大学物理习题课
大学物理-磁学习题课和答案解析
2. 均匀磁场的磁感应强度 B 垂直于半径为r的圆面.今
4. 如图,在面电流线密度为 j 的均匀载流无限大平板附近, 有一载流为 I 半径为 R的半圆形刚性线圈,其线圈平面与载流 大平板垂直.线圈所受磁力矩为 ,受力 0 0 为 .
μ
5、(本题3分) 长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体 中有等值反向均匀电流I通过,其间充满磁导率为μ的均匀磁介 质.介质中离中心轴距离为r的某点处的磁场强度的大小H I =________________ ,磁感强度的大小B =__________ . I 2 r 2 r
B (A) B (B) √ R B x (D) O 圆筒 电流 O x
B
0 I (r R) 2r
(r R)
O B
R
x O (C) x O
B
(E)
B0
O
R
R
x
R
x
2、(本题3分)一匀强磁场,其磁感强度方向垂直于纸面(指 向如图),两带电粒子在该磁场中的运动轨迹如图所示,则 (A) 两粒子的电荷必然同号. (B) 粒子的电荷可以同号也可以异号. (C) 两粒子的动量大小必然不同. (D) 两粒子的运动周期必然不同.
(C) B dl B dl , BP BP 1 2
(D) B dl B dl , BP1 BP2
L1 L2
L1
L2
L1
L2
[ ]
5.有一矩形线圈 AOCD ,通以如图示方向的电流 I,将它置 于均匀磁场 B 中,B 的方向与X轴正方向一致,线圈平面与X 轴之间的夹角为 , 90 .若AO边在OY轴上,且线圈可 绕OY轴自由转动,则线圈 (A)作使 角减小的转动. (B)作使 角增大的转动. (C)不会发生转动. (D)如何转动尚不能判定.
大学物理《光的偏振、衍射》习题课课件
( AC BD) (a b)(sin sin ) k (2).
水平线下方的角度取负号即可。
11
6. 以波长为 = 500 nm (1 nm = 10-9 m)的单色平行光斜入射在光栅常数为
d = 2.10 mm、缝宽为a = 0.700 mm的光栅上,入射角为i = 30.0°,求能看
成的半波带数目为
(A) 2 个. (B) 4 个. (C) 6 个. (D) 8 个.
答案:(B)
根据半波带法讨论,单缝处波阵面可分成的半波带数
目取决于asin 的大小,本题中
ቤተ መጻሕፍቲ ባይዱ
a 4, 300.
a sin 2 4 ,
2
满足单缝衍射暗条纹的公式: a sin 2k , (k 1,2...)
到哪几级光谱线.
解:(1) 斜入射时的光栅方程
光栅 透镜
屏
G L2
C
d sin i
d sin d sin i k k = 0,±1,±2,…n
第k 级谱线
n
i
分析在900 < < 900 之间,可呈现的主极大:
i = 30°,设 = 90°, k = kmax1,则有
d sin
kmax1 (d / )(sin 90 d sin 30) 2.10
解: a b 1 mm 3.33μm 300
(1) (a + b) siny =k, ∴ k= (a + b) sin24.46°= 1.38 mm
∵ R=0.63─0.76 mm, B=0.43─0.49 mm,第二级开始会有谱线重叠。
对于红光,取k=2 , 则 R=0.69 mm; 对于蓝光,取k=3, 则 B=0.46 mm.
《大学物理》(下2010.12.9)习题课
第11章光的量子效应及光子理论一、 选择题1. 金属的光电效应的红限依赖于: 【 C 】(A)入射光的频率; (B)入射光的强度;(C)金属的逸出功; (D)入射光的频率和金属的逸出功。
2. 已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是U 0(使电子从金属逸出需做功eU 0),则此单色光的波长λ必须满足: 【 A 】hceU )D (;hceU )C (;eU hc )B (;eU hc)A (0≥≤≥≤λλλλ 3. 关于光电效应有下列说法:(1) 任何波长的可见光照射到任何金属表面都能产生光电效应;(2) 对同一金属如有光电子产生,则入射光的频率不同,光电子的初动能不同; (3) 对同一金属由于入射光的波长不同,单位时间内产生的光电子的数目不同; (4) 对同一金属,若入射光频率不变而强度增加一倍,则饱和光电流也增加一倍。
其中正确的是: 【 D 】(A) (1),(2),(3); (B) (2),(3),(4); (C) (2),(3); (D)(2),(4)二、填空题1. 当波长为300 nm 光照射在某金属表面时,光电子的能量范围从0到.J 100.419-⨯在作上述光电效应实验时遏止电压为V 5.2U a =;此金属的红限频率Hz 104140⨯=ν。
2. 频率为100MHz 的一个光子的能量是J 1063.626-⨯,动量的大小是s N 1021.234⋅⨯-。
3. 如果入射光的波长从400nm 变到300nm ,则从表面发射的光电子的遏止电势增大(增大、减小)V 03.1U =∆。
4. 某一波长的X 光经物质散射后,其散射光中包含波长大于X 光和波长等于X 光的两种成分,其中大于X 光波长的散射成分称为康普顿散射。
三、计算题1. 已知钾的红限波长为558 nm ,求它的逸出功。
如果用波长为400 nm 的入射光照射,试求光电子的最大动能和遏止电压。
