北师大版九年级数学上册期末试卷及答案
北师大版九年级上册数学期末考试试卷带答案
![北师大版九年级上册数学期末考试试卷带答案](https://img.taocdn.com/s3/m/21ce6b5dbfd5b9f3f90f76c66137ee06eef94e60.png)
北师大版九年级上册数学期末考试试题一、单选题1.一元二次方程x(x-3)=4的解是()A.1B.4C.-1或4D.1或-42.一个由5个相同的正方体组成的立体图形,如图所示,则这个立体图形的左视图是A.B.C.D.3.如图,在直角坐标系中,△OAB的顶点为O(0,0),A(4,3),B(3,0).以点O为位似中心,在第三象限内作与△OAB的位似比为13的位似图形△OCD,则点C坐标A.(﹣1,﹣1)B.(﹣43,﹣1)C.(﹣1,﹣43)D.(﹣2,﹣1)4.在Rt△ABC中,∠C=90°,BC=4,AC=3,则cosA的值是()A.45B.35C.54D.435.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC =9,则BF的长为()A.4B.C.4.5D.56.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=cx(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是()A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <27.如图,在直角三角形ABC 中,90ACB ∠=︒,3AC =,4BC =,点M 是边AB 上一点(不与点A ,B 重合),作ME AC ⊥于点E ,MF BC ⊥于点F ,若点P 是EF 的中点,则CP 的最小值是()A .1.2B .1.5C .2.4D .2.58.反比例函数4y x =和6y x =在第一象限的图象如图所示,点A 在函数6y x=图象上,点B 在函数4y x=图象上,AB ∥y 轴,点C 是y 轴上的一个动点,则△ABC 的面积为()A .1B .2C .3D .49.如图,正方形ABCD 的边长为2,E 为对角线AC 上一动点,90EDP ∠=︒,DE DP =,当点E 从点A 运动到点C 的过程中,EPC ∆的周长的最小值为()A .222B .42C .324D .22310.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x .根据题意列方程,则下列方程正确的是A .22500(1)9100x +=B .22500(1%)9100x +=C .22500(1)2500(1)9100x x +++=D .225002500(1)2500(1)9100x x ++++=11.如图,某次课外实践活动中,小红在地面点B 处利用标杆FC 测量一旗杆ED 的高度.小红眼睛点A 与标杆顶端点F ,旗杆顶端点E 在同一直线上,点B ,C ,D 也在同一条直线上.已知小红眼睛到地面距离 1.6AB =米,标杆高 3.8FC =米,且1BC =米,7CD =米,则旗杆ED 的高度为()A .15.4米B .17米C .17.6米D .19.2米12.若0ab >,则一次函数y ax b =-与反比例函数aby x=在同一坐标系数中的大致图象是A .B .C .D .二、填空题13.一元二次方程220x x -+=的解是______.14.一个反比例函数的图象过点A(-3,2),则这个反比例函数的表达式是_____.15.如图,Rt △ABC 中,∠ACD=90°,直线EF BD ∥,交AB 于点E ,交AC 于点G ,交AD 于点F .若S △AEG=13S 四边形EBCG ,则CF AD=_________.16.如图,在ABC 中,D ,E 分别是边AB ,AC 的中点.若ADE 的面积为12.则四边形DBCE 的面积为_______.三、解答题17.解方程(1)2230x x --=(公式法);(2)23740x x -+=(配方法);(3)22(2)(23)x x -=+(因式分解法);(4)2(1)22x x -=-(适当的方法).18.现有5个质地、大小完全相同的小球上分别标有数字–1,–2,1,2,3.先将标有数字–2,1,3的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里.现分别从两个盒子里各随机取出一个小球.(1)请利用列表或画树状图的方法表示取出的两个小球上数字之和所有可能的结果;(2)求取出的两个小球上的数字之和等于0的概率.19.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P 从点O 开始沿OA 边向点A 以1厘米/秒的速度移动;点Q 从点B 开始沿BO 边向点O 以1厘米/秒的速度移动.如果P 、Q 同时出发,用t (秒)表示移动的时间(0≤t≤6),那么,当t 为何值时,△POQ 与△AOB 相似?20.如图,△ABC 是等边三角形,点D 在AC 上,连接BD 并延长,与∠ACF 的角平分线交于点E .(1)求证:△ABD ∽△CED ;(2)若AB=8,AD=2CD ,求CE 的长.21.如图,已知反比例函数y 1=1k x与一次函数y 2=k 2x+b 的图象交于点A (1,8)、B (﹣4,m ).(1)求一次函数和反比例函数的表达式;(2)求△AOB 的面积;(3)若y 1<y 2,直接写出x 的取值范围.22.如图,在菱形ABCD ,对角线AC,与BD 交于点O,过点C 作BD 的平行线,过点D 作AC 的平行线,两直线交于点E,(1)求证:四边形OCED 是矩形;(2)若CE=1,菱形ABCD的周长为ABCD 的面积.23.如图,反比例函数ky x(k≠0)的图象经过点A (1,2)和B (2,n ),(1)以原点O 为位似中心画出△A1B1O ,使11AB A B =12;(2)在y 轴上是否存在点P ,使得PA+PB 的值最小?若存在,求出P 的坐标;若不存在,请说明理由.24.某品牌童装平均每天可售出40件,每件盈利40元.为了迎接“元旦”,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出4件.要想平均每天销售这种童装盈利2400元,那么每件童装应降价多少元?25.如图,在正方形ABCD 中,点G 是对角线上一点,CG 的延长线交AB 于点E ,交DA 的延长线于点F ,连接AG .(1)求证:AG =CG ;(2)求证:△AEG ∽△FAG ;(3)若GE•GF =9,求CG 的长.参考答案1.C 2.A 3.B 4.B 5.A 6.C 7.A 8.A 9.A 10.D 11.D 12.C13.120,2x x ==【分析】利用因式分解法解一元二次方程即可得.【详解】解:220x x -+=,(2)0x x -+=,0,20x x =-+=,则120,2x x ==,故答案为:120,2x x ==.【点睛】本题考查了解一元二次方程,熟练掌握因式分解法解一元二次方程是解题关键.14.6y x=-【分析】根据反比例函数的意义待定系数法求解析式.【详解】解:∵反比例函数的图象过点A(-3,2),∴6k =-∴这个反比例函数的表达式是6y x=-故答案为:6y x=-15.12【详解】解:∵EF BD∥∴∠AEG=∠ABC ,∠AGE=∠ACB ,∴△AEG ∽△ABC ,且S △AEG=13S 四边形EBCG∴S △AEG :S △ABC=1:4,∴AG :AC=1:2,又EF BD∥∴∠AGF=∠ACD ,∠AFG=∠ADC ,∴△AGF ∽△ACD ,且相似比为1:2,∴S △AFG :S △ACD=1:4,∴S △AFG=13S 四边形FDCGS △AFG=14S △ADC ∵AF :AD=GF :CD=AG :AC=1:2∵∠ACD=90°∴AF=CF=DF∴CF :AD=1:2.故答案为:1216.32【分析】先根据三角形中位线定理得出1//,2DE BC DE BC =,再根据相似三角形的判定与性质得出2()ADE ABC S DE S BC= ,从而可得ABC 的面积,由此即可得出答案.【详解】 点D ,E 分别是边AB ,AC 的中点1//,2DE BC DE BC ∴=ADE ABC∴ 21(4ADE ABC S DE S BC ∴==△△,即4ABCADES S =△△又12ADES =1422ABCS ∴=⨯= 则四边形DBCE 的面积为13222ABC ADE S S -=-= 故答案为:32.17.(1)123,1x x ==-(2)124,13x x ==(3)121,53x x =-=-(4)123,1x x ==【分析】(1)利用公式法求解即可;(2)利用配方法求解即可;(3)利用因式分解法求解即可;(4)利用因式分解法求解即可.(1)解:∵2230x x --=,∴1a =,2b =-,3c =-,∴()()22=42413160b ac ∆-=--⨯⨯-=>,∴242x ±==,∴13x =,21x =-;(2)解:∵23740x x -+=,∴2374x x -=-,∴27433x x -=-,∴22277473636x x ⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭,∴271636x ⎛⎫-= ⎪⎝⎭,∴7166x -=±,∴143x =,21x =;(3)解:∵22(2)(23)x x -=+∴22(2)(23)0x x -+-=,∴()(223)2230x x x x -++---=,∴()()3150x x ++=,∴113x =-,25x =-;(4)解:∵2(1)22x x -=-,∴()2(1)210x x --=-,∴()(12)10x x ---=,∴13x =,21x =.18.(1)详见解析;(2)13【分析】(1)首先根据题意列出表格,由表格即可求得取出的两个小球上数字之和所有等可能的结果;(2)首先根据(1)中的表格,求得取出的两个小球上的数字之和等于0的情况,然后利用概率公式即可求得答案.【详解】解:(1)列表得:-12-2-30103325则共有6种结果,且它们的可能性相同;(2)∵取出的两个小球上的数字之和等于0的有:(1,-1),(-2,2),∴两个小球上的数字之和等于0的概率为:2163=.19.当t=4或t=2时,△POQ 与△AOB 相似.【详解】试题分析:根据题意可知:OQ=6-t ,OP=t ,然后分OQ OP OB OA =和OQ OP OA OB=两种情况分别求出t 的值.试题解析:解:①若△POQ ∽△AOB 时,=,即=,整理得:12﹣2t=t ,解得:t=4.②若△POQ ∽△BOA 时,=,即=,整理得:6﹣t=2t ,解得:t=2.∵0≤t≤6,∴t=4和t=2均符合题意,∴当t=4或t=2时,△POQ 与△AOB 相似.20.(1)见解析;(2)CE=4【分析】(1)根据等边三角形的性质得到60A ACB ∠=∠=︒,则120ACF ∠=︒,根据角平分线的性质,得到60ACE ∠=︒,即可求证;(2)利用相似三角形的性质得到CD CE AD AB=,即可求解.【详解】(1)证明:∵△ABC 是等边三角形,∴∠BAC=∠ACB=60°,∠ACF=120°;∵CE 平分∠ACF ,∴∠ACE=60°;∴∠BAC=∠ACE ;又∵∠ADB=∠CDE ,∴△ABD ∽△CED ;(2)解:∵△ABD ∽△CED ,∴CD CE AD AB=,∵AD=2DC ,AB=8;∴1842CD CE AB AD =⨯=⨯=21.(1)18y x =,y 2=2x+6,过程见解析;(2)15,过程见解析;(3)﹣4<x <0或x >1,过程见解析.【分析】(1)利用待定系数法即可求得结论;(2)设直线AB 与x 轴交于点D ,与y 轴交于点C ,利用直线AB 解析式求得点C ,D 的坐标,用△AOC ,△OCD 和△OBD 的面积之和表示△AOB 的面积即可;(3)利用图象即可确定出x 的取值范围.(1)解:点A (1,8)在反比例函数11ky x =上,∴k 1=1×8=8.∴18y x =.∵点B (﹣4,m )在反比例函数18y x =上,∴﹣4m =8.∴m =﹣2.∴B (﹣4,﹣2).∵点A (1,8)、B (﹣4,﹣2)在一次函数y 2=k 2x+b 的图象上,∴22842k b k b +=⎧⎨-+=-⎩,解得:226k b =⎧⎨=⎩.∴y 2=2x+6.(2)解:设直线AB 与y 轴交于点C,如图,由直线AB:y 2=2x+6,令x =0,则y =6,∴C (0,6).∴OC =6.过点A 作AF ⊥y 轴于点F ,过点B 作BE ⊥y 轴于点E ,∵A (1,8),B (﹣4,﹣2),∴AF =1,BE =4.∴AOBAOC BOC S S S =+△△△11××22OC AF OC BE =+1=6(14)2⨯⨯+=15答:△AOB 的面积是15.(3)解:由图象可知,点A 右侧的部分和点B 与点C 之间的部分y 1<y 2,∴若y 1<y 2,x 的取值范围为:﹣4<x <0或x >1.【点睛】本题是一道反比例函数与一次函数图象的交点问题,主要考查了待定系数法,一次函数图象上点的坐标的特征,反比例函数图象上点的坐标的特征,利用点的坐标表示出相应线段的长和利用数形结合的思想方法求得x 的取值范围是解题的关键.22.(1)证明见解析;(2)4.【分析】(1)欲证明四边形OCED 是矩形,只需推知四边形OCED 是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)证明:因为四边形ABCD 是菱形,所以AC BD ⊥,90COD ︒∴∠=,//,//CE OD DE OC ,所以四边形OCED 是平行四边形,90COD ︒∠= ,∴四边形OCED 是矩形;(2)由(1)知,四边形OCED 是矩形,则CE=OD=1,∵四边形ABCD 是菱形,∴AB=AD=CD=BC ,∵菱形ABCD 的周长为CD ∴2OC∴==,24,22 AC OC BD OD==== ,∴菱形ABCD的面积为:11424 22AC BD⋅=⨯⨯=.23.(1)作图见解析;(2)存在,P(0,5 3).【分析】(1)有两种情形,分别画出图象即可;(2)存在.如图作点A关于y轴的对称点A′,连接BA′交y轴于P,连接PA,此时PA+PB 的值最小.求出直线BA′的解析式即可解决问题.【详解】(1)△A1B1O的图象如图所示.(2)存在.如图作点A关于y轴的对称点A′,连接BA′交y轴于P,连接PA,此时PA+PB 的值最小.∵点A(1,2)在反比例函数y=kx上,∴k=2,∴B (2,1),∵A′(﹣1,2),设最小BA′的解析式为y=kx+b ,则有221k b k b -+⎧⎨+⎩==,解得1253k b ⎧-⎪⎪⎨⎪⎪⎩==,∴直线BA′的解析式为y=﹣13x+53,∴P (0,53).24.每件童装应降价20元.【分析】设每件童装应降价x 元,再根据题意即可列出关于x 的一元二次方程,解出x ,最后舍去不合题意的解即可.【详解】解:设每件童装应降价x 元,依题意可列方程为(40)(404)2400x x -+=,解得:121020x x ==,,∵要减少库存,∴20x =,答:每件童装应降价20元.【点睛】本题考查一元二次方程的实际应用.根据题意找出等量关系,列出方程是解题关键.25.(1)见解析;(2)见解析;(3)CG =3【分析】(1)根据正方形的性质得到∠ADB =∠CDB =45°,AD =CD ,从而利用全等三角形的判定定理推出△ADG ≌△CDG (SAS ),进而利用全等三角形的性质进行证明即可;(2)根据正方形的性质得到AD ∥CB ,推出∠FCB =∠F ,由(1)可知△ADG ≌△CDG ,利用全等三角形的性质得到∠DAG =∠DCG ,结合图形根据角之间的和差关系∠DAB−∠DAG =∠DCB−∠DCG ,推出∠BCF =∠BAG ,从而结合图形可利用相似三角形的判定定理得到△AEG ∽△FAG ,(3)根据相似三角形的性质进行求解即可.【详解】(1)证明:∵BD 是正方形ABCD 的对角线,∴∠ADB =∠CDB =45°,又AD =CD ,在△ADG 和△CDG 中,AD CDADG CDG DG DG=⎧⎪∠=∠⎨⎪=⎩,∴△ADG ≌△CDG (SAS ),∴AG =CG ;(2)解:∵四边形ABCD 是正方形,∴AD ∥CB ,∴∠FCB =∠F ,由(1)可知△ADG ≌△CDG ,∴∠DAG =∠DCG ,∴∠DAB−∠DAG =∠DCB−∠DCG ,即∠BCF =∠BAG ,∴∠EAG =∠F ,又∠EGA =∠AGF ,∴△AEG ∽△FAG ;(3)∵△AEG ∽△FAG ,∴GEGAGA GF =,即GA 2=GE•GF ,∴GA =3或GA =−3(舍去),根据(1)中的结论AG =CG ,∴CG =3.。
北师大版九年级上册数学期末考试试卷及答案
![北师大版九年级上册数学期末考试试卷及答案](https://img.taocdn.com/s3/m/0b213b1f1611cc7931b765ce05087632311274cc.png)
北师大版九年级上册数学期末考试试题一、单选题1.下列方程,是一元二次方程的是()A .2 310x x +-=B .2 51y x -=C . 210x +=D .21 1x x +=2.下面几何体的主视图是()A .B .C .D .3.若△ABC ∽△DEF ,且△ABC 与△DEF 的面积比是94,则△ABC 与△DEF 的对应高的比为()A .23B .8116C .94D .324.若正方形的对角线长为2,则这个正方形的面积为()A .2B .4CD .5.如图,点A 为反比例函数k y x=的图象上一点,过A 作AB ⊥x 轴于点B ,连接OA ,已知△ABO 的面积为3,则k 值为()A .-3B .3C .-6D .66.如图,线段AB 两个端点的坐标分别为(2,2)(2.5,0.8)A B 、,以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标为()A .(3,1.6)B .(4,3.2)C .(4,4)D .(6,1.6)7.由于疫情得到缓和,餐饮行业逐渐回暖,某地一家餐厅重新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x ,则x 满足的方程是()A .5000(1+x )=6050B .5000(1+2x )=6050C .5000(1﹣x )2=6050D .5000(1+x )2=60508.如图,正比例函数11y k x =的图像与反比例函数22k y x =的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是()A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >29.如图,正方形ABCD 中,E 为BC 中点,连接AE ,DF AE ⊥于点F ,连接CF ,FG CF ⊥交AD 于点G ,下列结论:①CF CD =;②G 为AD 中点;③~DCF AGF ∆∆;④23AF EF =,其中结论正确的个数有()A .1个B .2个C .3个D .4个10.如图,菱形ABCD的边AB的垂直平分线交AB于点E,交AC于点F,连接DF.当100BAD∠=︒时,则CDF∠=()A.15︒B.30°C.40︒D.50︒二、填空题11.方程x2=x的解为___.12.若关于x的一元二次方程ax2+4x﹣2=0有实数根,则a的取值范围为___.13.一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有__颗.14.已知矩形ABCD,当满足条件______时,它成为正方形(填一个你认为正确的条件即可).15.反比例函数kyx=的图象经过点(1,﹣2),则k的值为_____.16.如图,正方形纸片ABCD的边长为12,E,F分别是边AD,BC上的点,将正方形纸片沿EF折叠,使得点A落在CD边上的点A′处,此时点B落在点B′处.已知折痕EF=13,则AE的长等于_________.17.如图,菱形ABCD中,对角线AC与BD相交于点O,且AC=8,BD=6,则菱形ABCD 的高DH=_____.三、解答题18.解方程:2x2﹣4x﹣1=0.19.如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.20.如图,小明站在路灯B下的A处,向前走5米到D处,发现自己在地面上的影子DC 是2米.若小明的身高DE是1.8米,则路灯B离地面的高度AB是多少米?21.如图,已知矩形ABCD的两条对角线相交于点O,∠ACB=30°,AB=2.(1)求AC的长及∠AOB的度数;(2)以OB,OC为邻边作菱形OBEC,求菱形OBEC的面积.22.有一块长60m,宽50m的矩形荒地,地方政府准备在此建一个综合性休闲广场,其中黑色部分为通道,通道的宽度均相等,中间的三个矩形(其中三个矩形的一边长均为am)区域将铺设塑胶地面作为运动场地.(1)设通道的宽度为xm,则a=(用含x的代数式表示);(2)若塑胶运动场地总的占地面积为2430m2,则通道的宽度为多少?23.已知,如图,正比例函数y=ax的图象与反比例函数图象交于A点(3,2),(1)试确定上述正比例函数和反比例函数的表达式.(2)根据图象回答:在第一象限内,当反比例函数值大于正比例函数值时x的取值范围?(3)M(m,n)是反比例函数上一动点,其中0大于m小于3,过点M作直线MN平行x 轴,交y轴于点B.过点A作直线AC平行y轴,交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.24.如图1,在平面直角坐标系中,已知直线l:y=kx+b与x轴交于点A,与y轴交于点B,与直线CD相交于点D,其中AC=14,C(﹣6,0),D(2,8).(1)求直线l的函数解析式;(2)如图2,点P为线段CD延长线上的一点,连接PB,当△PBD的面积为7时,将线段BP 沿着y轴方向平移,使得点P落在直线AB上的P'处,求点P′到直线CD的距离;(3)若点E 为直线CD 上的一点,则在平面直角坐标系中是否存在点F ,使以点A ,D ,E ,F 为顶点的四边形为菱形?若存在,求出所有满足条件的点F 的坐标;若不存在,请说明理由.25.如图,一次函数y=x+b 和反比例函数y=xk (k≠0)交于点A (4,1).(1)求反比例函数和一次函数的解析式;(2)求△AOB 的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值的x 的取值范围.26.如图,在矩形ABCD 的边AB 上取一点E ,连接CE 并延长和DA 的延长线交于点G ,过点E 作CG 的垂线与CD 的延长线交于点H ,与DG 交于点F ,连接GH .(1)当tan 2BEC ∠=且4BC =时,求CH 的长;(2)求证:DF FG HF EF ⋅=⋅;(3)连接DE ,求证:CDE CGH ∠=∠.参考答案1.A 【分析】根据一元二次方程的概念(只含有一个未知数,并且未知数项的最高次数是二次的整式方程叫做一元二次方程),逐一判断.【详解】A.2310x x +-=,符合一元二次方程的定义,故本选项正确;B.251y x -=,方程含有两个未知数,故本选项错误;C.210x +=,未知数项的最高次数是一次,故本选项错误;D.211x x+=,不是整式方程,故本选项错误.故答案选A.【点睛】本题重点考查了满足一元二次方程的条件:(1)该方程为整式方程.(2)该方程有且只含有一个未知数.(3)该方程中未知数的最高次数是2.2.B 【分析】主视图是从物体正面看所得到的的图形.【详解】解:从几何体正面看,从左到右的正方形的个数为:2,1,2.故选:B .【点睛】本题考查了三视图,主视图是从物体的正面看得到的视图,解答时学生易将三种试图混淆而错误地选其它选项.3.D 【分析】根据相似三角形的面积比等于相似比的平方,再结合相似三角形的对应高的比等于相似比解答即可.【详解】解:∵△ABC ∽△DEF ,△ABC 与△DEF 的面积比是94,∴△ABC 与△DEF 的相似比为32,∴△ABC 与△DEF 对应高的比为32,故选:D .【点睛】本题考查的是相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.4.A 【分析】根据正方形的性质,对角线平分、相等、垂直且平分每一组对角求解.【详解】如图所示:∵四边形ABCD 是正方形,∴AO=BO=12AC=1cm ,∠AOB=90°,由勾股定理得,2,S 正=2)2=2cm2.故选A .【点睛】考查正方形的性质,解题关键是根据对角线平分、相等、垂直且平分每一组对角进行分析.5.C 【分析】先设出A 点的坐标,由△AOB 的面积可求出xy 的值,即xy =﹣6,即可写出反比例函数的解析式.【详解】解:设A 点坐标为A (x ,y ),由图可知A 点在第二象限,∴x <0,y >0.又∵AB ⊥x 轴,∴|AB|=y ,|OB|=|x|,∴S △AOB 12=⨯|AB|×|OB|12=⨯y×|x|=3,∴﹣xy =6,∴k =﹣6.故选:C .【点睛】本题考查了反比例函数系数k 的几何意义,解题的关键是掌握过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.6.C 【分析】根据位似中心的定义可得:2:1OC OA =,由此即可得出答案.【详解】解:由题意得::2:1OC OA =,则端点C 的坐标为(22,22)C ⨯⨯,即为(4,4)C ,故选:C .【点睛】本题考查了位似图形的性质,理解定义是解题关键.7.D 【分析】根据开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元列方程即可得到结论.【详解】解:设每天的增长率为x ,依题意,得:5000(1+x )2=6050.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.D 【分析】先根据反比例函数与正比例函数的性质求出B 点坐标,再由函数图象即可得出结论.【详解】解:∵反比例函数与正比例函数的图象均关于原点对称,∴A 、B 两点关于原点对称,∵点A 的横坐标为2,∴点B 的横坐标为-2,∵由函数图象可知,当-2<x <0或x >2时函数y 1=k 1x 的图象在22k y x=的上方,∴当y 1>y 2时,x 的取值范围是-2<x <0或x >2.故选:D .9.D 【分析】如图(见解析),过点C 作CM DF ⊥于点M ,先根据三角形全等的判定定理证出ADF DCM ≅ ,根据全等三角形的性质可得AF DM =,再利用正切三角函数可得1tan 1tan 42BE AB ∠=∠==,从而可得AF FM DM ==,然后根据线段垂直平分线的判定与性质即可判断①;先根据等腰三角形的性质可得25∠=∠,从而可得17∠=∠,再根据等腰三角形的判定可得DG FG =,然后根据角的和差可得36∠=∠,最后根据等腰三角形的判定可得AG FG =,由此即可判断②;先根据上面过程可知3256=∠∠∠=∠=,再根据相似三角形的判定即可判断③;设(0)AF x x =>,从而可得2DF x =,先利用勾股定理可得5,2AD AB BC AE x ====,再根据线段的和差可得32EF x =,由此即可判断④.【详解】解:如图,过点C 作CM DF ⊥于点M ,四边形ABCD 是正方形,,90AB BC CD AD B BAD ADC ∴===∠=∠=∠=︒,2190∴∠+∠=︒,DF AE ⊥ ,90,1390AFD DMC ∴∠=∠=︒∠+∠=︒,32∴∠=∠,在ADF 和DCM △中,9032AFD DMC AD DC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()ADF DCM AAS ∴≅ ,AF DM ∴=,点E 是BC 的中点,1122BE BC AB ∴==,349031∠+∠=︒=∠+∠ ,41∴∠=∠,1tan 1tan 42BE AB ∴∠=∠==,12AFDF ∴=,即2DF AF =,DF DM FM AF FM =+=+ ,2AF AF FM ∴=+,即AF FM =,DM FM ∴=,又CM DF ⊥ ,CF CD ∴=,结论①正确;25∴∠=∠,FG CF ⊥ ,90CFG ADC ∴∠=︒=∠,17∴∠=∠,DG FG ∴=,又139076∠+∠=︒=∠+∠ ,36∴∠=∠,AG FG ∴=,AG DG ∴=,即G 为AD 中点,结论②正确;由上已得:32536,2,∠=∠∠∠∠=∠=,56∴∠=∠,在DCF 和AGF 中,2356∠=∠⎧⎨∠=∠⎩,DCF AGF ∴ ,结论③正确;设(0)AF x x =>,则2DF x =,BC AB AD ∴====,122BE BC ∴==,52AE x ∴==,32EF AE AF x ∴=-=,3223AF x EF x ∴==,结论④正确;综上,结论正确的个数有4个,故选:D .10.B 【分析】连接BF ,根据菱形的对角线平分一组对角线可得∠BAC=50°,根据线段垂直平分线上的点到两端点的距离相等可得AF=BF ,根据等边对等角可得∠FBA=∠FAB ,再根据菱形的邻角互补求出∠ABC ,然后求出∠CBF ,最后根据菱形的对称性可得∠CDF=∠CBF .【详解】解:如图,连接BF ,在菱形ABCD 中,∠BAC=12∠BAD=12×100°=50°,∵EF 是AB 的垂直平分线,∴AF=BF ,∴∠FBA=∠FAB=50°,∵菱形ABCD 的对边AD ∥BC ,∴∠ABC=180°-∠BAD=180°-100°=80°,∴∠CBF=∠ABC-∠ABF=80°-50°=30°,由菱形的对称性,∠CDF=∠CBF=30°.故选:B .11.0x =或1x =【分析】利用因式分解法解方程即可;【详解】2x x =,20x x -=,()10x x -=,0x =或1x =;故答案是:0x =或1x =.12.2a ≥-且0a ≠##a≠0且a≥-2【分析】根据题意可知0∆≥,代入求解即可.【详解】解:一元二次方程ax 2+4x ﹣2=0,,4,2a a b c ===-,∵关于x 的一元二次方程ax 2+4x ﹣2=0有实数根,∴0∆≥且0a ≠,即244(2)0a -⨯-≥,0a ≠解得:2a ≥-且0a ≠故答案为:2a ≥-且0a ≠.13.14【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】解:由题意可得,60.36n=+,解得n=14.