 选项,因QA QB ⊥,则Q 为以因()()1122,,A x y B x y ,,1222y y t +=,212212x xt +=+,2AB 则以AB 为直径的圆的方程为(22x t -将其与2:4C y x =联立,消去x 化简得:注意到()4228166448y t y ty +---4y =()()2244412yty yty =--++,由题可得,联立方程有2440y ty --=,其判别式恒大于0,则24120y ty ++=的判别式216t -故选:ACD【点睛】关键点点睛:本题为直线与抛物线综合题为常用手段;对于C 选项,在抛物线中有很多的等量关系与成比例的关系分解因式处理.三、填空题13.若()f x 为可导函数,且()()121lim14x f x f x→--=-,则过曲线()y f x =上点()()1,1f 处的切线斜率为14.对于数列n a ,若1,n n a a +是关于x 的方程203n n x c x -+=的两个根,且12a =,则数列{}n c 所有项的和为________.【答案】92##4.5种情况进行分类讨论,利用分组和法来求得n T ,进而可利用极限求得“数列所有项的和”.15.法国数学家加斯帕•蒙日被称为“画法几何创始人”、“微分几何之父”.他发现与椭圆相切的两条互相垂直的切线的交点的轨迹是以该椭圆中心为圆心的圆,这个圆称为该椭圆的蒙日圆.若椭圆()2222:10x y a b a bΓ+=>>的蒙日圆为2223:2C x y a +=,过C 上的动点M 作Γ的两条切线,分别与C 交于P ,Q 两点,直线PQ 交Γ于A ,B 两点,则下列说法,正确的有______.①椭圆Γ②MPQ 面积的最大值为232a③M到Γ的左焦点的距离的最小值为(2a④若动点D 在Γ上,将直线DA ,DB 的斜率分别记为1k ,2k ,则1212k k =-16.已知数列{}n a 的通项公式为52n n a +⎛⎫=-⋅ ⎪⎝⎭,设数列{}n a 的最大项和最小项分别为,M N ,则四、解答题17.已知椭圆()2222:10x y C a b a b+=>>的四个顶点构成的四边形的面积为12.18.已知双曲线2222:1(0,0)x yC a ba b-=>>,四点12346,,4,,3M M M M⎛⎛⎛-⎝⎭⎝⎭⎝⎭中恰有三点在C上.(1)求C的方程;将ADEV沿着DE折起,形成四棱锥-P BCDE,其中点A对应的点为点P,如图2.(1)在图2中,在线段PB 上是否存在一点F ,使得CF ∥平面PDE ?若存在,请求出PFPB的值,并说明理由;若不存在,请说明理由;(2)在图2中,平面PBE 与平面PCD 所成的锐二面角的大小为3π,求四棱锥-P BCDE 的体积.3PB 理由如下:过点C 作CH ED ⊥,垂足为H ,在PE 上取一点M ,使得13PM PE =,连接因为13PM PE =,13PF PB =,所以FM 建立空间直角坐标系,设PEB θ∠=,则()2,0,0D -,()22,2,0C -,(P 则()2,2,0DC =- ,(2,2cos DP = 设平面PCD 的法向量为(),,m x y z =,则220,22cos 2sin m DC x y m DP x y θθ⎧⋅=-+=⎪⎨⋅=+⋅+⎪⎩取sin x θ=,则sin y θ=,cos z θ=-所以()sin ,sin ,cos 1m θθθ=--,,948153线上并解答.已知等差数列{}n a满足________.(1)求数列{}n a的通项公式;(2)求数列{3}na⋅的前n项和.n Tn一次“Z拓展”.如数列1,2第1次“Z拓展”后得到数列1,3,2,第2次“Z拓展”后得到数列1,4,3,5,2.设数列a、b、c经过第n次“Z拓展”后所得数列的项数记为n P,所有项的和记为n S.(1)求1P 、2P ;(2)若2023n P ≥,求n 的最小值;(3)是否存在实数a 、b 、c ,使得数列{}n S 为等比数列?若存在,求a 、b 、c 满足的条件;若不存在,说明n 项和为111n n n n ++(1)求{}n a 的通项公式;(2)设2log n n n b a a =,记{}n b 的前n 项和为n T .若2(1)2n t n T -+≤对于2n ≥且*N n ∈恒成立,求实数t 的取值范围.【答案】(1)2nn a =(2)8t ≤【分析】(1)利用n a 与n S 的关系证得数列{}n a 是等比数列,从而求得2n n a =;22.已知抛物线的顶点为原点,焦点F 在x 轴的正半轴,F 到直线20x +=的距离为4.点2,2N ,不过点N 的直线l 与抛物线交于两点,A B ,且2NA NB k k +=-.(1)求抛物线方程及抛物线的准线方程。
高二上学期数学期末复习练习11
高二上学期数学期末复习练习十一1.数列0,-1,0,1,0,-1,0,1,…的一个通项公式是( )A.21)1(+-n B.cos 2πnC.cos2)1(π+n D.cos 2)2(π+n3. 设a R ∈,则1a >是11a< 的( ) A .充分但不必要条件 B .必要但不充分条件 C .充要条件D .既不充分也不必要条件4. 已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是( )A .1203622=+y x (x ≠0)B .1362022=+y x (x ≠0)C .120622=+y x (x ≠0)D .162022=+y x (x ≠0)5.空间直角坐标系中,O 为坐标原点,已知两点A (3,1,0),B (-1,3,0),若点C 满足OC =αOA +βOB ,其中α,β∈R ,α+β=1,则点C 的轨迹为( )A .平面B .直线C .圆D .线段 6.在ABC ∆中,8,60,75a B C ︒︒===,则b =( ) A....3237.在等比数列1129119753,243,}{a a a a a a a a n 则若中=的值为 ( )A .9B .1C .2D .38.给出平面区域如图所示,其中A (1,1),B (2,5),C (4,3),若使目标函数(0)Z ax y a =->取得最大值的最优解有无穷多个,则a 的值 A .32B . 1C . 4D . 23 9. 在ABC ∆中,若cos 4cos 3A bB a ==,则ABC ∆是( )A .直角三角形B .等腰三角形C .等腰或直角三角形D .钝角三角形10.等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和是( ) A .130 B .170 C .210 D .26012.四棱柱1111ABCD A B C D -的底面ABCD 为矩形,AB =1,AD =2,13AA =,1160A AB A AD ∠=∠=︒,则1AC 的长为( ) A .. 23 C .D .3213.三角形两条边长分别为3 cm,5 cm ,其夹角的余弦值是方程5x 2-7x-6=0的根,则此三角形的面积是__________. 14.数列{}n a 的通项公式为249n a n =-,n s 达到最小时,n 等于_______________.15.若点P 到点)0,4(F 的距离比它到直线05=+x 的距离少1,则动点P 的轨迹方程是 _____________。
高二数学上学期期末复习备考黄金30题 专题02 大题好拿
大题好拿分【基础版】1.【题文】设条件P: 22310x x -+≤,条件q :()()22110x a x a a -+++≤,若P ⌝是q ⌝的必要不充分条件,求实数a 的取值范围. 【答案】102a ≤≤【解析】试题分析:利用不等式的解法求解出命题p ,q 中的不等式范围问题,结合二者的关系得出关于字母a 的不等式,从而求解出a 的取值范围. 试题解析:()()21:2310211012p x x x x x -+≤⇒--≤⇒≤≤, ()():101q x a x a a x a ⎡⎤--+≤⇒≤≤+⎣⎦ 则1:,2p x ⌝<或1x > :q x a ⌝<或1x a >+,由p ⌝是q ⌝成立的必要不充分条件,即只能q p ⌝⇒⌝,故必须满足11{ 02211a a a ≤⇒≤≤≤+. 2.【题文】已知2:,21p x R m x x ∃∈≤--+; :q 方程221x my +=表示焦点在x 轴上的椭圆.若p q ∧为真,求m 的取值范围. 【答案】(]1,2.【解析】 试题分析:因为(]221,2x x --+∈-∞,可命题p 为真时2m ≤,又由命题q 为时()1,m ∈+∞,即可求解实数m 的取值范围. 试题解析:因为()(]222112,2x x x --+=-++∈-∞, 所以若命题p 为真,则2m ≤. 若命题q 为真,则101m<<,即()1,m ∈+∞. 因为p q ∧为真,所以(]1,2m ∈.3.【题文】已知命题P :函数()()25xf x a =-是R 上的减函数;命题Q : x R ∈时,不等式220x ax -+>恒成立.若命题“P Q ∨”是真命题,求实数a 的取值范围. 【答案】()22,3-【解析】试题分析:分别求出命题,P Q 下的a 的取值,根据P Q ∨为真命题,则命题P 和Q 中至少有一个真命题,分成三种情况讨论,即可求解实数a 的取值范围.4.【题文】如果一个几何体的主视图与左视图是全等的长方形,边长分别是4,2,如图所示,俯视图是一个边长为4的正方形.(1)求该几何体的表面积; (2)求该几何体的外接球的体积. 【答案】(1)64;(2)36π.【解析】试题分析:(1)该几何体是长方体,其底面是边长为4的正方形,高为2,求其3对面积之和;(2)由长方体与球的性质,可得长方体的体对角线是其外接球的直径,求出其面积. 试题解析:(1)由题意可知,该几何体是长方体,其底面是边长为4的正方形,高为2,因此该几何体的表面积是2×4×4+4×4×2=64.(2)由长方体与球的性质,可得长方体的体对角线是其外接球的直径,则外接球的半径r =222144232++=, 因此外接球的体积V =43πr 3=43×27π=36π,所以该几何体的外接球的体积是36π.5.【题文】某几何体的三视图如图所示,P 是正方形ABCD 对角线的交点,G 是PB 的中点.(1)根据三视图,画出该几何体的直观图. (2)在直观图中,①证明:PD ∥平面AGC; ②证明:平面PBD ⊥平面AGC. 【答案】(1)见解析;(2)见解析试题解析:(1)该几何体的直观图如图所示.(2)如图,①连接AC,BD 交于点O,连接OG,因为G 为PB 的中点,O 为BD 的中点,所以OG∥PD,又OG ⊂平面AGC,PD ⊄平面AGC,所以PD∥平面AGC. ②连接PO,由三视图,PO⊥平面ABCD,所以AO⊥PO.又AO⊥BO,BO∩PO=O,所以AO⊥平面PBD ,因为AO ⊂平面AGC,所以平面PBD⊥平面AGC.6.【题文】如图所示,在四棱锥P ABCD -中,四边形ABCD 为矩形, PAD ∆为等腰三角形,90APD ∠=o ,平面PAD ⊥平面ABCD ,且1AB =, 2AD =, ,E F 分别为,PC BD 的中点.(1)证明: //EF 平面PAD ; (2)证明:平面PDC ⊥平面PAD ; (3)求四棱锥P ABCD -的体积. 【答案】(1)见解析;(2)2V 3=. 【解析】试题分析:(1)EF ∥平面PAD ,根据直线与平面平行的判定定理可知只需证EF 与平面PAD 内一直线平行,连AC ,根据中位线可知EF∥PA,EF ⊄平面PAD ,PA ⊂平面PAD ,满足定理所需条件;(2平面PAD ⊥平面ABCD ,根据面面垂直的判定定理可知在平面ABCD 内一直线与平面PAD 垂直,根据面面垂直的性质定理可知CD ⊥平面PAD ,又CD ⊂平面ABCD ,满足定理所需条件;(3)过P 作PO⊥AD 于O ,从而PO ⊥平面ABCD ,即为四棱锥的高,最后根据棱锥的体积公式求出所求即可. 解:(1)如图所示,连接AC . ∵四边形ABCD 为矩形,且F 为BD 的中点, ∴F 也是AC 的中点. 又E 是PC 的中点, //EF AP , ∵EF ⊄平面PAD , AP ⊂平面PAD .//EF ∴平面PAD(2) 证明:∵平面PAD ⊥平面ABCD , CD AD ⊥,平面PAD ⋂平面ABCD AD =, ∴CD ⊥平面PAD . ∵CD ⊂平面PDC ,∴平面PDC ⊥平面PAD .(3)取AD 的中点O ,连接PO . ∵平面PAD ⊥平面ABCD , PAD ∆为等腰三角形, ∴PO ⊥平面ABCD ,即PO 为四棱锥P ABCD -的高. ∵2AD =,∴1PO =. 又1AB =, ∴四棱锥P ABCD -的体积1233V PO AB AD =⋅⋅=. 7.【题文】已知平行四边形ABCD 的三个顶点的坐标为()()()14,21,23A B C ---,,,. (Ⅰ)在ABC ∆中,求边AC 中线所在直线方程 (Ⅱ) 求ABC ∆的面积.【答案】(I) 95130x y -+=;(II)8.【解析】试题分析:(I )由中点坐标公式得AC 边的中点17,22M ⎛⎫⎪⎝⎭,由斜率公式得直线BM 斜率,进而可得点斜式方程,化为一般式即可;(II )由两点间距离公式可得可得BC 的值,由两点式可得直线BC 的方程为10x y -+=,由点到直线距离公式可得点A 到直线BC 的距离22d =由三角形的面积公式可得结果.试题解析:(I)设AC 边中点为M ,则M 点坐标为1722(,)∴直线719 21522BMk+==+.