由光电方程2m mv 21A h +=ν,逸出功0h A ν=,0chA λ=,eV 23.2A =用波长为400nm 的入射光照射,光电子的最大动能:A h mv 212m -=ν A chE km -=λ,将nm 400=λ和eV 23.2A =代入得到:eV 88.0E km =遏止电压:a 2m eU mv 21=,2m a mv e21U =,V 88.0U a = 2. 从铝中移出一个电子需要4.2 eV 的能量,今有波长为200 nm 的光投射至铝表面。
大学物理课后习题-答案详解
第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。
(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dtdv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt ev dx tk tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解:=a d v /d t 4=t d v 4=t d t⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以0d -2g h d r v i j t =d d v g j t =- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
大学物理-热学习题课和答案解析
2V
D)n 相同,(EK / V )相同,ρ相同。 nm 不同
8、给定理想气体,从标准状态( P0 V0 T0 )开始作绝热膨胀,
体积增大到3倍,膨胀后温度T, 压强P与标准状态时T0 、
P0的关系为:
√ A)T
(1) 3
T0
P
(1) 3
1
P0
B)T
(
1 3
)
1T0
P
(1) 3
P0
C)T
( 1 ) 3
了。则 根据热力学定律可以断定:
① 理想气体系统在此过程中吸了热。
② 在此过程中外界对理想气体系统作了功。 ③ 理想气体系统的内能增加了。 ④ 理想气体系统既从外界吸了热,又对外作了功。
√ A) ① ③ B) ② ③ C) ③ D) ③ ④ E) ④
7、两瓶不同种类的理想气体,它们的温度和压强都相同,但
i RT
2 ( E )
(Q) p Cp,mRT
(Q )T
RT
ln
V2 V1
( A)
Q0
E CV ,mT
pV
RT
CV ,m
iR 2
CP,m
CV ,m
R
i2 2
R
循环过程:
热机效率
卡诺热机效率
A Q吸 Q放 1 Q放
Q吸
Q吸
Q吸
卡 诺
A Q吸
1 Q放 Q吸
1 T2 T1
卡诺致冷系数
2kT m
2RT M mol
平均速率:
v 8kT 8RT
m
M mol
4、能量均分原理: 每一个自由度的平均动能为: 一个分子的总平均动能为: mol 理想气体的内能:
大学物理(第四版)课后习题及答案_电介质
电解质题8.1:一真空二极管,其主要构件是一个半径R 1 = 5.0⨯10-4 m 的圆柱形阴极和一个套在阴极外,半径m 105.432-⨯=R 的同轴圆筒形阳极。
阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L = 2.5⨯10-2 m 。
假设电子从阴极射出时的速度为零。
求:(1)该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力。
题8.1分析:(1)由于半径L R <<1,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性。
从阴极射出的电子在电场力作用下从静止开始加速,电于所获得的动能等于电场力所作的功,也即等于电子势能的减少。
由此,可求得电子到达阳极时的动能和速率。
(2)计算阳极表面附近的电场强度,由E F q =求出电子在阴极表面所受的电场力。
解:(1)电子到达阳极时,势能的减少量为J 108.417ep -⨯-=-=∆eV E由于电子的初始速度为零,故 J 108.417ep ek ek -⨯=∆-=∆-E E E因此电子到达阳极的速率为17eks m 1003.122-⋅⨯===meVmE v (2)两极间的电场强度为r 02e E r πελ-=两极间的电势差1200ln 2d 2d 2121R R r r V R R R R πελπελ-=-=⋅=⎰⎰r E 负号表示阳极电势高于阴极电势。
阴极表面电场强度r 121r 10ln 2e e E R R R V R =-=πελ电子在阴极表面受力N e E F r 141037.4-⨯=-=e这个力尽管很小,但作用在质量为9.11⨯10-31 kg 的电子上,电子获得的加速度可达重力加速度的5⨯1015倍。
题8.2:一导体球半径为R 1,外罩一半径为R 2的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0。
求此系统的电势和电场的分布。
题8.2分析:不失一般情况,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示,依照电荷的这一分布,利用高斯定理可求得电场分布。
大学物理习题课1
v 0 与水平方向夹角
19.如图所示,小球沿固定的光滑的 1/4圆弧从A点由静止开始下滑,圆弧半 径为R,则小球在A点处的切向加速度 at =______________________,小球 在B点处的法向加速度 an =_______________________.
