定向凝固及其应用

合集下载

定向凝固技术的发展及在特厚钢板生产中的应用

定向凝固技术的发展及在特厚钢板生产中的应用

Vo . 0 . 1 3 No 5
Oc . 2 0 t ,0 7
定 向凝 固技 术 的 发展 及 在 特 厚 钢 板 生 产 中 的 应 用
刘 鹏 , 坤 , 亮花 刘 冯
( 宁科技大学 材料科学与工程学院 , 辽 辽宁 鞍山 1 4 5 ) 0 1 1
摘 要 : 定向凝固枝术是制备具有单一取向组织和高力学性能材料的有效方法。就定向凝固技术的原理、
随着 工业发 展 , 一些 重 型设备 和 军用装 备 对特 厚板 的需 求 愈来 愈 多 的 , 海 洋石 油 平 台 、 空母 舰 如 航 装 甲板 、0万 千 瓦汽 轮发 电机 汽包 、 6 大型 水 电站 闸 门 、 原子 能 发 电 站 外壳 、 大厚 板模 具 钢 等 。这 些 特 特
厚板 如用传 统 钢 锭 轧制 , 往 因中心 偏 析 、 往 内部疏 松 、 V 型偏 析 、 纹 、 杂 的存 在而 难 以胜 任 , 别 倒 裂 夹 特 是要求 z 向性 能和超声 波 探伤 的特 厚板 问题 更加 突出 。如果 采用 连 铸 生产 特厚 板 , 由于压 缩 比不 够 而
难 以满 足板 厚 度 的要求 , 用定 向凝 固技术 能 够消 除结 晶过 程 中生 成 的横 向 晶界 , 以提高 材料 的力 学 采 可
发展 状 况 及 其 在 特 厚 钢 板 生 产 中的 应 用 作 了综 合 阐述 。
关键 词 : 定向凝固; 特厚钢板 ; 综合性能
中图分 类号 : G 3 .1 文献 标识 码 : 文章 编号 :6241 (070— 7 5 T 355 A 17— 020 )5 4 3 4 0 0
高 材料 的纵 向力 学性 能 。 因此 , 在半 导体 材料 、 磁性 材 料 、 复合材 料 等 的加 工 中应 用广 泛 , 成为凝 固过 并

定向凝固及其应用PPT资料44页46页PPT

定向凝固及其应用PPT资料44页46页PPT
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
定向凝固及其应用PPT资料44页
31、园日涉以成趣,门虽设而常关。 32、鼓Байду номын сангаас无所思。朝起暮归眠。 33、倾壶绝余沥,窥灶不见烟。
34、春秋满四泽,夏云多奇峰,秋月 扬明辉 ,冬岭 秀孤松 。 35、丈夫志四海,我愿不知老。
谢谢你的阅读

定向凝固技术的发展与应用

定向凝固技术的发展与应用

各 种热 流能 被 及时 导 出是 定 向凝 固过 程得 以实
现 的关 键 , 也是凝 固过 程成 败 的关 键 。获得并 保持单 向热流 是定 向凝 固成 功的重 要保 证 伴 随着 对热 流 。 控 制 ( 同的加 热 、 不 冷却 方式 ) 术 的发 展 , 技 传统 定 向
hso y o p o e e p rt r r din n o t d c oig r t r m h s e t f ndr cin l O it r fi r v d tm e a u e g a e t d pr mo e o l ae f m a n 0 t e a p c ii t a - o u e o S
p e r t n a e ito c d. r pa a i r r du e o n
K ywor s Undr c in l o iic t n, m p r t r r din , t r l e a a in e d : i i t a l f a i Te e o s d i o e au e g a e t Ma e i a pr p r t o
l ic t nt c n lg v lt n An h p l a in f ndi c in l oi f a int c n lg a e il i f ai e h oo y e ou i . d t e a pi t so i r t a l i t e h oo y i m t r di o o c o u e o s dic o n a
ic t n t c n l g e n o t u u n di c in l o i f a i n t c n l g e r lo r ve d. I i, f a i e h o o i s a d c n i o s u i r t a l i t e h o o i s a e a s e iwe t s a i o n e o s dic o