经检验n=14是原方程的解故估计盒子中黑珠子大约有14个.故答案为:14.14.AB=BC【详解】解:∵四边形ABCD是矩形,∴(1)当AB=BC时,矩形ABCD是正方形;(2)当AC⊥BD时,矩形ABCD是正方形.故答案为:AB=CD(或AC⊥BD).15.﹣2.【分析】将点(1,﹣2)代入kyx=,即可求解.【详解】∵反比例函数kyx=的图象经过点(1,﹣2),∴k21-=,解得k=﹣2.故答案为-2.16.16924【分析】过点F作FG⊥AD,垂足为G,连接AA′,在△GEF中,由勾股定理可求得EG=5,轴对称的性质可知AA′⊥EF,由同角的余角相等可证明∠EAH=∠GFE,从而可证明△ADA′≌△FGE,故此可知GE=DA′=5,最后在△EDA′利用勾股定理列方程求解即可.【详解】解:过点F作FG⊥AD,垂足为G,连接AA′.在Rt△EFG中,5=,∵轴对称的性质可知AA′⊥EF,∴∠EAH+∠AEH=90∘,∵FG⊥AD,∴∠GEF+∠EFG=90∘,∴∠DAA′=∠GFE,在△GEF 和△DA′A 中,90EGF D FG AD DAA GFE ∠=∠=︒⎧⎪=⎨⎪∠'=∠⎩,∴△GEF ≌△DA′A ,∴DA′=EG=5,设AE=x,由翻折的性质可知EA′=x ,则DE=12−x ,在Rt △EDA′中,由勾股定理得:A′E 2=DE 2+A′D 2,即x 2=(12−x)2+52,解得:x=16924,故答案为16924,【点睛】本题主要考查正方形、轴对称、全等三角形的性质及勾股定理等相关知识.利用辅助线构全等形、利用勾股定理建立方程是解题的关键.17.4.8【分析】根据菱形的性质得到AC ⊥BD ,求出OA ,OB ,由勾股定理求出AB ,再利用菱形的面积公式得到12AC•BD=AB•DH ,由此求出答案.【详解】解:在菱形ABCD 中,AC ⊥BD ,∵AC=8,BD=6,∴OA=12AC=12×8=4,OB=12BD=12×6=3,在Rt △AOB 中,==5,∵DH ⊥AB ,∴菱形ABCD 的面积=12AC•BD=AB•DH ,即12×6×8=5DH ,解得DH=4.8.故答案为:4.8.【点睛】此题考查了菱形的性质,勾股定理,熟记菱形的性质并熟练应用解决问题是解题的关键.18.【分析】用配方法解一元二次方程即可.【详解】解:∵2x2﹣4x ﹣1=0,∴2x2﹣4x=1,则x2﹣2x=12,∴x2﹣2x+1=32,即(x ﹣1)2=32,则x ﹣,∴.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确使用,把左边配成完全平方式,右边化为常数.19.证明见解析.【分析】根据等腰三角形三线合一的性质可得AD ⊥BC ,然后求出∠ADB=∠CEB=90°,再根据两组角对应相等的两个三角形相似证明.【详解】∵在△ABC 中,AB=AC ,BD=CD ,∴AD ⊥BC .又∵CE ⊥AB ,∴∠ADB=∠CEB=90°,又∵∠B=∠B ,∴△ABD ∽△CBE .【点睛】本题考查了相似三角形的判定,正确找到相似的条件是解题的关键.20.路灯B 离地面的高度 6.3AB =米【分析】根据ED ∥AB ,得出△ECD ∽△BCA ,进而得出比例式求出即可.【详解】解:由题图知,2DC =米, 1.8=ED 米,5AD =米,∴527=+=+=AC AD DC (米).∵ED AB ∥,∴ECD BCA ∽△△.∴ED DC AB AC =,即1.827AB =.∴路灯B 离地面的高度 1.87 6.32AB ⨯==(米).【点睛】此题主要考查了相似三角形的应用,得出△ECD ∽△EBA 是解决问题的关键.21.(1)4AC =,60AOB ∠=︒;(2)菱形OBEC 的面积是【分析】(1)根据AB 的长结合“在直角三角形中,30°所对的直角边等于斜边的一半”可得出AC 的长度,根据矩形的对角线互相平分可得出OBC 为等腰三角形,从而利用外角的知识可得出∠AOB 的度数;(2)先求出△OBC 和的面积,从而可求出菱形OBEC 的面积.(1)解:在矩形ABCD 中,90ABC ∠=︒,在Rt ABC 中,30ACB ∠=︒.∴24AC AB ==.∴2AO OB ==.又∵2AB =,∴AOB 是等边三角形.∴60AOB ∠=︒.(2)解:在Rt ABC 中,由勾股定理,得BC ==.∴122ABC S =⨯⨯= .∴12BOC ABC S S ==△△.∴菱形OBEC 的面积是【点睛】本题考查矩形的性质、菱形的性质及勾股定理的知识,熟练掌握矩形的性质、菱形的性质及勾股定理是解题的关键.22.(1)6032x-(2)通道的宽度为2m .【分析】(1)结合图形可得:荒地的长为60m ,内部两个矩形的宽为am ,通道宽为xm ,可得方程等式,化简即可得;(2)结合图形,利用大面积减去黑色部分的面积可得方向,求解即可得.(1)解:结合图形可得:荒地的长为60m ,内部两个矩形的宽为am ,通道宽为xm ,∴2360a x +=,6032x a -=,故答案为:6032x -;(2)解:根据题意得:(502)(603)2430---⋅=x x x a ,∵6032x a -=,∴603(502)(603)24302x x x x ----⋅=,解得122,38x x ==(不合题意,舍去).∴通道的宽度为2m .【点睛】题目主要考查列代数式及一元二次方程的应用,理解题意,找准面积之间的关系是解题关键.23.(1)6y x =,23y x =;(2)03x <<;(3)理由见解析【分析】(1)把A 点坐标分别代入两函数解析式可求得a 和k 的值,可求得两函数的解析式;(2)由反比例函数的图象在正比例函数图象的下方可求得对应的x 的取值范围;(3)用M 点的坐标可表示矩形OCDB 的面积和△OBM 的面积,从而可表示出四边形OADM 的面积,可得到方程,可求得M 点的坐标,从而可证明结论.【详解】解:(1)∵将()3,2A 分别代入k y x =,y ax =中,得23k =,32a =,∴6k =,23a =,∴反比例函数的表达式为:6y x =,正比例函数的表达式为23y x =.(2)∵()3,2A 观察图象,得在第一象限内,当03x <<时,反比例函数的值大于正比例函数的值;(3)BM DM=理由:∵//MN x 轴,//AC y 轴,∴四边形OCDB 是平行四边形,∵x 轴y ⊥轴,∴OCDB 是矩形.∵M 和A 都在双曲线6y x=上,∴6BM OB ⨯=,6OC AC ⨯=,∴132OMB OAC S S k ==⨯= ,又∵6OADM S =四边形,∴33612OMB OAC OBDC OADM S S S S =++=++= 矩形四边形,即12OC OB ⋅=,∵3OC =,∴4OB =,即4n =∴632m n ==,∴32MB =,33322MD =-=,∴MB MD =.【点睛】本题为反比例函数的综合应用,涉及知识点有待定系数法、函数与不等式、矩形及三角形的面积和数形结合思想等.在(2)中注意数形结合的应用,在(3)中用M 的坐标表示出四边形OADM 的面积是解题的关键.24.(1)直线l 的函数解析式为43233y x =-+(2)点P '到直线CD 的距离为2(3)存在点1(8F +或2(8F --或3(6,14)F -或4(33,25)F ,使以点A ,D ,E ,F 为顶点的四边形为菱形.【分析】(1)用待定系数法即可求解;(2)由△PBD 的面积求出点P 的坐标,进而求出点P'(5,4),构建△P'DN 用解直角三角形的方法即可求解;(3)分AD 是菱形的边、AD 是菱形的对角线两种情况,利用图像平移和中点公式,分别求解即可.(1)解:∵14,(6,0)=-AC C ,点A 在点C 右侧,∴(8,0)A .∵直线l 与直线CD 相交于点(2,8)D ,∴80,28,k b k b +=⎧⎨+=⎩解得4,332.3k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线l 的函数解析式为43233y x =-+.(2)解:如图1,过点P 作PN y ⊥轴于点N ,作'∥PP y 轴,交AB 于点P ',过点P '作'⊥P M CD 于点M ,过点D 作DE y ⊥轴于点E ,设CD 与y 轴交于点F,0设直线CD 的解析式为y mx n =+,∵(6,0),(2,8)-C D ,∴60,28,m n m n -+=⎧⎨+=⎩解得 1.6.m n =⎧⎨=⎩∴直线CD 的解析式为6y x =+.(0,6)F ∴∴6OC OF ==.∴OCF OFC∠=∠∵OC OF ⊥,∴45OCF OFC ∠=∠=︒∵直线l 的解析式为43233y x =-+,∴320,3B ⎛⎫⎪⎝⎭.∴323OB =.∴3214633=-=-=BF OB OF .设(,6)+P a a ,∵7=-= PBD PBF DBF S S S ,∴11722⋅-⋅=BF PN BF DE ,即114(2)723⨯-=a ,解得5a =.∴(5,11)P .∵将线段BP 沿着y 轴方向平移,使得点P 落在直线AB 上的P '处,∴4325433-⨯+=.∴(5,4)'P .∴1147='-=PP .∵45PCA OCF ∠=∠=︒,PP AC '⊥∴45'︒∠=MPP .∵'⊥P M CD ,∴45PP M P PM ''∠=∠=︒∴PMP ' 是等腰直角三角形.∴==''P M ,即点P '到直线CD 的距离为2.(3)解:①如图2,当AD 、AF 为边时,∵(8,0),(2,8)A D ,∴10==AD .∵四边形ADEF 是菱形,∴,10==∥DE AF AD AF .∵直线CD 的解析式为6y x =+,∴可设直线AF 的解析式为y x b =+.∵(8,0)A ,∴80b +=,解得8b =-.∴直线AF 的解析式为8y x =-.设(,8)-F c c ,∴10===AF AD ,解得8=±c∴12(8(8+--F F .当AD 、AE 为边时,∵(8,0),(2,8)A D ,∴10==AD .∵四边形ADFE 是菱形,∴,10∥DF AE AD AE ==.∵直线CD 的解析式为6y x =+,∴可设直线AF 的解析式为y x b =-+.∵(8,0)A ,∴-80b +=,解得8b =.∴直线AF 的解析式为8y x =-+.设(,8)F d d -+,∴10DF AD ===,解得6d =-或8d =(舍去),∴3(6,14),F -.②如图3,当AD 为对角线时,则,=∥DF AF AF DE .由①得直线AF 的解析式为8y x =-.设(,8)-F t t ,∵(2,8),(8,0)D A ,2222(2)(88)(8)(8)t t t t -+--=-+-解得33t =.∴4(33,25)F .综上所述,存在点1(852,52)F +或2(852,52)F --或3(6,14)F -或4(33,25)F 使以点A ,D ,E ,F 为顶点的四边形为菱形.【点睛】本题考查的是二次函数综合运用,涉及到二次函数的性质、平行四边形的性质、图形的平移、面积的计算等,分类求解解题的关键.25.(1)反比例函数的解析式为:y=4x ;一次函数的解析式为:y=x ﹣3;(2)S △AOB =152;(3)一次函数的值大于反比例函数的值的x 的取值范围为:﹣1<x <0或x >4.【分析】(1)把A 的坐标代入y=k x ,求出反比例函数的解析式,把A 的坐标代入y=x+b 求出一次函数的解析式;(2)求出D 、B 的坐标,利用S △AOB =S △AOD +S △BOD 计算,即可求出答案;(3)根据函数的图象和A 、B 的坐标即可得出答案.【详解】(1)∵反比例函数y=k x的图象过点A (4,1),∴1=k 4,即k=4,∴反比例函数的解析式为:y=4x.∵一次函数y=x+b (k≠0)的图象过点A (4,1),∴1=4+b ,解得b=﹣3,∴一次函数的解析式为:y=x ﹣3;(2)∵令x=0,则y=﹣3,∴D (0,﹣3),即DO=3.解方程4x=x ﹣3,得x=﹣1,∴B (﹣1,﹣4),∴S △AOB =S △AOD +S △BOD =12×3×4+12×3×1=152;(3)∵A (4,1),B (﹣1,﹣4),∴一次函数的值大于反比例函数的值的x 的取值范围为:﹣1<x <0或x >4.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.26.(1)10CH =;(2)见解析;(3)见解析【分析】(1)根据已知条件先求出CE 的长,再证明∠=∠BEC ECH ,在Rt △CHE 中解三角形可求得EH 的长,最后利用勾股定理求CH 的长;(2)证明∽∆∆GFE HFD ,进而得出结果;(3)由(2)∽∆∆GFE HFD 得∠=∠EGF FHD ,进而sin sin ∠=∠EGF FHD ,即=CD CE CG CH ,再结合∠=∠ECD DCE ,可得出∽∆∆CDE CGH ,进一步得出结果.【详解】(1)解:∵矩形ABCD ,EH CG ⊥,∴90∠=︒=∠=∠BCD CEH B .而90BEC BCE ∠+∠=︒,90∠+∠=︒BCE ECH ,∴∠=∠BEC ECH ,又∵4BC =,tan 2BEC ∠=,∴2BE =,易得CE ==∴tan 2∠==EH ECH CE ,∴EH =∴10CH ==.(2)证明:∵矩形ABCD ,EH CG ⊥,∴∠=∠CEH HDG ,而∠=∠GFE DFH ,∴∽∆∆GFE HFD ,∴=DF FH EF FG,∴⋅=⋅DF FG EF FH ;(3)证明:由(2)∽∆∆GFE HFD 得∠=∠EGF FHD ,∴sin sin ∠=∠EGF FHD ,即=CD CE CG CH,而∠=∠ECD DCE ,∴∽∆∆CDE CGH ,∴CDE CGH ∠=∠.【点睛】本题主要考查相似三角形的判定与性质以及解直角三角形,关键是掌握基本的概念与性质.。
北师大版九年级上册数学期末考试试卷含答案解析
![北师大版九年级上册数学期末考试试卷含答案解析](https://img.taocdn.com/s3/m/572ee97653d380eb6294dd88d0d233d4b14e3ff8.png)
北师大版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.在一个四边形ABCD 中,依次连结各边中点的四边形是菱形,则对角线AC 与BD 需要满足条件()A .垂直B .相等C .垂直且相等D .不再需要条件2.如图,在矩形ABCD 中,AB=3,BC=4,将其折叠,使AB 边落在对角线AC 上,得到折痕AE ,则点E 到点B 的距离为()A .32B .2C .52D .33.下列方程中,是关于x 的一元二次方程的是A .()()12132+=+x x B .02112=-+x x C .02=++c bx ax D .1222-=+x x x 4.已知点()12,A y -、B (-1,y 2)、C (3,y 3)都在反比例函数4y x=的图象上,则y 1、y 2、y 3的大小关系是()A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 35.学生冬季运动装原来每套的售价是100元,后经连续两次降价,现在的售价是81元,则平均每次降价的百分数是A .9%B ..5%C .9.5%D .10%6.二次三项式243x x -+配方的结果是()A .2(2)7x -+B .2(2)1x --C .2(2)7x ++D .2(2)1x +-7.函数x ky =的图象经过(1,-1),则函数2-=kx y 的图象是2222-2-2-2-2O OOOy y y y xxxxA .B .C .D.8.如图,矩形ABCD ,R 是CD 的中点,点M 在BC 边上运动,E 、F 分别是AM 、MR 的中点,则EF 的长随着M 点的运动A .变短B .变长C .不变D.无法确定9.如图,点A 在双曲线=6上,且OA =4,过A 作AC ⊥轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为()A .47B .5C .27D .2210.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC .若AD=4,DB=2,则的值为.二、填空题11.反比例函数2k y x+=的图象在一、三象限,则k 应满足_________.12.把一个三角形改做成和它相似的三角形,如果面积缩小到原来的12倍,边长应缩小到原来的____倍.13.已知一元二次方程22(1)7340a x ax a a -+++-=有一个根为0,则a 的值为_______.14.已知534a b c ==,则232a b c a b c++=++_______15.如图,已知点A 在反比例函数(0)ky x x=<的图象上,AC y ⊥轴于点C ,点B 在x 轴的负半轴上,若2ABC S = ,则k 的值为_________.16.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,若AD=1,BD=4,则CD=_____.17.若关于x 的一元二次方程()21210k x x -+-=有两个不相等的实数根,则k 的取值范围是______.三、解答题18.解方程(1);(2).19.(8分)已知,如图,AB 和DE 是直立在地面上的两根立柱.AB=5m ,某一时刻AB 在阳光下的投影BC=3m .B(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m ,请你计算DE 的长.20.(10分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.21.已知甲同学手中藏有三张分别标有数字11,,124的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为,a b.(1)请你用树形图或列表法列出所有可能的结果.(2)现制定这样一个游戏规则:若所选出的能使得有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释22.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.23.某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?24.如图,已知A (−4,n ),B (2,−4)是一次函数y =kx +b 的图象和反比例函数my x=的图象的两个交点;(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积;(3)求不等式kx +b −mx<0的解集(请直接写出答案).25.在平面直角坐标系中,直线l 1:y =x +5与反比例函数y =kx(k ≠0,x >0)图象交于点A(1,n );另一条直线l 2:y =﹣2x +b 与x 轴交于点E ,与y 轴交于点B ,与反比例函数y =k x(k ≠0,x >0)图象交于点C 和点D (12,m ),连接OC 、OD .(1)求反比例函数解析式和点C 的坐标;(2)求△OCD 的面积.26.(12分)如图,在ABC △中,5AB =,3BC =,4AC =,动点E (与点A C ,不重合)在AC 边上,EF AB ∥交BC 于F 点.CE FA B(1)当ECF△的面积与四边形EABF的面积相等时,求CE的长;(2)当ECF△的周长与四边形EABF的周长相等时,求CE的长;(3)试问在AB上是否存在点P,使得EFP△为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出EF的长.参考答案1.B【解析】试题分析:如图:∵四边形EFGH是菱形,∴EH=FG=EF=HG=12BD=12AC,故AC=BD.故选B.考点:中点四边形.2.A【解析】试题分析:由于AE是折痕,可得到AB=AF,BE=EF,设出未知数,在Rt△EFC中利用勾股定理列出方程,通过解方程即可得到答案.设BE=x,∵AE为折痕,∴AB=AF,BE=EF=x,∠AFE=∠B=90°,Rt△ABC中,,∴Rt△EFC中,FC=5-3=2,EC=4-X,∴,解得,故选A.考点:本题考查的是图形折叠的性质及勾股定理点评:熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.3.A【解析】试题分析:A、由原方程得到3x2+4x+1=0,符合一元二次方程的定义,故本选项正确;B、该方程中分母中含有未知数.不属于整式方程,故本选项错误;C、当a=0时.该方程不是一元二次方程.故本选项错误;D、由原方程得到2x+1=0,即未知数的最高次数是1.故本选项错误;故选A.考点:一元二次方程定义4.D【分析】分别把各点坐标代入反比例函数y=4x,求出y1,y2,y3的值,再比较大小即可.【详解】∵点A(-2,y1)、B(-1,y2)、C(3,y3)都在反比例函数y=4x的图象上,∴y1=-2,y2=-4,y3=4 3,∵-4<-2<4 3,∴y2<y1<y3.故选D.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.D【解析】试题分析:设平均每次降价的百分数是x,依题意得100(1-x)2=81,解方程得x1=0.1,x2=1.9(舍去)所以平均每次降价的百分数是10%.故选D.考点:一元二次方程的应用6.B【解析】试题分析:在本题中,若所给的式子要配成完全平方式,常数项应该是一次项系数-4的一半的平方;可将常数项3拆分为4和-1,然后再按完全平方公式进行计算.解:x2-4x+3=x2-4x+4-1=(x-2)2-1.故选B.考点:配方法的应用.7.A【解析】试题分析:∵函数xky=的图象经过(1,-1),∴k=-1,∴函数2-=kxy的解析式为:y=-x-2,函数y=-x-2的图像过二、四象限过(0,-2),(-2,0)点,故选A考点:1.反比例函数图像2.一次函数8.C【解析】试题分析:∵E,F分别是AM,MR的中点,∴EF=12AR.∵R是定点,∴AR的定长.∴无论M运动到哪个位置EF的长不变.故选C.考点:1.动点问题;2.三角形中位线定理.9.C【解析】试题分析:∵OA的垂直平分线交OC于B,∴AB=OB,∴△ABC的周长=OC+AC,设OC=a,AC=b,则:ab=6,a2+b2=16,解得a+b=27,即△ABC的周长=OC+AC=27.故选C考点:反比例函数图象上点的坐标特征10.2 3【解析】试题分析::∵DE∥BC,∴△ADE∽△ABC,∴AD:AB=DE:BC,∵AD=4,DB=2,∴AD:AB=DE:BC=2:3.则的值为2 3.考点:相似三角形的判定与性质.11.k>-2【解析】试题分析:反比例函数:当时,图象在第一、三象限;当时,图象在第二、四象限.由题意得,考点:本题主要考查了反比例函数的性质点评:本题属于基础应用题,只需学生熟练掌握反比例函数的性质,即可完成.12.2【解析】试题分析::∵改做的三角形与原三角形相似,且面积缩小到原来的倍,∴边长应缩小到原来的2倍.考点:相似三角形的性质13.-4【解析】【分析】将x=0代入原方程可得关于a的方程,解之可求得a的值,结合一元二次方程的定义即可确定出a的值.【详解】把x=0代入一元二次方程(a-1)x2+7ax+a2+3a-4=0,可得a2+3a-4=0,解得a=-4或a=1,∵二次项系数a-1≠0,∴a≠1,∴a=-4,故答案为-4.【点睛】本题考查了一元二次方程的一般式以及一元二次方程的解,熟知一元二次方程二次项系数不为0是解本题的关键.14.15 26【解析】试题分析:设=k ,则a=5k ,b=3k ,c=4k ,25641532153826a b c k k k a b c k k k ++++==++++考点:比例的性质15.-4【分析】连结OA ,由AC ⊥y 轴,可得AC ∥x 轴,可知S △ACB =S △ACO =2,可得=4k ,由反比例函数图像在第二象限(x<0),可知k<0,可求k=-4.【详解】解:连结OA ,∵AC ⊥y 轴,∴AC ∥x 轴,∴S △ACB =S △ACO =2,∴1=22k ,∴=4k ,∵反比例函数图像在第二象限(x<0),∴k<0,∴k=-4.故答案为:-4.【点睛】本题考查反比例函数解析式,掌握反比例函数的性质,关键是反比例函数中k 的几何意义.16.2.【分析】首先证△ACD ∽△CBD ,然后根据相似三角形的对应边成比例求出CD 的长.【详解】解:Rt △ACB 中,∠ACB=90°,CD ⊥AB ;∴∠ACD=∠B=90°﹣∠A ;又∵∠ADC=∠CDB=90°,∴△ACD ∽△CBD ;∴CD 2=AD•BD=4,即CD=2.故答案为:2【点睛】本题考查相似三角形的判定与性质.17.0k >且1k ≠【分析】根据题意,结合一元二次方程的定义和根的判别式可得关于k 的不等式,然后解不等式即可求解.【详解】解:∵关于x 的一元二次方程()21210k x x -+-=有两个不相等的实数根,∴21024(1)(1)0k k -≠⎧⎨∆=--⨯->⎩,10k k ≠⎧⎨>⎩,∴k 的取值范围是0k >且1k ≠,故答案为:0k >且1k ≠.【点睛】本题考查了一元二次方程的定义、根的判别式、解一元一次不等式,熟练掌握一元二次方程的根的判别式与根的关系是解答的关键.18.(1)1x =2x =.(2)【详解】试题分析:(1)用公式法(2)用分解因式法试题解析:(1)因为(()245248∆=--⨯-⨯=,所以x =即1x =2x =.(2)移项得,分解因式得,解得考点:解一元二次方程19.(1)见解析;(2)DE=10m【解析】试题分析:(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系AB BC DE EF =.计算可得DE试题解析:(1)如图:连接AC ,过点D 作DE//AC ,交直线BC 于点F ,线段EF 即为DE 的投影(2)∵AC//DF ,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC ∽△DEF.53,.6AB BC DE EF DE ∴=∴= ∴DE=10(m )考点:平行投影20.(1)BD=CD .(2)当△ABC 满足:AB=AC 时,四边形AFBD 是矩形.【解析】试题分析:(1)根据两直线平行,内错角相等求出∠AFE=∠DCE ,然后利用“角角边”证明△AEF 和△DEC 全等,根据全等三角形对应边相等可得AF=CD ,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD 是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.试题解析:(1)BD=CD.理由如下:∵AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴▱AFBD是矩形.考点:1.矩形的判定2.全等三角形的判定与性质.21.(1)列表见解析;(2)不公平,理由见解析.【分析】(1)首先根据题意画出树状图,然后根据树状图即可求得所有等可能的结果;(2)利用一元二次方程根的判别式,即可判定各种情况下根的情况,然后利用概率公式求解即可求得甲、乙获胜的概率,比较概率大小,即可确定这样的游戏规是否公平.【详解】(1)列表如下:a b12312(12,1)(12,2)(12,3)14(14,1)(14,2)(14,3)1(1,1)(1,2)(1,3)(2)要使方程210ax bx ++=有两个不相等的实根,即△=240b a ->,满足条件的有5种可能:1111,2,,2,,3,,3,(1,3)2424⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∴甲获胜的概率为()59P =甲,乙获胜的概率为()49P =乙,5499> 即此游戏不公平.22.证明见解析.【分析】(1)一方面Rt △ABC 中,由∠BAC=30°可以得到AB=2BC ,另一方面△ABE 是等边三角形,EF ⊥AB ,由此得到AE=2AF ,并且AB=2AF ,从而可证明△AFE ≌△BCA ,再根据全等三角形的性质即可证明AC=EF .(2)根据(1)知道EF=AC ,而△ACD 是等边三角形,所以EF=AC=AD ,并且AD ⊥AB ,而EF ⊥AB ,由此得到EF ∥AD ,再根据平行四边形的判定定理即可证明四边形ADFE 是平行四边形.【详解】证明:(1)∵Rt △ABC 中,∠BAC=30°,∴AB=2BC .又∵△ABE 是等边三角形,EF ⊥AB ,∴AB=2AF .∴AF=BC .∵在Rt △AFE 和Rt △BCA 中,AF=BC ,AE=BA ,∴△AFE ≌△BCA (HL ).∴AC=EF .(2)∵△ACD 是等边三角形,∴∠DAC=60°,AC=AD .∴∠DAB=∠DAC+∠BAC=90°.∴EF ∥AD .∵AC=EF ,AC=AD ,∴EF=AD .∴四边形ADFE 是平行四边形.考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的判定.23.每张贺年卡应降价0.1元.【分析】设每张贺年卡应降价x 元,等量关系为:(原来每张贺年卡盈利-降价的价格)×(原来售出的张数+增加的张数)=120,把相关数值代入求得正数解即可.【详解】设每张贺年卡应降价x 元,根据题意得:(0.3-x )(500+1000.1x )=120,整理,得:21002030x x +-=,解得:120.1,0.3x x ==-(不合题意,舍去),∴0.1x =,答:每张贺年卡应降价0.1元.24.(1)8y x=-,2y x =--;(2)C 点坐标为(2,0)-,6;(3)40x -<<或2x >.【分析】(1)先把B 点坐标代入代入m y x =求出m 得到反比例函数解析式,再利用反比例函数解析式确定A 点坐标,然后利用待定系数法求一次函数解析式;(2)根据x 轴上点的坐标特征确定C 点坐标,然后根据三角形面积公式和AOB 的面积AOC BOC S S ∆∆=+进行计算;(3)观察函数图象得到当4x <-或02x <<时,一次函数图象都在反比例函数图象下方.【详解】解:(1)把(2,4)-B 代入m y x=得2(4)8m =⨯-=-,所以反比例函数解析式为8y x =-,把(4,)A n -代入8y x=-得48n -=-,解得2n =,则A 点坐标为(4,2)-,把(4,2)A -,(2,4)-B 分别代入y kx b =+得4224k b k b -+=⎧⎨+=-⎩,解得12k b =-⎧⎨=-⎩,所以一次函数的解析式为2y x =--;(2)当0y =时,20x --=,解得2x =-,则C 点坐标为(2,0)-,∴AOC BOCAOB S S S ∆∆∆=+11222422=⨯⨯+⨯⨯6=;(3)由kx +b −m x <0可得kx +b <m x故该不等式的解为40x -<<或2x >.【点睛】本题考查了反比例函数与一次函数综合.(1)中理解函数图象上的点都满足函数关系式是解题关键;(2)中掌握“割补法”求图形面积是解题关键;(3)中掌握数形结合思想是解题关键.25.(1)y =6x ,点C (6,1);(2)1434.【分析】(1)点A (1,n )在直线l 1:y =x +5的图象上,可求点A 的坐标,进而求出反比例函数关系式,点D 在反比例函数的图象上,求出点D 的坐标,从而确定直线l 2:y =﹣2x +b 的关系式,联立求出直线l 2与反比例函数的图象的交点坐标,确定点C 的坐标,(2)求出直线l 2与x 轴、y 轴的交点B 、E 的坐标,利用面积差可求出△OCD 的面积.【详解】解:(1)∵点A (1,n )在直线l 1:y =x +5的图象上,∴n =6,∴点A (1,6)代入y =k x 得,k =6,∴反比例函数y =6x ,当x =12时,y =12,∴点D (12,12)代入直线l 2:y =﹣2x +b 得,b =13,∴直线l 2:y =﹣2x +13,由题意得:6213y x y x ⎧=⎪⎨⎪=-+⎩解得:111212x y ⎧=⎪⎨⎪=⎩,2261x y =⎧⎨=⎩,∴点C (6,1)答:反比例函数解析式y =6x,点C 的坐标为(6,1).(2)直线l 2:y =﹣2x +13,与x 轴的交点E (132,0)与y 轴的交点B (0,13)∴S △OCD =S △BOE ﹣S △BOD ﹣S △OCE11311113143131312222224=⨯⨯-⨯⨯⨯=答:△OCD 的面积为1434.【点睛】本题考查了待定系数法求反比例函数解析式、反比例函数与一次函数交点问题、以及反比例函数与几何面积的求解,解题的关键是灵活处理反比例函数与一次函数及几何的关系.26.(1)CE =22;(2)CE 的长为724;(3)在AB 上存在点P ,使△EFP 为等腰直角三角形,此时EF =3760或EF =49120【解析】试题分析:(1)因为EF ∥AB ,所以容易想到用相似三角形的面积比等于相似比的平方解题;(2)根据周长相等,建立等量关系,列方程解答;(3)先画出图形,根据图形猜想P 点可能的位置,再找到相似三角形,依据相似三角形的性质解答.试题解析:(1)∵△ECF 的面积与四边形EABF 的面积相等∴S △ECF :S △ACB =1:2又∵EF ∥AB ∴△ECF ∽△ACB.,21)(2==∆∆CA CE S S ACB ECF 且AC =4∴CE =22;(2)设CE 的长为x∵△ECF ∽△ACB ∴CB CF CA CE =∴CF=x 43.由△ECF 的周长与四边形EABF 的周长相等,得EFx x x EF x +-++-=++)433(5)4(43解得724=x ∴CE 的长为724;(3)△EFP 为等腰直角三角形,有两种情况:①如图1,假设∠PEF =90°,EP =EF图1A B由AB =5,BC =3,AC =4,得∠C =90°∴Rt △ACB 斜边AB 上高CD =512设EP =EF =x ,由△ECF ∽△ACB ,得CD EP CD AB EF -=,即5125125xx -=,解得3760=x ,即EF =3760,当∠EFP´=90°,EF =FP´时,同理可得EF =3760.②如图2,假设∠EPF =90°,PE =PF 时,点P 到EF 的距离为EF 21。