θ
A R
B
三.计算题
t 0 .96 0 mg , t 0 .20 1 9 .8 0 .96 1s
此后合力为 第2秒内冲量
I
t 0 .96 mg
t 0 .96 0 .14 1 9 .8 dt
2 1
1 t 0 .412 dt
2
1 2
t
2 2 1
(B)
(C)
a g sin
a g
a 4 g (1 cos ) g sin
2 2 2 2
(D) . [ ] 4. 将细绳绕在一个具有水平光滑轴的飞轮边缘上,现 在在绳端挂一质量为m的重物,飞轮的角加速度 为 .如果以拉力2mg代替重物拉绳时,飞轮的角加 速度将 (A) 小于 . (B) 大于 ,小于2 . (C) 大于2 . (D) 等于2 .[ ]
二.填空题 13.如图所示,质量为m的小球系在劲度系数为k 的轻弹簧一端,弹簧的另一端固定在O点.开始时弹 簧在水平位置A,处于自然状态,原长为l0.小球由 位置A释放,下落到O点正下方位置B时,弹簧的长度 为l,则小球到达B点时的速度大小为v=____
O l0 A k l m
O′
P
B m
Q R
R
F
F Ft
2 n
2
s 2 as 1 R
大学物理课后习题及答案(1-4章)含步骤解
,根据流量守恒
,
(2)当
(3)当
时,
时,
−
,整理可得:
可得
,即
,
图1-34所示为输液的装置。设吊瓶的截面积为1 ,针孔的截面积为2 ,且1 ≫ 2 ,开始时( = 0),吊瓶内上下
液面距针孔的高度分别为ℎ1 和ℎ2 ,求吊瓶内药液全部输完时需要的时间。
,则针孔的流量为
液体总体积为
Ԧ =
= 2Ԧ − 2 Ԧ = −2Ԧ
1s末和2s末质点的速度为: 1 = 2Ԧ − 2Ԧ(m ∙ s−1 ),2 = 2Ԧ − 4Ԧ(m ∙ s −1 );
1s末和2s末质点的加速度相等:Ԧ = −2Ԧ (m ∙ s−2 )
已知一质点做直线运动,其加速度Ԧ = 4 + 3 m ∙ s−2 , 开始运动时,0 = 5 m,
= 0.06(m)
(2)设弹簧最大压缩量为∆′ , 与碰撞粘在一起的速度为 ′,0 = ( +
) ′,代入已知条件可得 ′ = 4Τ11, + 压缩弹簧的过程中,机械能守恒,则
1
(
2
1
+ ) 2 = 2 ∆′2 ,得∆′ =
+
≈ 0.04(m)
(1)角加速度 =
由 =
∆
∆
=
0−2×1500÷60
50
由 =
=
2×1500
60
= 50 (rad ∙ s −1 )
= − (rad ∙ s−2 )
= −,得 = −,两边进行积分
得到 − 50 = − − 0,
江西理工大学大学物理(下)习题册及答案详解
班级_____________ 学号___________姓名________________ 简谐振动1. 一质点作谐振动, 振动方程为X=6COS (8πt+π/5) cm, 则t=2秒时的周相为:π5116, 质点第一次回到平衡位置所需要的时间为:s 0375.0.2. 一弹簧振子振动周期为T 0, 若将弹簧剪去一半, 则此弹簧振子振动周期T 和原有周期T 0之间的关系是:022T T =.3. 如图为以余弦函数表示的谐振动的振动曲线, 则其初周相φ=3π-,P 时刻的周相为:0.4. 一个沿X 轴作谐振动的弹簧振子, 振幅为A , 周期为T , 其振动方程用余弦函数表示, 如果在t=0时, 质点的状态分别是:(A) X 0=-A; (B) 过平衡位置向正向运动;(C) 过X=A/2 处向负向运动; (D) 过A x 22-= 处向正向运动.2 1 0 P t(s) X(m)试求出相应的初周相之值, 并写出振动方程.)2cos()(ππ+=t TA x A ; )22cos()(ππ-=t T A x B)32cos()(ππ+=t T A x C ; )452cos()(ππ+=t T A x D5.一质量为0.2kg 的质点作谐振动,其运动议程为:X=0.60 COS(5t -π/2)(SI)。
求(1)质点的初速度;(2)质点在正向最大的位移一半处所受的力。
解(1))5sin(00.32π--==t dtdxv 10.00.3,0-==s m v t(2)x x dtdv a 2520-=-==ω 22.5.7,30.0--===s m a m x AN ma F 5.1-==班级_____________ 学号___________姓名________________简谐振动的合成1. 两个不同的轻质弹簧分别挂上质量相同的物体1和2, 若它们的振幅之比A 2 /A 1=2, 周期之比T 2 / T 1=2, 则它们的总振动能量之比E 2 / E 1 是( A )(A) 1 (B) 1/4 (C) 4/1 (D) 2/11)()(;)(2222221122112=⋅==A A T T E E T A m E π2.有两个同方向的谐振动分别为X 1=4COS(3t+π/4)cm ,X 2 =3COS(3t -3π/4)cm, 则合振动的振幅为:cm A 1=, 初周相为:4πφ=. 3. 一质点同时参与两个同方向, 同频率的谐振动, 已知其中一个分振动的方程为X 1=4COS3t cm, 其合振动的方程为分振动的振幅为A 2 =cm 44. 动方程分别为X 1=A COS(ωt+π/3), X 2 =A COS (ωt+5π/3), X 3 =A COS(ω程为:)6cos(3πω+=t A x5. 频率为v 1和v 2的两个音叉同时振动时,可以听到拍音,可以听到拍音,若v 1>v 2,则拍的频率是(B )(A)v 1+v 2 (B)v 1-v 2 (C)(v 1+v 2)/2 (D)(v 1-v 2)/26.有两个同方向,同频率的谐振动,其合成振动的振幅为0.20m ,周相与第一振动周相差为π/6。