第八章 凝固新技术—定向凝固

第八章 凝固新技术—定向凝固

西北工业大学李建国等人通过改变加热方式,在液态
金属冷却法(LMΒιβλιοθήκη 法)的基础上发展的一种新型定向凝固 技术—区域熔化液态金属冷却法,即ZMLMC法。
33
这种方法将区域熔炼与液态金属冷却相结合,利用
感应加热机中队了凝固洁面前沿液相进行加热,从而有
效地提高了固液前沿的温度梯度。西北工业大些研制的 ZMLMC定向凝固装置,其最高温度梯度可达1300K/cm,最
34
1.试样 2.感应圈 3.隔热板 4.冷却水 5.液态金属 6.拉锭机构 7.熔区 8.坩埚 超高温度梯度定向凝固装置图
35
电磁约束成形定向凝固(DSEMS)
在ZMLMC法基础上,凝固剂属国家重点实验室提出并 探索研究了近十年的电磁约束成形定向凝固技术。该技 术是将电磁约束成型技术与定向凝固技术相结合而产生 的一种新型定向凝固技术。利用电磁感应加热熔化感应 器内的金属材料,并利用在金属熔体部分产生的电磁压 力来约束已熔化的金属熔体成形,获得特定形状铸件的 无坩埚熔炼、无铸型、无污染定向凝固成形。 由于电磁约束成形定向凝固取消了粗厚、导热性能 查的陶瓷模壳、实现无接触铸造,使冷却介质可以直接 作用于金属铸件上,可获得更大的温度梯度,用于生产 无(少)偏析、组织超细化、无污染的高纯难熔金属及 合金,具有广阔的应用前景。
图 2 光学晶体CaF2 (左1:φ220×150mm).
金属单晶具有特殊的力学物理性能
2、 定向凝固原理
—如何实现定向凝固?
10
合金固溶体凝固时的晶体生长形态 a) 不同的成分过冷情况
b) 无成分过冷
C) 窄成分过冷区间
平面晶
胞状晶
d) 成分过冷区间较宽 柱状树枝晶 e) 宽成分过冷 内部等轴晶

定向凝固技术的研究进展与应用

定向凝固技术的研究进展与应用

1.2 新 型 定 向 凝 固 技 术 由于常规的定向凝固技术存在着温度梯度低和冷却速
率小等缺点。造成 凝 固 过 程 中 组 织 粗 化,枝 晶 偏 析 严 重,阻 碍了材料性能的提高。随着定向凝固技术 的 迅 速 发 展,研 究 者在吸收融合常规凝固技术优 点基础上,开发出 了 许 多 新 型 定向凝固技术。
表 1 常 规 定 向 凝 固 法 的 优 缺 点 及 应 用 范 围 Table 1 Advantages,disadvantages and application of the
traditional directional solidification processes
方法
优点
缺点
应用范围
· 116 ·
材料导报 A:综述篇
2016 年 2 月 (上 )第 30 卷 第 2 期
定向凝固技术的研究进展与应用*
问 亚 岗 ,崔 春 娟 ,田 露 露 ,杨 猛 ,薛 添
(西安建筑科技大学冶金工程学院,西安 710055)
摘要 定向凝固技术是制备具有单一取向要求的凝固组织和高性能材料的重要方法,是研究 凝 固 理 论 和 新 型 材料的重要手段。在介绍定向凝固技术原理的基础上,评述 了 传 统 定 向 凝 固 技 术 的 发 展 及 存 在 的 弊 端 ,简 述 了 几 种 新 型 定 向 凝 固 技 术 ,以 及 它 们 在 制 备 新 材 料 中 的 应 用 。
1.2.1 区 域 熔 化 液 态 金 属 冷 却 法 (ZMLMC) 西北工业大学李 建 国 等 通 过 改 变 LMC 法 的 加 热 方 式,
将区域熔化与 LMC 法 相 结 合,开 发 出 区 域 熔 化 液 态 金 属 冷 却定向凝固法,即 ZMLMC 法 。 [13] 该 方 法 与 LMC 方 法 冷 却 方式相同,利用电子束或高频感应电场集中对 凝 固 界 面 前 液 相进行加热,进一步提 高 了 温 度 梯 度。 他 们 自 制 的 ZMLMC 装置,其温度梯 度 最 高 可 达 1300 K/cm,冷 却 速 度 最 大 可 达 50K/s,凝 固 速 率 可 在6~1000μm/s内 调 节 。 采 用 ZMLMC 法,可显著细化高温合金定向凝固一次枝晶和 二 次 枝 晶 的 间 距。但是,该方法单 纯 地 采 用 强 制 加 热 方 法,通 过 提 高 温 度 梯度来提高凝固 速 度,未 能 获 得 较 大 的 冷 却 速 度,却 需 要 散 发掉较多的热量,冷 却 速 度 的 提 高 受 限,一 般 很 难 达 到 快 速 凝固。目前这方面的研究还处于试验阶段。 1.2.2 电 磁 约 束 成 形 定 向 凝 固 (DSEMS)

定向凝固制备铸造多晶硅的原理及应用综述

定向凝固制备铸造多晶硅的原理及应用综述

定向凝固制备铸造多晶硅的原理及应用综述摘要:阐述了介绍了定向凝固应用于硅材料的理论基础,论述了近年来定向凝固制备技术在杂质提纯和晶体生长的研究进展,提出了定向凝固制备铸造多晶硅研究现状和存在的问题。

展望今后的发展前景,认为新型的定向凝固技术制备出的硅锭在杂质含量、晶体结构方面均优于传统凝固技术,应积极改善定向凝固技术,以制备高品质的太阳能硅材料。

关键词定向凝固;铸造多晶硅;杂质和缺陷;转化效率晶体硅太阳能电池包括单晶电池和多晶电池2种,多晶电池的市场份额占到一半以上,商业化的多晶电池效率可以达到14%左右[1]。