北师大版数学九年级上册期末测试卷(含答案)
![北师大版数学九年级上册期末测试卷(含答案)](https://img.taocdn.com/s3/m/d69280d316fc700aba68fc7f.png)
九年级期末测试(北师大)一、选择题(每小题4分,共40分)1. 一元二次方程x 2-3=0的根为( ).A. x =3B. x =3C. x1=3, x 2=-3 D. x 1=3, x 2=-3 2.已知:如图,小华在打羽毛球时,扣球要使球恰好能打过网, 而且落在离网前4米的位置处,则球拍击球的高度h 应为( ).A.1.55 mB. 3.1mC.3.55mD. 4m3. 顺次连接对角线相等的四边形各边中点,所得到的四边形一定是( ).A.矩形B.菱形C.正方形D.等腰梯形4.下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是( ).5. 方程2650x x +-=的左边配成完全平方后所得方程为( ).A.14)3(2=-x B. 2(3)4x += C.21)6(2=+x D.14)3(2=+x . 6. 下列命题中,错误的是( ).A .矩形的对角线互相平分且相等B .对角线互相垂直的四边形是菱形C .等腰梯形同一底上的两个角相等D .对角线互相垂直的矩形是正方形7.在一个暗箱里放有x 个除颜色外其它完全相同的球,这x 个球中白球只有5个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到白球的频率稳定在20%,那么可以推算出x 大约是( ).A .20B .25C .30D .408.如图是一个用于防震的L 形的包装用泡沫塑料,当俯视它时看到的图形形状是( ).9. 一次函数y =2x +5与反比例函数y =x2的图像的交点个数是 ( ). A.0 B. 1 C.2 D. 3A B C D (第8题图) 正面1.55m4m4mBACD(第10题图)10. 在下图中,反比例函数4y x=的图象大致是( ).二.填空题(每小题4分,共20分)11已知一元二次方程x 2-3x +2=0两根为1x 、2x ,则=+21x x . 12. 命题“对顶角相等”的逆命题是 .13.菱形的两条对角线长分别为6和8,则此菱形的面积为___________。
北师大版九年级上册数学期末考试试卷及答案
![北师大版九年级上册数学期末考试试卷及答案](https://img.taocdn.com/s3/m/5715e736ac02de80d4d8d15abe23482fb4da0294.png)
北师大版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.下列长度的各组线段中,能构成比例的是()A .2,5,6,8B .3,6,9,18C .1,2,3,4D .3,6,7,92.如图,正比例函数y 1=k 1x 和反比例函数y 2=2k x的图象都经过点A (2,﹣1),若y 1>y 2,则x 的取值范围是()A .﹣1<x <0B .x >2C .﹣2<x <0或x >2D .x <﹣2或0<x <23.关于反比例函数y =﹣3x,下列说法错误的是()A .图象经过点(1,﹣3)B .图象分布在第一、三象限C .图象关于原点对称D .图象与坐标轴没有交点4.如图,在Rt ABC 中,90ABC ∠=︒,点F 为AC 中点,DE 是ABC 的中位线,若6DE =,则BF =()A .6B .4C .3D .55.已知1x =是关于x 的方程22(1)10k x k x -+-=的根,则常数k 的值为()A .0B .1C .0或1D .0或-18.6.关于x 的一元二次方程210kx x -+=有两个不相等的实数根,则k 的取值范围是A .14k <B .14k >C .14k <且0k ≠D .14k >且0k ≠7.某企业今年1月份产值为x 万元,2月份的产值比1月份减少了10%,则2月份的产值是()A .(1﹣10%)x 万元B .(1﹣10%x )万元C .(x ﹣10%)万元D .(1+10%)x 万元8.下列说法正确的是()A .对角线互相垂直的四边形是菱形B .矩形的对角线互相垂直C .一组对边平行的四边形是平行四边形D .四边相等的四边形是菱形9.如图,在正方形OABC 中,OA =6,点E 、F 分别在边BC ,BA 上,OE =,若∠EOF=45°,则点F 的纵坐标为()A .2B .53C D 1-10.如图,在△ABC 中,DE ∥BC ,AD =9,DB =3,CE =2,则AC 的长为()A .6B .7C .8D .9二、填空题11.矩形纸片ABCD ,长8cm AD =,宽4cm AB =,折叠纸片,使折痕经过点B ,交AD 边于点E ,点A 落在点A '处,展平后得到折痕BE ,同时得到线段BA ',EA ',不再添加其它线段,当图中存在30 角时,AE 的长为__________厘米.12.已知y 与2x+1成反比例,且当x=1时,y=2,那么当x=﹣2时,y=______.13.在一只不透明的口袋中放入红球6个,黑球2个,黄球n 个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为13,则放入口袋中的黄球总数n=__.14.如图,在平面直角坐标系中,边长为4的等边△OAB 的OA 边在x 轴的正半轴上,反比例函数y=k x(x >0)的图象经过AB 边的中点C ,且与OB 边交于点D ,则点D 的坐标为_____.15.如图,已知在ABC 中,90ACB ∠=︒,2AC =,4BC =.D 为ABC 所在平面内的一个动点,且满足90BDC ∠=︒,E 为线段AD 的中点,连结CE ,则线段CE 长的最大值为______.16.如图,矩形ABOC 的面积为3,反比例函数y =k x的图象过点A ,则k =_____.17.关于x 的方程(m ﹣2)x 2﹣2x +1=0是一元二次方程,则m 满足的条件是_____.三、解答题18.解方程(1)3x 2+8x +4=0(配方法)(2)2310x x --=(公式法)(3)4x (2x +1)=3(2x +1)(4)3x 2-x -2=019.设一元二次方程260x x k -+=的两根分别为1x 、2x .(1)若12x =,求2x 的值;(2)若5k =,且1x 、2x 分别是Rt ABC ∆的两条直角边的长,试求Rt ABC ∆的面积.20.如图,在平行四边形ABCD 中,ABD ∠的平分线BE 交AD 于点E ,CDB ∠的平分线DF 交BC 于点F .求证:四边形DEBF 是平行四边形.21.如图,E 是矩形ABCD 的边BC 延长线上的一点,连接AE ,交CD 于F ,把ABE ∆沿CB 向左平移,使点E 与点C 重合,ADF CBG ∆≅∆吗?请说明理由.22.如图,四边形ABCD 是矩形,E 是BC 边上一点,点F 在BC 的延长线上,且CF =BE .(1)求证:四边形AEFD 是平行四边形;(2)连接ED ,若∠AED =90°,AB =4,BE =2,求四边形AEFD 的面积.23.如图,A 是反比例函数k y x=()0k <图象上的一点,过点A 作AB x ⊥轴于点B ,连0A ,AOB 的面积为2,点A 的坐标为()1,m -.(1)求反比例函数的解析式.(2)若一次函数3y ax =+的图象经过点A ,交双曲线的另一支于点()4,C n ,交y 轴于点D ,若y 轴上存在点P ,使PAC △的面积为5,求点P 的坐标.24.在抗击“新冠病毒”期间,某路口利用探测仪对过往的物体进行检查,探测仪A 测得某物体的仰角∠BAD =35°,俯角∠DAC =45°,探测仪到货物表面的距离AD =3米,求货物高BC 的长.(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,结果精确到0.1)25.如图,点P 是正方形ABCD 对角线AC 上一动点,点E 在射线BC 上,且PE =PB ,连接PD ,O 为AC 中点.(1)如图1,当点P 在线段AO 上时,试猜想PE 与PD 的数量关系和位置关系.(2)①如图2,当点P 在线段OC 上时,(1)中的猜想还成立吗?请说明理由.②图2,试用等式来表示PB 、BC 、CE 之间的数量关系,并证明.参考答案1.B【解析】分析:分别计算各组数中最大与最小数的积和另外两数的积,然后根据比例线段的定义进行判断.详解:∵3×18=6×9,∴3,6,9,18成比例.故选B .点睛:本题考查了比例线段:判定四条线段是否成比例,只要把四条线段按大小顺序排列好,判断前两条线段之比与后两条线段之比是否相等即可,求线段之比时,要先统一线段的长度单位,最后的结果与所选取的单位无关系.2.D【解析】如图,∵点A 坐标(2,﹣1),又∵正比例函数y 1=k 1x 和反比例函数y 2=2k x都是关于原点对称,∴它们的交点A 、B 关于原点对称,∴点B坐标(﹣2,1),∴由图象可知,y1>y2时,x<﹣2,或0<x<2,故选D.3.B【解析】【分析】反比例函数y=kx(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大.根据反比例函数的性质并结合其对称性对各选项进行判断.【详解】A、把点(1,﹣3)代入函数解析式,﹣3=﹣3,故本选项正确,不符合题意,B、∵k=﹣2<0,∴图象位于二、四象限,且在每个象限内,y随x的增大而增大,故本选项错误,符合题意,C、反比例函数的图象可知,图象关于原点对称,故本选项正确,不符合题意D、∵x、y均不能为0,故图象与坐标轴没有交点,故本选项正确,不符合题意.故选:B.【点睛】本题主要考查的是反比例函数的性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握.4.A【分析】由DE是ABC的中位线,可得AC=12,在Rt ABC中,点F为AC中点,可得BF=6即可.【详解】解:∵DE是ABC的中位线,∴AC=2DE=2×6=12,∵在Rt ABC 中,90ABC ∠=︒,点F 为AC 中点,∴BF =1112622AC =⨯=,故选择A .【点睛】本题考查三角形中位线与三角形中线性质,掌握三角形中位线与三角形中线性质是解题关键.5.C【详解】试题分析:①当1k =时,方程22(1)10k x k x -+-=为一元一次方程,解为1x =;②1k ≠时,方程22(1)10k x k x -+-=为一元二次方程,把1x =代入方程22(1)10k x k x -+-=可得:2110k k -+-=,即20k k -=0,可得(1)0k k -=,即k=0或1(舍去);故选C .考点:一元二次方程的解.6.C【分析】根据一元二次方程kx 2-x+1=0有两个不相等的实数根,知△=b 2-4ac >0,然后据此列出关于k 的方程,解方程即可.【详解】解:∵kx 2-x+1=0有两个不相等的实数根,∴△=1-4k >0,且k≠0,解得,k <14且k≠0;故答案是:k <14且k≠0.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.解题时,注意一元二次方程的“二次项系数不为0”这一条件.7.A【分析】1、本题属于列代数式的题目,解答此类题目首先要弄清楚语句中各个量之间的关系;2、细查题意,由2月份比1月份减少了10%先表示出2月份的产值为(1-10%)x 万元.【详解】由2月份比1月份减少了10%得2月份的产值是(1-10%)x 万元.故答案选A.【点睛】本题考查了列代数式,解题的关键是弄清楚题目中各个量之间的关系.8.D【详解】选项A ,菱形的对角线互相垂直,当对角线互相垂直的四边形不一定是菱形;选项B ,矩形的对角线相等但不一定垂直;选项C ,一组对边平行且相等的四边形是平行四边形;选项D ,四边相等的四边形是菱形.故选D.9.A【分析】延长BA 到点M ,使AM =CE ,连接OM ,由题意易得△OCE ≌△OAM ,则有OE =OM ,∠COE =∠AOM ,然后可得∠EOF =∠MOF ,进而可得△EOF ≌△MOF ,则有FM =EF ,根据勾股定理可得CE =3,设AF =x ,则EF =3+x ,BE =3,BF =6-x ,最后根据勾股定理建立方程求解即可.【详解】解:延长BA 到点M ,使AM =CE ,连接OM ,如图所示:∵四边形OABC 是正方形,OA =6,∴6,90OA OC AB BC OCE OAM OAF B COA ====∠=∠=∠=∠=∠=︒,∴△OCE ≌△OAM ,∴OE =OM ,∠COE =∠AOM ,∵∠EOF =45°,∴45COE AOF ∠+∠=︒,∴45AOM AOF ∠+∠=︒,∴∠EOF =∠MOF ,∵OF =OF ,OE =OM ,∴△EOF ≌△MOF (SAS ),∴EF FM AF AM AF CE ==+=+,∵OE =∴在Rt △OEC 中,3CE ==,设AF =x ,则EF =3+x ,BE =3,BF =6-x ,∴在Rt △EBF 中,222BE BF EF +=,∴()()222363x x +-=+,解得:2x =,∴点F 的纵坐标为2;故选A .【点睛】本题主要考查正方形的性质、勾股定理及图形与坐标,熟练掌握正方形的性质、勾股定理及图形与坐标是解题的关键.10.C【分析】利用平行线分线段成比例定理得到=AD AE DB EC ,利用比例性质求出AE ,然后计算AE +EC 即可.【详解】解:∵DE ∥BC ,∴=AD AE DB EC ,即9=32AE ,∴AE =6,∴AC =AE +EC =6+2=8.故选:C .【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.11.3或8-【分析】分∠ABE=30°或∠AEB=30°或∠ABA′=30°时三种情况,利用锐角三角函数进行求解即可.【详解】解:当∠ABE=30°时,∵AB=4cm ,∠A=90°,∴AE=AB·tan30°=3cm ;当∠AEB=30°时,则∠ABE=60°,∵AB=4cm ,∠A=90°,∴AE=AB·tan60°=;当∠ABE=15°时,∠ABA′=30°,延长BA′交AD 于F ,如下图所示,设AE=x ,则EA′=x ,sin 603x EF ==︒,∵AF=AE+EF=ABtan30°=3,∴x +,∴8x =-∴8AE =-cm .故答案为:3或8-【点睛】本题考查了矩形与折叠,以及分类讨论的数学思想,分类讨论是解答本题的关键.12.-2【解析】试题分析:设反比例函数的解析式为:y=2r1,根据题意可得y=62r1,当x=-2时,y=-2.考点:待定系数法求反比例函数解析式.【详解】试题分析:随机从口袋中摸出一个恰好是黄球的概率为13,说明黄球的数目是口袋中所有球的数目的13,则可列方程:1623n n =++,解得:n=4.考点:概率的定义.14.3)【分析】由等边三角形的性质可求出B (2,,然后由中点坐标公式求出C (3,从而可求出反比例函数解析式,再求出直线OB 的解析式,然后与反比例函数解析式联立可求出点D 的坐标.【详解】∵△AOB 是等边三角形,边长为4,∴B (2,,∵BC =CA ,∴C (3),把点C 坐标代入k y x=上,得到k∵直线OB 的解析式为y,由y y x ⎧=⎪⎨=⎪⎩,解得3x y ⎧=⎪⎨=⎪⎩或3x y ⎧=⎪⎨=-⎪⎩∴D3),3).【点睛】本题考查了等边三角形的性质,待定系数法求函数关系式,反比例函数与一次函数的交点,求出反比例函数与直线OB 的解析式是解答本题的关键.15.1+取BC 的中点O ,连接OA 、OD ,取AO 中点M ,连接CM 、EM ,根据三角形斜边上的中线性质得出122OD BC ==,再根据三角形中位线性质得出112EM OD ==,然后根据勾股定理及角形斜边上的中线性质得出12CM OA ==最后根据两点之间线段最短即可得出答案.【详解】解:取BC 的中点O ,连接OA 、OD ,取AO 中点M ,连接CM 、EM在Rt △CDB 中,O 为斜边BC 的中点122OD BC ∴==在△AOD 中,AE =DE ,AM =OM 112EM OD ∴==在Rt △ACO 中,AC =OC =2AO ∴==∴12CM OA ==在△CME 中,1CE CM EM ≤+即CE 1.1.【点睛】本题考查了直角三角形斜边上的中线性质、三角形中位线性质、勾股定理、两点之间线段最短等知识点,熟练掌握性质定理和添加合适的辅助线是解题的关键.16.-3【分析】根据比例系数k 的几何含义:在反比例函数y=k x的图象中任取一点,过这一个点向x 轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|即可解题.【详解】解:∵矩形ABOC 的面积为3,∴|k|=3.∴k=±3.又∵点A 在第二象限,∴k<0,∴k=−3.故答案为−3.【点睛】本题考查了反比例函数系数k 的几何意义,反比例函数图象上点的坐标特征,属于简单题,熟悉反比例函数的图像和性质是解题关键.17.2m ≠【分析】根据一元二次方程的定义ax 2+bx+c=0(a≠0),列含m 的不等式求解即可.【详解】解:∵关于x 的方程(m ﹣2)x 2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠2.故答案为:m≠2.【点睛】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键.18.(1)x 1=23-,x 2=2-;(2)x 1=32+,x 2=32;(3)x 1=34,x 2=12-;(4)x 1=1,x 2=23-【分析】(1)将方程常数项移到右边,未知项移到方程左边,方程两边同时除以3将二次项系数化为1,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程,求出一次方程的解即可得到原方程的解;(2)化成一般形式后用公式法解比较方便;(3)把右边的项移到左边,用提公因式的方法因式分解解方程;(4)化成一般形式后用公式法解比较方便;【详解】解:(1)23840x x ++=,∴2384x x +=-,∴28433x x +=-,∴28164163939x x ++=-+,∴24439x ⎛⎫+= ⎪⎝⎭,∴4233x +=±,解得:x 1=23-,x 2=2-;(2)2310x x --=,则a =1,b =-3,c =-1,∵b 2-4ac =9+4=13>0,∴x解得:x 1,x 2(3)()()421321x x x +=+,∴()()4213210x x x +-+=,∴()()04321x x -+=,∴4x -3=0或2x +1=0,解得:x 1=34,x 2=12-;(4)2320x x --=,则a =3,b =-1,c =-2,∵b 2-4ac =1+24=25>0,∴x ,解得:x 1=1,x 2=23-.【点睛】此题考查了解一元二次方程-配方法、公式法及因式分解法,利用因式分解法解方程时,首先将方程右边化为0,左边的多项式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.19.解:(1)24x =(2)2.5.【分析】(1)利用根与系数的关系12b x x a +=-求解;(2)解一元二次方程,然后利用三角形面积公式进行计算求解.【详解】解:∵一元二次方程260x x k -+=的两根分别为1x 、2x ∴12b x x a +=-,即226x +=∴24x =;(2)当5k =时,2650x x -+=解得:121,5x x ==∵1x 、2x 分别是Rt ABC ∆的两条直角边的长∴115 2.52Rt ABC S ∆=⨯⨯=【点睛】本题考查一元二次方程根与系数的关系及解一元二次方程,掌握公式和解方程的一般步骤正确计算是本题的解题关键.20.详见解析【分析】根据平行四边形性质得出AB=CD ,∠A=∠C .求出∠ABD=∠CDB .推出∠ABE=∠CDF ,根据ASA 推出△ABE ≌△CDF 即可证得DE=BF ;再又DE ∥BF 可得.【详解】证明:在□ABCD 中,AB=CD ,∠A=∠C,AD=BC .∵AB ∥CD ,∴∠ABD=∠CDB .∵BE 平分∠ABD ,DF 平分∠CDB ,∴∠ABE=12∠ABD ,∠CDF=12∠CDB .∴∠ABE=∠CDF .∵在△ABE 和△CDF 中,A C AB DC ABE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABE ≌△CDF (ASA ).∴AE=CF∴AD-AE=BC-CF,即DE=BF又AD ∥BC∴四边形DEBF 是平行四边形【点睛】本题考查了平行线的性质,平行四边形的性质和判定,全等三角形的性质和判定,角平分线定义等知识点的应用,熟练运用平行四边形的判定和性质是关键.21.见解析【解析】【分析】根据平移的性质得到∠GCB=∠DAF ,然后利用ASA 证得两三角形全等即可.【详解】解:△ADF ≌△CBG ;理由:∵把△ABE 沿CB 向左平移,使点E 与点C 重合,∴∠GCB=∠E ,∵四边形ABCD 是矩形,∴∠E=∠DAF ,∴∠GCB=∠DAF ,在△ADF 与△CBG 中,90D GBC GCB DAF BC AD ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△ADF ≌△CBG (ASA ).【点睛】本题考查了矩形的性质及全等三角形的判定等知识,解题的关键是了解矩形的性质与平移的性质,难度不大.22.(1)见解析;(2)40【分析】(1)先根据矩形的性质得到AD∥BC,AD=BC,然后证明AD=EF可判断四边形AEFD 是平行四边形;(2)连接DE,如图,先利用勾股定理计算出AE=ABE∽△DEA,利用相似比求出AD,然后根据平行四边形的面积公式计算.【详解】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∵BE=CF,∴BE+EC=EC+CF,即BC=EF,∴AD=EF,∴四边形AEFD是平行四边形;(2)解:连接DE,如图,∵四边形ABCD是矩形,∴∠B=90°,在Rt△ABE中,AE∵AD∥BC,∴∠AEB=∠EAD,∵∠B=∠AED=90°,∴△ABE∽△DEA,∴AE:AD=BE:AE,∴AD =2=10,∵AB =4,∴四边形AEFD 的面积=AB ×AD =4×10=40.【点睛】本题考查了矩形的性质,平行四边形的性质与判定,相似三角形的性质与判定,掌握以上知识点是解题的关键.23.(1)4y x=-;(2)点P 的坐标为()0,1或()0,5.【分析】(1)根据反比例函数系数的几何意义,利用△AOB 的面积即可求出m 值,然后把点A 的坐标代入反比例函数解析式,计算即可得到k 的值.(2)先一次函数的解析式,再求出点C 坐标为(4,−1),设P 点坐标为(0,c ),根据题意有:113134522c c ⨯-⨯+⨯-⨯=,解方程即可求得.【详解】解:(1)依题意得1122m ⨯⨯=,∴4m =,∴()1,4A -,把点()1,4A -代入k y x=得41k =-,∴4k =-,∴反比例函数解析式为4y x =-;(2)∵()1,4A -,代入一次函数3y ax =+,得4=-a +3,解得a =-1∴3y x =-+令x =0,y =3,∴D (0,3)将点()4,C n 代入4y x=-,得:1n =-,则点C 坐标为()41-,,设点P 坐标为()0,c ,∴PD =3c -PAC △的面积为5,∴113134522c c ⨯-⨯+⨯-⨯=,解得:1c =或5c =,则点P 的坐标为()0,1或()0,5.【点睛】本题考查了反比例函数和一次函数图象的交点问题,反比例函数系数的几何意义,反比例函数图象上点的坐标特征,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k |,三角形的面积是12|k |.24.这件货物高约5.1米.【分析】根据解直角三角形的解法得出BD ,CD 的长即可.【详解】解:∵tan ∠BAD =BD AD ,tan ∠CAD =CD AD ,∴BD =AD tan ∠BAD =3×tan35°≈2.1,CD =AD tan ∠CAD =3×1=3,∴BC =BD +CD =2.1+3=5.1(米)答:这件货物高约5.1米.【点睛】本题主要考查了解直角三角形的应用,关键是根据题意作出辅助线,构造直角三角形.25.(1)PD =PE 且PD ⊥PE ,理由见详解;(2)①(1)中猜想成立,理由见详解;②2222BC CE PB +=,证明见详解.【分析】(1)根据点P 在线段AO 上,利用三角形的全等判定可以得出问题;(2)①利用三角形全等得出BP =PD ,由PB =PE 可得PE =PD ,要证PE ⊥PD 可从三方面分析,当点E 在线段BC 上(E 与B 、C 不重合)时,当点E 与点C 重合时,点P 恰好在AC 中点处,当点E 在BC 的延长线上时,分别分析即可求解;②连接DE ,由①知PE =PD ,PE ⊥PD ,由勾股定理可得22222DE PD PE PE =+=,由四边形ABCD 是正方形可得BC =DC ,∠BCD =∠DCE =90°,根据222DC CE DE +=知22222BC CE DE PE +==,然后结合PE =PB 可求解.【详解】解:(1)PD=PE且PD⊥PE,理由如下:∵四边形ABCD是正方形,∴BC=DC,∠BCP=∠DCP=45°,∵PC=PC,∴△BCP≌△DCP(SAS),∴PB=PD,∠PBC=∠PDC,∵PE=PB,∴PD=PE,∠PBC=∠PEB,∴∠PDC=∠PEB,∴∠PDC+∠PEC=180°,由四边形PECD内角和为360°,∴∠DPE+∠DCE=180°,∵∠DCE=90°,∴∠DPE=90°,∴PD=PE且PD⊥PE;(2)①(1)中结论仍成立,理由如下:∵四边形ABCD是正方形,∴BA=DA,∠BAP=∠DAP=45°,∵PA=PA,∴△BAP≌△DAP(SAS),∴PB=PD,∵PE=PB,∴PD=PE,a、当点E与点C重合时,点P恰好在AC中点处,此时PE⊥PD;b、当点E在BC的延长线上时,如图所示:∵△BAP ≌△DAP ,∴∠ABP =∠ADP ,∴∠CDP =∠CBP ,∵BP =PE ,∴∠CBP =∠PEC ,∴∠PDC =∠PEC ,∵∠1=∠2,∴∠DPE =∠DCE =90°,∴PE ⊥PD ,综上所述:PD =PE 且PD ⊥PE 仍成立;②数量关系:2222BC CE PB +=,证明如下:如图2,连接DE ,由①可得PD =PE 且PD ⊥PE ,∴22222DE PD PE PE =+=,∵四边形ABCD 是正方形,∴BC =DC ,∠BCD =∠DCE =90°,∴在Rt △DCE 中,222DC CE DE +=,∴22222BC CE DE PE +==,∵PE =PB ,∴2222BC CE PB +=.【点睛】本题主要考查正方形的性质、勾股定理及全等三角形的性质与判定,熟练掌握正方形的性质、勾股定理及全等三角形的性质与判定是解题的关键.。