∴直线BM方程为:()()9125y x--=+即:95130x y-+=∴AC边中线所在直线的方程为:95130x y-+=8.【题文】如图所示,在四棱锥P ABCD-中,AB⊥平面,//,PAD AB CD E是PB的中点,F是DC 上的点且1,2DF AB PH=为PAD∆中AD边上的高.(1)证明://EF平面PAD;(2)若3,3,1PH AD FC===,求三棱锥E BCF-的体积.【答案】(1)见解析;(2)3【解析】试题分析:(1)利用平行四边形得到线线平行,从而可证线面平行;(2)求棱锥髙时,利用E 是中点,转化为求P 到底面距离的一半,而易证PH ⊥平面ABCD ,高即为PH. 试题解析:(1)取PA 中点G ,连接,.GE DG∵E 为PB 中点,∴ //EG AB , 12EG AB =,∵1//,2DF AB DF AB =,∴ //EG DF , ∴四边形DGEF 是平行四边形,∴ //EF DG ,∵ DG ⊂平面PAD , EF ⊄平面PAD ∴//EF 平面PAD(2)∵AB ⊥平面PAD , PH ⊂平面PAD ,∴AB PH ⊥,∵,PH AD AB AD A ⊥⋂=,∴ PH ⊥平面ABCD ,∵ E 为PB 中点,∴E 到平面ABCD 的距离13=22h PH =,又1131322BCF S CF AD ∆=⋅⋅=⨯=1133333224E BCF BCF V S h -∆=⋅=⨯⨯=9.【题文】已知函数3()31f x x x =-+. (1)求()f x 的单调区间和极值; (2)求曲线在点(0,(0))f 处的切线方程.【答案】(1)极大值为(1)3f -=,极小值为(1)1f =-(2)310x y +-= 【解析】试题分析:(Ⅰ)由求导公式和法则求出f ′(x ),求出方程f ′(x )=0的根,根据二次函数的图象求出 f ′(x )<0、f ′(x )>0的解集,由导数与函数单调性关系求出f (x )的单调区间和极值;(Ⅱ)由导数的几何意义求出f ′(0):切线的斜率,由解析式求出f (0)的值,根据点斜式求出曲线在点(0,f (0))处的切线方程,再化为一般式方程试题解析:(1)3()31f x x x =-+Q ,/2()333(1)(1)f x x x x ∴=-=-+,/()011f x x x ===-设,可得,或.①当/()0f x >,即11x x ><-,或时;[ ②当/()0f x <,即11x -<<时.当x 变化时,/()f x ,()f x 的变化情况如下表:当2x =-时,()f x 有极大值,并且极大值为(1)3f -= 当2x =时,()f x 有极小值,并且极小值为(1)1f =- (2)2033|3x k x ==-=-Q ,(0)1f =13(0)310y x x y ∴-=--⇒+-=.10.【题文】已知229x y +=的内接三角形ABC 中, A 点的坐标是()3,0-,重心G 的坐标是1,12⎛⎫-- ⎪⎝⎭,求(1)直线BC 的方程; (2)弦BC 的长度.【答案】(1)48150x y --=;(22113【解析】试题分析:(1)设()()1122,,,B x y C x y ,,根据重心的性质,我们不难求出BC 边上中点D 的坐标,及BC 所在直线的斜率,代入直线的点斜式方程即可求出答案. (2)求出圆心到BC 所在直线的距离,即可求出弦BC 的长度. 试题解析:(1)设()()1122,,,B x y C x y ,则由已知得12123,32x x y y +=+=-,所以BC中点D的坐标为33,42⎛⎫-⎪⎝⎭,故12BCk=所以BC所在直线方程为:313224y x⎛⎫+=-⎪⎝⎭,即48150x y--=.(2)由(1)得圆心到BC所在直线的距离为15166480d-==+,所以弦BC的长度为2259932921180162-==.11.【题文】已知⊙C经过点()2,4A、()3,5B两点,且圆心C在直线220x y--=上. (1)求⊙C的方程;(2)若直线3y kx=+与⊙C总有公共点,求实数k的取值范围.【答案】(1)2268240x y x y+--+=(2)34k≤≤试题解析:(1)解法1:设圆的方程为220x y Dx Ey F++++=,则2222242406{35350{82422022D E F DD E F EFD E++++==-++++=⇒=-=⎛⎫⎛⎫----=⎪ ⎪⎝⎭⎝⎭,所以⊙C方程为2268240x y x y+--+=.解法2:由于AB的中点为59,22D⎛⎫⎪⎝⎭,1ABk=,则线段AB 的垂直平分线方程为7y x =-+而圆心C 必为直线7y x =-+与直线220x y --=的交点, 由7{220y x x y =-+--=解得3{ 4x y ==,即圆心()3,4C ,又半径为1CA ==,故⊙C 的方程为()()22341x y -+-=.(2)解法1:因为直线3y kx =+与⊙C 总有公共点, 则圆心()3,4C 到直线3y kx =+1≤,将其变形得2430k k -≤, 解得304k ≤≤. 解法2:由()()()()2222341{162903x y k x k x y kx -+-=⇒+-++==+,因为直线3y kx =+与⊙C 总有公共点,则()()22623610k k ∆=+-+≥,解得304k ≤≤. 点睛:判断直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.12.【题文】(1)若抛物线的焦点是椭圆2216416x y +=左顶点,求此抛物线的标准方程; (2)某双曲线与椭圆2216416xy +=共焦点,且以y =为渐近线,求此双曲线的标准方程. 【答案】(1)232y x =-;(2)2211236x y -=. 【解析】试题分析(1)求出椭圆的左顶点,设抛物线的方程为22(0)y px p =->,可得焦点坐标,即可求解抛物线的方程;(2)求得椭圆的焦点,可设双曲线的方程为()22221,0x y a b a b-=>,根据渐近线的方程,得出关于,a b 的方程组,解得,a b 的值,进而得到双曲线的方程.试题解析:(1)椭圆2216416x y +=左顶点为()8,0-, 设抛物线的方程为22(0)y px p =->, 可得82p-=-, 计算得出16p =,则抛物线的标准方程为232y x =-;(2)椭圆2216416x y +=的焦点为()(),-, 可设双曲线的方程为()22221,0x y a b a b-=>,则2248a b +=, 由渐近线方程by x a=±,可得ba=计算得出6a b ==,则双曲线的方程为2211236x y -=.13.【题文】已知椭圆方程为22221(0)x y a b a b+=>>,离心率e = 4.(1)求椭圆的方程;(2)过点()2,1P 作一弦,使弦被这点平分,求此弦所在直线的方程.【答案】(1)221164x y +=;(2)240x y +-=. 【解析】试题分析(1)根据椭圆的几何性质,求解出,,a b c 的值,即可得到椭圆的标准方程;(2)设斜率为k ,把直线方程代入椭圆的方程,根据根与系数的关系和中点坐标公式,列出方程,即可求解k 的值,得到直线的方程. 试题解析:(1)由已知得, 2223{24 c a b a b c ==+= ,解得2216{ 4a b ==,椭圆的方程为221164x y +=;点睛:本题主要考查了椭圆标准方程的求解和直线与椭圆的位置关系的应用,其中解答中涉及到椭圆的标准方程及其简单的几何性质、直线与椭圆的位置关系等知识点的综合应用,试题比较基础,属于基础题,解答中熟记椭圆的标准方程和几何性质,以及利用方程的根与系数的关系是解答的关键.14.【题文】已知椭圆22221(0)x y a b a b+=>>的左右焦点分别为12,F F ,左顶点为A , 122F F =,椭圆的离心率12e =. (1)求椭圆的标准方程;(2)若P 是椭圆上任意一点,求1PF PA ⋅u u u r u u u r的取值范围.【答案】(1)22143x y +=;(2)[]0,12. 【解析】试题分析:(1)由题意可得到: 2,1a c ==, 3b =,从而写出椭圆的标准方程;(2)设()00,P x y ,利用向量的数量积即可得21001354PF PA x x ⋅=++u u u r u u u r ,结合022x -≤≤,利用二次函数求最值即可. 试题解析:(1)由已知可得122,2c c e a === 所以2,1a c == 因为222a b c =+ 所以3b =所以椭圆的标准方程为: 22143x y +=15.【题文】在平面直角坐标系xOy 中,已知抛物线2:2C x py =的焦点为()0,1F ,过O 作斜率为k 的直线l 交抛物线于A (异于O 点),已知()0,5D ,直线AD 交抛物线于另一点B .(1)求抛物线C 的方程; (2)OA BF ⊥,求k 的值. 【答案】(1) 2:4C x y =;(2) 5k =. 【解析】试题分析:(1)由抛物线22x py =的焦点为0,2P ⎛⎫⎪⎝⎭,结合题意得抛物线方程; (2)已知直线:OA y kx =代入抛物线方程: 24x y =,消去y , 240x kx -=,得()24,4A k k ,直线AB与直线BF 联立得得222164154141k k B k k ⎛⎫-+ ⎪--⎝⎭,,由B 在抛物线C 上可解得k .试题解析: (1)由题意,12P=,所以2p =,所以抛物线2:4C x y = (2)已知直线:OA y kx =代入抛物线方程: 24x y =,消去y , 240x kx -=,得()24,4A k k ;245,k 04ADk k k-=≠.直线245:54k AB y x k -=+,代入抛物线方程: 24x y =, 22452004k x x k ---=,得2525,4B k k⎛⎫- ⎪⎝⎭.()225254,4,,14OAk k BF kk ⎛⎫==- ⎪⎝⎭u u u r u u u r . 由OA BF ⊥得2204250OA BF k =+-=u u u r u u u r n ,解得5k =±.16.【题文】已知椭圆22221x y a b+=(0a b >>)的左右焦点分别为1F 、2F ,离心率3e =.过1F 的直线交椭圆于A 、B 两点,三角形2ABF 的周长为8. (1)求椭圆的方程;(2)若弦3AB =,求直线AB 的方程.【答案】(1)2214x y +=;(2)()2:3AB y x =±+.(2)设点A 的坐标为()11x y ,, B 的坐标为()22x y ,, AB 的斜率为k (k 显然存在)(()()22222214{ 418312403x y k x k x k y k x +=⇒+++-== 2122122083{ 12441k x x k x x k ∆>-⇒+=-=+恒成立())22121338322443k AB a e x x x x k -=++=++=+=⇒=±.:AB y x =+. 点睛: 本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.17.【题文】已知椭圆2222:1x y C a b+=(0a b >>)的离心率e =()(1)求椭圆C 的方程; (2)直线l 的斜率为12,直线l 与椭圆C 交于,A B 两点,已知()2,1P ,求PAB ∆面积的最大值. 【答案】(1) 22182x y +=;(2)2.【解析】试题分析: (1)根据椭圆的离心率和椭圆过点()即可求出22a b ,,则椭圆C 的方程可求; (2)设直线l 方程12y x m =+, 把其与椭圆的方程联立,求出弦长,即为PAB V 的底,由点线距离公式求出PAB V 的高,然后用基本不等式求最值. 试题解析:(1)∵222222c a b 3e a a 4-===∴22a 4b =∵椭圆过点()∴22a 8,b 2==22x y 182∴+= (2)1l y x m 2=+设的方程为 22x 2mx 2m 40++-=代入椭圆方程中整理得21212x x 2m,x x 2m 4∴+=-=-()2224m 42m 40m 4=-->∴<VAB 则2m P l d 5=点到直线的距离22222PAB2m 1m 4m S 54-m m 4-m 2225+-∴=⋅⋅=≤=V ()() 2m =2m 22=±当且仅当,即时取得最大值.18.【题文】在直角坐标系xOy 中,已知中心在原点,离心率为12的椭圆E 的一个焦点为圆C : 22420x y x +-+=的圆心.(Ⅰ)求椭圆E 的方程;(Ⅱ)设P 是椭圆E 上一点,过P 作两条斜率之积为12的直线1l , 2l ,当直线1l , 2l 都与圆C 相切时,求P 的坐标.【答案】(Ⅰ)22 1.1612x y +=(Ⅱ)()2,3-,或()2,3--,或1857,55⎛⎫ ⎪ ⎪⎝⎭,或1857,55⎛⎫- ⎪ ⎪⎝⎭. 【解析】试题分析:(1)圆心坐标是已知的,故椭圆的焦点是已知的,从而半焦距c 已知了,又有离心率,故半长轴长a 也能求出,从而求出b ,而根据题意,椭圆方程是标准方程,可其方程易得;(2)设P 点坐标为()00,x y ,再设一条切线的斜率为k ,则另一条切线的斜率为12k,三个未知数00,,x y k 需要三个方程,点P 在椭圆上,一个等式,两条直线都圆的切线,利用圆心到切线的距离等于圆的半径又得到两个等式,三个等量关系,三个未知数理论上可解了,当然具体解题时,可设切线斜率为k ,则点斜率式写出直线方程,利用圆心到切线距离等于圆半径得出关于k 的方程,而12,k k 是这个方程的两解,由韦达定理得12k k ,这个结果又是12,就列出了关于P 点坐标的一个方程,再由P 点在椭圆上,可解出P 点坐标. 试题解析:(1)圆的标准方程为()2222x y -+=,圆心为()2,0,所以2c =,又12c e a ==, 4a =,22212b a c =-=,而据题意椭圆的方程是标准方程,故其方程为2211612x y +=.4分 (2)设()00,P x y ,得()()10102020:,:l y y k x x l y y k x x -=--=- ∵1212k k =,依题意()2,0C 到1l 101021221k y k x k +-=+整理得()()222010*********x k x y k y ⎡⎤--+-+-=⎣⎦同理()()222020*********x k x y k y ⎡⎤--+-+-=⎣⎦∴12k k 是方程()()2220000222220x k x y k y ⎡⎤--+-+-=⎣⎦的两实根10分()()()2022002012202208220{21222x x y y k k x --≠⎡⎤∆=-+->⎣⎦-==--12分∴()()2200220011612{2222x y x y +=--=-14分()()185718572,32,3,,55P P ⎛⎫⎛⎫⇒---- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭或或或16分 19.【题文】已知函数.(1)求函数的单调区间.(2)若对恒成立,求实数的取值范围.【答案】(1)单调增区间 单调减区间(2)【解析】试题分析:(1)对函数求导,令,解不等式,即得到递增区间,令,解不等式,即得递减区间;(2)若对恒成立,即对恒成立,所以问题转化为求成立即可,即求函数在区间上的最小值,根据第(1)问单调性,易求出函数在上的最小值,于是可以求出的取值范围。