大学物理光学习题课
(1)子波,(2)子波干涉. 所缺级次为 k=k'(a+b)/a. 2.单缝衍射由半波带法得出 4.园孔衍射爱里斑的角半径: 中央明纹: =0.61/a=1.22/d 坐标 =0, x=0; 光学仪器的最小分辩角 宽度 02/(na), =0.61/a=1.22/d x2f/(na) 分辩率 R=1/=d/(1.22) 其他条纹: 5.x射线的衍射: 暗纹 asin=k/n 布喇格公式 2dsin=k 明纹 asin(2k+1)/(2n) (d为晶格常数,为掠射角) 条纹宽度/(na), 三光的偏振 xf/(na) 1.自然光,偏光,部分偏光; 3.光栅:单缝衍射与多光束干 偏振片,偏化方向,起偏, 涉乘积效果,明纹明亮,细锐. 检偏. 光栅方程式 2.马吕期定律 I=I0cos2. (a+b)sin=k 3.反射光与折射光的偏振 缺级 衍射角同时满足 一般:反射折射光为部分偏光 (a+b)sin=k 反射光垂直振动占优势; asin=k ' 折射光平行振动占优势.
n3
4. 在如图28.4所示的单缝夫琅和 费衍射实验装置中,s为单缝,L 为透镜,C为放在L的焦面处的屏 幕,当把单缝s沿垂直于透镜光轴 的方向稍微向上平移时,屏幕上 的衍射图样( C ) (A) 向上平移. (B) 向下平移. (C) 不动. (D) 条纹间距变大.
3. 如下图所示,平行单色光垂 直照射到薄膜上,经上下两表面 反射的两束光发生干涉,若薄膜 的厚度为e,并且n1<n2>n3,1 为入射光在折射率为n1 的媒质中 的波长,则两束反射光在相遇点 的位相差为( C ) (A) 2 n2 e / (n1 1 ). (B) 4 n1 e / (n2 1 ) +. (C) 4 n2 e / (n1 1 ) +. (D) 4 n2 e / (n1 1 ). n1 n2 λ e
大学物理习题课答案
A O V1
B1 B2 B3
V2
A→B1等压过程 A→B2等温过程 V A→B3绝热过程
绝热过程:dQ0,T1V11
1
T2V2
V2 V1
6.一定量的某种理想气体进行如图所示的循环过程.已知气体在状态A的温度为TA= 300 K,求
(1) 气体在状态B、C的温度; (2) 各过程中气体对外所作的功; (3) 经过整个循环过程,气体从外界吸收的总热量(各过程吸热的代数和).
循环中,传给低温热源的热量是从高温热源吸取热量的
[(C)]
(A) n 倍.
(B) n-1倍.
(C) 1 倍. n
(D) n 1 倍. n
高温热源的热力学温度为T1,高温热源的热力学温度为T2,则T1 nT2,
从高温热源吸收的热量为Q1
M Mmol
RT1
lnV2 V1
传给低温热源的热量为Q2
M Mmol
2p1 A
3 2
p 1V
p1
B
O V1 2V1 V
AB过程中系统作功,即是体积功:A=p1V112p1V1 32p1V
状态方程:pV= M RT,理想气体的内能为E= M i RT
Mmol
Mmol 2
E0
6. 0.02 kg的氦气(视为理想气体),温度由17℃升为27℃.若在升温过程中,(1) 体积
Q=
M M mol
CP
(T2
T1 )
1.04103 J
理想气体的内能为E= M i RT,E 623J, M mol 2
A=Q E 417J
(3)绝热过程Q 0
E
M M mol
CV
(T2
T1)
623J
大学物理 习题课(刚体)
J1r1r2 10 2 2 2 J1r2 J 2 r1
11、质量为m,长为 l的均匀棒,如图, 若用水平力打击在离轴下 y 处,作用时 Ry 间为t 求:轴反力
解:轴反力设为 Rx Ry d 由转动定律: yF J y dt yF t t 为作用时间 F 得到: J 由质心运动定理: l d l 2 切向: F Rx m 法向: R y mg m 2 dt 2 2 2 2 3y 9 F y (t ) R 于是得到: x (1 ) F R y m g 2l 2l 3 m
10
r1
r2
解: 受力分析: 无竖直方向上的运动
10
o1
N1
f
r1
N2
r2
N1 f m1 g N 2 f m2 g
以O1点为参考点, 计算系统的外力矩:
o2
f
m1 g
m2 g
M ( N2 m2 g )(r1 r2 )
f (r1 r2 ) 0
作用在系统上的外力矩不为0,故系统的角动量不守恒。 只能用转动定律做此题。
r
at r
在R处:
R
at R
(2)用一根绳连接两个或多个刚体
B
C
M 2 o2 R 2
o1R1 M1
D
A
m2
m1
• 同一根绳上各点的切向加速度相同;线速度也相同;
a t A a t B a t C a t D
A B C D
• 跨过有质量的圆盘两边的绳子中的张力不相等;
TA TB TD
但 TB TC
B
C
M 2 o2 R 2
o1R1 M1
大学物理学-稳恒磁场习题课
⑶电子进入均匀磁场B中,如图所示,当电子位于 A点的时刻,具有与磁场方向成 角的速度v,它绕螺旋 线一周后到达B点,求AB的长度,并画出电子的螺旋轨 道,顺着磁场方向看去,它是顺时针旋进还是逆时针旋 进?如果是正离子(如质子),结果有何不同?