北师大版九年级上册数学期末考试试卷附答案详解
![北师大版九年级上册数学期末考试试卷附答案详解](https://img.taocdn.com/s3/m/4ca84064bfd5b9f3f90f76c66137ee06eef94e47.png)
北师大版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.在下面的四个几何体中,同一几何体的主视图与俯视图相同的是()A .B .C .D .2.如图,Rt △ABC 中,∠C=90°,AB=2,BC=1,则sinA 等于()A .2BC .12D 3.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是A .∠ABP=∠CB .∠APB=∠ABC C .AP ABAB AC=D .AB ACBP CB=4.如果两个相似三角形的相似比是1:4,那么这两个相似三角形的周长比是()A .2:1B .1:16C .1:4D .1:25.要使菱形ABCD 成为正方形,需要添加的条件是()A .AB=CDB .AD=BCC .AB=BCD .AC=BD 6.已知点A (3,a )与点B (5,b )都在反比例函数y=﹣2x的图象上,则a 与b 之间的关系是()A .a >bB .a <bC .a≥bD .a=b7.某池塘中放养了鲫鱼1000条,鲮鱼若干条,在几次随机捕捞中,共抓到鲫鱼200条,鲮鱼400条,估计池塘中原来放养了鲮鱼()A .500条B .1000条C .2000条D .3000条8.一元二次方程x 2﹣2x+3=0根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判断9.已知反比例函数ky x=的图象经过点(﹣1,5),则此反比例函数的图象位于()A .第一、二象限B .第二、三象限C .第二、四象限D .第一、三象限10.如图,一次函数1(0)y kx b k =+≠的图象与反比例函数2my x=(m 为常数且0m ≠)的图象都经过()()1,2,2,1A B --,结合图象,则不等式mkx b x+>的解集是()A .1x <-B .10x -<<C .1x <-或02x <<D .10x -<<或2x >二、填空题11.方程22x x =的根是________.12.如图,已知DE ∥BC ,AE=3,AC=5,AB=6,则AD=_____.13.如图,过反比例函数y=6x(x >0)图象上的一点A ,作x 轴的垂线,垂足为B 点,连接OA ,则S △AOB =_____14.如图,菱形ABCD 中,对角线AC 与BD 相交于点O ,且AC=8,BD=6,则菱形ABCD 的高DH=_____.15.如图,在A时测得旗杆的影长是4米,B时测得旗杆的影长是16米,若两次的日照光线恰好垂直,则旗杆的高度是______米.16.已知矩形的长是3,宽是2,另一个矩形的周长和面积分别是已知矩形周长和面积的2倍,那么新矩形的长是_____.三、解答题17.计算:2sin30°+4cos30°·tan60°-cos245°18.由于提倡环保节能,自行车已成为市民日常出行的主要工具之一,据某自行车经销店4至6月份统计,某品牌自行车4月份销售200辆,6月份销售338辆,求该品牌自行车销售量的月平均增长率.19.如图,在6×8网格图中,每个小正方形边长均为1,点O和△ABC的顶点均在小正方形的格点上.(1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且相似比为1:2;(2)连接(1)中的BB′,CC′,求四边形BB′C′C的周长.(结果保留根号)20.如图,某幢大楼顶部有广告牌CD,小宇身高MA为1.89米,他站在立在离大楼45米的A 处测得大楼顶端点D的仰角为30°;接着他向大楼前进15米,站在点B处测得广告牌顶端点C 的仰角为45°.(1)求这幢大楼的高DH ;(2)求这块广告牌CD 的高度.(.732,计算结果保留一位小数)21.在一个不透明的口袋里装有若干个除颜色外其余均相同的红、黄、蓝三种颜色的小球,其中红球2个,篮球1个,若从中任意摸出一个球,摸到球是红球的概率为12.(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,求两次摸到球的颜色是红色与黄色这种组合(不考虑红、黄球顺序)的概率.22.某超市服装专柜在销售中发现:某男装上衣的进价为每件30元,当售价为每件50元时,每周可卖出200件,现需降价处理,经过市场调查,发现每降价1元,每周可多卖出20件.(1)为占有更大的市场份额,当降价为多少元时,每周盈利为4420元?(2)当降价为多少元时,每周盈利额最大?最大盈利多少元?23.如图,一次函数y=x+b 和反比例函数y=xk(k≠0)交于点A (4,1).(1)求反比例函数和一次函数的解析式;(2)求△AOB 的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值的x 的取值范围.24.如图,以△ABC 的各边,在边BC 的同侧分别作三个正方形ABDI ,BCFE ,ACHG .(1)求证:△BDE ≌△BAC ;(2)求证:四边形ADEG 是平行四边形.(3)直接回答下面两个问题,不必证明:①当△ABC 满足条件_____________________时,四边形ADEG 是矩形.②当△ABC 满足条件_____________________时,四边形ADEG 是正方形?25.如图,直线y=﹣23x+c 与x 轴交于点A (3,0),与y 轴交于点B ,抛物线y=﹣43x 2+bx+c 经过点A ,B ,M (m ,0)为x 轴上一动点,点M 在线段OA 上运动且不与O ,A 重合,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N .(1)求点B 的坐标和抛物线的解析式;(2)在运动过程中,若点P 为线段MN 的中点,求m 的值;(3)在运动过程中,若以B ,P ,N 为顶点的三角形与△APM 相似,求点M 的坐标;参考答案1.D【详解】试题分析:主视图、俯视图是分别从物体正面和上面看,所得到的图形.因此,A、圆柱主视图、俯视图分别是长方形、圆,主视图与俯视图不相同,故A选项错误;B、圆锥主视图、俯视图分别是三角形、有圆心的圆,主视图与俯视图不相同,故B选项错误;C、三棱柱主视图、俯视图分别是长方形,三角形,主视图与俯视图不相同,故C选项错误;D、球主视图、俯视图都是圆,主视图与俯视图相同,故D选项正确.故选D.考点:简单几何体的三视图.2.C【解析】【分析】结合图形运用三角函数定义求解.【详解】∵AB=2、BC=1,∴sinA=1=2 BC AB,故选C.【点睛】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.D【详解】试题分析:A.当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B.当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C.当AP ABAB AC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D.无法得到△ABP∽△ACB,故此选项正确.故选D.考点:相似三角形的判定.4.C【分析】直接根据相似三角形周长的比等于相似比即可得出结论.【详解】∵两个相似三角形的相似比是1:4,∴这两个相似三角形的周长比是1:4.故选C.【点睛】本题考查的是相似三角形的性质,熟知相似三角形对应周长的比等于相似比是解答此题的关键.5.D【分析】根据有一个角是直角的菱形是正方形即可解答.【详解】如图,∵四边形ABCD是菱形,∴要使菱形ABCD成为一个正方形,需要添加一个条件,这个条件可以是:∠ABC=90°或AC=BD.故选D.【点睛】本题考查了正方形的判定,解答此题的关键是熟练掌握正方形的判定定理,正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角.③还可以先判定四边形是平行四边形,再用①或②进行判定.6.B【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵点A(3,a)与点B(5,b)都在反比例函数y=﹣2x的图象上,∴每个象限内y随x的增大而增大,则a<b.故选B.【点睛】此题主要考查了反比例函数的增减性,正确记忆反比例函数的性质是解题关键.7.C【分析】先根据题意可得到鲫鱼与鲮鱼之比为1:2,再根据鲫鱼的总条数计算出鲮鱼的条数即可.【详解】由题意得:鲫鱼与鲮鱼之比为:200:400=1:2,∵鲫鱼1000条,∴鲮鱼条数是:1000×2=2000.故答案选:C.【点睛】本题主要考查了用样本估计总体,关键是知道样本的鲫鱼与鲮鱼之比就是池塘内鲫鱼与鲮鱼之比.8.C【分析】直接利用根的判别式进而判断,即可得出答案.【详解】∵a=1,b=﹣2,c=3,∴b2﹣4ac=4=4﹣4×1×3=﹣8<0,∴此方程没有实数根.故选C.【点睛】此题主要考查了根的判别式,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.9.C 【分析】把点(-1,5)代入反比例函数ky x=得到关于k 的一元一次方程,解之,即可得到反比例函数的解析式,根据反比例函数的图象和性质,即可得到答案.【详解】解:把点(﹣1,5)代入反比例函数ky x=得:1k-=5,解得:k =﹣5,即反比例函数的解析式为:y =5x-,此反比例函数的图象位于第二、第四象限,故选:C .【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数的图象,反比例函数的性质,正确掌握代入法,反比例函数的图象和性质是解题的关键.10.C 【分析】根据一次函数图象在反比例函数图象上方的x 的取值范围便是不等式mkx b x+>的解集.【详解】解:由函数图象可知,当一次函数()10y kx b k =+≠的图象在反比例函数2my x=(m 为常数且0m ≠)的图象上方时,x 的取值范围是:1x <-或02x <<,∴不等式mkx b x+>的解集是1x <-或02x <<.故选C .【点睛】本题是一次函数图象与反比例函数图象的交点问题:主要考查了由函数图象求不等式的解集.利用数形结合是解题的关键.11.x 1=0,x 2=2【分析】先移项,再用因式分解法求解即可.【详解】解:∵22x x =,∴22=0x x -,∴x(x-2)=0,x 1=0,x 2=2.故答案为:x 1=0,x 2=2.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.12.3.6.【分析】根据平行线分线段成比例定理得出比例式,代入求出即可.相似三角形的判定推出【详解】解:∵DE ∥BC ,∴AE ADAC AB=,∴356AD =,解得:AD =3.6,故答案为:3.6.【点睛】本题考查了平行线分线段成比例定理,能根据平行线得出比例式是解此题的关键.13.3【分析】设A (x ,6x ),则有OB=x ,AB=6x,根据三角形面积公式可得答案.【详解】设A (x ,6x )则有,OB=x ,AB=6x∴S△AOB =162xx⨯⨯=3,故答案为:3,【点睛】本题考查反比例函数系数k的几何意义,记住:反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k|,且保持不变.14.4.8.【详解】试题分析:在菱形ABCD中,AC⊥BD,∵AC=8,BD=6,∴OA=12AC=12×8=4,OB=12BD=12×6=3,在Rt△AOB中,由勾股定理可得AB=5,∵DH⊥AB,∴菱形ABCD的面积=12AC•BD=AB•DH,即12×6×8=5•DH,解得DH=4.8.考点:菱形的性质.15.8【分析】如图,∠CPD=90°,QC=4m,QD=9m,利用等角的余角相等得到∠QPC=∠D,则可判断Rt△PCQ∽Rt△DPQ,然后利用相似比可计算出PQ.【详解】解:如图,∠CPD=90°,QC=4m,QD=16m,∵PQ⊥CD,∴∠PQC=90°,∴∠C+∠QPC=90°,而∠C+∠D=90°,∴∠QPC=∠D,∴Rt△PCQ∽Rt△DPQ,∴PQ QCQD PQ=,即416PQPQ=,∴PQ=8,即旗杆的高度为8m.故答案为8.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.也考查了相似三角形的判定与性质.16.【分析】设新矩形的长为x,则新矩形的宽为(10-x),根据新矩形的面积为12,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.【详解】设新矩形的长为x,则新矩形的宽为(10﹣x),根据题意得:x(10﹣x)=2×3×2,整理得:x2﹣10x+12=0,解得:x1=5x2∵x≥10﹣x,∴x≥5,∴故答案为:【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.17.132【解析】分析:将sin30°=12,详解:原式=2×12+2=1+6-12=132点睛:考查了特殊角的三角函数值,解答本题的关键是掌握一些特殊角的三角函数值,请牢记以下特殊三角函数值:18.月平均增长率为30%.【分析】设该品牌自行车销售量的月平均增长率为x ,根据4月、6月份的销售量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】设该品牌自行车销售量的月平均增长率为x ,根据题意得:200(1+x )2=338,解得:x 1=0.3=30%,x 2=﹣2.3(不合题意,舍去).答:该品牌自行车销售量的月平均增长率为30%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.19.(1)见解析;(2)【分析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用勾股定理得出各线段长,进而得出答案.【详解】(1)如图所示:△A′B′C′,即为所求;(2)四边形BB′C′C 的周长为:.【点睛】此题主要考查了位似变换,正确得出对应点位置是解题关键.20.(1)楼高DH 为27.9米;(2)广告牌CD 的高度为4.0米.【解析】【分析】在Rt △DME 与Rt △CNE ;应利用ME-NE=AB=15构造方程关系式,进而可解即可求出答案.【详解】解:(1)在Rt △DME 中,ME=AH=45;由tan 30°=DE ME ,得DE=45×3≈15×1.732=25.98;又因为EH=MA=1.89,故大楼DH=DE+EH=25.98+1.89=27.87≈27.9.(2)在Rt △CNE 中,NE=45-15=30,由tan 45°=CE NE,得CE=NE=30,因而广告牌CD=CE-DE=30-25.98≈4.0.答:楼高DH 为27.9米,广告牌CD 的高度为4.0米.【点睛】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.21.(1)袋中黄球的个数1个;(2)两次摸到球的颜色是红色与黄色这种组合的概率为1 3 .【分析】(1)首先设袋中的黄球个数为x个,然后根据古典概率的知识列方程,求解即可求得答案;(2)首先画树状图,然后求得全部情况的总数与符合条件的情况数目,求其二者的比值即可.【详解】(1)设袋中的黄球个数为x个,∴21= 212x++,解得:x=1,经检验,x=1是原方程的解,∴袋中黄球的个数1个;(2)画树状图得:,∴一共有12种情况,两次摸到球的颜色是红色与黄色这种组合的有4种,∴两次摸到球的颜色是红色与黄色这种组合的概率为:4 12 =13【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.注意方程思想的应用.22.(1)当降价为7元时,每周盈利为4420元;(2)当降价为5元时,每周盈利额最大,最大盈利4500元.【分析】(1)设降价为x元,根据“总利润=每件利润×销售量”列出关于x的方程,解之得出x的值,再根据要占有更大的市场份额,即销量尽可能的大取舍即可得;(2)设每周盈利为y,根据以上所列相等关系列出函数解析式,将其配方成顶点式后利用二次函数的性质求解可得.【详解】(1)设降价为x元,根据题意,可得:(50﹣x ﹣30)(200+20x )=4420,整理,得:x 2﹣10x+21=0,解得:x 1=3,x 2=7,因为要占有更大的市场份额,即销量尽可能的大,所以x=7,答:当降价为7元时,每周盈利为4420元;(2)设每周盈利为y ,则y=(50﹣x ﹣30)(200+20x )=﹣20x 2+200x+4000=﹣20(x ﹣5)2+4500,所以当x=5时,y 取得最大值,最大值为4500,答:当降价为5元时,每周盈利额最大,最大盈利4500元.【点睛】本题主要考查了二次函数的应用,最值问题一般的解决方法是转化为函数问题,根据函数的性质求解.23.(1)反比例函数的解析式为:y=4x ;一次函数的解析式为:y=x ﹣3;(2)S △AOB =152;(3)一次函数的值大于反比例函数的值的x 的取值范围为:﹣1<x <0或x >4.【分析】(1)把A 的坐标代入y=k x,求出反比例函数的解析式,把A 的坐标代入y=x+b 求出一次函数的解析式;(2)求出D 、B 的坐标,利用S △AOB =S △AOD +S △BOD 计算,即可求出答案;(3)根据函数的图象和A 、B 的坐标即可得出答案.【详解】(1)∵反比例函数y=k x 的图象过点A (4,1),∴1=k 4,即k=4,∴反比例函数的解析式为:y=4x.∵一次函数y=x+b (k≠0)的图象过点A (4,1),∴1=4+b,解得b=﹣3,∴一次函数的解析式为:y=x﹣3;(2)∵令x=0,则y=﹣3,∴D(0,﹣3),即DO=3.解方程4x=x﹣3,得x=﹣1,∴B(﹣1,﹣4),∴S△AOB =S△AOD+S△BOD=12×3×4+12×3×1=152;(3)∵A(4,1),B(﹣1,﹣4),∴一次函数的值大于反比例函数的值的x的取值范围为:﹣1<x<0或x>4.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.24.(1)见解析;(2)见解析;(3)①∠BAC=135°;②∠BAC=135°且AC【分析】(1)根据全等三角形的判定定理SAS证得△BDE≌△BAC;(2)由△BDE≌△BAC,可得全等三角形的对应边DE=AG.然后利用正方形对角线的性质、周角的定义推知∠EDA+∠DAG=180°,易证ED∥GA;最后由“一组对边平行且相等”的判定定理证得结论;(3)①根据“矩形的内角都是直角”易证∠DAG=90°.然后由周角的定义求得∠BAC=135°;②由“正方形的内角都是直角,四条边都相等”易证∠DAG=90°,且AG=AD.由正方形ABDI和正方形ACHG的性质证得:AC=.【详解】(1)∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°,∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,∵BD BADBE ABCBE BC=⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△BAC(SAS);(2)∵△BDE≌△BAC,∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC,∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°,∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).(3)①当四边形ADEG是矩形时,∠DAG=90°.则∠BAC=360°﹣∠BAD﹣∠DAG﹣∠GAC=360°﹣45°﹣90°﹣90°=135°,即当∠BAC=135°时,平行四边形ADEG是矩形;②当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.由①知,当∠DAG=90°时,∠BAC=135°.∵四边形ABDI是正方形,∴AD.又∵四边形ACHG是正方形,∴AC=AG,∴AC=,∴当∠BAC=135°且AC=时,四边形ADEG是正方形.【点睛】本题综合考查了正方形的判定与性质,全等三角形的判定与性质,平行四边形的判定与性质等知识点.解题时,注意利用隐含在题干中的已知条件:周角是360°.25.(1)B(0,2),抛物线解析式为y=﹣43x2+103x+2;(2)m的值为1 2;(3)当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2.5.0)或(118,0).【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点,可得到关于m 的方程,可求得m的值.(3)由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m的方程,可求得m的值,从而得到点M的坐标.【详解】(1)∵y=﹣23x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣43x2+bx+c经过点A,B,∴12302b cc-++=⎧⎨=⎩,解得1032bc⎧=⎪⎨⎪=⎩,∴抛物线解析式为y=﹣43x2+103x+2;(2)由(1)可知直线解析式为y=﹣23x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣23m+2),N(m,﹣43m2+103m+2),∵P为线段MN的中点时,∴有2(﹣23m+2)=﹣43m2+103m+2,解得m=3(三点重合,舍去)或m=1 2.故m的值为1 2.(3)由(1)可知直线解析式为y=﹣23x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣23m+2),N(m,﹣43m2+103m+2),∴PM=﹣23m+2,AM=3﹣m,PN=﹣43m2+103m+2﹣(﹣23m+2)=﹣43m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴N点的纵坐标为2,∴﹣43m2+103m+2=2,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,过点N作NC⊥y轴于点C,则∠NBC+∠BNC=90°,NC=m ,BC=﹣43m 2+103m+2﹣2=﹣43m 2+103m ,∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠ABO=∠BNC ,∴Rt △NCB ∽Rt △BOA ,∴NC CB =OB OA,∴2π=2410333m m -+,解得m=0(舍去)或m=118,∴M (118,0);综上可知,当以B ,P ,N 为顶点的三角形与△APM 相似时,点M 的坐标为(2.5.0)或(118,0).【点睛】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中得到m 的方程是解题的关键,在(3)中利用相似三角形的性质得到关于m 的方程是解题的关键,注意分两种情况.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.。
北师大版数学九年级上册期末考试试卷含答案
![北师大版数学九年级上册期末考试试卷含答案](https://img.taocdn.com/s3/m/2fbdaaa8b9f67c1cfad6195f312b3169a451eac6.png)
北师大版数学九年级上册期末考试试卷含答案一、选择题(共20小题,每小题4分,共80分)1.已知函数f(x) = 2x + 5,则f(-3)的值是多少?A. 1B. -1C. -3D. 112.根据平行四边形的性质,以下说法正确的是:A. 其对角线相等B. 其对边平行且相等C. 其内角和为360°D. 其对边相等且对角线垂直3.已知a:b = 3:4,b:c = 4:5,则a:c = ?A. 12:20B. 15:12C. 12:15D. 15:204.在指数运算中,对于任意正数a和b,以下哪个等式成立?A. a^b = b^aB. (a^b)^c = a^(b+c)C. (a+b)^c = a^c + b^cD.(a*b)^c = a^c * b^c5.已知直线AB经过点C(2, 3),斜率为1/2,则直线AB的方程为:A. y = 2x - 1B. y = 2x + 1C. y = -2x + 1D. y = -2x - 16.若正方体的棱长为a,则其表面积为:A. 4a^2B. 5a^2C. 6a^2D. 8a^27.已知a + b = 7,a - b = 1,则a的值为多少?A. 3B. 4C. 5D. 68.如图,以B为圆心,BC为半径的圆与直线DE相切于点F,则∠BFC的度数为:(图略)9.已知集合A = {1, 2, 3, 4},B = {3, 4},C = {2, 4},则A ∩ (B ∪ C)等于:A. {2}B. {3, 4}C. {2, 3, 4}D. {1, 2, 3, 4}10.解方程x^2 - 5x + 6 = 0的解为:A. x = 3或x = 2B. x = 3或x = -2C. x = -3或x = 2D. x = -3或x = -211.一件商品原价为500元,现在进行8折打折后再打9折,折后的价格为多少元?A. 360B. 365C. 400D. 44512.已知平行四边形ABCD,对角线AC的长为6 cm,对角线BD的长为8 cm,则平行四边形ABCD的面积为:A. 12 cm^2B. 20 cm^2C. 24 cm^2D. 30 cm^213.若sinα = 1/2,且α为第二象限角,则cosα的值为:A. -√3/2B. -1/2C. 1/2D. √3/214.若一个角的补角是30°,则这个角的度数为多少?A. 30°B. 60°C. 120°D. 150°15.已知一个圆的半径为5 cm,则其周长为多少?A. 10 cmB. 15 cmC. 20 cmD. 25 cm16.已知函数y = 2x^2 + 3x - 1,求其对应的图象在x轴上的截距。
北师大版九年级上册数学期末试卷及答案【完整版】
![北师大版九年级上册数学期末试卷及答案【完整版】](https://img.taocdn.com/s3/m/d2f4c1eab9f67c1cfad6195f312b3169a451ea73.png)
北师大版九年级上册数学期末试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.已知抛物线24y x bx =-++经过(2,)n -和(4, )n 两点,则n 的值为( )A .﹣2B .﹣4C .2D .43.下列结论中,矩形具有而菱形不一定具有的性质是( )A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直4.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .245.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯6.若一个凸多边形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .77.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2> B .x 3> C .3x 2< D .x 3<8.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E,若∠A=54°,∠B=48°,则∠CDE 的大小为( )A.44°B.40°C.39°D.38°9.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17C.18 D.1910.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2131|32|2218-⎛⎫--+=⎪⎝⎭____________.2.分解因式:3x-x=__________.3.以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是__________.4.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,水面下降2m ,水面宽度增加__________m.5.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是__________.6.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=__________cm .三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=12.已知关于x 的一元二次方程x 2﹣(2k ﹣1)x+k 2+k ﹣1=0有实数根.(1)求k 的取值范围;(2)若此方程的两实数根x 1,x 2满足x 12+x 22=11,求k 的值.3.如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D 竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.5.甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.5.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、C5、C6、C7、C8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2+2、x (x+1)(x -1)3、30°或150°.4、-45、x=26、9三、解答题(本大题共6小题,共72分)1、x=12、(1)k ≤58;(2)k=﹣1.3、(1)y=x 2-4x+3.(2)当m=52时,四边形AOPE 面积最大,最大值为758.(3)P 点的坐标为 :P 112-),P 2(352,2),P 3,2),P 412-). 4、河宽为17米 5、(1)215;(2)39件;仅从工资收入的角度考虑,小明应到乙公司应聘.6、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.。