实验条件下,多晶电池的最高转化效率达到20.30左右,多晶电池的效率虽然略低于单晶电池1%~2%,但多晶电池制造成本低、环境污染小,仍有很高的性价比和市场[2]。

近年来,由于技术改良、电池效率提高及生产成本下降等有利因素,因而大大促进了多晶电池应用技术的发展,也使业内专家学者给予了多晶电池制备技术更多研究和关注[3]。

影响多晶电池转换效率主要有2个方面:一是多晶硅铸锭的纯度,即使材料中含有少量的杂质,对电池的光电性能就有很大的影响[4];二是尽量减少材料中各种缺陷,多晶硅铸锭中的晶界、位错与杂质聚集成载流子复合中心,大大的降低了多晶电池效率。

由以上表述可知,要提高多晶电池的效率,必须围绕提高材料纯度和降低材料缺陷的技术进行研究,而定向凝固技术正是制备硅晶体材料的典型应用。

定向凝固技术开始只用于传统的高温合金研制,经过几十年的发展,它已经是一种成熟的材料制备技术[5]。

定向凝固技术在多晶硅铸造主要是控制晶体生长和杂质提纯2方面的应用。

定向凝固技术可以很好地控制组织的晶面取向,消除横向晶界,获得大晶粒或单晶组织,提高材料的力学性能[6]。

同时,定向凝固可生成按照一定晶面取向、排列整齐的晶体结构,由于分凝系数的不同,杂质凝聚于晶界和铸锭上方,对材料起到提纯作用。

1. 基本原理多晶硅铸锭实际上就是由定向排列的柱状晶体组合形成,形成的理论基础就是定向凝固原理。

定向凝固技术

定向凝固技术

5.1 定向凝固旳发展历史 5.2 定向凝固基本原理 5.3 定向凝固工艺 5.4 应用实例
Your company slogan
5.1定向凝固旳发展历史
定向凝固过程旳理论研究旳出现是在 1953年,那是Charlmers及其他旳同事们 在定向凝固措施考察液/固界面形态演绎旳 基础上提出了被人们称之为定量凝固科学 旳里程碑旳成份过冷理论。
而当界面前沿存在成份过冷时,界面前沿 因为不稳定原因而形成旳凸起会因为处于过 冷区而发展,平界面失稳,造成树枝晶旳形 成。
Your company slogan
成份过冷理论提供了判断液固界面 稳定性旳第一种简要而合用旳判据,对 平界面稳定性,甚至胞晶和枝晶形态稳 定性都能够很好地做出定性地解释。
Your company slogan
Your company slogan
1、成份过冷理论
纯金属旳凝固过程
在正旳温度梯度下,固液界面 前沿液体几乎没有过冷,固液 界面以平面方式向前推动,即 晶体以平面方式向前生长。
在负旳温度梯度下, 界面前方旳液体强烈过冷, 晶体以树枝晶方式生长。
Your company slogan
成份过冷理论能成功旳鉴定低速生长条件下 无偏析特征旳平面凝固,防止胞晶或枝晶旳生 长。
Your company slogan
单晶在生长过程中绝对要防止固—液界面不稳定 而生出晶胞或柱晶。故而固—液界面前沿不允许有 温度过冷或成份过冷。固液界面前沿旳熔体应处于 过热状态,结晶过程旳潜热只能经过生长着旳晶体 导出。定向凝固满足上述热传播旳要求,只要恰当 旳控制固—液界面前沿熔体旳温度和速率,是能够 得到高质量旳单晶体旳。
但是这一判据本身还有某些矛盾,如:
成份过冷理论把平衡热力学应用到非平衡动力学过程中,必然带 有很大旳近似性;

定向凝固技术及其运用

定向凝固技术及其运用

定向凝固技术能够减少 材料浪费,降低生产成
本。
该技术适用于多种材料, 如金属、陶瓷等,具有
广泛的适用性。
挑战
技术门槛高
定向凝固技术需要专业的设备和熟练的操作 人员,增加了技术门槛。
成本高
由于需要高精度的设备和专业的操作人员, 导致定向凝固技术的成本较高。
生产周期长
由于定向凝固技术的生产过程较为复杂,导 致生产周期相对较长。
降低能耗和减少废弃物排放,推动定向凝固技术的可持续发展。
03
跨学科融合
定向凝固技术涉及到材料科学、物理学、化学等多个学科领域,未来将
加强跨学科的交流与合作,促进定向凝固技术的创新发展。
05
定向凝固技术的前沿研究与最新进展
前沿研究
定向凝固技术的基本原理
定向凝固技术是一种先进的金属材料制备技术,通过控制金属材料的凝固过程,实现材料 的定向生长和组织控制。目前,研究者正在深入研究定向凝固技术的基本原理,包括凝固 过程中的传热、传质和流动等机制,以期进一步优化材料的性能。
特点
可制备单向组织材料, 可实现材料的轻量化、 具有优异的力学性能。 小型化和高效化。
可用于制备高性能的 金属基复合材料和陶 瓷基复合材料。
发展历程
01
02
03
04
20世纪50年代
定向凝固技术初步发展,主要 应用于制备单晶材料。
20世纪60年代
定向凝固技术逐渐成熟,开始 应用于航空航天领域。
20世纪70年代
定向凝固技术的工业应用
随着技术的成熟和进步,定向凝固技术已经逐渐从实验室走向工业化应用。目前,定向凝固技术已经在 汽车、航空航天、能源和轨道交通等领域得到广泛应用,为现代工业的发展提供了重要的技术支持。