高二数学上学期期末复习题1(文科)
第1页 共4页 ◎高二数学上学期期末复习题一(文科) 第2页 共4页高二数学上学期期末复习题一(文科)(2013.12)1.命题“2,240x R x x ∀∈-+≤”的否定为( ) A. 2,240x R x x ∀∈-+≥ B. 2,244x R x x ∀∈-+≤ C. 2,240x R x x ∃∈-+> D. 2,240x R x x ∃∉-+>2.与直线013=++y x 垂直的直线的倾斜角为 ( ) A . 6π B . 3πC . 32πD .65π 3.已知双曲线C:22x a-22y b =1(a >0,b >0)的离心率为52,则C 的渐近线方程为 ( )A 、y=±14x (B )y=±13x (C )y=±12x (D )y=±x4.设)(x f 是可导函数,且='=∆-∆-→∆)(,2)()2(lim 0000x f xx f x x f x 则( )A .21B .-1C .0D .-25.点(,2,1)P x 到点(1,1,2),(2,1,1)Q R 的距离相等,则x 的值为( )A .12B .1C .32D .26.若直线经过0,0,0,2A B 两点,则直线AB 的倾斜角为A . 30°B . 45°C . 90°D .0°7.椭圆221259x y +=上一点M 到焦点F 1的距离为2,N 是MF 1的中点.则|ON|等于( )(A )2 (B )4 (C )8 (D )328.“4ab ”是“直线210x ay 与直线220bx y 平行”的()(A )充分必要条件 (B )充分而不必要条件(C )必要而不充分条件 (D )既不充分也不必要条件 9.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 A .BD //平面CB 1D 1 B .AC 1⊥BDC .AC 1⊥平面CB 1D 1 D .异面直线AD 与CB 1所成的角为60°10.已知圆1C :2(1)x ++2(1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方程为( )A.2(2)x ++2(2)y -=1 B.2(2)x -+2(2)y +=1C.2(2)x ++2(2)y +=1 D.2(2)x -+2(2)y -=111.已知函数f (x )=12x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是( )A .m ≥32B .m >32C .m ≤32D .m <3212.已知抛物线x y 42=的焦点F 与椭圆22221(0)x y a b a b+=>>的一个焦点重合,它们在第一象限内的交点为T ,且TF 与x 轴垂直,则椭圆的离心率为( )A . 23-B .21 C .21- D .22选择题答案:1-6 7-1213.曲线21xy xe x =++在点(0,1)处的切线方程为 .14.直线,32:1+=x y l 2l 与1l 关于直线x y -=对称,直线3l ⊥2l ,则3l 的斜率是______.15.如图,已知过椭圆()222210x y a b a b+=>>的左顶点(),0A a -作直线l交y 轴于点P ,交椭圆于点Q ,若AOP ∆是等腰三角形,且2PQ QA =,则椭圆的离心率为 .16.三棱锥S ABC -的三视图如下(尺寸的长度单位为m ).则这个三棱锥的体积为 _______ ;17.已知直线:210l x y k +++=被圆22:4C x y +=所截得的弦长为2,则OA OB ⋅的值为 . 18.已知A 、B 是过抛物线22(0)y px p =>焦点F 的直线与抛物线的交点,O 是坐标原点,满足2AF FB =,3||OABSAB =,则的值为19.如图,四边形ABCD 与A 'ABB'都是边长为a 的正方形,点E 是A 'A 的中点,AA'ABCD ⊥平面⑴求证:A'C //BDE 平面; ⑵求证:平面A'AC BDE ⊥平面; ⑶求体积A'ABCD V -与E ABD V -的比值。
2022-2023学年北京市中国人民大学附属中学高二年级上册学期期末复习(二)数学试题【含答案】
2022-2023学年北京市中国人民大学附属中学高二上学期期末复习(二)数学试题一、单选题1.设复数,是z 的共轭复数,则( )3i1i z +=-z z z ⋅=A .-3B .-1C .3D .5【答案】D【分析】先利用复数的除法化简,进而得到共轭复数,再利用复数的乘法运算求解.【详解】解:∵,()()()()3i 1i 3i 12i 1i 1i 1i z +++===++-+∴,.12i z =-()()2212i 12i 125z z ⋅=+-=+=故选:D .2.已知向量,,且,则实数的值为( ).(),2,1a m =()1,0,4b =-a b ⊥m A .4B .C .2D .4-2-【答案】A【分析】依题意可得,根据数量积的坐标表示得到方程,解得即可.0a b ⋅=【详解】解:因为,,且,(),2,1a m =()1,0,4b =-a b ⊥ 所以,解得.40a b m ⋅=-+=4m =故选:A3.抛物线的准线方程是( )22y x =A .B .C .D .12x =12x =-18y =18y =-【答案】D【分析】先将抛物线方程化为标准形式,再根据抛物线的性质求出其准线方程.【详解】抛物线的方程可化为x 2y12=故128p =其准线方程为y 18=-故选:D4.已知双曲线C :有相等的焦距,则22221x y a b -=2215x y +=C 的方程为( )A .B .2213x y -=2213y x -=C .D .22193x y -=22139x y -=【答案】B【分析】根据椭圆的焦距可得双曲线C :的焦距,根据双曲线C :2215x y +=22221x y a b -=2c求得,即可得出答案.22221x y a b -=ba =222c ab =+22,a b【详解】解:因为双曲线C :22221x y a b -=所以,ba =b =椭圆的焦距为,2215x y +=4所以双曲线C :的焦距,即,22221x y a b -=24c =2c =又因,解得,所以,2222234c a b a a =+=+=21a =23b =所以C 的方程为.2213y x -=故选:B.5.如图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽( )米.A .B .C .D .【答案】B【分析】通过建立直角坐标系,设出抛物线方程,将A 点代入抛物线方程求得m ,得到抛物线方程,再把B (x 0,﹣3)代入抛物线方程求得x 0进而得到答案.【详解】如图建立直角坐标系,设抛物线方程为x 2=my ,将A (2,﹣2)代入x 2=my ,得m =﹣2∴x 2=﹣2y ,B (x 0,﹣3)代入方程得x 0,=故水面宽为.故选:B .6.如图,已知正方形所在平面与正方形所在平面构成的二面角,则异面直线ABCD ABEF 60︒与所成角的余弦值为( ).AC BFA .B .CD 1412【答案】A【分析】根据题目条件可知,即为平面与平面构成二面角的平面角,将异面直EBC ∠ABCD ABEF 线与所成角的余弦值转化成直线方向向量夹角余弦值的绝对值即可.AC BF 【详解】根据题意可知,即为平面与平面构成二面角的平面角,所以EBC ∠ABCD ABEF ,60EBC ∠= 设正方形边长为1,异面直线与所成的角为,AC BF θ,,AC AB BC =+ BF BE EF =+EF BA ==- 所以()))(()(BF BE E AC AB BC AB BC F BE AB +==++- 即210(1)11cos 6002BF BE B AC AB AB BC BC E AB =-+-=+-+⨯⨯-=-所以;4c os 1,A A BF BF B C AC C F==-= 即,1cos cos ,4F AC B θ==所以,异面直线与所成角的余弦值为.AC BF 14故选:A.7.对于直线:(),现有下列说法:l 10ax ay a +-=0a ≠①无论如何变化,直线l 的倾斜角大小不变;a ②无论如何变化,直线l 一定不经过第三象限;a ③无论如何变化,直线l 必经过第一、二、三象限;a ④当取不同数值时,可得到一组平行直线.a 其中正确的个数是( )A .B .C .D .1234【答案】C【分析】将直线化为斜截式方程,得出直线的斜率与倾斜角,可判断①正确,④正确;由直线的纵截距为正,可判断②正确,③错误.【详解】直线:(),可化简为:,即,则直线的斜率l 10ax ay a +-=0a ≠210x y a +-=21y x a =-+为,倾斜角为,故①正确;直线在轴上的截距为,可得直线经过一二四象限,故1-135︒y 210a >②正确,③错误;当取不同数值时,可得到一组斜率为的平行直线,故④正确;a 1-故选:C8.已知是椭圆的两个焦点,若椭圆上存在点满足,则的12F F ,22:18x y C m +=C P 1290F PF ∠=︒m 取值范围是( )A .B .(][)0,216,+∞ (][)0,416,+∞ C .D .(][)0,28,+∞ (][)0,48,+∞ 【答案】B【分析】利用圆的直径所对圆周角为,将椭圆上存在点满足,转化为以90︒C P 1290F PF ∠=︒为直径的圆与椭圆有交点,即可求解.12F F 【详解】解:若椭圆上存在点满足,只需满足以为直径的圆与椭圆有交点,C P 1290F PF ∠=︒12F F即,即,122F F b c ≤=22b c ≤当时,椭圆的焦点在轴上,此时,则,解得:,8m <x 2228,,8a b m c m ===-8m m ≤-4m ≤当时,椭圆的焦点在轴上,此时,则,解得:.8m >y 222,8,8a m b c m ===-88m ≤-16m ≥综上,.(][)0,416,m ∈+∞ 故选:B【点睛】本题考查椭圆的基本性质,属于较易题。
高二数学上学期期末复习题3(理科)