1、均匀磁场的磁感应强度B垂直于半径为r的圆面,今以该圆面
其中 直电流 ab和cd的延长线
o dc
fI
R1 R2
eI
过o
b
电流bc是以o为圆心、以 R2为半径的1/4圆弧
I
电流de也是以o为圆心、
但,是以R1为半径的1/4 圆弧
a
直电流ef与圆弧电流de在
e点相切
求:场点o处的磁感强度 B
解:
场点o处的磁感强度是由五段
特殊形状电流产生的场的叠加,f I
o dc
磁场力的大小相等方向相反; (3)质量为m,电量为q的带电粒子,受洛仑兹力作用,
其动能和动量都不变; (4)洛仑兹力总与速度方向垂直,所以带电粒子运动的
轨迹必定是圆。
习题课 1 一电子束以速度v沿X轴方向射出,在Y轴上 有电场强度为E的电场,为了使电子束不发生偏 转,假设只能提供磁感应强度大小为B=2E/v的
df
2ds
n
2 0
2 0
i dl 单位面积受力
da
df Idl B其余
da dl 0i
B总 0i
2 其余 0i
2
df
0i 2
n
dadl 2
表三 作用力
4.应用
静电场
稳恒磁场
类比总结
电偶极子 pe
fi 0
i M pE
三
磁偶极子 pm
fi 0
大学物理 力学习题课
i j y My k z Mz
4、基本概念:
1)质心:
2)惯性力: 3)力矩:
F惯 ma0
M r F
m
rc
i
M r F x Mx
4)角动量: 5)功:
L r P x
i
j y Py
k z Pz
表示速度, a
表示加速度,S表示路程,a t 表示切向加速度,下列表达式中, (1) dv / dt at (2) dv / d t a
[D (4) dr / dt v (B) 只有(2)、(4)是对的. (D) 只有(3)是对的.
]3、某人骑自行车以速率V源自正西方向行驶,遇到由北向南刮的 风(设风速大小也为V),则他感到的风是从 [C] A)东北方向吹来 B)东南方向吹来 C)西北方向吹来 D)西南方向吹来
dA F dr
b
Px
b F dr F cosds
a
A dA a 6)保守力: F dr 0
7)势能:
E p (r )
r0
r
F dr
0 z
①重力势能:
EP (m gdz m gz )
大学物理习题
期中习题课
例题: 将半径为R的无限长导体薄壁管沿轴向割 去一宽度为h (h<<R) 的无限长狭缝后, 再沿轴 向均匀地流有电流, 其电流密度为i, 则管轴线上 磁感应强度的大小是_____________. 0 I 0ih 解: B B0 Bh B0 0 Bh 2R 2R 例题: 有一由N匝细导线绕成的平面三角形线圈 , 边长为a, 通有电流I, 置于均匀外磁场 B中, 当线 圈平面的法向与外磁场同向时, 该线圈所受的最 大磁力矩Mm值为: ( A) 3Na 2 IB / 2. (B) 3Na 2 IB / 4.
O
R
i h
O
(C)
解: M Pm B Pm B sin 0
第14页 共24页
3Na 2 IB sin 60o.
(D) 0.