定向凝固法制备

定向凝固法制备

定向凝固法制备
定向凝固法是一种用于制备单晶材料的方法,通过控制材料的凝固过程,使其形成具有完整结晶结构的单晶体。

以下是关于定向凝固法制备单晶材料的基本步骤:
1. 材料选择:选择适合定向凝固法的材料,通常是金属、合金或半导体材料。

这些材料应具有良好的熔化性能和晶体生长特性。

2. 准备熔融物料:将选定的材料按照所需的比例混合,并加热至熔点以上形成均匀的熔体。

3. 制备结晶器:设计和制备用于定向凝固的结晶器。

结晶器通常由高温合金或陶瓷材料制成,具有特殊的外形和内部结构,以促进单晶的生长。

4. 温度控制:在结晶器中加热熔融物料,并控制温度梯度和梯度方向。

温度梯度的控制是非常重要的,它会影响单晶的生长速率和方向。

5. 单晶生长:将结晶器中的熔融物料冷却至凝固点以下,使其逐渐凝固形成单晶。

由于温度梯度的存在,单晶会从高温区向低温区生长,最终形成完整的单晶结构。

6. 单晶提取:待单晶完全凝固后,将其从结晶器中取出。

提取的过程需要
谨慎,以避免单晶的破碎或变形。

7. 后处理:对提取的单晶进行必要的后处理,如去除表面氧化物、调整尺寸和形状等,以得到符合要求的最终产品。

定向凝固法制备单晶材料的关键在于控制温度梯度和凝固速率,以确保单晶的生长方向和结晶质量。

这种方法广泛应用于材料科学和工程领域,用于制备用于电子器件、光学器件、航空发动机叶片等高性能应用的单晶材料。

monte carlo方法在定向凝固微观组织模拟中的应用

monte carlo方法在定向凝固微观组织模拟中的应用

monte carlo方法在定向凝固微观组织模拟中的应用
随着金属材料表面凝固后结构的研究,已经越来越受到关注。

在宏观级别,它与尺寸和形状效应有关,如表面的粗糙度和摩擦特性。

在微观级别,它与定向凝固行为有关,也就是组织结构中晶体晶格形状和大小的变化。

在宏观和微观级别上,定向凝固微观组织模拟都是极其复杂的过程,模拟后的结果非常容易受到随机扰动的影响。

因此开发一种可以精确模拟定向凝固微观组织变化过程的有效算法就成为了材料工程
领域的热点问题。

目前,Monte Carlo方法已经成为定向凝固微观组织模拟的一种有效的方法。

它的基本原理是根据模拟的环境情况来随机探索系统可能的状态,并从中选择最佳状态。

在定向凝固模拟中,Monte Carlo
方法可以简化组织分布的计算,使空间结构变化的计算效率大大提高。

在实际应用中,Monte Carlo方法可以用来模拟各种定向凝固组织,如多孔晶体、断裂晶体、无定向凝固晶体以及各种合金的晶体组织。

它可以模拟凝固过程中晶胞形状、晶粒形状及其尺寸的变化,也可以在定向凝固中模拟各类不同组相之间的相变。

此外,Monte Carlo方法可以应用于分析定向凝固行为的原因。

它可以用来研究不同空间形状对定向凝固的影响,并研究不同应力水平对定向凝固的影响。

它还可以用来评估不同温度、湿度和其他环境因素对定向凝固过程的影响。

总之,Monte Carlo方法是一种有效且功能强大的定向凝固微观
组织模拟方法,它可以模拟组织结构的变化,并分析定向凝固行为的原因。

它的应用不仅可以提高模拟的准确性,还可以改善材料的性能,为材料工程领域的研究和应用奠定坚实的基础。

定向凝固技术及其应用

定向凝固技术及其应用

定向凝固技术及其应用1.定向凝固理论基础及方法定向凝固又称定向结晶,是指金属或合金在熔体中定向生长晶体的一种方法。

定向凝固技术是在铸型中建立特定方向的温度梯度,使熔融合金沿着热流相反的方向,按要求的结晶取向进行凝固铸造的工艺。

它能大幅度地提高高温合金综合性能。

定向凝固的目的是为了使铸件获得按一定方向生长的柱状晶或单晶组织。

定向凝固铸件的组织分为柱状、单晶和定向共晶3种。

要得到定向凝固组织需要满足的条件,首先要在开始凝固的部位形成稳定的凝固壳,凝固壳的形成阻止了该部位的型壁晶粒游离,并为柱状晶提供了生长基础,该条件可通过各种激冷措施达到。