高二数学上学期期末复习题三(理科)(2013.12)1.“a 和b 都不是偶数”的否定形式是( )(A )a 和b 至少有一个是偶数 (B )a 和b 至多有一个是偶数 (C )a 是偶数,b 不是偶数 (D )a 和b 都是偶数2.已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的 斜率k 的取值范围是( )A .34k ≥B .324k ≤≤C .324k k ≥≤或 D .2k ≤ 3.双曲线x 2a 2-y 2b2=1的两条渐近线互相垂直,那么该双曲线的离心率是( )A .2 B. 3 C. 2 D.324.直线13kx y k -+=,当k 变动时,所有直线都通过定点( ) A .(0,0) B .(0,1) C .(3,1) D .(2,1)5.设F (c ,0)为椭圆)0(12222>>=+b a by a x 的右焦点,椭圆上的点与点F 的距离的最大值为M ,最小值为m ,则椭圆上与F 点的距离是)(21m M +的点是( ) A.(a b c ±,) B .(0,b ±) C.(abc ±-,) D.以上都不对6. 如图,在底面ABCD 为平行四边形的四棱柱ABCD -A 1B 1C 1D 1中,M 是AC 与BD 的交点,若AB=a ,11A D =b ,1A A =c 则下列向量中与1B M相等的向量是( )A .-12a +12b +cB.12a +12b +cC.12a -12b +cD .-12a -12b +c7.设集合A ={x ∈R|x -2>0},B ={x ∈R|x <0},C ={x ∈R|x (x -2)>0},则“x ∈A ∪B ”是“x ∈C ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.设m 、n 表示不同直线,α、β表示不同平面,则下列结论中正确的是( ). A .若m ∥α,m ∥n ,则n ∥α B .若m ⊂α,n ⊂β,m ∥β,n ∥α,则α∥β C .若α∥β,m ∥α,m ∥n ,则n ∥β D .若α∥β,m ∥α,n ∥m ,n ⊄β,则n ∥β 9.下面四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB ∥平面MNP 的图形是( ).A .①②B .①④C .②③D .③④10.在正方体ABCD A 1B 1C 1D 1中,M 、N 分别为棱AA 1和BB 1的中点,则sin 〈CM →,D 1N →〉的值为( ). A.19 B .49 5 C.29 5 D.2311.|y |-1=1-(x -1)2表示的曲线是( ). A .抛物线B .一个圆C .两个圆D .两个半圆12.△ABC 的顶点A (-5,0)、B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是( ) A.x 29-y 216=1B.x 216-y 29=1 C .x 29-y 216=1(x >3) D.x 216-y 29=1(x >4) 13.若直线2x -y +a =0与圆(x -1)2+y 2=1有公共点,则实数a 的取值范围( ).-2-5≤a ≤-2+ 514. 直线10x ay ++=与直线(1)230a x y +-+=互相垂直,则a 的值为( )115.若椭圆x 2a 2+y 2b 2=1的焦点在x 轴上,过点⎝ ⎛⎭⎪⎫1,12作圆x 2+y 2=1的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是________.x 25+y 24=116.如果一个几何体的三视图如图所示,其中正视图中△ABC 是边长为2的正三角形,俯视图为正六边形,那么该几何体的侧视图的面积为________.3217.过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为2,则直线l 的斜率为________. 1或17718.已知P 是椭圆x 2a2+y 2b2=1上的任意一点,F 1、F 2是它的两个焦点,O 为坐标原点,OQ →=PF 1→+PF 2→,则动点Q 的轨迹方程是______________.x24a 2+y24b2=119.如图所示,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB =2,AF =1,M 是线段EF 的中点.求证:(1)AM ∥平面BDE ; (2)AM ⊥平面BDF . 证明 (1)建立如图所示的空间直角坐标系, 设AC ∩BD =N ,连接NE . 则点N 、E 的坐标分别为 ⎝ ⎛⎭⎪⎫22,22,0、(0,0,1).∴NE →=⎝ ⎛⎭⎪⎫-22,-22,1. 又点A 、M 的坐标分别是(2,2,0)、⎝ ⎛⎭⎪⎫22,22,1 ∴AM →=⎝ ⎛⎭⎪⎫-22,-22,1. ∴NE →=AM →且NE 与AM 不共线.∴NE ∥AM .又∵NE ⊂平面BDE ,AM ⊄平面BDE , ∴AM ∥平面BDE .(2)由(1)知AM →=⎝ ⎛⎭⎪⎫-22,-22,1, ∵D (2,0,0),F (2,2,1),∴DF →=(0,2,1) ∴AM →·DF →=0,∴AM ⊥DF . 同理AM ⊥BF .又DF ∩BF =F ,∴AM ⊥平面BDF .20.已知圆C 的方程为x 2+y 2=4.(1)求过点P (1,2)且与圆C 相切的直线l 的方程;(2)直线l 过点P (1,2),且与圆C 交于A 、B 两点,若|AB |=23,求直线l 的方程; (3)圆C 上有一动点M (x 0,y 0),ON →=(0,y 0),若向量OQ →=OM →+ON →,求动点Q 的轨迹方程,并说明此轨迹是什么曲线.解析 (1)显然直线l 的斜率存在,设切线方程为y -2=k (x -1), 则由|2-k |k 2+1=2,得k1=0,k 2=-43,从而所求的切线方程为y =2和4x +3y -10=0.(2)当直线l 垂直于x 轴时,此时直线方程为x =1,l 与圆的两个交点坐标为(1,3)和(1,-3),这两点的距离为23,满足题意;当直线l 不垂直于x 轴时,设其方程为y -2=k (x -1), 即kx -y -k +2=0,设圆心到此直线的距离为d (d >0),则23=24-d 2, 得d =1,从而1=|-k +2|k 2+1,得k =34,此时直线方程为3x -4y +5=0,综上所述,所求直线方程为3x -4y +5=0或x =1.(3)设Q 点的坐标为(x ,y ),M 点坐标是(x 0,y 0),ON →=(0,y 0), ∵OQ →=OM →+ON →,∴(x ,y )=(x 0,2y 0)⇒x =x 0,y =2y 0.∵x 2+y 20=4,∴x 2+⎝ ⎛⎭⎪⎫y 22=4,即x 24+y 216=1.∴Q 点的轨迹方程是x 24+y 216=1,轨迹是一个焦点在y 轴上的椭圆.21.如图所示,四棱锥A BCDE 中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,BC=2,CD =2,AB =AC .(1)证明:AD ⊥CE ;(2)设侧面ABC 为等边三角形,求二面角C AD E 的大小. 解析 (1)证明 取BC 中点O , 连接AO ,则AO ⊥BC 由已知条件AO ⊥平面BCDE , 如图,建立直角坐标系O xyz , 则A (0,0,t ),D (1,2,0),C (1,0,0),E (-1,2,0),AD →=(1,2,-t ),CE →=(-2,2,0),则AD →·CE →=0,因此AD ⊥CE . (2) 作CF ⊥AD 垂足为F ,连接EF , 由AD ⊥平面CEF 知EF ⊥AD , 则∠CFE 为二面角C AD E 的平面角. 在Rt △ACD 中,CF =AC ·CD AD =233, 在等腰△ADE 中EF =303, cos ∠CFE =CF 2+EF 2-CE 22CF ·EF =-1010.∴二面角CADE 的余弦值为-1010. 22.设椭圆方程为x 2+y 24=1,过点M (0,1)的直线l 交椭圆于A ,B 两点,O 为坐标原点,点P满足OP →=12(OA →+OB →),点N 的坐标为⎝ ⎛⎭⎪⎫12,12,当直线l 绕点M 旋转时,求: (1)动点P 的轨迹方程;(2)|NP →|的最大值,最小值.解析 (1)直线l过定点M (0,1),设其斜率为k ,则l 的方程为y =kx +1.设A (x 1,y 1),B (x 2,y 2),由题意知,A 、B 的坐标满足方程组⎩⎪⎨⎪⎧y =kx +1,x 2+y 24=1.消去y 得(4+k 2)x 2+2kx -3=0. 则Δ=4k 2+12(4+k 2)>0. ∴x 1+x 2=-2k 4+k 2,x 1x 2=-34+k2.设P (x ,y )是AB 的中点,则OP →=12(OA →+OB →),得⎩⎪⎨⎪⎧x =12x 1+x 2=k4+k2,y =12y 1+y 2=12kx 1+1+kx 2+1=4+2k24+k2;消去k 得4x 2+y 2-y =0.当斜率k 不存在时,AB 的中点是坐标原点,也满足这个方程, 故P 点的轨迹方程为4x 2+y 2-y =0.(2)由(1)知4x 2+⎝ ⎛⎭⎪⎫y -122=14∴-14≤x ≤14而|NP |2=⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y -122=⎝ ⎛⎭⎪⎫x -122+1-16x 24 =-3⎝ ⎛⎭⎪⎫x +162+712,∴当x =-16时,|NP →|取得最大值216,当x =14时,|NP →|取得最小值14.。
数学高二上期末经典复习题(含答案解析)(1)
一、选择题1.(0分)[ID :13328]在区间[]0,1上随机取两个数x ,y ,记P 为事件“23x y +≤”的概率,则(P = ) A .23B .12C .49D .292.(0分)[ID :13318]某校为了解高二年级学生某次数学考试成绩的分布情况,从该年级的1120名学生中随机抽取了100 名学生的数学成绩,发现都在[80,150]内现将这100名学生的成绩按照 [80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150]分组后,得到的频率 分布直方图如图所示则下列说法正确的是( )A .频率分布直方图中a 的值为 0.040B .样本数据低于130分的频率为 0.3C .总体的中位数(保留1位小数)估计为123.3分D .总体分布在[90,100)的频数一定与总体分布在[100,110)的频数不相等 3.(0分)[ID :13311]我国古代数学著作《九章算术》中,其意是:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问:米几何?右图是源于其思想的一个程序框图,若输出的2S =(单位:升),则输入k 的值为A .6B .7C .8D .94.(0分)[ID :13310]如图是把二进制的数11111化成十进制数的一个程序框图,则判断框内应填入的条件是( )A .4i >?B .5i >?C .4i ≤?D .5i ≤?5.(0分)[ID :13305]执行如图的程序框图,如果输入72m =,输出的6n =,则输入的n 是( )A .30B .20C .12D .86.(0分)[ID :13295]如果数据12,,,n x x x 的平均数为x ,方差为28,则152x +,252x +,…,52n x +的平均数和方差分别为( )A .x ,28B .52x +,28C .52x +,2258⨯D .x ,2258⨯7.(0分)[ID :13294]随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面四种说法正确的是( ).①1月至8月空气合格天数超过20天的月份有5个②第二季度与第一季度相比,空气合格天数的比重下降了 ③8月是空气质量最好的一个月 ④6月的空气质量最差 A .①②③B .①②④C .①③④D .②③④8.(0分)[ID :13290]从区间0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 A .4n mB .2n mC .4mnD .2mn9.(0分)[ID :13288]执行如图的程序框图,那么输出的S 的值是( )A .﹣1B .12C .2D .110.(0分)[ID :13278]执行如图所示的程序框图,如果输入x =5,y =1,则输出的结果是( )A.261B.425C.179D.54411.(0分)[ID:13277]在某地的奥运火炬传递活动中,有编号为1,2,3,,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为().A.151B.168C.1306D.140812.(0分)[ID:13259]运行如图所示的程序框图,若输出的S的值为480,则判断框中可以填()A.60i>B.70i>C.80i>D.90i>13.(0分)[ID :13245]定义运算a b ⊗为执行如图所示的程序框图输出的S 值,则式子π2πtan cos 43⎛⎫⎛⎫⊗ ⎪ ⎪⎝⎭⎝⎭的值是A .-1B .12C .1D .3214.(0分)[ID :13243]执行如图所示的程序框图,若输入2x =-,则输出的y =( )A .8-B .4-C .4D .815.(0分)[ID :13320]一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,从中任意取出一个,则取出的小正方体两面涂有油漆的概率是( ) A .127B .29C .49D .827二、填空题16.(0分)[ID :13412]执行如图所示的程序框图若输人x 的值为3,则输出y 的值为______.17.(0分)[ID :13395]一个算法的伪代码如下图所示,执行此算法,若输出的y 值为1,则输入的实数x 的值为________.18.(0分)[ID :13388]某单位有职工900人,其中青年职工450人,中年职工270人,老年职工180人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为10人,则样本容量为________.19.(0分)[ID :13376]某公司的广告费支出x 与销售额y (单位:万元)之间有下列对应数据:由资料显示y 对x 呈线性相关关系。
2022-2023学年北京大学附属中学高二上学期期末考复习数学试卷(2)含详解