[D]
期中习题课
例题: 在通有电流I的无限长直导线所在平面, 有半径为r、 电阻为R的导线环, 环中心距直导线为a, 如图所示, 且a >> r. 当直导线的电流被切断后, 沿着导线环流过的电量约为
q E dS
S
0
dV /
V
0
E
-x
S
E x x
2 ES 0 cos xSdx 0
x
x
O
2ES 2S0 sin x 0
E 0 sin x 0
第9页 共24页
期中习题课
解: 设电容器极板的电荷线密度了. 则 E 2 0 r r R R U E dr dr ln( R2 / R1 ) R R 2 r 2 0 r 0 r U U EA 2 0 r ln( R2 / R1 ) 2 0 r RA RA ln( R2 / R1 )
大学物理 热学习题课
1
Va 1 Tb ( ) Ta 424 K Vb
VcTb Tc 848 K Vb
1
c
bc为等压过程,据等压过程方程 Tb / Vb = Tc / Vc 得
O
d a Vb Vc Va V
cd为绝热过程,据绝热过程方程
TcVc
TdVd , (Vd Va )
1
第10章
理想气体模型
气体分子运动论
统计假设
k
PV vRT
P P 2 n 3 kT k k 2 3 T E
M i E RT 2
dN f ( v ) dv N
麦克丝韦 分布率
v2
3RT
vp
2 RT
8RT
v
z 2d 2 v n
v 1 z 2d 2 n
Nf ( v )dv
v0
v0
f ( v )dv
v d N vNf (v) d v
v0—— ∞间的分子数 v0—— ∞间的分子的速率和
v0
dN Nf ( v )dv
v0
v0
vdN vNf ( v )dv
v0
(3) 多次观察一分子的速率,发现其速率大于v0 的 几率= ———。 dN N v v 所求为v0—— ∞间的分子 f (v)dv 数占总分子数的百分比 N N v
M i RT 2 M i RT 2
吸收热量Q
M i RT 2
摩尔热容C
CV i R 2
等容 等压 等温
p/T=C V/T=C pV=C
pVγ=C1 Vγ-1T=C2 pγ-1T-γ=C3
大学物理上册一二章习题公开课一等奖优质课大赛微课获奖课件
k
xB 0.6R
vC2 0.8gR N 0.8mg
第24页
第三章 习题课
5. 如图所表示,质量为m木块,从高为h,倾角为q 光滑斜 面上由静止开始下滑,滑入装着砂子木箱中,砂子和木箱 总质量为M,木箱与一端固定, 劲度系数为k水平轻弹簧 连接,最初弹簧为原长,木块落入后,弹簧最大压缩量为l,
sinq 1 0.64 0.6
2mg sinq cosq 0.6mg sinq mat
at 0.6g 5.88 m/s2 N N F cosq mg cos 2q 0.2mg
第23页
第三章 习题课
mg sin 2q F sinq mat
N F cosq mg cos 2q man
一.选择题
第三章 习题课
1. 对于一个物体系来说,在下列条件中,哪种情 况下系统机械能守恒?
(A) 合外力为0; (B) 合外力不作功; (C) 外力和非保守内力都不作功; (D) 外力和保守内力都不作功。
2.两个质量相等小球由一轻弹簧相连接,再用一细绳
悬挂于天花板上,处于静止状态,如图所表示.将绳
第31页
试求木箱与水平面间摩擦系数.
解: m落入木箱前瞬时速度 v0 2gh
m
h
q
M
k
以M、m为系统,m落入木箱时沿水平方 l 向m与M间冲力(内力)远不小于地面 与木箱间摩擦力(外力),在水平方向 动量守恒 mv0 cosq (M m)v
大学物理习题课
小球在O '点产生电场:Ev2O' 0
v EO
r3 3 0 a3
ar
v EO'
ar 3 0
(2)空腔内任取一点P点,O’P为b,OP为r
大球在P点产生电场:
Ò v r E1P dS
v E1P
rr 3 0
v E1P
4πr2
1
0
4 3
πr3
小球在P点产生电场:
dl'
AO
E
1
4 0
(a2
Qz z2 )3 2
解:将圆盘分割成许多同心的圆环:
dq 2 rdr
该圆环在P点的场强方向沿z轴,大小为:
dE=
z 2 0
(r 2
rdr z2
)3
2
因此,P点的总场强积分如下:
E
R dE z
0
2 0
R rdr 0 (r2 z2 )3 2
(2)场强叠加原理:
vv v
v
E E1 E2 ... En
nv Ej
j 1
1
4 0
n j 1
qj rj2
rvj0
(3)电荷连续分布:
v
E
1
4 0
dq r2
rv0
静电场的高斯定理:
通过任意闭合曲面S的电通量Φe,等于该闭合曲面内所有 电荷电量的代数和∑q除以ε0,与闭合曲面外的电荷无关。
当z
l,E=
l 2 0
z
2
Q
4 0
z
2
即点电荷
• 一均匀带电薄圆盘,半径为R,电荷面密度为σ.试求:
大学物理光的干涉习题课
2 n 2 e cos k
k max 2n2e 2 1 . 50 1 . 00 10 6 . 328 10
7 5
S
n1
R n2 e f
中心亮斑的干涉级最高,为kmax,其 = 0,有:
47 . 4
d
应取较小的整数,kmax = 47(能看到的最高干涉级为第47级亮斑). 最外面的亮纹干涉级最低,为kmin,相应的入射角为 im = 45(因R=d), 相应的折射角为m,据折射定律有