北师大版九年级数学上册期末考试卷及答案【完美版】
![北师大版九年级数学上册期末考试卷及答案【完美版】](https://img.taocdn.com/s3/m/a149fefdf605cc1755270722192e453610665bcb.png)
北师大版九年级数学上册期末考试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2019-的倒数是( )A .2019-B .12019-C .12019D .2019 2.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b3.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣24.用配方法解方程2680x x --=时,配方结果正确的是( )A .2(3)17x -=B .2(3)14x -=C .2(6)44x -=D .2(3)1x -=5.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形6.下列各运算中,计算正确的是( )A .a 12÷a 3=a 4B .(3a 2)3=9a 6C .(a ﹣b )2=a 2﹣ab+b 2D .2a •3a=6a 2 7.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D ′处.若AB=3,AD=4,则ED 的长为( )A .32B .3C .1D .438.如图,正方形ABCD 的边长为2cm ,动点P ,Q 同时从点A 出发,在正方形的边上,分别按A D C →→,A B C →→的方向,都以1/cm s 的速度运动,到达点C 运动终止,连接PQ ,设运动时间为x s ,APQ ∆的面积为2y cm ,则下列图象中能大致表示y 与x 的函数关系的是( )A .B .C .D .9.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是( )A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE10.如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .11二、填空题(本大题共6小题,每小题3分,共18分)1.计算1273-=__________. 2.分解因式:33a b ab -=___________.3.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为_______.4.如图,在△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点F ,若BF =AC ,则∠ABC =__________度.5.如图,在平面直角坐标系xOy 中,已知直线y =kx (k >0)分别交反比例函数1y x =和9y x =在第一象限的图象于点A ,B ,过点B 作 BD ⊥x 轴于点D ,交1y x=的图象于点C ,连结AC .若△ABC 是等腰三角形,则k 的值是_________.6.如图,正方形ABCD 中,ABC ∆绕点A 逆时针旋转到AB C ''∆,AB ',AC '分别交对角线BD 于点,E F ,若4AE =,则EF ED ⋅的值为___________.三、解答题(本大题共6小题,共72分)1.计算:(1)sin30°﹣(π﹣3.14)0+(﹣12)﹣2(2)解方程;13223 x x=--2.先化简,再求值:2231422a a aa a a-÷--+-,其中a与2,3构成ABC∆的三边,且a为整数.3.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.4.如图,已知抛物线y=2x-+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0),(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.5.动画片《小猪佩奇》分靡全球,受到孩子们的喜爱.现有4张《小猪佩奇》角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同).姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.(1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为;(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的分方法求出恰好姐姐抽到A佩奇弟弟抽到B乔治的概率.6.小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、A5、B6、D7、A8、A9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)12、ab(a+b)(a﹣b).3、60°或120°4、455、k=或.6、16三、解答题(本大题共6小题,共72分)1、(1)72;(2)x=32、13、(1)略(2-14、(1)m=2,顶点为(1,4);(2)(1,2).5、(1)14;(2)1126、(1)W1=-2x²+60x+8000,W2=-19x+950;(2)当x=10时,W总最大为9160元.。
北师大版九年级上册数学期末考试试卷及答案
![北师大版九年级上册数学期末考试试卷及答案](https://img.taocdn.com/s3/m/5e88a8122f3f5727a5e9856a561252d381eb204c.png)
北师大版九年级上册数学期末考试试题一、单选题1.下列关系式中y 是x 的反比例函数的是()A .5y x=B .k y x=C .25y x =D .3xy =2.如图,三视图正确的是()A .主视图B .左视图C .左视图D .俯视图3.用配方法解方程2250x x --=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=4.反比例函数ky x=的图象如图所示,则k 值可能是()A .-2B .2C .4D .85.已知四边形ABCD 是平行四边形,下列结论:①当AB =BC 时,它是菱形;②当AC ⊥BD 时,它是菱形;③当∠ABC =90°时,它是矩形;④当AC =BD 时,它是正方形,其中错误的有()A .1个B .2个C .3个D .4个6.如图,在△ABC 中,点D 、E 在边AB 上,点F 、G 在边AC 上,且DF ∥EG ∥BC ,AD=DE =EB ,若Δ1ADF S =,则EBCG S =四边形()A .3B .4C .5D .67.若关于x 的方程()()22222280x x x x +++-=有实数根,则22x x +的值为()A .-4B .2C .-4或2D .4或-28.在一只不透明的口袋中放入红球5个,黑球1个,黄球n 个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为13,则放入口袋中的黄球总数n 是()A .3B .4C .5D .69.如图,O 是矩形ABCD 对角线AC 的中点,M 是AD 的中点,若BC =8,OB =5,则OM 的长为()A .1B .2C .3D .410.如图,将矩形ABCD 沿对角线BD 折叠,点A 落在点E 处,DE 交BC 于点F ,若∠CFD =40°,则∠ABD 的度数为()A .50°B .60°C .70°D .80°二、填空题11.反比例函数ky x=图象上有两点A (-3,4)、B (m ,2),则m =_____.12.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条.13.已知一元二次方程(m -2)m x +3x -4=0,那么m 的值是_____.14.在平面直角坐标系中,△ABC 中点A 的坐标是(2,3),以原点O 为位似中心把△ABC 放大,使放大后的三角形与△ABC 的相似比为3:1,则点A 的对应点A′的坐标为_____.15.若一元二次方程220x -=的两根分别为m 与n ,则m nn m+=_____.16.在矩形ABCD 中,AB =6,BC =8,BD ⊥DE 交AC 的延长线于点E ,则DE =_____.17.如图,在平行四边形ABCD 中,CE ⊥AB 且E 为垂足,如果∠A =125°,则∠BCE =____.三、解答题18.如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BC 相交于点N ,连接BM ,DN .(1)求证:四边形BMDN 是菱形;(2)若AB =4,AD =8,求菱形BMDN 的面积.19.等腰三角形的三边长分别为a 、b 、c ,若6a =,b 与c 是方程22(31)220x m x m m -+++=的两根,求此三角形的周长.20.如图,一次函数2y kx =+与y 轴交于点A ,与反比例函数my x=的图象相交于B 、C 两点,BD ⊥y 轴交y 轴于点D ,OA =OD ,8ABDS ∆=.(1)求一次函数与反比例函数的表达式;(2)求点C 的坐标,并直接写出不等式2mkx x+>的解集;(3)在所在平面内,存在点E 使以点B 、C 、D 、E 为顶点的四边形为平行四边形,请直接写出所有满足条件的点E 的坐标.21.如图,在四边形ABCD 中,BD 为一条对角线,//AD BC ,2AD BC =,90ABD ∠=︒,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分BAD ∠,1BC =,求AC 的长.22.某数学小组为调查实验学校周五放学时学生的回家方式,随机抽取了部分学生进行调查,所有被调查的学生都需从“A :乘坐电动车,B :乘坐普通公交车或地铁,C :乘坐学校的定制公交车,D :乘坐家庭汽车,E :步行或其他”这五种方式中选择最常用的一种,随后该数学小组将所有调查结果整理后绘制成如图不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.(1)本次调查中一共调查了名学生;扇形统计图中,E选项对应的扇形圆心角是度;(2)请补全条形统计图;(3)若甲、乙两名学生放学时从A、B、C三种方式中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两名学生恰好选择同一种交通工具上班的概率.23.如图,在▱ABCD中过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.(1)求证:△ABF∽△BEC;(2)若AD=5,AB=8,sinD=45,求AF的长.24.已知:如图,△ABO与△BCD都是等边三角形,点O为坐标原点,点B、D在x轴上,AO=2,点A、C在一反比例函数图象上.(1)求此反比例函数解析式;(2)求点C的坐标;(3)问:以点A为顶点,且经过点C的抛物线是否经过点(0?请说明理由.25.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.26.如图,点A、B在反比例函数kyx的图象上,且点A、B的横坐标分别为a、2a(a>0),AC⊥x轴,垂足为点C,且△AOC的面积为2(1)求该反比例函数的解析式;(2)若点(﹣a,y1),(﹣2a,y2)在该反比例函数的图象上,试比较y1与y2的大小;(3)求△AOB的面积.参考答案1.D 【分析】根据反比例函数的定义:(0)ky k x=≠且k 为比例系数,即可作出判断.【详解】A 、此函数为一次函数,故不符合题意;B 、不一定反比例函数,当k=0时,则y=0,故不符合题意;C 、不是反比例函数,未知数x 的指数不满足反比例函数的定义,故不符合题意;D 、由3xy =得:3y x=,符合反比例函数的定义,故符合题意;故选:D【点睛】本题主要考查了反比例函数的定义,掌握其解析形式是关键,特别注意k 是不为零的常数.2.A 【分析】根据几何体的形状,从三个角度得到其三视图即可.【详解】解:主视图是一个矩形,内部有两条纵向的实线,故选项A 符合题意;左视图是一个矩形,内部有一条纵向的实线,故选项B 、C 不符合题意;俯视图是一个“T ”字,故选项D 不符合题意;故选:A .【点睛】此题主要考查了画三视图的知识,解题的关键是掌握主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.3.B 【分析】根据配方法解一元二次方程的步骤首先把常数项移到右边,方程两边同时加上一次项系数一半的平方配成完全平方公式.【详解】解:2250x x --=移项得:225x x -=方程两边同时加上一次项系数一半的平方得:22151x x -+=+配方得:()216x -=.故选:B .【点睛】此题考查了配方法解一元二次方程的步骤,解题的关键是熟练掌握配方法解一元二次方程的步骤.配方法的步骤:配方法的一般步骤为:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.4.B 【分析】根据函数所在象限和反比例函数上的点的横纵坐标的积小于4判断.【详解】解:∵反比例函数图象在第一、三象限,∴k >0,∵当图象上的点的横坐标为2时,纵坐标小于2,∴k <4,故选:B .【点睛】本题考查了反比例函数图象上点的坐标特点,反比例函数的图象与性质,比例系数等于在它上面的点的横纵坐标的积,熟练掌握反比例函数的图象与性质是解答本题的关键.5.A 【分析】根据矩形、菱形、正方形的判定可以判断题目中的各个小题的结论是否正确,从而可以解答本题.【详解】解: 四边形ABCD 是平行四边形,A 、当AB BC =时,它是菱形,选项不符合题意,B 、当AC BD ⊥时,它是菱形,选项不符合题意,C 、当90ABC ∠=︒时,它是矩形,选项不符合题意,D 、当AC BD =时,它是矩形,不一定是正方形,选项符合题意,故选:A .【点睛】本题考查正方形、菱形、矩形的判定,解答本题的关键是熟练掌握矩形、菱形、正方形的判定定理.6.C 【分析】利用////DF EG BC ,得到ADF ABC ∆∆∽,ADF AEG ∆∆∽,利用AD DE EB ==,得到13AD AB =,12AD AE =,利用相似三角形的性质,相似三角形的面积比等于相似比的平方,分别求得AEG ∆和ABC ∆的面积,利用ABC AEG EBCG S S S ∆∆=-四边形即可求得结论.【详解】解:AD DE EB == ,∴13AD AB =,12AD AE =.////DF EG BC ,ADF ABC ∴∆∆∽,ADF AEG ∆∆∽.∴2(ADF ABC S AD S AB∆∆=,2(ADF AEG S AD S AE ∆∆=.99ABC ADF S S ∆∆∴==,44AEG ADF S S ∆∆==.945ABC AEG EBCG S S S ∆∆∴=-=-=四边形.故选:C .【点睛】本题主要考查了相似三角形的判定与性质,解题的关键是利用相似三角形的面积比等于相似比的平方,用ABC AEG EBCGS S S ∆∆=-四边形解答.7.B 【分析】设22x x y +=,则原方程可化为2280y y +-=,解得y 的值,即可得到22x x +的值.【详解】解:设22x x y +=,则原方程可化为2280y y +-=,解得:14y =-,22y =,当4y =-时,224x x +=-,即2240x x ++=,△224140=-⨯⨯<,方程无解,当2y =时,222x x +=,即2220x x +-=,△()22412=120=-⨯⨯->,方程有实数根,22x x ∴+的值为2,故选:B .【点睛】本题考查了换元法解一元二次方程,的关键是把22x x +看成一个整体来计算,即换元法思想.8.A 【分析】根据概率公式列出关于n 的分式方程,解方程即可得.【详解】解:根据题意可得51n n ++=13,解得:n =3,经检验n =3是分式方程的解,即放入口袋中的黄球总数n =3,故选:A .【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n.9.C 【分析】由O 是矩形ABCD 对角线AC 的中点,可求得AC 的长,然后运用勾股定理求得AB 、CD 的长,又由M 是AD 的中点,可得OM 是△ACD 的中位线,即可解答.【详解】解:∵O 是矩形ABCD 对角线AC 的中点,OB =5,∴AC =2OB =10,∴CD =AB 6,∵M 是AD 的中点,∴OM =12CD =3.故答案为:C .【点睛】本题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.10.C 【分析】根据矩形的性质和平行线的性质得到∠FDA =40°,根据翻折变换的性质得到∠ADB =∠EDB =20°,根据直角三角形的性质可求出∠ABD 的度数,即可求出答案.【详解】∵四边形ABCD 是矩形,∴AD ∥BC ,∠A =90°,∴∠FDA =∠CFD =40°,由翻折变换的性质得到∠ADB =∠EDB =20°∴∠ABD =70°故选C .【点睛】本题考查平行线的性质、图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.11.6-【分析】由点A 的坐标得到反比例函数的解析式,再把点B 的坐标代入可得m 的值.【详解】解:把(3,4)A -代入ky x =可得3412k =-⨯=-,所以反比例函数的解析式是12y x=-,当2y =时,6m =-.故答案为:6-.【点睛】本题考查反比例函数图象上点的坐标特征,解题的关键是掌握待定系数法求得解析式.12.20000【详解】试题分析:1000÷10200=20000(条).考点:用样本估计总体.13.2-【分析】根据一元二次方程的定义进行计算即可.【详解】解:由题意可得:||2m =且20m -≠,2m ∴=±且2m ≠,2m ∴=-,故答案为:2-.【点睛】本题考查了绝对值,一元二次方程的定义,解题的关键是熟练掌握一元二次方程的定义,即()200ax bx c a ++=≠.14.(6,9)或(6,9)--【分析】根据如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或k -进行解答.【详解】解:以原点O 为位似中心,把ABC ∆放大,使放大后的三角形与ABC ∆的相似比为3:1,则点(2,3)A 的对应点A '的坐标为(6,9)或(6,9)--.故答案为:(6,9)或(6,9)--.【点睛】本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或k -.15.72-【分析】先根据根与系数的关系得m n +=mn=-2,再把原式变形为2()2m n mn mn+-,然后利用整体代入的方法计算.【详解】解:∵一元二次方程220x -=的两根分别为m 与n ,根据根与系数的关系得m n +=,mn=-2,所以原式=()(()2222222722m n mn m n mn mn -⨯-+-+===--.故答案为:72-.16.1207【分析】由勾股定理可求AC 的长,由矩形的性质可得5OD OB ==,由面积法可求DH 的长,通过证明OD DE OH DH =,即可求解.【详解】解:如图:过点D 作DH AC ⊥于H ,6AB = ,8BC =,10AC ∴==,四边形ABCD 是矩形,152AO CO BO DO AC ∴=====, 11··22ADC S AD CD AC DH == ,6810DH ∴⨯=,245DH ∴=,75OH ∴===,∵=90DOH ODH ∠+︒∠,=90DOH E ∠+︒∠,∴ODH E∠=∠90DHO EHD ∠=∠=︒Q ,ODH DEH ∴∆∆∽,∴OD DE OH DH=,∴572455DE =,1207DE ∴=,故答案为:1207.17.35【详解】分析:根据平行四边形的性质和已知,可求出∠B ,再进一步利用直角三角形的性质求解即可.详解:∵AD ∥BC ,∴∠A+∠B=180°,∴∠B=180°-125°=55°,∵CE ⊥AB ,∴在Rt △BCE 中,∠BCE=90°-∠B=90°-55°=35°.故答案为35.点睛:本题主要考查了平行四边形的性质,运用平行四边形对边平行的性质,得到邻角互补的结论,这是运用定义求四边形内角度数的常用方法.18.(1)见解析;(2)菱形BMDN 的面积是20【分析】(1)证△DMO ≌△BNO ,得出OM =ON ,根据对角线互相平分证四边形BMDN 是平行四边形,再根据对角线互相垂直证菱形即可;(2)设BM=x ,根据勾股定理列出方程,求出菱形边长,再用面积公式求解即可.【详解】解:(1)证明:∵四边形ABCD 是矩形,MN 垂直平分BD ,∴AD ∥BC ,∠A =90°,OB =OD ,∴∠MDO =∠NBO ,∠DMO =∠BNO ,∵在△DMO 和△BNO 中,DMO BNO MDO NBO OB OD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DMO ≌△BNO (AAS )∴OM =ON又∵OB =OD∴四边形BMDN 是平行四边形∵MN 垂直平分BD ,即MN ⊥BD∴平行四边形BMDN 是菱形.(2)解:∵四边形BMDN 是菱形∴MB =MD在Rt △AMB 中,设BM=x ,BM 2=AM 2+AB 2即x 2=(8﹣x )2+42解得:x =5,MD=5∴BN=MD=5∴5420BMDN S BN AB =⨯=⨯=菱形答:菱形BMDN 的面积是20.19.此三角形的周长为16或22.【分析】分两种情况进行讨论分析:①若6a =是三角形的腰,则b 与c 中至少有一边长为6;若6a =是三角形的底边,则b 、c 为腰,即b c =;根据题意,代入方程确定m 的值,然后代入方程求解,确定三边长度,考虑三边关系判定能否构成三角形,然后求周长即可得.【详解】解:①若6a =是三角形的腰,则b 与c 中至少有一边长为6,代入方程得:()226316220m m m -+⨯++=,解得3m =或5m =,∴当3m =时,方程可化为210240x x -+=,解得14x =,26x =,∴三角形三边长分别为4、6、6,周长为:46616++=;当5m =时,方程可化为216600x x -+=,解得16x =,210x =;三角形三边长分别为6、6、10,周长为:106622++=;∴三角形的周长为16或22;②若6a =是三角形的底边,则b 、c 为腰,即b c =,则方程有两个相等的实数根,∴()()22314220m m m ⎡⎤-+-+=⎣⎦,解得1m =,∴原方程可化为2440x x -+=,解得122x x ==,此时,6a =,2b c ==,不能构成三角形,舍去;综上所述,三角形的周长为16或22.【点睛】题目主要考查等腰三角形的定义及一元二次方程的解法,三角形的三边关系等,理解题意,进行分类讨论是解题关键.20.(1)一次函数的解析式为:2y x =+;反比例函数的解析式为:8y x=(2)40x -<<或2x >(3)(6,4)、(-6,-8)、(-2,4)【分析】(1)首先求出点D 的坐标,从而得出AD 的长,由8ABD S ∆=,得出BD 的长,从而得出点B 的坐标,从而解决问题;(2)由(1)可联立方程组28y x y x =+⎧⎪⎨=⎪⎩,解方程组得出点C 的坐标,根据图象可得答案;(3)分当BC 、CD 、BD 为对角线三种情形,分别通过对角互相平分进行求解.(1)解: 点A 是一次函数2y kx =+与y 轴的交点,∴令0x =,则022y k =⨯+=,即(0,2)A 2OA ∴=,又OD OA =Q ,2OD ∴=,(0,2)D ∴-,24AD OD ∴==.BD y ⊥ 轴,∴点B 的纵坐标为2-,8ABD S ∆= ,∴182AD BD ⋅=,∴1482BD ⨯⨯=,4BD ∴=,∴点B 的坐标为(4,2)--,把点(4,2)B --分别代入一次函数2y kx =+与反比例函数my x =,可得:422k -=-+,24m-=-,1k ∴=,8m =,∴一次函数的解析式为:2y x =+,反比例函数的解析式为:8y x =;(2)解:由(1)可联立方程组28y x y x=+⎧⎪⎨=⎪⎩,解这个方程组得:42x y =-⎧⎨=-⎩或24xy =⎧⎨=⎩,点C 在第一象限,故点C 坐标为(2,4),由图象可得当40x -<<或2x >时,2mkx x +>;(3)解:如图,当BC 为对角线时,取对角线的交点为(,)F x y ,根据对角线互相平分,即(,)F x y 为1,BC DE 的中点,(4,2),(2,4),(0.2)B C D --- ,42241,122x y -+-+==-==,设111(,)E x y ,11021,122x y+-+-==,解得:112,4x y =-=,1(2,4)E ∴-;如图,当CD 为对角线时,取对角线的交点为(,)F x y ,根据对角线互相平分,即(,)F x y 为2,CD BE 的中点,(4,2),(2,4),(0.2)B C D --- ,20421,122x y +-====,设222(,)E x y ,22421,122x y --==,解得:116,4x y ==,2(6,4)E ∴;如图,当BD 为对角线时,取对角线的交点为(,)F x y ,根据对角线互相平分,即(,)F x y 为3,BD CE 的中点,(4,2),(2,4),(0.2)B C D --- ,40222,222x y -+--==-==-,设333(,)E x y ,33242,222x y ++-=-=,解得:336,8x y =-=-,3(6,8)E ∴--;∴符合条件的点E 的坐标为:(6,4)、(6,8)--、(2,4)-.【点睛】本题是反比例函数综合题,主要考查了反比例函数图象与一次函数图象交点问题,平行四边形的性质,函数与不等式的关系等知识,解题的关键是运用分类思想来解答.21.(1)见解析;(2)AC =(1)根据2AD BC =,E 为AD 的中点,证得四边形BCDE 是平行四边形,再根据BE=DE 即可证得结论;(2)根据AD ∥BC ,AC 平分BAD ∠,求出AD=2BC=2=2AB ,得到30ADB ∠=︒,60ADC ∠=︒,90ACD ∠=︒,根据Rt ACD ∆求出答案即可.【详解】(1)证明:2AD BC = ,E 为AD 的中点,DE BC ∴=.//AD BC ,∴四边形BCDE 是平行四边形.90ABD ∠=︒ ,AE DE =,BE DE ∴=,则四边形BCDE 是菱形;(2)解:如答图所示,连接AC ,//AD BC ,AC 平分BAD ∠,BAC DAC BCA ∴∠=∠=∠.1AB BC ∴==.22AD BC ∴==,2AD AB ∴=,∴在Rt ABD ∆中,30ADB ∠=︒.30DAC ∴∠=︒,60ADC ∠=︒,90ACD ∠=︒.在Rt ACD ∆中2AD = ,1CD ∴=,∴AC ==.22.(1)200,72;(2)见解析;(3)13.【分析】(1)根据B 的人数以及百分比得到被调查的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;(2)求出C 组的人数即可补全图形;(3)列表得出所有等可能结果,即可运用概率公式得甲、乙两名学生恰好选择同一种交通工具回家的概率.【详解】解:(1)本次调查的学生人数为6030%200÷=(名),扇形统计图中,B项对应的扇形圆心角是40 36072200︒⨯=︒,故答案为:200;72;(2)C选项的人数为200(20603040)50-+++=(名),补全条形图如下:(3)画树状图如图:共有9个等可能的结果,甲、乙两名学生恰好选择同一种交通工具上班的结果有3个,∴甲、乙两名学生恰好选择同一种交通工具上班的概率为31 93=.【点睛】此题考查了列表法与树状图法、条形统计图、扇形统计图和概率公式,解题的关键是仔细观察统计图并从中整理出解题的有关信息,正确画出树状图.23.(1)证明见解析;(2)【分析】(1)由平行四边形的性质得出AB∥CD,AD∥BC,AD=BC,得出∠D+∠C=180°,∠ABF=∠BEC,证出∠C=∠AFB,即可得出结论;(2)由勾股定理求出BE,由三角函数求出AE,再由相似三角形的性质求出AF的长.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AD=BC,∴∠D+∠C=180°,∠ABF=∠BEC,∵∠AFB+∠AFE=180°,∴∠C=∠AFB ,∴△ABF ∽△BEC ;(2)解:∵AE ⊥DC ,AB ∥DC ,∴∠AED=∠BAE=90°,在Rt △ABE 中,根据勾股定理得:=在Rt △ADE 中,AE=AD•sinD=5×45=4,∵BC=AD=5,由(1)得:△ABF ∽△BEC ,∴AF AB BC BE=,即5AF =解得:.24.(1)y =(2)(1C -;(3)是,理由见解析.【分析】(1)首先过点A 、C 分别作AF ⊥OB 于点F ,CE ⊥DB 于点E ,根据AO =2,△ABO 与△BCD 是等边三角形,得出A 点坐标,进而求出反比例函数解析式;(2)首先表示出C 点坐标,进而代入函数解析式求出即可;(3)首先设y =a (x +1)2C 坐标代入得出a 的值,进而将点(0答案.【详解】解:(1)过点A 、C 分别作AF ⊥OB 于点F ,CE ⊥DB 于点E ,∵AO =2,△ABO 与△BCD 是等边三角形,∴OF =1,FAA 的坐标是(-1,把(-1k y x=,得k∴反比例函数的解析式是y =(2)设BE =a ,则CE∴点C 的坐标是(-2-a),把点C 的坐标代入y=2-a a 1,∴点C的坐标是(-1-);(3)过点C的抛物线是经过点(0.理由:设y=a(x+1)2把点C坐标代入得a,∴y(x+1)2当x=0时,代入上式得y=2,∴点C的抛物线是经过点(0,2).【点睛】此题主要考查了反比例函数的综合应用以及图象上点的坐标特点等知识,根据已知表示出C点坐标是解题关键.25.(1)见解析(2)四边形CEFG的面积为20 3.【分析】(1)根据题意和翻折的性质,可以得到△BCE≌△BFE,再根据全等三角形的性质和菱形的判定方法即可证明结论成立;(2)根据题意和勾股定理,可以求得AF的长,进而求得EF和DF的值,从而可以得到四边形CEFG的面积.(1)证明:由题意可得,△BCE≌△BFE,∴∠BEC=∠BEF,FE=CE,∵FG∥CE,∴∠FGE=∠CEB,∴∠FGE=∠FEG,∴FG=FE,∴FG=EC,∴四边形CEFG 是平行四边形,又∵CE=FE ,∴四边形CEFG 是菱形;(2)解:∵矩形ABCD 中,AB=6,AD=10,BC=BF ,∴∠BAF=90°,AD=BC=BF=10,∴AF=8,∴DF=2,设EF=x ,则CE=x ,DE=6-x ,∵∠FDE=90°,∴22+(6-x )2=x 2,解得,x=103,∴CE=103,∴四边形CEFG 的面积是:CE•DF=103×2=203.【点睛】本题考查翻折变化、菱形的性质和判定、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.26.(1)4y x =(2)y 1<y 2(3)3【分析】(1)由122AOC S xy ∆==,设反比例函数的解析式k y x =,则4k xy ==;(2)由于反比例函数的性质是:在0x <时,y 随x 的增大而减小,2a a ->-,则12y y <;(3)连接AB ,过点B 作BE x ⊥轴,交x 轴于E 点,通过分割面积法AOB AOC BOE ACEB S S S S ∆∆∆=+-梯形求得.(1)解:2AOC S ∆= ,24AOC k S ∆∴==;4y x ∴=;(2)解:0k > ,∴函数y 的值在各自象限内随x 的增大而减小;0a > ,2a a ∴-<-;12y y ∴<;(3)解:连接AB ,过点B 作BE x ⊥轴,2AOC BOE S S ∆∆==,4(,)A a a ∴,2(2,)B a a ;()124232ACEB S a a a a ⎛⎫=+⨯-= ⎪⎝⎭梯形,3AOB AOC BOE ACEB S S S S ∆∆∆∴=+-=梯形.。