期末复习二一、选择题(共10小题,每小题4分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项)1.已知a R ∈,()13ai i i +=+,(i 为虚数单位),则=a ()A .1- B.1C.3- D.32.已知直线20l y ++=,下列说法中正确的是()A.直线l 的倾斜角为120︒B.(是直线l 的一个方向向量C.直线lD.)1-是直线l 的一个法向量3.的是()A.22142x y += B.221x y -= C.2213y x -= D.24y x=4.设a R ∈,则“a =1”是“直线ax+y-1=0与直线x+ay+1=0平行”的A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件,5.若直线l :0x y m --=经过抛物线28y x =的焦点,且与抛物线交于A ,B 两点,则下列说法中错误的是()A.抛物线的焦点为()2,0B.2m =C.抛物线的准线为4x =- D.16AB =6.下列关于圆C :22(1)4x y +-=的说法中正确的个数为()①圆C 的圆心为(0,1)C ,半径为2②直线l :3410x y -+=与圆C 相交③圆C 与圆1C :22(1)(2)9x y ++-=相交④过点2)作圆C 50y --=A.1B.2C.3D.47.公元前4世纪,古希腊数学家梅内克缪斯利用垂直于母线的平面去截顶角分别为锐角、钝角和直角的圆锥,发现了三种圆锥曲线.之后,数学家亚理士塔欧、欧几里得、阿波罗尼斯等都对圆锥曲线进行了深入的研究.直到3世纪末,帕普斯才在其《数学汇编》中首次证明:与定点和定直线的距离成定比的点的轨迹是圆锥曲线,定比小于、大于和等于1分别对应椭圆、双曲线和抛物线.已知,A B 是平面内两个定点,且|AB |=4,则下列关于轨迹的说法中错误的是()A.到,A B 两点距离相等的点的轨迹是直线B.到,A B 两点距离之比等于2的点的轨迹是圆C.到,A B 两点距离之和等于5的点的轨迹是椭圆D.到,A B 两点距离之差等于3的点的轨迹是双曲线8.已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,若点P 满足1311534AP AB AD AA =++,则点P 到直线AB 的距离为()A.25144 B.512C.1320D.159.已知椭圆1C :222116x y m +=和双曲线2C :22214x yn-=有公共的焦点F 1(−3,0),F 2(3,0),点P 是C 1与C 2在第一象限内的交点,则下列说法中错误的个数为()①椭圆的短轴长为;②双曲线的虚轴长为③双曲线C 2的离心率恰好为椭圆C 1离心率的两倍;④ PF 1F 2是一个以PF 2为底的等腰三角形.A.0B.1C.2D.310.已知动圆C 经过点1(0)F ,,并且与直线1y =-相切,若直线50l y -+=与圆C 最多有一个公共点,则圆C 的面积()A.有最小值为16π9B.有最大值为16π9C.有最小值为16πD.有最大值为16π二、填空题(共6小题,每小题4分,共24分)11.若直线l 与直线2x-y-1=0垂直,且不过第一象限,试写出一个直线l 的方程:________.12.与双曲线224312y x -=有相同焦点,且长轴长为6的椭圆标准方程为_________.13.已知椭圆C :22221x y a b+=(0a b >>)中,1F ,2F 为椭圆的左、右焦点,1B ,2B 为椭圆的上、下顶点,若四边形1122F B F B 是一个正方形,则椭圆的离心率为__________.14.过点()2,5作圆22:(1)4C x y +-=的切线,则切线方程为__________.15.已知O 为坐标原点,抛物线的焦点F 在x 轴上,且过点(1,2)-,P 为抛物线上一点,||3PF =,则抛物线的标准方程为___________,OPF △的面积为_____________.16.若点()2,0到直线l 的距离小于1,则在下列曲线中:①28y x =;②()2234x y -+=;③22195x y +=;④2213y x -=;与直线l 一定有公共点的曲线的序号是_________.(写出你认为正确的所有序号)三、解答题(共3题,共36分,解答应写出文字说明,演算步骤或证明过程)17.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,,M N 分别为棱,PD BC 的中点,2PA AB ==.(1)求证://MN 平面PAB ;(2)求直线MN 与平面PCD 所成角的正弦值.18.已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为,A B ,且AB 4=,离心率为12,O 为坐标原点.(1)求椭圆C 的方程;(2)设P 是椭圆C 上不同于,A B 的一点,直线,PA PB 与直线4x =分别交于点,M N .证明:以线段MN 为直径作圆被x 轴截得的弦长为定值,并求出这个定值.19.已知抛物线2:4C y x =,O 为坐标原点,过焦点F 的直线l 与抛物线C 交于不同两点,A B .(1)记AFO V 和BFO V 的面积分别为12,S S ,若212S S =,求直线l 的方程;(2)判断在x 轴上是否存在点M ,使得四边形OAMB 为矩形,并说明理由.期末复习二一、选择题(共10小题,每小题4分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项)1.已知a R ∈,()13ai i i +=+,(i 为虚数单位),则=a ()A.1-B.1C.3- D.3C【分析】首先计算左侧的结果,然后结合复数相等的充分必要条件即可求得实数a 的值.【详解】()213ai i i ai i a a i i +=-=-+=++=,利用复数相等的充分必要条件可得:3,3a a -=∴=-.故选:C.2.已知直线20l y ++=,下列说法中正确的是()A.直线l 的倾斜角为120︒B.(是直线l 的一个方向向量C.直线lD.)1-是直线l 的一个法向量A【分析】先根据方程得斜率,进而得到直线的倾斜角,以及方向向量和方法向量,从而判断各选项.【详解】因为直线:20l y ++=,所以斜率k =120︒,故A 正确,C 不正确;因为直线l 经过点()0,2A -,()B ,所以直线l 的一个方向向量为()AB =,因向量(与()AB =不共线,故(不是直线l 的一个方向向量,故B 不正确;又因为)13360AB -⋅=--=-≠,所以)1-不是直线l 的一个法向量,故D 不正确.故选:A.3.的是()A.22142x y += B.221x y -= C.2213y x -= D.24y x=B【分析】根据标准方程逐个求出离心率,即可得到.【详解】对于A :22142x y +=中2,a b c ===22c e a ==,所以A 错误;对于B :221x y -=中1,1,a b c ====,则ce a==B 正确;对于C :2213y x -=中1,2a b c ===,则2c e a ==,所以C 错误;对于D :24y x =中1e =,所以D 错误;故选:B4.设a R ∈,则“a =1”是“直线ax+y-1=0与直线x+ay+1=0平行”的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件,C【详解】若直线ax+y-1=0与直线x+ay+1=0平行,则21a =,且11a-≠解得1a =故选C点睛:这是一道关于充分条件和必要条件判断的题目.考查的主要是充分条件,必要条件,熟练掌握掌握充分条件和必要条件的判定方法.本题中,利用直线平行的条件是解决问题的关键.5.若直线l :0x y m --=经过抛物线28y x =的焦点,且与抛物线交于A ,B 两点,则下列说法中错误的是()A.抛物线的焦点为()2,0B.2m =C.抛物线的准线为4x =-D.16AB =C【分析】求出抛物线的焦点坐标、准线方程,将焦点坐标代入直线方程求出实数m ,将直线方程与抛物线方程联立,求出焦点弦长,依次判断选项即可.【详解】设抛物线方程为22y px =(0p >),则焦点坐标为,02p F ⎛⎫ ⎪⎝⎭,准线方程为2px =-,∵抛物线方程为28y x =,∴4p =,22p=,∴抛物线的焦点坐标()2,0F ,准线方程为2x =-,将焦点()2,0F 代入直线l 的方程:0x y m --=得200m --=,∴2m =,∴直线l 的方程为20x y --=,设直线l 与抛物线28y x =两交点坐标为()11,A x y ,()22,B x y ,点A ,B 到准线的距离分别为A d ,B d ,由2820y x x y ⎧=⎨--=⎩消去y ,化简得21240x x -+=(0∆>),∴1212x x +=,∴由抛物线的定义,12A p AF d x ==+,22B p BF d x ==+,∴1212416AB AF BF x x p =+=++=+=.对于A ,抛物线的焦点坐标()2,0F ,选项A 正确;对于B ,实数m 的值为2m =,选项B 正确;对于C ,抛物线的准线方程为2x =-,选项C 错误;对于D ,弦长16AB =,选项D 正确,故以上说法中,错误的是C 选项.故选:C.6.下列关于圆C :22(1)4x y +-=的说法中正确的个数为()①圆C 的圆心为(0,1)C ,半径为2②直线l :3410x y -+=与圆C 相交③圆C 与圆1C :22(1)(2)9x y ++-=相交④过点2)作圆C 50y --=A.1 B.2C.3D.4C【分析】对于①,根据圆的标准方程求出圆心坐标和半径,可知①正确;对于②,根据圆心到直线的距离小于半径,可知②正确;对于③,根据圆心距与两圆半径之间的关系,可知③正确;对于④,点2)在圆C ,可知点2)在圆C ,求出切线的斜率,根据点斜式可求出切线方程,可知④不正确.【详解】对于①,由22(1)4x y +-=可知,圆心为(0,1)C ,半径为2,故①正确;对于②,圆心(0,1)C 到直线3410x y -+=的距离35d ==2<,所以直线l :3410x y -+=与圆C 相交,故②正确;对于③,圆1C :22(1)(2)9x y ++-=的圆心1(1,2)C -,半径为3,因为圆心距1||CC ==,且3232-<<+,所以圆C 与圆1C :22(1)(2)9x y ++-=相交,故③正确;对于④,因为点2)在圆C :22(1)4x y +-=上,所以点2)为切点,所以切点与圆心C3=,所以切线的斜率为,所以切线方程为:2y x -=-50y +-=,故④不正确.故选:C7.公元前4世纪,古希腊数学家梅内克缪斯利用垂直于母线的平面去截顶角分别为锐角、钝角和直角的圆锥,发现了三种圆锥曲线.之后,数学家亚理士塔欧、欧几里得、阿波罗尼斯等都对圆锥曲线进行了深入的研究.直到3世纪末,帕普斯才在其《数学汇编》中首次证明:与定点和定直线的距离成定比的点的轨迹是圆锥曲线,定比小于、大于和等于1分别对应椭圆、双曲线和抛物线.已知,A B 是平面内两个定点,且|AB |=4,则下列关于轨迹的说法中错误的是()A.到,A B 两点距离相等的点的轨迹是直线B.到,A B 两点距离之比等于2的点的轨迹是圆C.到,A B 两点距离之和等于5的点的轨迹是椭圆D.到,A B 两点距离之差等于3的点的轨迹是双曲线D【分析】判断到,A B 两点距离相等的点的轨迹是,A B 连线的垂直平分线,判断A;建立平面直角坐标系,求出动点的轨迹方程,可判断B;根据椭圆以及双曲线的定义可判断C,D .【详解】对于A ,到,A B 两点距离相等的点的轨迹是,A B 连线的垂直平分线,正确;对于B ,以AB 为x 轴,AB 的中垂线为y 轴建立平面直角坐标系,则()()2,0,2,0A B -,设动点(,)P x y ,由题意知||2||PA PB =,2=,化简为221064(39x y -+=,即此时点的轨迹为圆,B 正确;对于C ,不妨设动点P 到,A B 两点距离之和等于5,即5PA PB +=,由于54>,故到,A B 两点距离之和等于5的点的轨迹是以,A B 为焦点的椭圆,C 正确;对于D ,设动点P 到,A B 两点距离之差等于3,即||||3-=PA PB ,由于34<,故到,A B 两点距离之差等于3的点的轨迹是双曲线靠近B 侧的一支,D 错误,故选:D8.已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,若点P 满足1311534AP AB AD AA =++,则点P 到直线AB 的距离为()A.25144 B.512C.1320D.10515B【分析】过P 作PM ⊥平面ABCD 于点M ,过M 作NM AB ⊥于点N ,连接PN ,则PN 即为所求,【详解】解:如图,过P 作PM ⊥平面ABCD 于点M ,过M 作NM AB ⊥于点N ,连接PN ,则PN 即为所求,因为满足1311534AP AB AD AA =++,所以35AN =,13MN =,14MP =,所以512PN ==,故选:B .【点睛】本题考查了求点到直线的距离的方法,属于基础题.9.已知椭圆1C :222116x y m +=和双曲线2C :22214x yn-=有公共的焦点F 1(−3,0),F 2(3,0),点P 是C 1与C 2在第一象限内的交点,则下列说法中错误的个数为()①椭圆的短轴长为;②双曲线的虚轴长为③双曲线C 2的离心率恰好为椭圆C 1离心率的两倍;④ PF 1F 2是一个以PF 2为底的等腰三角形.A.0 B.1C.2D.3A【分析】根据椭圆1C :222116x y m +=和双曲线2C :22214x yn-=有公共的焦点F 1(−3,0),F 2(3,0),求得m ,n ,再逐项判断.