其次,要确保凝固壳中的晶粒按既定方向通过择优生长而发展成平行排列的柱状晶组织,同时,为使柱状晶的纵向生长不受限制,并且在其组织中不夹杂有异向晶粒,固液界面前方不应存在生核和晶粒游离现象。

这个条件可通过下述措施来满足:(1)严格的单向散热。

要使凝固系统始终处于柱状晶生长方向的正温度梯度作用下,并且要绝对阻止侧向散热,以避免界面前方型壁及其附近的生核和长大。

(2)要有足够大的液相温度梯度与固液界面向前推进速度比值以使成分过冷限制在允许的范围内。

同时要减少熔体的非均质生核能力,这样就能避免界面前方的生核现象,提高熔体的纯净度,减少因氧化和吸氧而形成的杂质污染,对已有的有效衬底则通过高温加热或加入其他元素来改变其组成和结构等方法均有助于减少熔体的非均质生核能力。

(3)要避免液态金属的对流。

搅拌和振动,从而阻止界面前方的晶粒游离,对晶粒密度大于液态金属的合金,避免自然对流的最好方法就是自下而上地进行单向结晶。

当然也可以通过安置固定磁场的方法阻止其单向结晶过程中的对流。

从这三个条件我们可以推断,为了实现定向凝固,在工艺技术上必须采取措施避免侧向散热,同时在靠近固液界面的熔体中维持较高的温度梯度。

定向生长理论和它的应用很大程度上取决于先进定向凝固技术。

自从Bridgman和Stockbarger在20世纪20年达提出奠定了现代定向凝固和单晶生长技术基础的Bridgman定向凝固技术,定向凝固就被广泛运用于制备各种结构和功能材料。

《定向凝固Al-Cu-Si共晶合金组织形成与性能》范文

《定向凝固Al-Cu-Si共晶合金组织形成与性能》范文

《定向凝固Al-Cu-Si共晶合金组织形成与性能》篇一一、引言随着现代科技的发展,金属材料在众多领域中发挥着重要作用。

其中,Al-Cu-Si共晶合金因其优异的物理和机械性能,被广泛应用于航空航天、汽车制造、电子封装等领域。

本文将重点研究定向凝固Al-Cu-Si共晶合金的组织形成及其性能,以期为相关领域的研究和应用提供理论依据。

二、定向凝固Al-Cu-Si共晶合金的组织形成1. 合金成分与相图Al-Cu-Si三元合金系统具有复杂的相图,其中共晶成分的合金在一定的温度范围内可以形成共晶组织。