北师大版九年级上册数学期末考试试卷含答案解析
![北师大版九年级上册数学期末考试试卷含答案解析](https://img.taocdn.com/s3/m/815fb111f342336c1eb91a37f111f18583d00c8b.png)
北师大版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.下列四个几何体中,主视图是三角形的是()A.B.C.D.2.在Rt ABC中,90C∠=,5AB=,3BC=,则sin A的值是()A.35B.53C.45D.343.一元二次方程2640x x--=配方为()A.()2313x-=B.()239x-=C.()2313x+=D.()239x+=4.若ABC DEF∆∆∽,面积之比为9:4,则相似比为()A.94B.49C.32D.81165.点1()3A y-,、()21,y-都在反比例函数1yx=-的图象上,则1y、2y的大小关系是()A.12y y<B.12y y=C.12y y>D.不能确定6.设32ab=,下列变形正确的是()A.32ba=B.23a b=C.32a b=D.23a b=7.一个不透明的袋子装有除颜色外其余均相同的2个白球和n个黑球.随机地从袋中摸出一个球记录下颜色,再放回袋中摇匀.大量重复试验后,发现摸出白球的频率稳定在0.2附近,则n的值为()A.2B.4C.8D.108.某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.这种台灯的售价每上涨1元,其销售量就将减少10个.为了实现平均每月10000元的销售利润,台灯的售价是多少?若设每个台灯涨价为x元,则可列方程为()A.()()40306001010000x x+--=B.()()40306001010000x x+-+=C.()()30600104010000x x---=⎡⎤⎣⎦D.()()30600104010000x x⎡⎤=⎦+⎣--9.如图,一人站在两等高的路灯之间走动,GB为人AB在路灯EF照射下的影子,BH为人AB在路灯CD照射下的影子.当人从点C走向点E时两段影子之和GH的变化趋势是A .先变长后变短B .先变短后变长C .不变D .先变短后变长再变短10.点A (﹣3,y 1)、B (﹣1,y 2)、C (2,y 3)都在反比例函数y =6x-的图象上,则y 1、y 2、y 3的大小关系是()A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3二、填空题11.若锐角A 满足1cos 2A =,则A ∠=__________︒.12.若2x =是方程230x x q -+=的一个根.则q 的值是________.13.菱形的两条对角线长分别是6和8,则菱形的边长为_____.14.如图,点P 在反比例函数2y x=的图象上,过点P 作坐标轴的垂线交坐标轴于点A 、B ,则矩形AOBP 的面积为_________.15.关于x 的一元二次方程2960x x k -+=有两个不相等的实数根,则k 的取值范围是_________.16.如图,为了测量塔CD 的高度,小明在A 处仰望塔顶,测得仰角为30°,再往塔的方向前进60m 至B 处,测得仰角为60︒,那么塔的高度是____________m .(小明的身高忽略不计,结果保留根号)三、解答题17.计算:2sin 452tan 30sin 60︒-︒⋅︒18.解方程:2x 2﹣4x+1=0.19.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.20.甲、乙两个人在纸上随机写一个-2到2之间的整数(包括-2和2).若将两个人所写的整数相加,那么和是1的概率是多少?21.如图,Rt ABC ∆中,90C ∠=︒,15AC =,面积为150.(1)尺规作图:作C ∠的平分线交AB 于点D ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,求出点D 到两条直角边的距离.22.已知反比例函数6y x=-和一次函数()0y kx b k =+≠.(1)当两个函数图象的交点的横坐标是-2和3时,求一次函数的表达式;(2)当23k =时,两个函数的图象只有一个交点,求b 的值.23.如图,BD 是△ABC 的角平分线,过点作DE //BC 交AB 于点E ,DF //AB 交BC 于点F .(1)求证:四边形BEDF 是菱形;(2)若∠ABC =60°,∠ACB =45°,CD =6,求菱形BEDF 的边长.24.如图,已知AB //CD ,AD ,BC 交于点E ,F 为BC 上一点,且∠EAF =∠C ,若AF =6,FB =8,求EF .25.如图,在矩形ABCD 的边AB 上取一点E ,连接CE 并延长和DA 的延长线交于点G ,过点E 作CG 的垂线与CD 的延长线交于点H ,与DG 交于点F ,连接GH .(1)当tan 2BEC ∠=且4BC =时,求CH 的长;(2)求证:DF FG HF EF ⋅=⋅;(3)连接DE ,求证:CDE CGH ∠=∠.参考答案1.B【解析】主视图是三角形的一定是一个锥体,只有B是锥体.故选B.2.A【分析】根据正弦函数是对边比斜边,可得答案.【详解】解:sinA=BCAB=35.故选A.【点睛】本题考查了锐角正弦函数的定义.3.A【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【详解】解:x2-6x-4=0,x2-6x=4,x2-6x+32=4+32,(x-3)2=13,故选:A.【点睛】此题考查了解一元二次方程-配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.C 【分析】根据相似三角形的面积比等于相似比的平方可直接得出结果.【详解】解:∵两个相似三角形的面积比为9:4,∴它们的相似比为3:2.故选:C .【点睛】此题主要考查了相似三角形的性质:相似三角形的面积比等于相似比的平方.5.A 【分析】根据反比例函数的性质,图象在二、四象限,在双曲线的同一支上,y 随x 的增大而增大,则-3<-1<0,可得12y y <.【详解】解:∵k=-1<0,∴图象在二、四象限,且在双曲线的同一支上,y 随x 增大而增大∵-3<-1<0∴y 1<y 2,故选:A .【点睛】本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数的性质是解题的关键.6.D 【分析】根据比例的性质逐个判断即可.【详解】解:由32a b =得,2a=3b,A 、∵32b a =,∴2b=3a ,故本选项不符合题意;B 、∵23a b=,∴3a=2b ,故本选项不符合题意;C 、32a b =,故本选项不符合题意;D 、23a b =,故本选项符合题意;故选:D .【点睛】本题考查了比例的性质,能熟记比例的性质是解此题的关键,如果a cb d=,那么ad=bc .7.C 【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目,二者的比值就是其发生的概率.【详解】解:依题意有:22n+=0.2,解得:n=8.故选:C .【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=mn是解题关键.8.A 【分析】设这种台灯上涨了x 元,台灯将少售出10x ,根据“利润=(售价-成本)×销量”列方程即可.【详解】解:设这种台灯上涨了x 元,则根据题意得,(40+x-30)(600-10x )=10000.故选:A.【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.9.C 【分析】连接DF ,由题意易得四边形CDFE 为矩形.由DF ∥GH ,可得DF ADGH AH=.又AB ∥CD ,得出AB AH CD DH =,设AB AH CD DH ==a,DF=b (a,b 为常数),可得出11DH AD AH ADAH a AH AH+===+,从而可以得出ADAH ,结合DF AD GH AH=可将DH 用含a,b 的式子表示出来,最后得出结果.【详解】解:连接DF ,已知CD=EF ,CD ⊥EG,EF ⊥EG,∴四边形CDFE 为矩形.∴DF ∥GH,∴.DF AD GH AH=又AB ∥CD ,∴AB AHCD DH=.设AB AHCD DH==a ,DF=b,∴11DH AD AH ADAH a AH AH +===+,∴11,AD AH a=-∴11,DF AD GH AH a==-∴GH=11a DF aba a =-- ,∵a,b 的长是定值不变,∴当人从点C 走向点E 时两段影子之和GH 不变.故选:C.【点睛】本题考查了相似三角形的应用:利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.10.C 【分析】分别把A 、B 、C 各点坐标代入反比例函数y =6x-求出y 1、y 2、y 3的值,再比较大小即可.【详解】解:∵点A(﹣3,y1),B(﹣1,y2),C(2,y3)都在反比例函数y=6x-的图象上,∴y1=63--=2,y2=61--=6,y3=62-=﹣3,∵﹣3<2<6,∴y3<y1<y2,故选:C.【点睛】本题考查了反比例函数图像上点的特征,熟练掌握反比例函数的性质是解题的关键11.60︒【分析】根据特殊角三角函数值,可得答案.【详解】解:由∠A为锐角,且1 cos2A=,∠A=60°,故答案为:60°.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.12.2【分析】根据一元二次方程的解的定义,将x=2代入已知方程,列出关于q的新方程,通过解该方程即可求得q的值.【详解】∵x=2是方程x²-3x+q=0的一个根,∴x=2满足该方程,∴2²-3×2+q=0,解得,q=2.故答案为2.【点睛】本题考查了方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.13.5【分析】根据菱形对角线垂直平分,再利用勾股定理即可求解.【详解】解:因为菱形的对角线互相垂直平分,5.故答案为5.【点睛】此题主要考查菱形的边长求解,解题的关键是熟知菱形的性质及勾股定理的运用. 14.2【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|.【详解】解:∵PA⊥x轴于点A,PB⊥y轴于B点,∴矩形AOBP的面积=|2|=2.故答案为:2.【点睛】本题考查了反比例函数kyx=(k≠0)系数k的几何意义:从反比例函数kyx=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.15.1k<【分析】方程有两个不相等的实数根,则∆>0,由此建立关于k的不等式,然后可以求出k的取值范围.【详解】解:由题意知,∆=36-36k>0,解得k<1.故答案为:k<1.【点睛】本题考查了一元二次方程根的情况与判别式∆的关系:(1)∆>0⇔方程有两个不相等的实数根;(2)∆=0⇔方程有两个相等的实数根;(3)∆<0⇔方程没有实数根.同时注意一元二次方程的二次项系数不为0.16.【分析】由题意易得:∠A=30°,∠DBC=60°,DC ⊥AC ,即可证得△ABD 是等腰三角形,然后利用三角函数,求得答案.【详解】解:根据题意得:∠A=30°,∠DBC=60°,DC ⊥AC ,∴∠ADB=∠DBC-∠A=30°,∴∠ADB=∠A=30°,∴BD=AB=60m ,∴m ).故答案为:【点睛】此题考查了解直角三角形的应用-仰角俯角问题.注意证得△ABD 是等腰三角形,利用特殊角的三角函数值求解是关键.17.12-【分析】根据特殊角三角函数值计算即可.【详解】解:原式2112123222=-⨯=-⎝⎭.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.18.x 1=1+2,x 2=1﹣2【分析】先把方程两边除以2,变形得到x 2-2x+1=12,然后利用配方法求解.【详解】x 2-2x+1=12,(x-1)2=12,x-1=±2,所以x 1=1+2,x 22.【点睛】此题考查解一元二次方程-配方法,解题关键在于掌握运算法则.19.(1)12,32-;(2)证明见解析.【详解】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x 1,∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=.∴a 的值为12,该方程的另一根为32-.(2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2.一元二次方程根根的判别式;3.配方法的应用.20.425【分析】先画树状图展示所有25种等可能的结果数,再找出两数和是1的结果数,然后根据概率公式求解.【详解】解:画树状为:共25种可能,其中和为1有4种.∴和为1的概率为425.【点睛】本题考查了列表法或树状图法求概率:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.21.(1)见解析;(2)607【分析】(1)利用尺规作图的步骤作出∠ACB 的平分线交AB 于点D 即可;(2)作DE AC ⊥于E ,DF BC ⊥于F,根据面积求出BC 的长.法一:根据角平分线的性质得出DE=DF ,从而得出四边形CEDF 为正方形.再由BDF BAC ∆∆∽,得出DF BF AC BC =,列方程可以求出结果;法二:根据150∆∆+=BCD ACD S S ,利用面积法可求得DE,DF 的值.【详解】解:(1)∠ACB 的平分线CD 如图所示:(2)已知15AC =,面积为150,∴20BC =.法一:作DE AC ⊥,DF BC ⊥,∵CD 是ACB ∠角平分线,∴DF DE =,90DFC DEC ∠=∠=︒,而90ACB ∠=︒,∴四边形CEDF 为正方形.设DF 为x ,则由DF AC ,∴BDF BAC ∆∆∽,∴DF BF AC BC=.即201520x x -=,得607x =.∴点D 到两条直角边的距离为607.法二:150∆∆+=BCD ACD S S ,即15022⋅⋅+=BC DF DE AC ,又由(1)知AC=15,BC=20,∴201515022DF DF +=,∴607=DF .故点D 到两条直角边的距离为607.【点睛】本题考查了尺规作图,角平分线的性质,直角三角形的面积等知识,解题的关键是熟练掌握基本性质,属于中考常考题型.22.(1)1y x =-+;(2)4b =±【分析】(1)根据两个函数图象的交点的横坐标是-2和3先求出两个交点坐标,然后把两点代入一次函数解析式求出k ,b 值,即可得到一次函数解析式;(2)两个函数解析式联立组成方程组消去y 得到关于x 的一元二次方程,根据判别式=0求出b 的值.【详解】解:(1)把-2和3分别代入6y x=-中,得:()2,3-和()3,2-.把()2,3-,()3,2-代入y kx b =+中,231,321k b k k b b -+==-⎧⎧∴⎨⎨+=-=⎩⎩.∴一次函数表达式为:1y x =-+;(2)当23k =,则23y x b =+,联立得:236y x b y x ⎧=+⎪⎪⎨⎪=-⎪⎩,整理得:223180++=x bx ,只有一个交点,即0∆=,则291440∆=-=b ,得4b =±.故b 的值为4或-4.【点睛】本题主要考查待定系数法求函数解析式和函数交点坐标的求法,先利用反比例函数解析式求出两交点坐标是解本题的关键.23.(1)见解析;(2)【分析】(1)由题意可证BE =DE ,四边形BEDF 是平行四边形,即可证四边形BEDF 为菱形;(2)过点D 作DH ⊥BC 于H ,由直角三角形的性质可求解.【详解】证明:(1)∵DE ∥BC ,DF ∥AB ,∴四边形DEBF 是平行四边形,∵DE ∥BC ,∴∠EDB =∠DBF ,∵BD 平分∠ABC ,∴∠ABD =∠DBF =12∠ABC ,∴∠ABD =∠EDB ,∴DE =BE ,又∵四边形BEDF 为平行四边形,∴四边形BEDF 是菱形;(2)如图,过点D 作DH ⊥BC 于H ,∵DF ∥AB ,∴∠ABC =∠DFC =60°,∵DH ⊥BC ,∴∠FDH =30°,∴FH =12DF ,DH FH =2DF ,∵∠C =45°,DH ⊥BC ,∴∠C =∠HDC =45°,∴DC DH =2DF =6,∴DF =,∴菱形BEDF 的边长为【点睛】本题考查了菱形的判定和性质,直角三角形的性质,掌握菱形的判定定理是本题的关键.24.EF =92.【分析】由已知的平行得到一对内错角相等,再由已知的两角相等,等量代换得到∠B =∠EAF ,加上公共角相等,利用两对对应角相等可以得到△AFE ∽△BFA ,从而可以得到AF EF BF AF =,然后代入数据计算即可.【详解】解:∵AB //CD ,∴∠B =∠C ,∵∠EAF =∠C ,∴∠B =∠EAF ,∵∠AFE =∠BFA ,∴△AFE ∽△BFA ,∴AF EF BF AF=,∵AF =6,FB =8,∴686EF =,∴EF =92.【点睛】此题考查了相似三角形的判定与性质,以及平行线的性质,相似三角形的判定方法一般有:1、两对对应角相等的两三角形相似;2、两边对应成比例且夹角相等的两三角形相似;3、三边对应成比例的两三角形相似;在证明线段的乘积形式时,常常把乘积形式化为比例形式来分析,借助三角形相似即可得证.25.(1)10CH =;(2)见解析;(3)见解析【分析】(1)根据已知条件先求出CE 的长,再证明∠=∠BEC ECH ,在Rt △CHE 中解三角形可求得EH 的长,最后利用勾股定理求CH 的长;(2)证明∽∆∆GFE HFD ,进而得出结果;(3)由(2)∽∆∆GFE HFD 得∠=∠EGF FHD ,进而sin sin ∠=∠EGF FHD ,即=CD CE CG CH ,再结合∠=∠ECD DCE ,可得出∽∆∆CDE CGH ,进一步得出结果.【详解】(1)解:∵矩形ABCD ,EH CG ⊥,∴90∠=︒=∠=∠BCD CEH B .而90BEC BCE ∠+∠=︒,90∠+∠=︒BCE ECH ,∴∠=∠BEC ECH ,又∵4BC =,tan 2BEC ∠=,∴2BE =,易得CE ==∴tan 2∠==EH ECH CE ,∴EH =∴10CH ==.(2)证明:∵矩形ABCD ,EH CG ⊥,∴∠=∠CEH HDG ,而∠=∠GFE DFH ,∴∽∆∆GFE HFD ,∴=DF FH EF FG,∴⋅=⋅DF FG EF FH ;(3)证明:由(2)∽∆∆GFE HFD 得∠=∠EGF FHD ,∴sin sin ∠=∠EGF FHD ,即=CD CE CG CH,而∠=∠ECD DCE ,∴∽∆∆CDE CGH ,∠=∠.∴CDE CGH【点睛】本题主要考查相似三角形的判定与性质以及解直角三角形,关键是掌握基本的概念与性质.。
北师大版九年级上册数学期末考试试卷及答案
![北师大版九年级上册数学期末考试试卷及答案](https://img.taocdn.com/s3/m/6efe251e178884868762caaedd3383c4ba4cb41f.png)
北师大版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.如图所示的几何体为圆台,其俯视图正确的是()A .B .C .D .2.下列函数关系式中,y 是x 的反比例函数的是()A .3y x=B .31y x =+C .3y x=D .23y x =3.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A .频率就是概率B .频率与试验次数无关C .概率是随机的,与频率无关D .随着试验次数的增加,频率一般会越来越接近概率4.已知两个相似三角形的相似比为4:9,则这两个三角形的对应高的比为()A .2:3B .4:9C .16:81D .9:45.将抛物线y =x 2平移得到抛物线y =(x+2)2,则这个平移过程正确的是()A .向左平移2个单位B .向右平移2个单位C .向上平移2个单位D .向下平移2个单位6.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知sinα=513,则小车上升的高度是:A .5米B .6米C .6.5米D .7米7.已知菱形的周长为40cm ,两条对角线的长度比为3:4,那么两条对角线的长分别为()A .6cm ,8cmB .3cm ,4cmC .12cm ,16cmD .24cm ,32cm8.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是()A .m≥1B .m≤1C .m >1D .m <19.如图,菱形ABCD 中,AC 交BD 于O ,AE DC ⊥于点E ,连接OE ,若40ABC ︒∠=,则OEA ∠的度数是()A .20°B .30°C .50°D .70°10.如图所示,正方形EFGH 是由正方形ABCD 经过位似变换得到的,点O 是位似中心,E ,F ,G ,H 分别是OA ,OB ,OC ,OD 的中点,则正方形EFGH 与正方形ABCD 的面积比是()A .1:6B .1:5C .1:4D .1:2二、填空题11.若点(2)m -,在反比例函数6y x=的图像上,则m =______.12.若23a b =,则a b b +=_____.13.已知a 是方程2x 2﹣x ﹣4=0的一个根,则代数式4a 2﹣2a +1的值为_____.14.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 处,则小明的影子AM 长为___米.15.如图,河的两岸a 、b 互相平行,点A 、B 、C 是河岸b 上的三点,点P 是河岸a 上一个建筑物,在A 处测得30PAB ∠=︒,在B 处测得75PBC ∠=︒,若80AB =米,则河两岸之间的距离约为______米 1.73≈,结果精确到0.1米)(必要可用参考数据:tan 752︒=16.如图,正方形ABCD 中,点E 为射线BD 上一点,15EAD ∠=︒,EF AE ⊥交BC 的延长线于点F ,若6BF =,则AB =______三、解答题17.(1)解方程2430x x --=(2)计算:2sin 4560︒︒18.在如图的小正方形网格中,每个小正方形的边长均为1,格点ABC (顶点是网格线的交点)的三个顶点坐标分别是(22)(31)A B ﹣,,﹣,(10)C ,﹣,,以O 为位似中心在网格内画出ABC 的位似图△A 1B 1C 1,使ABC 与111A B C △的相似比为12:,并计算出111A B C △的面积.19.如图,在等腰三角形ABC 中,,AB AC AH BC =⊥于点H ,点E 是AH 上一点,延长AH 至点F ,使FH EH =.求证:四边形EBFC 是菱形.20.某公司2017年产值2500万元,2019年产值3025万元(1)求2017年至2019年该公司产值的年平均增长率;(2)由(1)所得结果,预计2020年该公司产值将达多少万元?21.已知一次函数2y x b =-+(b 为常数,0b >)的图象分别与x 轴、y 轴交于A 、B 两点,且与反比例函数4y x=-的图象交于C 、D 两点(点C 在第二象限内,过点C 作CE x ⊥轴于点E(1)求tan ACE ∠的值(2)记1S 为四边形CEOB 的面积,2S 为OAB ∆的面积,若1279S S =,求b 的值22.如图,三角形ABC 是以BC 为底边的等腰三角形,点A 、C 分别是一次函数334y x =-+的图象与y 轴、x 轴的交点,点B 在二次函数218y x bx c =++的图象上,且该二次函数图象上存在一点D 使四边形ABCD 能构成平行四边形.(1)试求b、c的值,并写出该二次函数表达式;(2)动点P沿线段AD从A到D,同时动点Q沿线段CA从C到A都以每秒1个单位的速度运动,问:①当P运动过程中能否存在PQ AC?如果不存在请说明理由;如果存在请说明点的位置?②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?23.已知:如图,线段AB=2,BD⊥AB于点B,且BD=12AB,在DA上截取DE=DB.在AB上截取AC=AE.求证:点C是线段AB的黄金分割点.24.如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=m x的图象在第一象限的交点为C,CD⊥x轴于D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的表达式;(2)当x>0时,比较kx+b与mx的大小.25.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.参考答案1.C【详解】试题分析:俯视图是从物体上面看,所得到的图形.从几何体的上面看所得到的图形是两个同心圆.故选C.考点:简单几何体的三视图2.C【分析】根据反比例函数的定义即可得出答案.【详解】A为正比例函数,B为一次函数,C为反比例函数,D为二次函数,故答案选择C.【点睛】本题考查的是反比例函数的定义:形如kyx的式子,其中k≠0.3.D【详解】因为大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,所以D选项说法正确,故选D.4.B【分析】根据相似三角形的性质即可得出答案.【详解】根据“相似三角形对应高的比等于相似比”可得对应高的比为4:9,故答案选择B.【点睛】本题考查相似三角形的性质,相似三角形对应边、对应高、对应中线以及周长比都等于相似比.5.A【解析】试题分析:根据抛物线的平移规律即可得答案,故答案选A .考点:抛物线的平移规律.6.A 【分析】在Rt ABC ∆,直接根据正弦的定义求解即可.【详解】如图:AB=13,作BC ⊥AC ,∵5sin 13BC ABa ==∴551351313BC AB =×=´=.故小车上升了5米,选A.【点睛】本题考查解直角三角形的应用-坡度坡角问题.解决本题的关键是将实际问题转化为数学问题,构造Rt ABC ∆,在Rt ABC ∆中解决问题.7.C 【分析】首先根据题意作图,然后由菱形的周长为40cm ,可得AB=10cm ,OA=12AC ,OB=12BD ,AC ⊥BD ,由两对角线长度比为3:4,可设OA=3xcm ,OB=4xcm ,由勾股定理即可求得AB=5xcm ,继而求得答案.【详解】如图,∵四边形ABCD 是菱形,且菱形的周长为40cm ,∴AB=14×40=10(cm),OA=12AC,OB=12BD ,AC ⊥BD ,∵AC:BD=3:4,∴OA:OB=3:4,设OA=3xcm ,OB=4xcm ,∴22OA OB +=5x(cm),∴5x=10,解得:x=2,∴OA=6cm ,OB=8cm ,∴AC=12cm ,BD=16cm.故选C.【点睛】此题考查菱形的性质,勾股定理,解题关键在于画出图形.8.D 【详解】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根,∴()2240m =--> ,解得:m <1.