【详解】解:因为椭圆1C :222116x y m +=和双曲线2C :22214x yn-=有公共的焦点F 1(−3,0),F 2(3,0),所以2216949m n ⎧-=⎨+=⎩,解得m n ⎧=⎪⎨=⎪⎩则①椭圆的短轴长为,故正确;②双曲线的虚轴长为③双曲线C 2的离心率32e =,椭圆C 1离心率的34e =,故正确;④由22221167145x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩,解得833P ⎛ ⎝⎭,则16PF =,211222,6PF a PF F F =-==,所以 PF 1F 2是一个以PF 2为底的等腰三角形,故正确.故选:A10.已知动圆C 经过点1(0)F ,,并且与直线1y =-相切,若直线50l y -+=与圆C 最多有一个公共点,则圆C 的面积()A.有最小值为16π9B.有最大值为16π9C.有最小值为16πD.有最大值为16πD【分析】已知直线:50l y -+=与圆C 最多有一个公共点,则直线l 与圆相切或相离,而圆C 经过点1(0)F ,,并且与直线1y =-相切,则直线l 与圆相切时圆最大,直线l 与圆相离时圆最小,数形结合求出半径即可得到圆C 的面积.【详解】解:已知直线50l y -+=与圆C 最多有一个公共点,则直线l 与圆相切或相离,当直线l 与圆相离时圆最小,满足经过点1(0)F ,,并且与直线1y =-相切的圆如图所示,此时以原点O 为圆心,1为半径,圆C 的面积2min π1πS =⋅=,故A ,C 选项错误;当直线l 与圆相切时圆最大,满足经过点1(0)F ,,并且与直线1y =-相切的圆如图所示,此时直线l 与直线1y =-为圆2C 的公切线,则圆心需在两直线所成角的角平分线上,因为直线l 60︒,所以角平分线的倾斜角为30︒,斜率为33,联立501y y -+==-⎪⎩,可得63,13A ⎛⎫-- ⎪ ⎪⎝⎭所以角平分线的方程为133y x ⎛⎫+=+ ⎪ ⎪⎝⎭,即13y x =+,恰好点1(0)F ,在角平分线上,则222r AF r =+,所以222224r r r r ===+,解得24r =,圆C 的面积2max π416πS =⋅=,故B 选项错误;故选:D.二、填空题(共6小题,每小题4分,共24分)11.若直线l 与直线2x-y-1=0垂直,且不过第一象限,试写出一个直线l 的方程:________.112y x =--(答案不唯一)【详解】由直线l 与直线210x y --=垂直,设直线l 的方程为12y x c =-+∵直线l 不经过第一象限∴0c ≤∴可令1c =-,即直线l 的方程为112y x =--故答案为112y x =--(答案不唯一).12.与双曲线224312y x -=有相同焦点,且长轴长为6的椭圆标准方程为_________.22129x y +=【分析】双曲线化为标准形式,求出焦点,即可由共焦点进一步求出椭圆短半轴,即可求得标准方程.【详解】224312y x -=即22134y x -=,焦点为(0,,椭圆长轴26a =,即3a =,故短半轴b ==22129x y +=.故答案为:22129x y +=.13.已知椭圆C :22221x y a b+=(0a b >>)中,1F ,2F 为椭圆的左、右焦点,1B ,2B 为椭圆的上、下顶点,若四边形1122F B F B 是一个正方形,则椭圆的离心率为__________.22【分析】四边形1122F B F B 是个正方形,则其对角线12F F 与12B B 相等,即22c b =,由此结合a ,b ,c 的关系,即可求出离心率.【详解】∵四边形1122F B F B 是一个正方形,∴正方形1122F B F B 的对角线相等,1212F F B B =,∵焦距122F F c =,短轴长122B B b =,∴22c b =即c b =,∴a ===,∴离心率22c e a ===.故答案为:2.14.过点()2,5作圆22:(1)4C x y +-=的切线,则切线方程为__________.2x =或34140x y -+=【分析】当斜率不存在时,检验即可;当斜率存在时,设出直线,利用圆心到直线的距离等于半径列方程求解即可.【详解】圆22:(1)4C x y +-=的圆心为()0,1,半径2r =过点()2,5的直线,当斜率不存在时,直线方程为2x =,符合与圆C 相切;当斜率存在时,设直线方程为()25y k x =-+,即250kx y k --+=,2=,解得34k =,此时直线方程为34140x y -+=.故答案为:2x =或34140x y -+=.15.已知O 为坐标原点,抛物线的焦点F 在x 轴上,且过点(1,2)-,P 为抛物线上一点,||3PF =,则抛物线的标准方程为___________,OPF △的面积为_____________.①.24y x =②.【分析】设抛物线方程为22y ax =(0)a ≠,将点(1,2)-代入求出a ,可得抛物线的标准方程;设00(,)P x y ,根据||3PF =以及抛物线的定义求出0x 和0y ,根据三角形的面积公式可求出结果.【详解】依题意,设抛物线方程为22y ax =(0)a ≠,因为抛物线过点(1,2)-,所以2(2)2a -=,所以2a =,所以抛物线的标准方程为:24y x =.由24y x =可知,准线方程为:=1x -,设00(,)P x y ,则0||1PF x =+,因为||3PF =,所以013x +=,即02x =.所以2004428y x ==⨯=,所以0||y =,所以OPF △的面积为:011||||122OF y ⋅=⨯⨯=.故答案为:24y x =.16.若点()2,0到直线l 的距离小于1,则在下列曲线中:①28y x =;②()2234x y -+=;③22195x y +=;④2213y x -=;与直线l 一定有公共点的曲线的序号是_________.(写出你认为正确的所有序号)①②③④【分析】将问题转化为直线l 必经过圆()2221x y -+=的内的点,分别作出每个选项与圆()2221x y -+=的图象,根据包含关系可确定结果.【详解】若点()2,0到直线l 的距离小于1,则直线l 必经过以()2,0为圆心,1为半径的圆的内部,即直线l 必经过圆()2221x y -+=的内的点;对于①,作出28y x =与()2221x y -+=图象如下图所示,则过圆()2221x y -+=内的点的所有直线与28y x =都有交点,①正确;对于②,作出()2234x y -+=与()2221x y -+=图象如下图所示,则过圆()2221x y -+=内的点的所有直线与()2234x y -+=都有交点,②正确;对于③,作出22195x y +=与()2221x y -+=图象如下图所示,则过圆()2221x y -+=内的点的所有直线与22195x y +=都有交点,③正确;对于④,作出2213y x -=与()2221x y -+=图象如下图所示,则过圆()2221x y -+=内的点的所有直线与2213y x -=都有交点,④正确.故答案为:①②③④.【点睛】关键点点睛:本题考查圆锥曲线中各种曲线图象之间的关系,解题关键是能够将问题转化为经过圆内部的点的直线与曲线永远有公共点,从而根据曲线方程作出图象,根据图象包含关系来确定结果.三、解答题(共3题,共36分,解答应写出文字说明,演算步骤或证明过程)17.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,,M N 分别为棱,PD BC 的中点,2PA AB ==.(1)求证://MN 平面PAB ;(2)求直线MN 与平面PCD 所成角的正弦值.(1)证明见解析;(2)1010.【分析】(1)证明线面平行,用线面平行的判定定理,在面PAB 内找一条直线与MN 平行;(2)建立空间直角坐标系,利用向量法求线面角.【详解】(1)在四棱锥P ABCD -中,取PA 的中点E ,连接EB 、EM ,因为M 是PD 的中点,所以EM AD ,且12EM AD =.又因为底面ABCD 是正方形,N 是BC 的中点,所以BN AD ∥,且12=BN AD ,所以EM BN ∥且=EM BN ,所以四边形MNBE 是平行四边形.所以MN BE ∥.由于EB ⊂平面PAB ,MN ⊄平面PAB ,所以//MN 平面PAB .(2)因为底面ABCD 是正方形,所以AB ⊥AD .又因为PA ⊥平面ABCD ,所以可以以点A 为坐标原点,AB 、AD 、AP 分别为x 、y 、z 轴,如图建立空间直角坐标系,则(0,0,0)A ,(2,2,0)C ,(0,2,0)D ,(0,0,2)P ,(0,1,1)M ,(2,1,0)N .(2,2,2),(2,0,0)PC CD →→=-=-,设平面PCD 的法向量为(,,)m x y z =,有:0,0,m PC m CD ⎧⋅=⎨⋅=⎩即0,0,x y z x +-=⎧⎨=⎩,令1y =,则=1z ,所以(0,1,1)m = .(2,0,1)MN =- ,设直线MN 与平面PCD 所成角为θ,有:sin cos ,MN m θ= =MN m MN m⋅⋅10.所以直线MN 与平面PCD 所成角的正弦值为1010.【点睛】立体几何解答题的基本结构:(1)第一问一般是几何位置关系的证明,通常用判定定理;(2)第二问是计算,求角或求距离(求体积通常需要先求距离),通常可以建立空间直角坐标系,利用向量法计算.18.已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为,A B ,且AB 4=,离心率为12,O 为坐标原点.(1)求椭圆C 的方程;(2)设P 是椭圆C 上不同于,A B 的一点,直线,PA PB 与直线4x =分别交于点,M N .证明:以线段MN 为直径作圆被x 轴截得的弦长为定值,并求出这个定值.(1)22143x y +=(2)证明见解析,定值为6【分析】(1)根据24AB a ==、离心率和椭圆,,a b c 之间关系可直接求得结果;(2)设(),P m n ,可得直线,PA PB 方程,进而确定,M N 两点坐标,设椭圆右焦点为F ,利用平面向量数量积的坐标运算可证得FM FN ⊥,可知以MN 为直径的圆过点()1,0F ,由此可确定线段MN 为直径作圆被x 轴截得的弦长.【小问1详解】由题意知:24AB a ==,解得:2a =,又离心率12c e a ==,1c ∴=,2223b a c ∴=-=,∴椭圆C 的方程为:22143x y +=.【小问2详解】由(1)得:()2,0A -,()2,0B ,设(),P m n ,则223412m n +=,即224123n m =-;直线():22n PA y x m =++,直线():22n PB y x m =--,M ∴点纵坐标62M n y m =+,N 点纵坐标22N n y m =-,即64,2n M m ⎛⎫ ⎪+⎝⎭,24,2n N m ⎛⎫ ⎪-⎝⎭,又椭圆右焦点为()1,0F ,63,2n FM m ⎛⎫∴= ⎪+⎝⎭ ,23,2n FN m ⎛⎫= ⎪-⎝⎭,()()22222231239412999990444m m n FM FN m m m --∴⋅=+=+=+=-=--- ,即FM FN ⊥,∴以MN 为直径的圆过点()1,0F ,又圆心横坐标为4,∴以MN 为直径的圆被x 轴截得的弦长为()2416⨯-=.即以线段MN 为直径作圆被x 轴截得的弦长为定值6.【点睛】关键点点睛:本题考查直线与椭圆综合应用中的定值问题的求解,本题求解定值问题的关键是能够利用平面向量数量积的坐标运算说明椭圆右焦点即为所求圆与x 轴的其中的一个交点,由圆的对称性可确定定值.19.已知抛物线2:4C y x =,O 为坐标原点,过焦点F 的直线l 与抛物线C 交于不同两点,A B .(1)记AFO V 和BFO V 的面积分别为12,S S ,若212S S =,求直线l 的方程;(2)判断在x 轴上是否存在点M ,使得四边形OAMB 为矩形,并说明理由.(1)440x -=;(2)不存在,理由见详解.【分析】(1)设直线l 方程为1x ty =+,()()1122,,,A x y B x y ,利用韦达定理及212y y =-计算可得答案;(2)假设存在点M ,使得四边形OAMB 为矩形,根据抛物线的性质推出OA OB ⊥不成立,则可得不存在点M ,使得四边形OAMB 为矩形.【小问1详解】设直线l 方程为1x ty =+,()()1122,,,A x y B x y 联立241y x x ty ⎧=⎨=+⎩,消去x 得2440y ty --=,得124y y t +=①,124y y =-②,又因为212S S =,则212y y =-③由①②③解得24t =±,即直线l 的方程为14x y =±+,即440x ±-=【小问2详解】假设存在点M ,使得四边形OAMB 为矩形,则,OM AB 互相平分所以线段AB 的中点在x 上,则AB x ⊥轴,此时()()1,2,1,2A B -41OA OB k k ∴=-≠-则OA OB ⊥不成立.故在x 轴上不存在点M ,使得四边形OAMB 为矩形。
2022-2023学年北京市北京市海淀区高二年级上册学期数学期末复习试题【含答案】