通过调整合金的成分,可以获得具有特定组织和性能的共晶合金。

2. 定向凝固工艺定向凝固是一种通过控制合金的冷却速度和结晶方向,从而获得具有特定组织和性能的材料的方法。

在Al-Cu-Si共晶合金的定向凝固过程中,通过控制温度梯度和冷却速度,可以获得具有特定晶体取向的共晶组织。

3. 组织形成过程在定向凝固过程中,Al-Cu-Si共晶合金的组织形成主要受到温度梯度、结晶速度和合金成分的影响。

当合金在一定的温度梯度下冷却时,首先形成初生相,随后在初生相的基础上形成共晶组织。

共晶组织的形成过程包括初生相的生长、共晶相的形成和共晶片的生长等步骤。

三、Al-Cu-Si共晶合金的性能1. 机械性能Al-Cu-Si共晶合金具有较高的强度和硬度,同时具有良好的塑性和韧性。

这主要得益于其独特的共晶组织结构,使得合金在受到外力作用时能够产生良好的变形协调能力。

2. 物理性能Al-Cu-Si共晶合金具有良好的导热性和导电性,这使得其在电子封装和导电材料等领域具有广泛的应用。

此外,该合金还具有较好的耐腐蚀性能,能够在恶劣的环境中长时间使用。

四、定向凝固对Al-Cu-Si共晶合金性能的影响通过定向凝固工艺,可以获得具有特定晶体取向的Al-Cu-Si 共晶合金。

这种合金的机械性能和物理性能得到进一步提高,同时具有更好的各向异性。

定向凝固使得合金中的晶体结构更加规整,从而提高了合金的强度和硬度。

定向凝固技术

定向凝固技术

定向凝固技术
定向凝固技术是一种用于制造具有特定晶体取向的金属或合金材料的技术。

这种技术通过控制材料的凝固过程,使其在特定方向上生长,从而获得具有特定晶体取向的材料。

定向凝固技术的基本原理是在材料凝固过程中,通过控制凝固速度和温度分布,使晶粒在特定方向上生长。

这种技术通常使用定向凝固炉或定向凝固模具来实现。

定向凝固技术的优点包括:
1. 可以获得具有特定晶体取向的材料,从而提高材料的力学性能和物理性能。

2. 可以控制材料的晶粒尺寸和分布,从而提高材料的强度和韧性。

3. 可以减少材料中的缺陷和杂质,从而提高材料的质量和可靠性。

定向凝固技术广泛应用于航空航天、汽车、电子、医疗等领域,特别是在制造高强度、高韧性、高耐腐蚀性的材料方面具有重要作用。

定向凝固技术的发展及应用

定向凝固技术的发展及应用

定向凝固技术的发展及应用摘要:定向凝固技术可使材料凝固组织按特定方向排列,获得定向及单晶组织结构,从而大大改善材料的力学和物理性能。

本文详细地评述了传统定向凝固技术的发展过程和存在的问题,阐述了几种新近发展起来的新型定向凝固技术。

介绍了定向凝固技术在材料制备中的应用。

关键词:定向凝固技术,温度梯度,材料制备金属的定向凝固就是指在凝固过程中采用强制手段,在凝固金属样未凝固熔体中建立起沿特定方向的温度梯度,从而使熔体在气壁上形核后沿着与热流相反的方向,按要求的结晶取向进行凝固的技术。

它是在高温合金的研制中建立和完善起来的。

该技术被广泛用于获得具有特殊取向的组织和优异性能的材料,因而自其诞生以来得到了迅速的发展。

应用定向凝固方法,可以得到定向组织、甚至单晶,可以明显地提高材料所需的性能。

因此,定向凝固技术自其诞生以来得到了迅速的发展。

1定向凝固技术的发展过程定向凝固技术除早期用于高温合金的研制外,后来还逐渐推广到半导体材料、磁性材料、复合材料等的研制中,并成为凝固理论研究的重要手段之一。

热流的控制是定向凝固技术中的重要环节,获得并保持单向热流是定向凝固成功的重要保证。

伴随着对热流控制(不同的加热、冷却方式)技术的发展,定向凝固技术经历了由炉外法、功率降低法、快速凝固法直到液态金属冷却法等的发展过程。

1.1炉外结晶法炉外结晶法有叫发热剂法(EP法),是定向凝固技术中最原始的方法之一。

Versnyder 等早在20 世纪50年代就应用于试验中。

其原理是水冷模底部采用水冷铜底座,顶部覆盖发热剂,侧壁采用隔热层绝热,浇入金属液后,在金属液和已凝固金属中建立起一个自下而上的温度梯度,使铸件自下而上,实现定向凝固。

由于所能获得的温度梯度小和沿高度不断减小,而且很难控制。

因此,该法只可用于制造要求不高的零件。

但该方法工艺简单,成本低,在小批量零件生产中任然还有应用。

1.2功率降低法(PD法)在20世纪60年代,Versnyder等人提出了功率降低法。

定向凝固技术的发展与应用

定向凝固技术的发展与应用

定向凝固技术的发展与应用摘要:定向凝固技术是指利用一定的设备,在一定的工艺条件下使材料的组织具有特殊取向从而获得优异性能的工艺过程。

定向凝固技术是伴随着高温合金的发展而逐步发展起来的。

本文综述了定向凝固技术的定向凝固理论,对比分析了不同定向凝固方法的优缺点,并从四个方面论述了提高温度梯度的途径,最后对定向凝固技术的发展及应用前景做了展望。

关键词:定向凝固;工艺特点;温度梯度;应用1.引言凝固是材料制备与加工的重要手段之一,先进的凝固技术为先进材料开发与利用提供了技术条件。

凝固过程中包含了热量、质量和动量的传输过程,它们决定了材料凝固组织和成分分布,进而影响材料性能。

近20年中,不仅开发出许多先进凝固技术,也丰富和发展了凝固理论。

其中,先进凝固技术主要集中于如下几种类型:定向凝固、快速凝固与近快速凝固技术、外加物理场(压力场、电磁场、超重力或微重力场)中的凝固技术以及强制流动条件下的凝固技术等。

定向凝固技术是对金属材料进行凝固过程进行研究的重要手段之一,可用于模拟合金的凝固过程,制备高质量航空发动机定向和单晶叶片等。

同时,也是研究固液界面形态及凝固组织行之有效的技术手段。

定向凝固技术的出现是涡轮叶片发展过程中的一次重大变革。

铸造高温合金叶片的制造工艺经历了从等轴晶铸造到定向单晶凝固的发展过程,不仅在晶粒结构的控制上取得了很大进展,而且铸造性能也有了很大提高,常规的铸造高温合金尽管有较高的耐温能力,但材料的中温蠕变强度较低。

定向凝固技术能够使晶粒定向排列,在垂直于应力方向没有晶界,同时由于沿晶粒生长的(001)方向具有最低的弹性模量,这样将大大降低叶片工作时因温度不均匀所造成的热应力,因此使蠕变断裂寿命和热疲劳强度得到很大提高,如DS Mar-M200+Hf比等轴晶合金热疲劳性能提高了8倍。