故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.9.A【分析】根据菱形的基本性质得出∠ABD=∠CDB=20°,然后进一步得出∠EAC的度数,最后根据直角三角形斜边中线性质得出OA=OE,从而进一步得出答案即可.【详解】∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,AB=BC,AO=OC,∵40ABC︒∠=,∴∠ABD=12∠ABC=∠CDB=20°,∴∠OCD=70°,∵AE⊥DC,∴∠EAC+∠OCD=90°,∴∠EAC=20°,∵在Rt△AEC中,AO=OC,∴OE=OA,∴∠OEA=∠EAC=20°.所以答案为A选项.【点睛】本题主要考查了菱形与直角三角形性质的综合运用,熟练掌握相关概念是解题关键. 10.C【分析】由正方形EFGH是由正方形ABCD经过位似变换得到的,点O是位似中心,E,F,G,H 分别是OA,OB,OC,OD的中点,易求得位似比等于EH:AD=1:2,又由相似三角形面积的比等于相似比的平方,即可求得正方形EFGH与正方形ABCD的面积比.【详解】∵正方形EFGH是由正方形ABCD经过位似变换得到的,点O是位似中心,∴正方形EFGH∽正方形ABCD,∵E,F,G,H分别是OA,OB,OC,OD的中点,∴EH=12 AD,即位似比为:EH:AD=1:2,∴正方形EFGH 与正方形ABCD 的面积比是:1:4.故选C .【点睛】此题考查位似变换,解题关键在于利用相似的性质进行解答.11.-3【分析】将点(2)m -,代入反比例函数6y x=,即可求出m 的值.【详解】解:将点(2)m -,代入反比例函数6y x =得:632m ==--.故答案为-3.【点睛】本题主要考查反比例函数图象上点的坐标特征,只要点在函数的图象上,就一定满足函数的解析式12.53【详解】2,3a b =a b b +∴=2511b 33a +=+=.13.9【分析】直接把a 的值代入得出2a 2−a =4,进而将原式变形得出答案.【详解】∵a 是方程2x 2=x+4的一个根,∴2a 2﹣a =4,∴4a 2﹣2a+1=2(2a 2﹣a )+1=2×4+1=9.故答案为9.【点睛】此题主要考查了一元二次方程的解,正确将原式变形是解题关键.14.5【详解】根据题意,易得△MBA ∽△MCO ,根据相似三角形的性质可知AB AM OC OA AM =+,即1.6AM 820AM=+,解得AM=5.∴小明的影长为5米.15.54.6【分析】过P 点作PD 垂直直线b 于点D ,构造出两个直角三角形,设河两岸之间的距离约为x 米,根据所设分别求出BD 和AD 的值,再利用AD=AB+BD 得出含x 的方程,解方程即可得出答案.【详解】过P 点作PD 垂直直线b 于点D设河两岸之间的距离约为x 米,即PD=x ,则BD 75x tan =︒,AD 30x tan =︒可得:803075x x tan tan =+︒︒解得:x=54.6故答案为54.6【点睛】本题考查的是锐角三角函数的应用,解题关键是做PD 垂直直线b 于点D ,构造出直角三角形.16.【分析】连接AC 交BD 于O ,作FG ⊥BE 于G ,证出△BFG 是等腰直角三角形,得出BF=AED=30°,由直角三角形的性质得出,求出∠FEG=60°,∠EFG=30°,进而求出OA 的值,即可得出答案.【详解】连接AC交BD于O,作FG⊥BE于G,如图所示则∠BGF=∠EGF=90°∵四边形ABCD是正方形∴AC⊥BD,OA=OB=OC=OD,∠ADB=∠CBG=45°∴△BFG是等腰直角三角形∴BG=FG=22BF=32∵∠ADB=∠EAD+∠AED,∠EAD=15°∴∠AED=30°∴OE=3OA∵EF⊥AE∴∠FEG=60°∴∠EFG=30°∴EG=33FG=6∴BE=BG+EG=326+∵OA+3AO=326+解得:OA=6∴AB=2OA=23故答案为23【点睛】本题考查了正方形和等腰直角三角形的性质,综合性较强,需要熟练掌握相关性质.17.(1)127x=227x=;(223-(1)利用配方法解一元二次方程即可得出答案;(2)先将sin45°和tan60°的值代入,再计算即可得出答案.【详解】解:(1)方程整理得:243x x -=,配方得:2447x x -+=,即()227x -=,开方得:2x -=,解得:12x =,22x =-;(2)原式2=3-.【点睛】本题考查的是解一元二次方程和三角函数值,比较简单,需要牢记特殊三角函数值.18.画图见解析,111A B C △的面积为6.【分析】先找出ABC 各顶点的对应顶点A 1、B 1、C 1,然后用线段顺次连接即可得到111A B C △,用割补法可以求出111A B C △的面积.【详解】如图所示:111A B C △,即为所求,111A B C △的面积为:111442422246222⨯⨯⨯⨯⨯⨯⨯﹣﹣﹣=.本题考查了作图-位似变换:①确定位似中心;②分别连接并延长位似中心和能代表原图的关键点;③根据位似比,确定能代表所作的位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.19.见解析.【分析】根据等腰三角形的三线合一可得BH=HC ,结合已知条件FH EH =,从而得出四边形EBFC 是平行四边形,再根据AH CB ⊥得出四边形EBFC 是菱形.【详解】证明:,AB AC AH CB =⊥ ,BH HC∴=FH EH = ,∴四边形EBFC 是平行四边形又AH CB ⊥ ,∴四边形EBFC 是菱形.【点睛】本题考查了菱形的判定和性质,以及等腰三角形的性质,熟练掌握相关的知识是解题的关键.20.(1)这两年产值的平均增长率为10%;(2)预计2020年该公产值将达到3327.5万元.【分析】(1)先设出增长率,再根据2019年的产值列出方程,解方程即可得出答案;(2)根据(1)中求出的增长率乘以2019年的产值,再加上2019年的产值,即可得出答案.【详解】解:设增长率为x ,则2018年()25001x +万元,2019年()225001x +万元.则()2250013025x +=,解得0.110%x ==,或 2.1x =-(不合题意舍去).答:这两年产值的平均增长率为10%.(2)()3025110%3327.5⨯+=(万元).故由(1)所得结果,预计2020年该公产值将达到3327.5万元.【点睛】本题考查的是一元二次方程的应用——增长率问题,解题关键是根据题意列出方程.21.(1)1tan 2ACE ∠=;(2)b =【分析】(1)先求出A 和B 的坐标,进而求出tan ABO ∠,即可得出答案;(2)根据题意可得△AOB ∽△AEC ,得出34OB CE =,设出点C 的坐标,列出方程,即可得出答案.【详解】解:(1)一次函数2y x b =-+(b 为常数,0b >)的图象分别与x 轴、y 轴交于A 、B 两点,令0x =,则y b =;令0y =,则求得2b x =,∴,02b A ⎛⎫ ⎪⎝⎭,()0,B b ,∴2b OA =,OB b =,在Rt AOB ∆,12tan 22b OA ABO OB b ∠===,∵CE x ⊥轴于点E ,∴CE y 轴,∴ACE ABO ∠=∠,∴1tan 2ACE ∠=;(2)根据题意得:22916AOB AEC S OB S CE ∆∆==,∴34OB CE =.设点C 的坐标为(),2x x b -+,则OB b =,2CE x b =-+,∴32442b x b x b x ⎧=⎪⎪-+⎨⎪-+=-⎪⎩,解得:b =b =-.【点睛】本题考查的是反比例函数的综合,综合性较强,注意面积比等于相似比的平方.22.(1)143b c ⎧=-⎪⎨⎪=-⎩,211384y x x =--;(2)①当点P 运动到距离A 点259个单位长度处,有PQ AC ⊥;②当点P 运动到距离点A 52个单位处时,四边形PDCQ 面积最小,最小值为818.【分析】(1)根据一次函数解析式求出A 和C 的坐标,再由△ABC 是等腰三角形可求出点B 的坐标,根据平行四边形的性质求出点D 的坐标,利用待定系数法即可得出二次函数的表达式;(2)①设点P 运动了t 秒,PQ ⊥AC ,进而求出AP 、CQ 和AQ 的值,再由△APQ ∽△CAO ,利用对应边成比例可求出t 的值,即可得出答案;②将问题化简为△APQ 的面积的最大值,根据几何关系列出APQ S 关于时间的二次函数,根据二次函数的性质,求出函数的最大值,即求出△APQ 的面积的最大值,进而求出四边形PDCQ 面积的最小值.【详解】解:(1)由334y x =-+,令0x =,得3y =,所以点()0,3A ;令0y =,得4x =,所以点()4,0C ,∵ABC ∆是以BC 为底边的等腰三角形,∴B 点坐标为()4,0-,又∵四边形ABCD 是平行四边形,∴D 点坐标为()8,3,将点()4,0B -、点()8,3D 代入二次函数218y x bx c =++,可得240883b c b c -+=⎧⎨++=⎩,解得:143b c ⎧=-⎪⎨⎪=-⎩,故该二次函数解析式为:211384y x x =--.(2)∵3OA =,4OB =,∴5AC =.①设点P 运动了t 秒时,PQ AC ⊥,此时AP t =,CQ t =,5AQ t =-,∵PQ AC ⊥,∴90AQP AOC ∠=∠=︒,PAQ ACO ∠=∠,∴APQ CAO ∆∆∽,∴APAQ AC CO =,即554t t-=,解得:259t =.即当点P 运动到距离A 点259个单位长度处,有PQ AC ⊥.②∵APQ APQ ACD PDCQ S S S S ∆∆∆==+四边形,且183122ACD S ∆=⨯⨯=,∴当APQ ∆的面积最大时,四边形PDCQ 的面积最小,当动点P 运动t 秒时,AP t =,CQ t =,5AQ t =-,设APQ ∆底边AP 上的高为h ,作QH AD ⊥于点H ,由AQH CAO ∆∆∽可得:535h t-=,解得:()355h t =-,∴()()2133552510APQ S t t t t ∆=⨯-=-+235151028t ⎛⎫=--+ ⎪⎝⎭,∴当52t =时,APQ S ∆达到最大值158,此时15811288PDCQ S =-=四边形,故当点P 运动到距离点A 52个单位处时,四边形PDCQ 面积最小,最小值为818.【点睛】本题考查的是二次函数的综合题,难度系数较大,解题关键是将四边形PDCQ 面积的最小值转化为△APQ 的面积的最大值并根据题意列出APQ S 的函数关系式.23.见解析【分析】在直角△ABD 中根据勾股定理计算出55,再利用画法得到5,即512-AB ,然后根据黄金分割的定义得到点C 就是线段AB 的黄金分割点.【详解】证明:∵AB =2,BD =12AB ,∴BD =1.∵BD ⊥AB 于点B ,∴AD 225AB BD +=∴AE =AD ﹣DE 51,∴AC =AE 51,∴AC =512AB ,∴点C 就是线段AB 的黄金分割点.【点睛】本题考查了黄金分割:把线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项(即AB :AC=AC :BC ),叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=12AB≈0.618AB ,并且线段AB 的黄金分割点有两个.24.(1)223y x =-,12y x =;(2)当0<x <6时,kx +b <m x ,当x >6时,kx +b >mx【分析】(1)根据点A 和点B 的坐标求出一次函数的解析式,再求出C 的坐标6,2),利用待定系数法求解即可求出解析式(2)由C (6,2)分析图形可知,当0<x <6时,kx +b <mx ,当x >6时,kx +b >mx【详解】(1)S △AOB =12OA •OB =3,∴OA =2,∴点A 的坐标是(0,﹣2),∵B (3,0)∴230b k b =-⎧⎨+=⎩∴232k b ⎧=⎪⎨⎪=-⎩∴y =23x ﹣2.当x =6时,y =23×6﹣2=2,∴C (6,2)∴m =2×6=12.∴y =12x .(2)由C (6,2),观察图象可知:当0<x <6时,kx +b <mx ,当x >6时,kx +b >mx .【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于求出C 的坐标25.(1)20;(2)作图见试题解析;(3)12.【分析】(1)由A 类的学生数以及所占的百分比即可求得答案;(2)先求出C类的女生数、D类的男生数,继而可补全条形统计图;(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.【详解】(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为20;(2)∵C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,男A1男A2女A男D男A1男D男A2男D女A男D女D男A1女D男A2女D女A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:3162.21。
北师大版九年级(上)期末数学试卷及答案
![北师大版九年级(上)期末数学试卷及答案](https://img.taocdn.com/s3/m/28afff05abea998fcc22bcd126fff705cc175ccb.png)
北师大版九年级(上)期末数学试卷及答案第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.下列图形中,是中心对称图形的是( )A. B. C. D.2.下列关于x的函数是二次函数的是( )B. y=4x3+5A. y=9xC. y=3x−2D. y=2x2−x+13.如图,将一块含45°角的三角板ABC绕点A按逆时针方向旋转到△AB′C′的位置.若∠CAB′=20°,则旋转角的度数为( )A. 20°B. 25°C. 65°D. 70°4.一元二次方程3x2+2x−1=0的根的情况是( )A. 无法确定B. 无实数根C. 有两个相等的实数根D. 有两个不等的实数根5.如图,PA,PB与⊙O分别相切于点A,B,PA=2,∠P=60°,则AB=( )A. √3B. 2C. 2√3D. 36.下列事件为随机事件的是( )A. 一个图形旋转后所得的图形与原图形全等B. 直径是圆中最长的弦第2页,共19页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………C. 方程ax 2+x =0是关于x 的一元二次方程D. 任意画一个三角形,其内角和为360°7. 一次函数y =x +a 与二次函数y =ax 2−a 在同一平面直角坐标系中的图象可能是( )A. B.C. D.8. 为响应国家传统文化进校园的号召,某校准备购进一批毕加索笔来奖励经典诵读优秀生.某文具超市为让利给学校,经过两次降价,每支毕加索笔单价由121元降为100元,两次降价的百分率相同,设每次降价的百分率为x ,根据题意列方程得( )A. 121(1−x 2)=100B. 121(1+x)2=100C. 121(1−2x)=100D. 121(1−x)2=1009. 数学活动课上,同学们想测出一个残损轮子的半径,小的解决方案如下:如图,在轮子圆弧上任取两点A ,B ,连接AB ,再作出AB 的垂直平分线,交AB 于点C ,交AB⏜于点D ,测出AB ,CD 的长度,即可计算得出轮子的半径.现测出AB =40cm ,CD =10cm ,则轮子的半径为( )A. 50cmB. 35cmC. 25cmD. 20cm10. 从−1,0,1,2中任取一个数作为a 的值,既要使关于x 的方程x 2+2x −2a =0有实数根,又要满足2a −1<−a +2,则a 符合条件的概率为( )A. 14 B. 12 C. 34 D. 111. 已知⊙O 是正六边形ABCDEF 的外接圆,P 为⊙O 上除C 、D 外任意一点,则∠CPD 的度数为( )A. 30°B. 30°或150°C. 60°D. 60°或120°12. 如图,已知二次函数y =ax 2+bx +c 的图象过点(−1,0)和(m,0),下列结论:①abc <0;②4a +c <2b ;③b =a −am ;④bc =1−1m .其中正确的是( )A. ①②④B. ①②③C. ①③④D. ①②③④第II卷(非选择题)二、填空题(本大题共4小题,共16.0分)13.若点A(1,a)与点B(−1,−2)关于原点对称,则a的值为______.14.如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了图②所示的折线统计图,由此他估计不规则图案的面积大约为______ m2(结果取整数).15.已知抛物线y=(x−1)2−4如图1所示,现将抛物线在x轴下方的部分沿x轴翻折,图象其余部分不变,得到一个新图象如图2.当直线y=m与新图象有四个交点时,m的取值范围是______.16.如图,在平面直角坐标系中,点A在y轴的正半轴上,OA=1,将OA绕点O顺时针旋转45°到OA1,扫过的面积记为S1,A1A2⊥OA1交x轴于点A2;将OA2绕点O顺时针旋转45°到OA3,扫过的面积记为S2,A3A4⊥OA3交y轴于点A4;将OA4绕点O顺时针旋转45°到OA5,扫过的面积记为S3,A5A6⊥OA5交x轴于点A6;…;按此规律,则S2022的值为______.第4页,共19页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………三、解答题(本大题共9小题,共98.0分。
北师大版九年级(上)期末数学试卷(含答案)
![北师大版九年级(上)期末数学试卷(含答案)](https://img.taocdn.com/s3/m/b58fd978ac02de80d4d8d15abe23482fb4da02bc.png)
北师大版九年级(上)期末数学试卷及答案一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1.(3分)下列既是轴对称图形又是中心对称图形的是( ) A .菱形B .平行四边形C .等边三角形D .等腰梯形2.(3分)若一元二次方程220x x --=的两根为1x ,2x ,则121(1)(1)x x x ++-的值是( ) A .4B .2C .1D .2-3.(3分)在如图所示的电路中,随机闭合开关1S ,2S ,3S 中的两个,能让灯泡1L 发光的概率是( )A .12B .13C .14D .254.(3分)如图,小李打网球时,球恰好打过网,且落在离网4m 的位置上,则球拍击球的高度h 为( )A .0.6mB .1.2mC .1.3mD .1.4m5.(3分)如图,把抛物线2y x =沿直线y x =平移2个单位后,其顶点在直线上的A 处,则平移后的抛物线解析式是( )A .2(1)1y x =+-B .2(1)1y x =++C .2(1)1y x =-+D .2(1)1y x =--6.(3分)如图,等边三角形ABC 的边长为4,点O 是ABC ∆的中心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD OE =;②ODE BDE S S ∆∆=;③四边形ODBE 的面积始终等于433;④BDE ∆周长的最小值为6.上述结论中正确的个数是( )A .1B .2C .3D .4二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)已知α,β均为锐角,且满足21|sin |(tan 1)02αβ-+-=,则αβ+= .8.(3分)已知一个正比例函数的图象与一个反比例函数的图象的一个交点为(1,3),则另一个交点坐标是 . 9.(3分)某校九(1)班的学生互赠新年贺卡,共用去1560张贺卡,则九(1)班有 名学生.10.(3分)如图,菱形ABCD 中,60DAB ∠=︒,DF AB ⊥于点E ,且DF DC =,连接FC ,则ACF ∠的度数为 度.11.(3分)如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的块数为n ,则n 的所有可能的值之和为 .12.(3分)如图,矩形ABCD 中,6AB =,43AD =,点E 是BC 的中点,点F 在AB 上,2FB =,P 是矩形上一动点.若点P 从点F 出发,沿F A D C →→→的路线运动,当30FPE ∠=︒时,FP 的长为 .三、解答题(本大题共5小题,每小题6分,共30分) 13.(6分)解方程: (1)2(21)9x +=; (2)2(4)3(4)x x +=+.14.(6分)如图,在ABCD 中,AE BC ⊥,CF AD ⊥,E ,F 分别为垂足. (1)求证:BE DF =;(2)求证:四边形AECF 是矩形.15.(6分)如图,反比例函数(0)k y k x=≠的图象与正比例函数2y x =的图象相交于点(1,)A a ,B 两点,点C 在第四象限,//CA y 轴,90ABC ∠=︒. (1)求k 的值及B 点坐标; (2)求ABC ∆的面积.16.(6分)如图,在矩形ABCD 中,点E 为AD 的中点,请只用无刻度的直尺作图 (1)如图1,在BC 上找点F ,使点F 是BC 的中点;(2)如图2,在AC 上取两点P ,Q ,使P ,Q 是AC 的三等分点.17.(6分)我国于2019年6月5日首次完成运载火箭海上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点M 处垂直海面发射,当火箭到达点A 处时,海岸边N 处的雷达站测得点N 到点A 的距离为8千米,仰角为30︒.火箭继续直线上升到达点B 处,此时海岸边N 处的雷达测得B 处的仰角增加15︒,求此时火箭所在点B 处与发射站点M 处的距离.(结果精确到0.1千米)(参考数据:2 1.41≈,3 1.73)≈四、(本大题共3小题,每小题8分,共24分)18.(8分)已知如图,在ABC ∆中,BD 平分ABC ∠交AC 于点D ,点E 在AB 上,且2BD BE BC =; (1)求证:BDE C ∠=∠; (2)求证:2AD AE AB =.19.(8分)如图,//AB CD ,点E ,F 分别在AB ,CD 上,连接EF ,AEF ∠、CFE ∠的平分线交于点G ,BEF ∠、DFE ∠的平分线交于点H .(1)求证:四边形EGFH 是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G 作//MN EF ,分别交AB ,CD 于点M ,N ,过H 作//PQ EF ,分别交AB ,CD 于点P ,Q ,得到四边形MNQP ,此时,他猜想四边形MNQP 是菱形,他的猜想是否正确,请予以说明.20.(8分)小聪同学周六到某欢乐谷玩迷宫游戏,从迷宫口A到达迷宫口D有多个路口,如图所示(迷宫的一部分),规定从迷宫口A到达D处不能重复走同一路线,且小聪走每一条路线的可能性相同.(1)请用画树状图的方法,求小聪同学从迷宫口A到达D处所走的所有可能路线;(2)求小聪同学从迷宫口A到达D处经过路口B的概率.五、(本大题共2小题,每小题9分,共18分)21.(9分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?22.(9分)对于两个不相等的有理数a,b,我们规定符号{max a,}b表示a,b中的较大值,如{2max,3}2-=,{1max-,0}0=.请解答下列问题:(1)2{1,1}5max--=;(2)如果{max x,2}x x-=,求x的取值范围;(3)如果{max x ,2}2|1|5x x -=--,求x 的值. 六、(本大题共12分)23.(12分)如图,抛物线2(0)y ax bx a =+≠经过点(2,0)A ,点(3,3)B ,BC x ⊥轴于点C ,连接OB ,等腰直角三角形DEF 的斜边EF 在x 轴上,点E 的坐标为(4,0)-,点F 与原点重合 (1)求抛物线的解析式并直接写出它的对称轴;(2)DEF ∆以每秒1个单位长度的速度沿x 轴正方向移动,运动时间为t 秒,当点D 落在BC 边上时停止运动,设DEF ∆与OBC ∆的重叠部分的面积为S ,求出S 关于t 的函数关系式;(3)点P 是抛物线对称轴上一点,当ABP ∆是直角三角形时,请直接写出所有符合条件的点P 坐标.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1.(3分)下列既是轴对称图形又是中心对称图形的是( ) A .菱形B .平行四边形C .等边三角形D .等腰梯形【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:A .菱形既是轴对称图形又是中心对称图形,故此选项符合题意;B .平行四边形是中心对称图形,不是轴对称图形,故此选项不合题意;C .等边三角形不是中心对称图形,是轴对称图形,故此选项不合题意;D .等腰梯形是轴对称图形不是中心对称图形,故此选项不合题意.故选:A .【点评】本题考查了中心对称图形和轴对称图形的定义,能熟记中心对称图形和轴对称图形的定义是解此题的关键. 2.(3分)若一元二次方程220x x --=的两根为1x ,2x ,则121(1)(1)x x x ++-的值是( ) A .4B .2C .1D .2-【分析】根据根与系数的关系得到121x x +=,122x x =-,然后利用整体代入的方法计算121(1)(1)x x x ++-的值. 【解答】解:根据题意得121x x +=,122x x =-, 所以1211212(1)(1)111(2)4x x x x x x x ++-=++-=+--=. 故选:A .【点评】本题考查了根与系数的关系:若1x ,2x 是一元二次方程20(0)ax bx c a ++=≠的两根时,12b x x a+=-,12cx x a=. 3.(3分)在如图所示的电路中,随机闭合开关1S ,2S ,3S 中的两个,能让灯泡1L 发光的概率是( )A .12 B .13C .14D .25【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能让灯泡1L 发光的情况,再利用概率公式求解即可求得答案. 【解答】解:画树状图得:共有6种等可能的结果,能让灯泡1L 发光的有2种情况,∴能让灯泡1L 发光的概率为2163=, 故选:B .【点评】本题考查了列表法、树状图法求概率,画出树状图得出所有可能出现的结果情况是正确解答的关键. 4.(3分)如图,小李打网球时,球恰好打过网,且落在离网4m 的位置上,则球拍击球的高度h 为( )A .0.6mB .1.2mC .1.3mD .1.4m【分析】利用平行得出三角形相似,运用相似比即可解答. 【解答】解://AB DE ,∴AB CBDE CD =, ∴40.87h=, 1.4h m ∴=,经检验: 1.4h =是原方程的根. 故选:D .【点评】此题主要考查了相似三角形的判定,根据已知得出AB CBDE CE=是解决问题的关键. 5.(3分)如图,把抛物线2y x =沿直线y x =平移2个单位后,其顶点在直线上的A 处,则平移后的抛物线解析式是( )A .2(1)1y x =+-B .2(1)1y x =++C .2(1)1y x =-+D .2(1)1y x =--【分析】首先根据A 点所在位置设出A 点坐标为(,)m m 再根据2AO =,利用勾股定理求出m 的值,然后根据抛物线平移的性质:左加右减,上加下减可得解析式. 【解答】解:A 在直线y x =上,∴设(,)A m m ,2OA =222(2)m m ∴+=,解得:1(1m m =±=-舍去), 1m ∴=,(1,1)A ∴,∴平移后的抛物线解析式为:2(1)1y x =-+,故选:C .【点评】此题主要考查了二次函数图象的几何变换,关键是求出A 点坐标,掌握抛物线平移的性质:左加右减,上加下减.6.(3分)如图,等边三角形ABC 的边长为4,点O 是ABC ∆的中心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD OE =;②ODE BDE S S ∆∆=;③四边形ODBE 的433④BDE ∆周长的最小值为6.上述结论中正确的个数是( )A .1B .2C .3D .4【分析】连接OB 、OC ,如图,利用等边三角形的性质得30ABO OBC OCB ∠=∠=∠=︒,再证明BOD COE ∠=∠,于是可判断BOD COE ∆≅∆,所以BD CE =,OD OE =,则可对①进行判断;利用BOD COE S S ∆∆=得到四边形ODBE 的面积14333ABC S ∆==则可对③进行判断;作OH DE ⊥,如图,则DH EH =,计算出23ODE S ∆=,利用ODE S ∆随OE 的变化而变化和四边形ODBE 的面积为定值可对②进行判断;由于BDE ∆的周长443BC DE DE OE =+=+=,根据垂线段最短,当OE BC ⊥时,OE 最小,BDE ∆的周长最小,计算出此时OE的长则可对④进行判断.【解答】解:连接OB 、OC ,如图, ABC ∆为等边三角形, 60ABC ACB ∴∠=∠=︒,点O 是ABC ∆的中心,OB OC ∴=,OB 、OC 分别平分ABC ∠和ACB ∠,30ABO OBC OCB ∴∠=∠=∠=︒120BOC ∴∠=︒,即120BOE COE ∠+∠=︒,而120DOE ∠=︒,即120BOE BOD ∠+∠=︒, BOD COE ∴∠=∠,在BOD ∆和COE ∆中 BOD COEBO COOBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩, BOD COE ∴∆≅∆,BD CE ∴=,OD OE =,所以①正确; BOD COE S S ∆∆∴=,∴四边形ODBE 的面积21134433343OBC ABC S S ∆∆===⨯⨯=,所以③正确; 作OH DE ⊥,如图,则DH EH =,120DOE ∠=︒,30ODE OEH ∴∠=∠=︒,12OH OE ∴=,332HE OH OE ==, 3DE OE ∴=,21133224ODE S OE OE OE ∆∴=⋅⋅=, 即ODE S ∆随OE 的变化而变化,而四边形ODBE 的面积为定值,ODE BDE S S ∆∆∴≠;所以②错误;BD CE =,BDE ∴∆的周长443BD BE DE CE BE DE BC DE DE OE =++=++=+=+=+,当OE BC ⊥时,OE 最小,BDE ∆的周长最小,此时233OE =, BDE ∴∆周长的最小值426=+=,所以④正确.