2.如图所示,在双缝干涉实验中 SS1= SS2,用波长 为 的光照射双缝 S1和 S2 ,通过空气后在屏幕E 上形成干涉条纹,已知 P 点处为第三级明条纹, 3 则 S1 和 S2 到 P 点的光程差为,若将整个 装置放在某种透明液体中,P 点为第四级明条纹, 则该液体的折射率 n =______。 1.33
ek 1 ek
A B 图 a
2
[ B ] 4. 用波长为1的单色光照射空气劈形膜,从反射光干涉条纹中观察到劈 形膜装置的A点处是暗条纹.若连续改变入射光波长,直到波长变为2 (2>1)时,A点再次变为暗条纹.求A点的空气薄膜厚度. 解:设A点处空气薄膜的厚度为e,则有
2e 1 2
S1 S S2
r1 r2
P
r2 r1 k , ( k 3 )
n ( r2 r1 ) 4 , 3n 4 n 4 / 3 1 . 33
3. 如图a所示,一光学平板玻璃A与待测工件B之间形成空气劈尖,用波 长=500 nm (1 nm=10-9 m)的单色光垂直照射.看到的反射光的干涉条 纹如图b所示.有些条纹弯曲部分的顶点恰好与其右边条纹的直线部分 的连线相切.则工件的上表面缺陷是 (A) 不平处为凸起纹,最大高度为500 nm. (B) 不平处为凸起纹,最大高度为250 nm. (C) 不平处为凹槽,最大深度为500 nm. (D) 不平处为凹槽,最大深度为250 nm.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理习题课Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】第5章 刚体的定轴转动2、(0116)一飞轮以等角加速度2 rad /s 2转动,在某时刻以后的5s 内飞轮转过了100rad .若此飞轮是由静止开始转动的,问在上述的某时刻以前飞轮转动了多少时间 3、(0979)一电唱机的转盘以n = 78 rev/min 的转速匀速转动.(1) 求转盘上与转轴相距r = 15 cm 的一点P 的线速度v 和法向加速度a B . (2) 在电动机断电后,转盘在恒定的阻力矩作用下减速,并在t = 15 s 内停止转动,求转盘在停止转动前的角加速度及转过的圈数N . 4、(0115)有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止(已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量)5、(0156)如图所示,转轮A 、B 可分别独立地绕光滑的固定轴O 转动,它们的质量分别为m A =10 kg 和m B =20 kg ,半径分别为r A 和r B .现用力f A 和f B 分别向下拉绕在轮上的细绳且使绳与轮之间无滑动.为使A 、B 轮边缘处的切向加速度相同,相应的拉力f A 、f B 之比应为多少(其中A 、B 轮绕O 轴转动时的转动惯量分别为221A A A r m J =和221B B B r m J =)6、(0157)一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示). 7、(0159)一定滑轮半径为 m ,相对中心轴的转动惯量为1×103 kg ·m 2.一变力F = (SI)沿切线方向作用在滑轮的边缘上,如果滑轮最初处于静止状态,忽略轴承的摩擦.试求它在1 s 末的角速度. 8、(0163)一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒向上与水平面成60°,然后无初转速地将棒释放.已知棒对轴的转动惯量为231ml ,其中m 和l 分别为棒的质量和长度.求: (1) 放手时棒的角加速度;(2) 棒转到水平位置时的角加速度. 9、(0307)长为L 的梯子斜靠在光滑的墙上高为h 的地方,梯子和地面间的静摩擦系数为,若梯子的重量忽略,试问人爬到离地面多高的地方,梯子就会滑倒下来 10、(0131)有一半径为R 的均匀球体,绕通过其一直径的光滑固定轴匀速转动,转动周期为T 0.如它的半径由R 自动收缩为R 21,求球体收缩后的转动周期.(球体对于通过直径的轴的转动惯量为J =2mR 2 / 5,式中m 和R 分别为球体的质量和半径). 11、(0303)质量为75 kg 的人站在半径为2 m 的水平转台边缘.转台的固定转轴竖直通过台心且无摩擦.转台绕竖直轴的转动惯量为3000 kg ·m 2.开始时整个系统静止.现人以相对于地面为1 m ·s 1的速率沿转台边缘行走,求:人沿转台边缘行走一周,回到他在转台上的初始位置所用的时间.第6章 狭义相对论基础1、(4170)一体积为V 0,质量为m 0的立方体沿其一棱的方向相对于观察者A 以速度v 运动.求:观察者A 测得其密度是多少 2、(4364)一艘宇宙飞船的船身固有长度为L 0 =90 m ,相对于地面以=v c (c 为真空中光速)的匀速度在地面观测站的上空飞过.(1) 观测站测得飞船的船身通过观测站的时间间隔是多少 (2) 宇航员测得船身通过观测站的时间间隔是多少 3、(4500)一电子以=v (c 为真空中光速)的速率运动.