此后,随着各种定向凝固技术的不断发展,固液界面前沿的温度梯度不断增大、冷却速率逐渐提高,定向生产的叶片综合性能也日2. 定向凝固理论2.1成分过冷理论Chalmers、Tiller[1, 2]等人在研究中发现在合金中液固界面前沿由于溶质富集导致平界面失稳而形成胞晶和枝晶,首次提出了著名的成将会产生成分过冷”分过冷”判据:G L m L C o( k o _ 1)V k0D L ( 1) 式中,G L为液固界面前沿液相温度梯度;V为界面生长速度;m L为液相线斜率;C o为合金平均成份;k o为平衡溶质分配系数;D L为液相中溶质扩散系数。

定向凝固技术

定向凝固技术

定向凝固技术1、定向凝固的研究状况定向凝固成形技术是伴随高温合金的发展而逐渐发展起来的,是在凝固过程中采用强制手段,在凝固金属和未凝固熔体中建立起特定方向的温度梯度,从而使熔体沿着与热流相反的方向凝固,以获得具有特定取向柱状晶的技术。

定向凝固技术很好的控制了凝固组织的晶粒取向,消除横向晶界,提高了材料的纵向力学性能,因而自美国普拉特·惠特尼航空公司采用高温合金定向凝固技术以来,这项技术得到广泛的应用。

1.1定向凝固理论的研究定向凝固理论的研究,主要涉及定向凝固中液-固界面形态及其稳定性,液-固界面处相变热力学、动力学,定向凝固过程晶体生长行为以及微观组织的演绎等,其中包括成分过冷理论、MS 界面稳定性、线性扰动理论、非线性扰动理论等。

从Chalmers[1]等的成分过冷理论到Mullins[2]等的界面稳定动力学理论(MS理论),人们对凝固过程有了更深刻的认识。

下面主要分析一下成分过冷理论和界面稳定性理论。

(1)成分过冷理论成分过冷理论是针对单相二元合金凝固过程界面成分的变化提出的,如对于平衡分配系数小于1的合金在冷却下来时,由于溶质在固相和液相中的分配系数不同,溶质原子随着凝固的进行,被排挤到液相中去,并形成一定的浓度梯度,与这种溶质梯度相对应的液相线温度与真实温度分布之间有不同的值,其差值大于零时,意味着该部分熔体处于过冷状态,有形成固相的可能性而影响界面的稳定性。

Chalmers等人通过分析得出了成分过冷的判据,确定了合金凝固过程中固液界面前沿的形态取决于两个参数:GL/v和GL·v,即分别为界面前沿液相温度梯度和凝固速度的商和积。