2022-2023学年北京市北京市海淀区高二上学期数学期末复习试题一、单选题1.已知复数满足,若为纯虚数,则的值为( )z (34i)4i()z b b -=+∈R z b A .B .C .4D .34-3-【答案】D【分析】首先变形求出的表达式,再根据纯虚数的定义求解即可.z 【详解】∵,,()()34i 4i z b b -=+∈R ()()()()4i 34i 124316i 4i 34i 2525b b b b z ++-+++∴===-因为为纯虚数,z 124033160b b b -=⎧⇒=⎨+≠⎩故选:D2.已知平面两两垂直,直线满足:,则直线不可能满足αβγ、、a b c 、、,,a b c αβγ⊆⊆⊆a b c 、、以下哪种关系A .两两垂直B .两两平行C .两两相交D .两两异面【答案】B【分析】通过假设,可得平行于的交线,由此可得与交线相交或异面,由此不可能//a b ,a b ,αβc 存在,可得正确结果.////a b c 【详解】设,且与均不重合l αβ= l ,a b 假设:,由可得:,////a b c //a b //a β//b α又,可知,l αβ= //a l //b l 又,可得:////a b c //c l因为两两互相垂直,可知与相交,即与相交或异面,,αβγl γl c 若与或重合,同理可得与相交或异面l a b l c 可知假设错误,由此可知三条直线不能两两平行本题正确选项:B【点睛】本题考查空间中的直线、平面之间的位置关系,关键在于能够通过线面关系得到第三条直线与前两条线之间的位置关系,从而得到正确结果.3.“m =0是“直线与直线之间的距离为2”的( )()12110mx m l y +-+=:()22110l mx m y +--=:A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】根据平行线间的距离公式可得或,进而根据充分与不必要条件的定义判断即可.0m =45m =【详解】两条平行线间的距离,即,解得或,2d ==2540m m -=0m =45m =即“”是“两直线间距离为2”的充分不必要条件.0m =故选:A.4.如图所示,在平行四边形中,,沿将折起,使平面平面ABCD AB BD ⊥BD ABD △ABD ⊥,连接,则在四面体的四个面中,互相垂直的平面的对数为( )BCD AC ABCDA .1B .2C .3D .4【答案】C【分析】利用线面垂直得到平面平面,平面平面,平面平面,ABD ⊥BCD ABC ⊥BCD ACD ⊥ABD 得到答案.【详解】平面平面,平面平面,ABD ⊥BCD ABD ⋂BCD BD =,平面,故平面,平面,故平面平面;AB BD ⊥AB ⊂ABD AB ⊥BCD AB ⊂ABC ABC ⊥BCD ,平面,故平面,平面,故平面平面;CD BD ⊥CD ⊂BCD CD ⊥ABD CD ⊂ACD ACD ⊥ABD 综上所述:平面平面;平面平面;平面平面;ABD ⊥BCD ABC ⊥BCD ACD ⊥ABD 故选:C5.直线被圆截得的弦长的最小值为( ):310l ax y a --+=22:(1)(2)25C x y ++-=A .B .C .D .【答案】B【分析】确定直线过定点,当时,直线被圆截得的弦长最短,计算即可.()3,1P PC l ⊥l C 【详解】直线,即,直线过定点,:310l ax y a --+=()310a x y --+=l ()3,1P 圆的圆心为,,当时,直线被圆截得的弦长最短.C ()1,2C -=5r PC l ⊥l C因为,所以弦长的最小值为.PC ===故选:B6.在平面内,,是两个定点,是动点,若,则点的轨迹为( )A B C 1AC BC ⋅=C A .圆B .椭圆C .双曲线D .抛物线【答案】A【分析】设出、、的坐标,利用已知条件,转化求解的轨迹方程,推出结果即可.A B C C 【详解】解:在平面内,,是两个定点,是动点,A B C 不妨设,,设,(,0)A a -(,0)B a (,)C x y 所以,(),AC x a y =+(),BC x a y =-因为,1AC BC ⋅= 所以,即,()()21x a x a y +-+=2221x y a +=+所以点的轨迹为圆.C 故选:A .7.与双曲线有共同渐近线,且经过点的双曲线的虚轴的长为( )22148x y -=()2,4A .B .C .2D .4【答案】D【分析】依题意,设双曲线的方程为,将点的坐标代入可求.即可求解.()22048x y λλ-=≠()2,4λ【详解】设与双曲线有共同的渐近线的双曲线的方程为,22148x y -=()22048x y λλ-=≠该双曲线经过点,()2,4.416148λ∴=-=-所求的双曲线方程为:,即.∴22148x y -=-22184y x -=所以,2b =所以虚轴长为4.故选:D8.已知,,动点满足,则动点的轨迹与圆的位置()0,0O ()3,0A (),P x y 2PAPO=P ()2221x y -+=关系是( )A .相交B .外切C .内切D .相离【答案】B【分析】由题意求出动点的轨迹方程,再由两圆圆心距与半径的关系判断.P 【详解】设,由题意可知,(,)P x y ()222222||4||,(3)4PA PO x y x y =∴-+=+ 整理得,点的轨迹方程为,P 22(1)4x y ++=其图形是以为圆心,以2为半径的圆,(1,0)-而圆的圆心坐标为,半径为1,22(2)1x y -+=(2,0)可得两圆的圆心距为3,等于,213+=则动点的轨迹与圆的位置关系是外切.P 22(2)1x y -+=故选:B.9.已知点是抛物线上的动点,点A 的坐标为,则点到点A 的距离与到轴的距P 24x y =()12,6P x 离之和的最小值为( )A .13B .12C .11D 【答案】B【分析】作出辅助线,利用抛物线定义得到点到点A 的距离与到轴的距离之和P x ,由两点之间,线段最短,得到距离之和的最小值为,求出答案.1PA PH PA PF +=+-1AF -【详解】如图,⊥轴,连接,PH x PF 由抛物线定义得:抛物线的准线方程为,焦点坐标为,24x y =1y =-()0,1故,1PH PF =-则点到点A 的距离与到轴的距离之和,P x 1PA PH PA PF +=+-连接,与抛物线交于点,此时,AF P '11P A P F AF ''+-=-故点到点A 的距离与到轴的距离之和的最小值为,P x 1AF -其中,故最小值为.13AF ==112AF -=故选:B10.设,分别为双曲线:的左、右焦点,为双曲线的左顶点,以1F 2F C ()222210,0x y a b a b -=>>A 为直径的圆交双曲线的某条渐近线于,两点,且,(如图),则该双曲线的12F FM N 135MAN ∠=︒离心率为( )ABC .2D【答案】D【分析】联立与求出,进而的正切可求,得出的关系,从222x y c +=by xa =(),M a b MAO ∠a b 与而进一步解出答案.【详解】依题意得, 以线段为直径的圆的方程为 ,12F F 222x y c +=双曲线 的一条渐近线的方程为.C b y x a =由 以及222,,b y x a x y c ⎧=⎪⎨⎪+=⎩222,a b c +=解得 或,x a y b =⎧⎨=⎩,.x a y b =-⎧⎨=-⎩不妨取 , 则.(),M a b (),N a b --因为,(),0,135A a MAN ∠-=所以 ,45MAO ∠=又,tan 2b MAO a ∠=所以,12b a =所以 ,2b a =所以该双曲线的离心率 e ==故选:D.二、填空题11.在复数范围内分解因式:___________.44x +=【答案】()()()()1i 1i 1i 1i x x x x +--+++--【分析】因式分解第一步将,第二步()()2422i 4i 2x x x =+-+=()()2222i 1i xx +=-- 综合起来即可得到答案.()()2222i 1i xx -=-+【详解】由题意知()()()()22222242i 2i 14i 1i x x x x x ⎡⎤⎡⎤=+-=+---+⎣⎦⎣⎦故答案为:.()()()()1i 1i 1i 1i x x x x +--+++--12化简后为______.10=【答案】2212516y x +=【分析】运用方程的几何意义得出结果.【详解】解:,10+=故令,,(),M x y ()10,3F -()20,3F ∴,1212106MF MF F F +=>=∴方程表示的曲线是以,为焦点,长轴长的椭圆,()10,3F -()20,3F 210a =即,,,5a =3c =4b =∴方程为.2212516y x +=故答案为:.2212516y x +=13.已知集合,,若集合中有2个元素,则实数(){,A x y x ==(){},B x y y x b ==+A B ⋂b 的取值范围是______【答案】(1⎤-⎦【分析】首先分析集合、的元素特征,再数形结合求出参数的取值范围.A B b 【详解】解:由,所以,x =0x ≥221x y +=()0x ≥所以表示以为圆心,为半径的圆在轴及右侧部分的点集,(){,A x y x ==()0,01y 集合表示直线上的点集,(){},B x y y x b ==+y x b =+集合与集合都是点集,集合中有个元素,A B A B ⋂2由,解得1d ==b =由图可知,即.1b <≤-(1b ⎤∈-⎦故答案为:(1⎤-⎦14.已知实数满足,则的最大值为__________.,x y 2222x y x y+=+4yx -【答案】1【分析】由曲线方程画出曲线所表示的图形,将看作曲线上的点与坐标为的点连线的斜4y x -()4,0率,求出最大值.【详解】由“”和“”代入方程仍成立,所以曲线关于x 轴和y 轴对称,故只x -y -2222xy x y+=+需考虑,的情形,0x ≥0y ≥此时方程为,即,所以的轨迹如下图,2222x y x y +=+()()22112x y -+-=(),x y,表示点和连线的斜率,由图可知,当曲线第四象限部分半圆(圆心为044y y x x -=--(),x y ()4,0l l.()1,1-设:,解得或(舍去),l ()4y k x =-1k =17-所以的最大值为1.4yx -故答案为:1.15.在正方体中,N 为底面的中心,为线段上的动点(不包括两个1111ABCD A B C D -ABCD P 11A D 端点),为线段的中点,则下列说法中正确的序号是________________.M AP①与是异面直线;CM PN ②;CM PN >③平面平面;PAN ⊥11BD B ④过三点的正方体的截面一定是等腰梯形.,,P A C 【答案】②③④【分析】连接NC ,根据平面几何知识可得CN ,PM 交于点A ,可判断①;分别在△MAC 中,和在△PAN 中,运用余弦定理求得CM 2和PN 2,比较大小可判断②;证明与平面后可得面AN 11BDD B 面垂直,可判断③;作出过三点的截面后可判断④.,,P A C 【详解】解:连接NC ,因为共线,即交于点,共面,,,C N A ,CN PM A因此共面,①错误;,CM PN 记,则,PAC θ∠=2222212cos cos 4PN AP AN AP AN AP AC AP AC θθ=+-⋅=+-⋅,2222212cos cos 4CM AC AM AC AM AC AP AP AC θθ=+-⋅=+-⋅又,AP AC <,,即.②正确;22223()04CM PN AC AP -=->22CM PN >CM PN >由于正方体中,,平面,平面,AN BD ⊥1BB ⊥ABCD AN ⊂ABCD 所以,因为,平面,1BB AN ⊥1BB BD B ⋂=1,BB BD ⊂11BB D D 所以平面,AN ⊥11BB D D 因为平面,AN ⊂PAN 所以平面平面,即平面平面,③正确;PAN ⊥11BDD B PAN ⊥11BD B过点作交于点,连接,由正方体性质知,,P 11//PK A C 11C D K 11,KC A C 11//A C AC 所以,共面,且,//PK AC ,PK AC 11A P C K =故四边形就是过P ,A ,C 三点的正方体的截面,PKCA 因为,为线段上的动点(不包括两个端点),P 11A D 所以,,PK AC ≠2222221111AP A P A A C K C C CK =+=+=故四边形是等腰梯形,故④正确.PKCA 故答案为:②③④.三、解答题16.已知直线():10l x m y m +--=(1)若直线的倾斜角,求实数m 的取值范围;ππ,42α⎡⎤∈⎢⎥⎣⎦(2)若直线l 分别与x 轴,y 轴的正半轴交于A ,B 两点,O 是坐标原点,求面积的最小值及此AOB 时直线l 的方程.【答案】(1)01m ≤≤(2)最小值为2,直线l 方程为:.AOB S 20x y +-=【分析】(1)由直线的斜率和倾斜角的范围可得的不等式,解不等式可得;m (2)由题意可得点和点,可得,由基本不0,1m B m ⎛⎫ ⎪-⎝⎭(),0A m 111[(1)2]221S OA OB m m ==-++-等式求最值可得.【详解】(1)解:由题意可知当时,倾斜角为,符合题意1m =2π当时,直线l 的斜率1m ≠11k m =-∵倾斜角,∴.[)ππ,tan 1,42k αα∞⎡⎫∈⇒=∈+⎪⎢⎣⎭11011m m ≥⇒≤<-故m 的范围:.01m ≤≤(2)解:在直线l 中:令x =0时,即,令y =0时x =m ,即1m y m =-0,1m B m ⎛⎫ ⎪-⎝⎭(),0A m 由题意可知:得001x m m y m =>⎧⎪⎨=>⎪-⎩1m >即()()()2212111112212121AOBm m m m S OA OB mm m m -+-+=⋅=⋅==---△()1111222212m m ⎡⎤⎡⎤=-++≥+=⎢⎥⎢⎥-⎣⎦⎣⎦当且仅当时取等号,()2111121m m m m -=⇒-=⇒=-故最小值为2,此时直线l 方程为:.AOB S 20x y +-=17.