试求: (1) 电子的总能量是多少(2) 电子的经典力学的动能与相对论动能之比是多少(电子静止质量m e =×10-31 kg)第5章 刚体的定轴转动(答案)2、(0116)解:设在某时刻之前,飞轮已转动了t 1时间,由于初角速度=0则 1β=t 1 ① 1分而在某时刻后t 2 =5 s 时间内,转过的角位移为222121t t βωθ+= ② 2分 将已知量=θ100 rad , t 2 =5s , =β 2 rad /s 2代入②式,得1= 15 rad /s 1分从而 t 1 = 1/=β s即在某时刻之前,飞轮已经转动了 1分3、(0979)解:(1) 转盘角速度为602782π⨯=π=n ωrad/s= rad/s 1分P 点的线速度和法向加速度分别为v =r =×= m/s 1分 a n =2r =×=10 m/s 2 1分(2) 1517.800-=-=t ωβrad/s 2=- rad/s 2 1分 21517.821221⨯⨯π=π=t ωN = rev 1分 4、(0115)解:在r 处的宽度为d r 的环带面积上摩擦力矩为r r r R mgM d 2d 2⋅π⋅π=μ 3分 总摩擦力矩 mgR M M R μ32d 0==⎰ 1分故平板角加速度 =M /J 1分设停止前转数为n ,则转角 = 2n由 J /Mn π==422θβω 2分可得 g R MJ n μωωπ16/342020=π=1分 5、(0156)解:根据转动定律 f A r A = J AA ① 1分 其中221A A A r m J =,且 f B r B = J BB ② 1分其中221B B B r m J =.要使A 、B 轮边上的切向加速度相同,应有a = r AA = r BB ③ 1分由①、②式,有 BB B A A A B A B A B A B A r m r m r J r J f f ββββ== ④由③式有 A / B = r B / r A将上式代入④式,得 f A / f B = m A / m B = 21 2分6、(0157)解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg -T =ma ① 2分 T r =J ② 2分 由运动学关系有: a = r ③ 2分由①、②、③式解得: J =m ( g -a ) r 2 / a ④ 又根据已知条件 v 0=0∴ S =221at , a =2S / t 2 ⑤ 2分将⑤式代入④式得:J =mr 2(Sgt 22-1) 2分7、(0159)解:根据转动定律 M =J d / d t 1分 即 d =(M / J ) d t 1分 其中 M =Fr , r = m , F = t ,J =1×10-3 kg ·m 2, 分别代入上式,得d =50t d t 1分则1 s 末的角速度 1=⎰150t d t =25 rad / s 2分8、(0163)解:设棒的质量为m ,当棒与水平面成60°角并开始下落时,根据转动定律M = J 1分其中 4/30sin 21mgl mgl M == 1分于是 2rad/s 35.743 ===l g J M β 1分 当棒转动到水平位置时, M =21mgl 1分那么 2rad/s 7.1423 ===lg J M β 1分解:当人爬到离地面x 高度处梯子刚要滑下,此时梯子与地面间为最大静摩擦,仍处于平衡状态 (不稳定的) .1分 N 1-f =0, N 2-P =0 1分 N 1h -Px ·ctg =0 1分f =N 2 1分 解得 222/tgh L h h x -=⋅=μθμ 1分 10、(0131)解:球体的自动收缩可视为只由球的内力所引起,因而在收缩前后球体的角动量守恒. 1分 设J 0和0、J 和分别为收缩前后球体的转动惯量和角速度, 则有J 00 = J ① 2分由已知条件知:J 0 = 2mR 2 / 5,J = 2m (R / 2)2 / 5代入①式得 = 40 1分即收缩后球体转快了,其周期442200T T =π=π=ωω 1分 周期减小为原来的1 / 4. 11、(0303)解:由人和转台系统的角动量守恒J 11 + J 22 = 0 2分其中 J 1=300 kg ·m 2,1=v /r = rad / s , J 2=3000 kgm 2∴ 2=-J 11/J 2=- rad/s 1分 人相对于转台的角速度 r =1-2= rad/s 1分 ∴ t =2 /r ω= s 1分 第6章 狭义相对论基础(答案)1、(4170)解:设立方体的长、宽、高分别以x 0,y 0,z 0表示,观察者A 测得立方体的长、宽、高分别为 221cx x v -=,0y y =,0z z =. 相应体积为 2201cV xyz V v -== 3分观察者A测得立方体的质量 2201cm m v -=故相应密度为 V m /=ρ22022011/c V c m v v --=)1(2200cV m v -=2分解:(1) 观测站测得飞船船身的长度为=-=20)/(1c L L v 54 m则 t 1 = L /v =×10-7 s 3分(2) 宇航员测得飞船船身的长度为L 0,则t 2 = L 0/v =×10-7 s 2分3、(4500)解:(1) 222)/(1/c c m mc E e v -== =×10-13 J 2分(2) 20v 21e K m E == ×10-14 J22c m mc E e K -=22]1))/(1/1[(c m c e --=v = ×10-13 J∴ =K K E E /0×10-23分。