前者决定了界面形态,而后者决定了晶体的显微组织(即枝晶间距或晶粒大小)[3]。

成分过冷理论能成功的判定无偏析特征的平面凝固的条件,避免胞晶或枝晶的生成。

但是成分过冷理论只考虑了温度梯度和浓度梯度这两个具有相反效应的因素对界面稳定性的影响,忽略了非平面界面的表面张力、凝固时的结晶潜热及固相中温度梯度等的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定向凝固及其应用
丁国华 2006年12月11日
-
1
一 定向凝固的原理 二 定向凝固技术的发展 三 定向凝固的理论基础 四 定向凝固在凝固理论研究中的应用 五 定向凝固在新材料研究与开发中的应用 六 自制定向凝固装置介绍 七 我的研究内容
-
2
定向凝固基本原理
定向凝固是在凝固过程中采用强制手段,在凝固 金属和未凝固熔体中建立起特定方向的温度梯度, 从而使熔体沿着与热流相反的方向凝固,获得具 有特定取向柱状晶的技术。
-
3
定向凝固技术的发展
传统定向凝固技术
新型定向凝固技术
发功快液 热率速态 铸降凝金 型低固属 法法法冷
却 法
In situ and real-time imaging
区激深电侧对重
域光过磁向流力
熔超冷约约下场
化高定束束的作
液温向成下定用
态度凝形的向下
金梯固定定凝的
属度技向向固定
冷快术凝凝技向
却速
固固术凝
-
6
区域熔化液态金属冷却法
该方法将区域熔化与液态 金属冷却相结合,利用感 应加热集中对凝固界面前 沿液相进行加热,从而有 效地提高了固液界面前沿 的温度梯度。最高温度梯 度可达1300K/cm,最大冷 却速度可达50K/s。
-
7
激光超高温度梯度快速定向凝固
激光能量高度集中的特性,使它具备 了在作为定向凝固热源时可能获得比 现有定向凝固方法高得多的温度梯度 的可能性。
-
12
重力场作用下的定向凝固技术
微重力下的晶体生长,由于重力加速度减 小而有效的抑制了重力造成的无规则热质 对流,从而获得溶质分布高度均匀的晶体;
超重力下的晶体生长,通过增大重力加速 度而加强浮力对流,当浮力对流增强到一 定程度时,就转化为层流状态,即重新层 流化,同样抑制了无规则的热质对流。
电磁约束成形定向凝固工艺将成为一种 很有竞争力的定向凝固技术。但该技术 涉及电磁流体力学、冶金、凝固以及自 动控制等多学科领域,目前还处于研究 阶段。
-
10
侧向约束下的定向凝固技术
随着试样截面的突然减小,合 金凝固组织由发达的粗枝状很 快转化为细的胞状。随着凝固 的继续进行,胞晶间距继续增 加,之后胞晶间距保持基本恒 定,凝固进入新的稳态,最后 当试样截面由小突然增大时, 凝固形态也由胞状很快转化为 粗枝状。
定向凝固技术是在高温合金的研制中建立和完善 起来的。该技术最初用来消除结晶过程中生成的 横向晶界,甚至消除所有晶界,从而提高材料的 高温性能和单向力学性能。
在定向凝固过程中温度梯度和凝固速率这两个重 要的凝固参数能够独立变化,可以分别研究它们 对凝固过程的影响。这既促进了凝固理论的发展, 也激发了不同定向凝固技术的出现。
基本原理是将盛有金属液的坩埚置于一 激冷基座上,在金属液被动力学过冷的 同时,金属液内建立起一个自下而上的 温度梯度,冷却过程中温度最低的底部 先形核,晶体自下而上生长,形成定向 排列的树枝晶骨架,其间是残余的金属 液。在随后的冷却过程中,这些金属液 依靠向外界散热而向已有的枝晶骨架上 凝固,最终获得了定向凝固组织。
在激光表面快速熔凝时,凝固界面的 温度梯度可高达5×104K/cm,凝固速 度高达数米每秒。但一般的激光表面 熔凝过程并不是定向凝固,因为熔池 内部局部温度梯度和凝固速度是不断 变化的,且两者都不能独立控制;同 时,凝固组织是从基体外延生长的, 界面上不同位置的生长方向也不相同。
-
8
深过冷定向凝固技术
一旦形核,生长速率很快,基本上不受外界 散热条件的影响。可以免除复杂的抽拉 装置。
另外,凝固速度快,时间短,可大幅度提高生 产效率。
-
9
电磁约束成形定向凝固技术
该技术利用电磁感应加热熔化感应器内 的金属材料,并利用在金属熔体表层部 分产生的电磁压力来约束已熔化的金属 熔体成形。同时,冷却介质与铸件表面 直接接触,增强了铸件固相的冷却能力, 在固液界面附近熔体内可以产生很高的 温度梯度,使凝固组织超细化,显著提 高铸件的表面质量和内在综合性能。
法定
技技


术术




-
4
发热铸型法和功率降低法
将熔化好的金属液浇入一侧壁绝热,底部冷却, 顶部覆盖发热剂的铸型中,在金属液和己凝固 金属中建立起一个自上而下的温度梯度,使铸 件自上而下进行凝固,实现单向凝固。
石墨感应发热器放在分上下两部分的感应圈内。 加热时上下两部分感应圈全通电,在模壳内立 起所要求的温度场.然后注入过热的合金熔液。 此时下部感应圈停电,通过调节输入上部感应 圈的功率,使之产生一个轴向温度梯度。
液态金属冷却法是在快速凝固法的基础上,将抽拉出 的铸件部分浸入具有高导热系数的高沸点、低熔点、 热容量大的液态金属中。这种方法提高了铸件的冷却 速度和固液界面的温度梯度,而且在较大的生长速度 范围内可使界面前沿的温度梯度保持稳定,结晶在相 对稳态下进行,得到比较长的单向柱晶。
常用的液态金属有Ga-In合金和Ga-In-Sn合金,以及Sn 液,前二者熔点低,但价格昂贵,因此只适于在实验 室条件下使用。Sn液熔点稍高(232℃),但由于价格相 对比较便宜,冷却效果也比较好,因而适于工业应用。 该法已被美国、前苏联等国用于航空发动机叶片的生 产。
这种方法由于所能获得的温度梯度不大,并且 很难控制,致使凝固组织粗大,铸件性能差, 因此,该法不适于大型、优质铸件的生产。但 其工艺简单、成本低,可用于制造小批量零件。
-
5
快速凝固法和液态金属冷却法
快速凝固法是铸件以一定的速度从炉中移出或炉子移 离铸件,采用空冷的方式,而且炉子保持加热状态。 这种方法由于避免了炉膛的影响,且利用空气冷却, 因而获得了较高的温度梯度和冷却速度,,所获得的柱 状晶间距较长,组织细密挺直,且较均匀,使铸件的 性能得以提高,在生产中有一定的应用。
改变试样的局部冷却条件促使 凝固过程发生变化。
-
11
对流下的定向凝固技术
在加速旋转过程中造成液相 强迫对流,由于极大的改变 热质传输过程而引起了界面 形貌的显著变化,导致糊状 区宽度显著减小。
液相快速流动引起界面前 液相中的温度梯度极大的提 高,非常有利于液相溶质的 均匀混合和材料的平界面生 长,枝晶生长形态发生显著 的变化,由原来具有明显主 轴的枝晶变为无明显主轴的 穗状晶,穗状晶具有细密的 显微组织。
相关文档
最新文档