已知圆经过点,,且______.从下列3个条件中选取一个,补充在上面的横E ()0,0A ()2,2B 线处,并解答.①与轴相切;②圆恒被直线平分;③过直线与直线y E ()20R mx y m m --=∈440x y +-=的交点C .240x y --=(1)求圆的方程;E (2)求过点的圆的切线方程.()4,3P E 【答案】(1)任选一条件,方程都为22(2)4x y -+=(2)或4x =512160x y -+=【分析】(1) 选①,设圆的方程为,根据题意列出方程组,求解即可;E 222()()x a y b r -+-=选②,由题意可得直线恒过为圆的圆心,代入A 点坐标即可求解;20mx y m --=(2,0)E 选③,求出两直线的交点为,根据圆过A ,B ,C 三点求解即可;(4,0)C E (2)先判断出点P 在圆外,再分切线的斜率存在与不存在分别求解即可.E 【详解】(1)解:选①,设圆的方程为,E 222()()x a y b r -+-=由题意可得,解得,则圆的方程为;222222(2)(2)a ra b ra b r ⎧=⎪+=⎨⎪-+-=⎩202a b r =⎧⎪=⎨⎪=⎩E 22(2)4x y -+=选②,直线恒过,20mx y m --=(2,0)而圆恒被直线平分,E 20(R)mx y m m --=∈所以恒过圆心,因为直线过定点,20mx y m --=20mx y m --=(2,0)所以圆心为,可设圆的标准方程为,(2,0)222(2)x y r -+=由圆经过点,得,E (0,0)A 24r =则圆的方程为.E 22(2)4x y -+=选③,由条件易知,(4,0)C 设圆的方程为,2222(4)00x y Dx Ey F D E F ++++=+->由题意可得,解得,082201640F D E F D F =⎧⎪+++=⎨⎪++=⎩400D E F =-⎧⎪=⎨⎪=⎩则圆的方程为,即.E 2240x y x +-=22(2)4x y -+=综上所述,圆的方程为;E 22(2)4x y -+=(2)解:因为,所以点P 在圆外,22(42)3134-+=>E 若直线斜率存在,设切线的斜率为,k 则切线方程为,即3(4)y k x -=-430.kx y k --+=,解得.2512k =所以切线方程为,512160x y -+=若直线斜率不存在,直线方程为,满足题意.4x =综上过点的圆的切线方程为或.(4,3)P E 4x =512160x y -+=18.如图,在三棱一中,为等腰直角三角形,.-P ABC ABC π,2BAC ∠=π3PAC PAB ∠=∠=(1)求证:;PA BC ⊥(2)若,求平面与平面的夹角的余弦值.24PA AC ==PAB PBC 【答案】(1)证明见解析【分析】(1)取中点,连接以及,先证明,再根据线面垂直的判定证BC D AD PD ACP ABP ≌△△明平面,进而根据线面垂直的性质证明即可;BC ⊥PAD (2)根据角度关系,结合线面垂直的判定可得平面,再根据线线垂直,以为原点,AC ⊥CPE A 为轴,为轴,建立空间直角坐标系,再分别计算平面与平面的法向量求解即AB x AC y PAB PBC 可.【详解】(1)证明:取中点,连接以及,如图2,BC D AD PD图2在和中,,,,ACP △ABP AB AC =AP AP =PAC PAB ∠=∠所以ACP ABP ≌△△所以,所以CP BP =PD BC⊥又因为,平面,平面,,AD BC ⊥AD ⊂PAD PD ⊂PAD AD PD D = 所以平面BC ⊥PAD又因为平面,所以AP ⊂ADP PA BC⊥(2)在平面中,过点作,垂足为,连接,,,如图3,PAD P PE AD ⊥E CE BE PE图3由(1)平面,则,则平面BC ⊥PAD BC PE ⊥PE ⊥ABC 在中,,,同理PCA π3PAC ∠=π22AP AC PCA =⇒∠=π2PBA ∠=∵,,且,平面,则平面.AC PE ⊥AC CP ⊥PE CP P ⋂=,PE CP ⊂CPE AC ⊥CPE 又∵平面,∴,同理可得,CE ⊂CPE A C CE ⊥AB BE ⊥则四边形为正方形,ABCE,则在中,可求出2AB AC BE CE ====Rt PBE △PB =PE =则以为原点,为轴,为轴,如图建立空间直角坐标系,A AB x AC y则,,,,()0,0,0A ()2,0,0B ()0,2,0C (2,2,P设平面的法向量为,,,PAB (),,m x y z =()2,0,0AB =(0,2,BP =则,令,则,2020x y =⎧⎪⎨+=⎪⎩1y =0x=0,1,z m ⎛=⇒= ⎝ 设平面的法向量为,,,PBC (),,n x y z =()2,2,0CB =-(0,2,BP =则,令,则,22020x y y -=⎧⎪⎨+=⎪⎩1x =1y=1,1,z n ⎛=⇒= ⎝ 记二面角的平面角为,A PBC --θ则cos m nm n θ⋅===⋅又因为为锐角,则θcos θ=19.已知椭圆C :与椭圆的离心率相同,为椭圆C 上()222210x y a b b a +=>>22184x y +=P ⎫⎪⎪⎭一点.(1)求椭圆C 的方程.(2)若过点的直线l 与椭圆C 相交于A ,B 两点,试问以AB 为直径的圆是否经过定点?若1,03Q ⎛⎫⎪⎝⎭T 存在,求出的坐标;若不存在,请说明理由.T 【答案】(1)2212y x +=(2)存在的坐标为,理由见解析T (1,0)-【分析】(1)先求出椭圆,由此得到,将点的坐标代入椭22184x y +=222a b =P 圆,得到,再代入,解得,,则可得结果;C 221112b a +=222a b =21b =22a =(2)先用两个特殊圆求出交点,再猜想以AB 为直径的圆经过定点,再证明猜想,(1,0)-(1,0)T -设直线,并与联立,利用韦达定理得到,,进一步得到,1:3l x my =+2212y x +=12y y +12y y 12x x +,利用,,,证明即可.12x x 12y y +12y y 12x x +12x x 0TA TB ⋅=【详解】(1)在椭圆中,,,离心率22184x y +=1a =12b=12c ==e =11c a ==在椭圆C :中,()222210x y a b b a +=>>c e a ===,=222a b =因为在椭圆C :上,P ()222210x y a b b a +=>>所以,所以,所以,,221112b a +=2211122b b +=21b =22a =所以椭圆.22:12y C x +=(2)当直线的斜率为0时,线段是椭圆的短轴,以AB 为直径的圆的方程为,l AB 221x y +=当直线的斜率不存在时,直线的方程为,代入,得,以AB 为直径的圆的l l 13x =2212y x +=43y =±方程为,22116()39x y -+=联立,解得,2222111639x y x y ⎧+=⎪⎨⎛⎫-+=⎪ ⎪⎝⎭⎩10x y =-⎧⎨=⎩由此猜想存在,使得以AB 为直径的圆是经过定点,(1,0)T -(1,0)T -证明如下:当直线的斜率不为0且斜率存在时,设直线,l 1:3l x my =+联立,消去并整理得,221312x my y x ⎧=+⎪⎪⎨⎪+=⎪⎩x 22128(0239m y my ++-=,224184()0929m m ∆=++⋅>设、,11(,)A x y 22(,)B x y 则,,122213()2m y y m +=-+122819()2y y m =-+则,121212112()333x x my my m y y +=+++=++2222133()2m m =-++121211()()33x x my my =++2121211()39m y y m y y =+++22228211199()9()22m m m m =--+++,22101199()2m m =-++因为TA TB⋅1122(1,)(1,)x y x y =+⋅+1212(1)(1)x x y y =+++1212121x x x x y y =++++222221012281111939()3()9()222m m m m m =-+-++-+++2216816199()2m m +=-++,0=所以,所以点在以为直径的圆上,TA TB ⊥(1,0)T -AB 综上所述:以AB 为直径的圆是经过定点.(1,0)T -【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为;()()1122,,,x y x y (2)联立直线与圆锥曲线的方程,得到关于(或)的一元二次方程,必要时计算;x y ∆(3)列出韦达定理;(4)将所求问题或题中的关系转化为、(或、)的形式;12x x +12x x 12y y +12y y (5)代入韦达定理求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学上学期期末复习题
一、选择题
(A )3x +4y -5=0 (B )3x +4y +5=0 (C )-3x +4y -5=0 (D )-3x +4y +5=0
2.直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平1个单位后,又回到原来位置,那么l 的斜率为( )
(A )-;3
1
(B )-3;
(C );3
1
(D )3
3.下面程序的输出结果为( ) 程序:
A. 3,4
B. 7,7
C. 7,8
D. 7,11
4.已知x A .(0,0) B .(1.5,5) C .(4,1.5) D .(2,2)
5.在等腰Rt △ABC 中,在斜边AB 上任取一点M ,则AM 的长小于AC 的长的概率为( ) A.12 B. 32 C. 14 D. 2
2
6.点M ,N 在圆x 2+y 2+kx +2y -4=0上,且点M ,N 关于直线l :x -y +1=0对称,则该
圆的半径为 ( ) (A).2 2
(B).2 (C).3
(D).1
7.用秦九韶算法求当x=x 0时f(x)=5x 6+3x 5+x 4+2x 3+4x 2+7x-1的值,做的乘法次数为( ) A. 5 B. 6 C. 7 D. 以上都不对 8.在证明某一题目的过程中,有如下推理: 两个角是对顶角,则两个角相等
12∠∠和不是对顶角。
以上推理使用了( ) A.归纳推理 B.演绎推理 C.类比法 D.反证法
9.直线y x m =-+与圆2
2
1x y +=在第一象限内有两个不同交点,则m 的取值范围是
()A 0m <<()B 1m <<()C 1m ≤≤()D m <<( )
10.从,内任取一点,该点到原点的距离不超过2的概率是( )
{(,)||2||2|2,,}M x y x y x y R =-+-≤∈12∠∠和不相等
A .
B .
C .
D .14
二.填空题
11. 计算:2
3
4
2010_________.i i i i i ++++
+=
12.已知在等差数列{}*
(,,,),n m n p q a m n p q m n p q N a a a a +=+∈+=+中,若则. 类比上述性质,在等比数列{}n a 中,则有__________________________________. 13. 数据123,,,...,n a a a a 的方差为2σ,则数据1232,2,2,...,2n a a a a 的方差为______. 14、过点(0,1)的直线与x 2
+y 2
=4相交于A 、B 两点,则|AB |的最小值为_______ 15、在平面直角坐标系x Oy 中,已知圆x 2+y 2=4上有且只有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值范围是________.
三.解答题 16.(本小题满分12分)根据下面的要求,求满足1+2+3+…+n > 500的最小的自然数n 。
(1)画出执行该问题的程序框图;
(2)以下是解决该问题的一个程序,但有几处错误, 请找出错误并予以更正。
17.(12分)过点(2,3)的直线L被两平行直线L:2x-5y+9=0与L2:2x-5y-7=0所截线段AB的中点恰在直线x-4y-1=0上,求直线L的方程 18.(本小题满分10分)连续抛掷3枚硬币,观察落地后这3枚硬币出现正面还是反面。
(1)写出这个试验的基本事件;(2)“至少有两枚正面向上”这个事件的概率?(3)“恰有一枚正面向上”这个事件的概率?
2
8
π-2
4
π-2
16
π
-
19.为了了解高一学生的体能情况,某校抽取部分学生实行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12. (1)第二小组的频率是多少?样本容
量是多少?
(2)若次数在110以上(含110次)
为达标,试估计该学校全体高一
学生的达标率是多少?
(3)在这次测试中,学生跳绳次数的
中位数落在哪个小组内?请说明
理由。
20.证明:若
.0
a>
1
2
a
a
+-
21、如图,在平面直角坐标系x O y中,平行于x轴且过点A(33,2)的入射光线l1被直线l:
y=
3
3x反射.反射光线l2交y轴于B点,圆C过点A且与l1, l2都相切.
(1)求l2所在直线的方程和圆C的方程;
(2)设P,Q分别是直线l和圆C上的动点,求PB+PQ的最小值及此时点P的坐标.。