故选:C .【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质和全等三角形的判定与性质.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)已知α,β均为锐角,且满足21|sin |(tan 1)02αβ-+-=,则αβ+= 75︒ . 【分析】直接利用绝对值的非负性和偶次方的非负性得出1sin 02α-=,tan 10β-=,再结合特殊角的三角函数值得出答案.【解答】解:21|sin |(tan 1)02αβ-+-=, 1sin 02α∴-=,tan 10β-=, 1sin 2α∴=,tan 1β=, 30α∴=︒,45β=︒,则304575αβ+=︒+︒=︒.故答案为:75︒.【点评】此题主要考查了特殊角的三角函数值以及非负数的性质,正确记忆特殊角的三角函数值是解题关键.8.(3分)已知一个正比例函数的图象与一个反比例函数的图象的一个交点为(1,3),则另一个交点坐标是(1,3)-- .【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(1,3)关于原点对称,∴该点的坐标为(1,3)--.故答案为:(1,3)--.【点评】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握关于原点对称的两个点的坐标的横、纵坐标都互为相反数.9.(3分)某校九(1)班的学生互赠新年贺卡,共用去1560张贺卡,则九(1)班有 40 名学生.【分析】设九(1)班有x 名学生,则每名学生需送出(1)x -张新年贺卡,利用九(1)班共用去贺卡的数量=人数⨯每人送出新年贺卡的数量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【解答】解:设九(1)班有x 名学生,则每名学生需送出(1)x -张新年贺卡,依题意得:(1)1560x x -=,整理得:215600x x --=,解得:140x =,239x =-(不合题意,舍去),∴九(1)班有40名学生.故答案为:40.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.10.(3分)如图,菱形ABCD 中,60DAB ∠=︒,DF AB ⊥于点E ,且DF DC =,连接FC ,则ACF ∠的度数为 15度.【分析】利用菱形的性质得出DCB∠的度数,进而得出答案.∠的度数,再利用等腰三角形的性质得出DCF【解答】解:菱形ABCD中,60∠=︒,DF DC=,DAB∠=∠,AB CD,DFC DCF∴∠=︒,//60BCD⊥于点E,DF AB90∴∠=︒,FDCDFC DCF∴∠=∠=︒,45菱形ABCD中,DCA ACB∠=∠,∴∠=∠=︒,30DCA ACB︒-︒=︒.ACF∴∠的度数为:453015故答案为:15︒.【点评】此题主要考查了菱形的性质以及等腰三角形的性质等知识,得出45∠=∠=︒是解题关键.DFC DCF11.(3分)如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的块数为n,则n的所有可能的值之和为38.【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:主视图最右边可能有4或5或6个小正方体;由主视图最左边看到只有一列,俯视图也只有一列,则左边有一个小正方体;主视图中间有两列,俯视图亦有两列,则中间可以有3或4个小正方形.n∴的值可能为:1438++=,16411++=,++=,15410++=,1539++=,16310++=,1449则n的所有可能的值之和89101138=+++=.故本题答案为:38.【点评】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的个数.12.(3分)如图,矩形ABCD 中,6AB =,43AD =,点E 是BC 的中点,点F 在AB 上,2FB =,P 是矩形上一动点.若点P 从点F 出发,沿F A D C →→→的路线运动,当30FPE ∠=︒时,FP 的长为 4或8或43 .【分析】如图,连接DF ,AE ,DE ,取DF 的中点O ,连接OA 、OE .以O 为圆心画O 交CD 于3P .只要证明12330EPF FP F FP E ∠=∠=∠=︒,即可推出14FP =,28FP =,343FP=解决问题. 【解答】解:如图,连接DF ,AE ,DE ,取DF 的中点O ,连接OA 、OE .以O 为圆心OE 的长度为半径,画O 交CD 于3P .四边形ABCD 是矩形,90BAD B ∴∠=∠=︒,2BF =,23BE =4AF =,43AD =3tan tan FEB ADF ∴∠=∠=, 30ADF FEB ∴∠=∠=︒, 易知4EF OF OD ===,OEF ∴∆是等边三角形,12330EPF FP F FP E ∴∠=∠=∠=︒, 14FP ∴=,28FP=,343FP =, 故答案为4或8或3【点评】本题考查矩形的性质、锐角三角函数、圆的有关知识、等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题,属于中考填空题中的压轴题.三、解答题(本大题共5小题,每小题6分,共30分)13.(6分)解方程:(1)2(21)9x +=;(2)2(4)3(4)x x +=+.【分析】(1)两边直接开平方,继而得到两个关于x 的一元一次方程,解之即可;(2)先移项,再利用提公因式法将方程的左边因式分解,继而得出两个关于x 的一元一次方程,再进一步求解即可.【解答】解:(1)2(21)9x +=,213x ∴+=或213x +=-,解得11x =,22x =-;(2)2(4)3(4)x x +=+,2(4)3(4)0x x ∴+-+=,则(4)(1)0x x ++=,40x ∴+=或10x +=,解得14x =-,21x =-.【点评】本题主要考查解一元二次方程,解一元二次方程常用的方法有:直接开平方法、因式分解法、公式法及配方法,解题的关键是根据方程的特点选择简便的方法.14.(6分)如图,在ABCD 中,AE BC ⊥,CF AD ⊥,E ,F 分别为垂足.(1)求证:BE DF =;(2)求证:四边形AECF 是矩形.【分析】(1)由平行四边形的性质得出B D ∠=∠,AB CD =,//AD BC ,由已知得出90AEB AEC CFD AFC ∠=∠=∠=∠=︒,由AAS 证明ABE CDF ∆≅∆即可;(2)证出90EAF AEC AFC ∠=∠=∠=︒,即可得出结论.【解答】(1)证明:四边形ABCD 是平行四边形,B D ∴∠=∠,AB CD =,//AD BC ,AE BC ⊥,CF AD ⊥,90AEB AEC CFD AFC ∴∠=∠=∠=∠=︒,在ABE ∆和CDF ∆中,B D AEB CFD AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABE CDF AAS ∴∆≅∆,BE DF ∴=;(2)证明://AD BC ,90EAF AEB ∴∠=∠=︒,90EAF AEC AFC ∴∠=∠=∠=︒,∴四边形AECF 是矩形.【点评】本题考查了矩形的判定、平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质和矩形的判定是解题的关键.15.(6分)如图,反比例函数(0)k y k x=≠的图象与正比例函数2y x =的图象相交于点(1,)A a ,B 两点,点C 在第四象限,//CA y 轴,90ABC ∠=︒.(1)求k 的值及B 点坐标;(2)求ABC ∆的面积.【分析】(1)先把(1,)A a 代入2y x =中求出a 得到(1,2)A ;再把A 点坐标代入k y x=中可确定k 的值,然后利用反比例函数和正比例函数图象的性质确定B 点坐标;(2)设(1,)C t ,根据两点间的距离公式和勾股定理得到22222(11)(2)(11)(22)(2)t t +++++++=-,求出t 得到(1,3)C -,从而得到AC 的长,然后关键三角形面积公式求得即可.【解答】解:(1)把(1,)A a 代入2y x =得2a =,则(1,2)A ;把(1,2)A 代入k y x =得122k =⨯=, 点A 与点B 关于原点对称,(1,2)B ∴--;(2)//CA y 轴,C ∴点的横坐标为1,设(1,)C t ,90ABC ∠=︒.222BC AC AB ∴+=,即22222(11)(2)(11)(22)(2)t t +++++++=-,解得3t =-,(1,3)C ∴-,5AC ∴=,11()5(11)522ABC A B S AC x x ∆∴=-=⨯⨯+=. 【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.16.(6分)如图,在矩形ABCD 中,点E 为AD 的中点,请只用无刻度的直尺作图(1)如图1,在BC 上找点F ,使点F 是BC 的中点;(2)如图2,在AC 上取两点P ,Q ,使P ,Q 是AC 的三等分点.【分析】(1)根据矩形的对角线相等且互相平分作出图形即可;(2)根据矩形的性质和三角形中位线定理作出图形即可.【解答】解:(1)如图1,连接AC 、BD 交于点O ,延长EO 交BC 于F ,则点F 即为所求;(2)如图2,BD 交AC 于O ,延长EO 交BC 于F ,连接EB 交AC 于P ,连接DF 交AC 于Q ,则P 、Q 即为所求.【点评】本题考查的是作图的应用,掌握矩形的性质和三角形中位线定理、正确作出图形是解题的关键.17.(6分)我国于2019年6月5日首次完成运载火箭海上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点M 处垂直海面发射,当火箭到达点A 处时,海岸边N 处的雷达站测得点N 到点A 的距离为8千米,仰角为30︒.火箭继续直线上升到达点B 处,此时海岸边N 处的雷达测得B 处的仰角增加15︒,求此时火箭所在点B 处与发射站点M 处的距离.(结果精确到0.1千米)(参考数据:2 1.41≈,3 1.73)≈【分析】利用已知结合锐角三角函数关系得出BM 的长.【解答】解:如图所示:连接MN ,由题意可得:90AMN ∠=︒,30ANM ∠=︒,45BNM ∠=︒,8AN km =, 在直角AMN ∆中,3cos30843()MN AN km =︒==. 在直角BMN ∆中,tan 4543 6.9BM MN km km =︒=≈.答:此时火箭所在点B 处与发射站点M 处的距离约为6.9km .【点评】本题考查解直角三角形的应用-仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.四、(本大题共3小题,每小题8分,共24分)18.(8分)已知如图,在ABC ∆中,BD 平分ABC ∠交AC 于点D ,点E 在AB 上,且2BD BE BC =;(1)求证:BDE C ∠=∠;(2)求证:2AD AE AB =.【分析】(1)根据角平分线的定义得到ABD CBD ∠=∠,由2BD BE BC =,得到BD BC BE BD=,推出EBD DBC ∆∆∽,根据相似三角形的性质即可得到结论;(2)由BDE C ∠=∠,推出DBC ADE ∠=∠,等量代换得到ABD ADE ∠=∠,证得ADE ABD ∆∆∽,根据相似三角形的性质即可得到结论.【解答】证明:(1)BD 平分ABC ∠,ABD CBD ∴∠=∠, 2BD BE BC =, ∴BD BC BE BD=, EBD DBC ∴∆∆∽,BDE C ∴∠=∠;(2)BDE C ∠=∠,DBC C BDE ADE ∠+∠=∠+∠,DBC ADE ∴∠=∠,ABD CBD ∠=∠,ABD ADE ∴∠=∠,ADE ABD ∴∆∆∽, ∴AD AE AB AD=, 即2AD AE AB =.【点评】本题考查了相似三角形的判定和性质,角平分线的性质,熟练掌握相似三角形的性质即可得到结论.19.(8分)如图,//AB CD ,点E ,F 分别在AB ,CD 上,连接EF ,AEF ∠、CFE ∠的平分线交于点G ,BEF ∠、DFE ∠的平分线交于点H .(1)求证:四边形EGFH 是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G 作//MN EF ,分别交AB ,CD 于点M ,N ,过H 作//PQ EF ,分别交AB ,CD 于点P ,Q ,得到四边形MNQP ,此时,他猜想四边形MNQP 是菱形,他的猜想是否正确,请予以说明.【分析】(1)根据角平分线的性质进行导角,可求得四边形EGFH 的四个内角均为90︒,进而可说明其为矩形.(2)根据题目条件可得四边形MNQP 为平行四边形,要证菱形只需邻边相等,连接GH ,由于MN EF GH ==,要证MN MP =,只需证GH MP =,只需证四边形MFHP 为平行四边形,可证G 、H 点分别为MN 、PQ 中点,即可得出结果.【解答】(1)证明:EH 平分BEF ∠,FH 平分DFE ∠,12FEH BEF ∴∠=∠,12EFH DFE ∠=∠, //AB CD ,180BEF DFE ∴∠+∠=︒,11()1809022FEH EFH BEF DFE ∴∠+∠=∠+∠=⨯︒=︒, 180FEH EFH EHF ∠+∠+∠=︒,180()1809090EHF FEH EFH ∴∠=︒-∠+∠=︒-︒=︒,同理可得:90EGF ∠=︒,EG 平分AEF ∠,EH 平分BEF ∠,12GEF AEF ∴∠=∠,12FEH BEF ∠=∠, 点A 、E 、B 在同一条直线上,180AEB ∴∠=︒,即180AEF BEF ∠+∠=︒,11()1809022FEG FEH AEF BEF ∴∠+∠=∠+∠=⨯︒=︒, 即90GEH ∠=︒,∴四边形EGFH 是矩形(2)解:他的猜想正确,理由是:////MN EF PQ ,//MP NQ ,∴四边形MNQP 为平行四边形.如图,延长EH 交CD 于点O ,PEO FEO ∠=∠,PEO FOE ∠=∠,FOE FEO ∴∠=∠,EF FD ∴=,FH EO ⊥,HE HO ∴=,EHP OHQ ∠=∠,EPH OQH ∠=∠,EHP OHQ ∴∆≅∆,HP HQ ∴=,同理可得GM GN =,MN PQ =,MG HP ∴=,∴四边形MGHP 为平行四边形,GH MP ∴=,//MN EF ,//ME NF ,∴四边形MEFN 为平行四边形,MN EF ∴=,四边形EGFH 是矩形,GH EF ∴=,MN MP∴=,∴平行四边形MNQP为菱形.【点评】本题考查矩形、菱形的性质与判定,属于综合题,熟练掌握菱形和矩形的性质及判定方法是解题关键.20.(8分)小聪同学周六到某欢乐谷玩迷宫游戏,从迷宫口A到达迷宫口D有多个路口,如图所示(迷宫的一部分),规定从迷宫口A到达D处不能重复走同一路线,且小聪走每一条路线的可能性相同.(1)请用画树状图的方法,求小聪同学从迷宫口A到达D处所走的所有可能路线;(2)求小聪同学从迷宫口A到达D处经过路口B的概率.【分析】(1)根据题意得出小聪同学从迷宫口A到达D处所走的所有可能路线共有4种;(2)根据概率公式进行求解即可.【解答】解:(1)根据题意画图如下:小聪同学从迷宫口A到达D处所走的所有可能路线共有4种;(2)一共有4种情况,而过B的有3种,故小聪同学从迷宫口A到达D处经过路口B的概率为34.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.五、(本大题共2小题,每小题9分,共18分)21.(9分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y (件)与销售单价x (元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y 与销售单价x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w (元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?【分析】(1)将点(30,100)、(45,70)代入一次函数表达式,即可求解;(2)由题意得2(30)(2160)2(55)1250w x x x =--+=--+,即可求解;(3)由题意得(30)(2160)800x x --+,解不等式即可得到结论.【解答】解:(1)设y 与销售单价x 之间的函数关系式为:y kx b =+,将点(30,100)、(45,70)代入一次函数表达式得:100307045k b k b =+⎧⎨=+⎩, 解得:2160k b =-⎧⎨=⎩, 故函数的表达式为:2160y x =-+;(2)由题意得:2(30)(2160)2(55)1250w x x x =--+=--+,20-<,故当55x <时,w 随x 的增大而增大,而3050x ,∴当50x =时,w 有最大值,此时,1200w =,故销售单价定为50元时,该商店每天的利润最大,最大利润1200元;(3)由题意得:(30)(2160)800x x --+,解得:4070x ,又216020y x =-+,则y 的最小值为27016020-⨯+=,每天的销售量最少应为20件.【点评】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量⨯每件的利润w =得出函数关系式是解题关键.22.(9分)对于两个不相等的有理数a ,b ,我们规定符号{max a ,}b 表示a ,b 中的较大值,如{2max ,3}2-=,{1max -,0}0=.请解答下列问题:(1)2{1,1}5max --= 1- ; (2)如果{max x ,2}x x -=,求x 的取值范围;(3)如果{max x ,2}2|1|5x x -=--,求x 的值.【分析】(1)根据定义即可得;(2)由已知等式知2x x >-,解之可得;(3)分2x x >-和2x x <-两种情况分别求解可得.【解答】解:(1)2115->-, ∴2{1,1}15max --=-. 故答案为:1-;(2){max x ,2}x x -=,2x x ∴>-.1x ∴>.x ∴的取值范围是1x >.(3)由题意,得:2x x ≠-.①若2x x >-,即1x >时,{max x ,2}x x -=,|1|1x x -=-.{max x ,2}2|1|5x x -=--,2(1)5x x ∴=--.解得7x =符合题意;)②若2x x <-,即1x <时,{max x ,2}2x x -=-,|1|(1)1x x x -=--=-.{max x ,2}2|1|5x x -=--,22(1)5x x ∴-=--.解得5x =-符合题意.综上所述,7x =或5x =-.【点评】本题主要考查解一元一次不等式,解题的关键是理解新定义,并根据新定义列出关于x 的不等式及分类讨论思想的运用.六、(本大题共12分)23.(12分)如图,抛物线2(0)y ax bx a =+≠经过点(2,0)A ,点(3,3)B ,BC x ⊥轴于点C ,连接OB ,等腰直角三角形DEF 的斜边EF 在x 轴上,点E 的坐标为(4,0)-,点F 与原点重合(1)求抛物线的解析式并直接写出它的对称轴;(2)DEF ∆以每秒1个单位长度的速度沿x 轴正方向移动,运动时间为t 秒,当点D 落在BC 边上时停止运动,设DEF ∆与OBC ∆的重叠部分的面积为S ,求出S 关于t 的函数关系式;(3)点P 是抛物线对称轴上一点,当ABP ∆是直角三角形时,请直接写出所有符合条件的点P 坐标.【分析】(1)根据待定系数法解出解析式和对称轴即可;(2)从三种情况分析①当03t 时,DEF ∆与OBC ∆重叠部分为等腰直角三角形;②当34t <时,DEF ∆与OBC ∆重叠部分是四边形;③当45t <时,DEF ∆与OBC ∆重叠部分是四边形得出S 关于t 的函数关系式即可;(3)直接写出当ABP ∆是直角三角形时符合条件的点P 坐标.【解答】解:(1)根据题意得042393a b a b=+⎧⎨=+⎩, 解得1a =,2b =-,∴抛物线解析式是22y x x =-,对称轴是直线1x =;(2)有3种情况:①当03t 时,DEF ∆与OBC ∆重叠部分为等腰直角三角形,如图1:214S t =; ②当34t <时,DEF ∆与OBC ∆重叠部分是四边形,如图2:219342S t t =-+-; ③当45t <时,DEF ∆与OBC ∆重叠部分是四边形,如图3:211322S t t =-+-; (3)当ABP ∆是直角三角形时,可得符合条件的点P 坐标为(1,1)或(1,2)或1(1,)3或11(1,)3. 【点评】此题考查了难度较大的函数与几何的综合题,关键是根据03t ,34t <,45t <三种情况进行分析.。
北师大版九年级上册数学期末考试试题含答案详解
![北师大版九年级上册数学期末考试试题含答案详解](https://img.taocdn.com/s3/m/dca05ab481eb6294dd88d0d233d4b14e84243e48.png)
北师大版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.如图是由五个相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.2.下列说法:①“掷一枚质地均匀的硬币,一定正面朝下”;②“从一副扑克牌中任意取一张,点数一定是6”.下面判断正确的是()A.①②正确B.①正确C.②正确D.①②错误3.李师傅做了一个零件,如图,请你告诉他这个零件的主视图是()A.B.C.D.4.一元二次方程2−4+1=0,配方正确的是()A.(−2)2=5B.(−2)2=3 C.(−4)2=15D.(−4)2=175.已知点(−3,1),(−2,2),(3,3)都在反比例函数=3的图象上,则A.1<2<3B.3<2<1C.3<1<2D.2<1<3 6.若反比例函数=(−2)2−2K4的图象在第一、三象限,则m的值是()A.-1或1B.-1C.3D.3或一17.在元旦游园晚会上有一个闯关活动:将5张分别画有等腰梯形、圆、平行四边形、等腰三角形、菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关,那么一次过关的概率是()A .15B .25C .35D .458.关于x 的一元二次方程2−3−2=0的两根为x 1,x 2,则1+2−1·2的值为()A .-5B .-1C .1D .59.如图,反比例函数(0)ky k x=≠的图象上有一点A ,AB 平行于x 轴交y 轴于点B ,△ABO 的面积是1,则反比例函数的表达式是()A .12y x=B .1y x=C .2y x=D .14y x=10.如图,矩形ABCD 的面积为20cm 2,对角线交于点O ;以AB 、AO 为邻边做平行四边形AOC 1B ,对角线交于点O 1;以AB 、AO 1为邻边做平行四边形AO 1C 2B ;…;依此类推,则平行四边形AO 4C 5B 的面积为()A .58cm 2B .cm 2C .532cm 2D .cm 211.若干个相同的立方体摆在一起,前、后、左、右视图都如图,这堆立方体至少有()A .4个B .5个C .8个D .10个12.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC 交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE,其中正确结论有()个.A.2B.3C.4D.5二、填空题13x=的解为__________.14.已知实数x满足4x2-4x+l=0,则代数式2x+12x的值为________.15.一个几何体的俯视图为圆,则该几何体可能是________.16.一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有3个.若每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a的值大约是_______.17.如图,Rt ABC中,C=90o,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点D,连接OC,已知AC=5,BC的长为_______.三、解答题18.小明对自己所在班级的50名学生平均每周参加课外活动的时间进行了调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题:(1)求m 的值;(2)从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表或画树状图的方法,求其中至少有1人课外活动时间在8~10小时的概率.19.阅读材料:为解方程22215140x x ---+=()(),我们可以将21x -看成一个整体,然后设21x y -=①,那么原方程可化为2540y y -+=,解得11y =,24y =.当1y =时,211x -=,∴22x =,∴2x =当4y =时,214x -=,∴25x =,∴5x =±,故原方程的解为12x =,22x =,35x 45x =解答问题:(1)上述解题,在由原方程得到方程①的过程中,利用______法达到了解方程的目的,体现了转化的数学思想.(2)请利用以上方法解方程4260x x --=.20.已知反比例函数ky x=(k≠0)和一次函数y=x ﹣6.(1)若一次函数与反比例函数的图象交于点P (2,m ),求m 和k 的值.(2)当k 满足什么条件时,两函数的图象没有交点?21.如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB、EA,延长BE 交边AD于点F.(1)求证:△ADE≌△BCE;(2)求∠AFB的度数.22.如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA B,判断四边形OABC 的形状并证明你的结论.23.如图,在方格纸中(小正方形的边长为1),反比例函数y=kx与直线的交点A、B均在格点上,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)分别写出点A、B的坐标后,把直线AB向右平移5个单位,再向上平移5个单位,画出平移后的直线A′B′;(2)若点C在函数y=kx的图象上,△ABC是以AB为底的等腰三角形,请写出点C的坐标.24.如图,已知以△ABC的三边为边在BC的同侧作等边△ABD,△BCE,△ACF,请回答下列问题:(1)四边形ADEF是什么四边形?请说明理由.(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A,D,E,F为顶点的四边形不存在?25.如图,用同样规格黑白两色的正方形瓷砖铺设长方形地面,请观察下列图形,并解答有关问题:(1)在第n个图中,第一横行共块瓷砖,第一竖列共有块瓷砖;(均用含n的代数式表示)铺设地面所用瓷砖的总块数为(用含n的代数式表示,n表示第n 个图形)(2)上述铺设方案,铺一块这样的长方形地面共用了506块瓷砖,求此时n的值;(3)黑瓷砖每块4元,白瓷砖每块3元,在问题(2)中,共需要花多少钱购买瓷砖?(4)是否存在黑瓷砖与白瓷砖块数相等的情形?请通过计算加以说明.参考答案1.B【详解】解:从上面看易得:有2列小正方形第1列有3个正方形,第2列有1个正方形,且在中间位置,故选B.2.D【解析】【分析】根据必然事件和随机事件的概率解答即可.①掷一枚质地均匀的硬币可能是正面朝上,也可能是反面朝上;②从一副普通扑克牌中任意抽取一张,点数可能是6,也可能不是6;二者均为随机事件,故选D.【点睛】此题考查随机事件,解题关键在于掌握其性质定义.3.A【分析】根据主视图的定义,从前面看即可得出答案.【详解】根据主视图的定义,从前面看,得出的图形是一个正六边形和一个圆,故选A.【点睛】本题考查了简单组合体的三视图的应用,通过做此题培养了学生的理解能力和观察图形的能力,同时也培养了学生的空间想象能力.4.B【解析】【分析】将方程2−4+1=0两边都加上3,再将左边化成完全平方形式即可.【详解】2−4+1=0两边都加上3得2−4+4=3,2−4+4=3变形得:(−2)2=3.故选B.【点睛】此题考查解一元二次方程-配方法,解题关键在于掌握配方的方法.5.D【解析】【分析】分别把各点代入反比例函数=3求出y1,y2,y3的值,再比较出其大小即可.∵点(−3,1),(−2,2),(3,3)都在反比例函数=3的图象上,∴y1=-1;y2=−32;y3=1,∴2<1<3.故选:D.【点睛】此题考查反比例函数的性质,解题关键在于把坐标代入解析式.6.C【解析】【分析】根据反比例函数的定义可得m2-2m-4=-1,根据函数在一,三象限可以得到比例系数m-2大于0,即可求得m的值.【详解】解析:∵反比例函数的图象在第一、三象限,∴−2>0,2−2−4=−1,解得>2,=3或−1,∴=3.故选C.【点睛】此题考查反比例函数的性质,反比例函数的定义,解题关键在于掌握其定义性质.7.D【解析】【分析】先根据轴对称的性质分别求出5种图象中是轴对称图形的个数,除以总数5即为一次过关的概率.【详解】∵5种图象中,等腰梯形、圆、等腰三角形、菱形4种是轴对称图形,∴一次过关的概率是45.故选D.此题考查概率公式,轴对称图形,解题关键在于掌握概率计算公式.8.D【解析】【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系1+2=-,1·2=代入计算即可.【详解】∵一元二次方程2−3−2=0的两根为x1,x2,∴1+2=-=--31=3,1·2==-21=-2∴1+2−1·2=3-(-2)=5,故选:D.【点睛】此题考查根与系数的关系,解题关键在于掌握计算公式.9.C【分析】如图,过点A作AC⊥x轴于点C,构建矩形ABOC,根据反比例函数系数k的几何意义知|k|=四边形ABOC的面积.【详解】如图,过点A作AC⊥x轴于点C.则四边形ABOC是矩形,∴S ABO=S AOC =1,∴|k|=S ABOC+S AOC =2,矩形=S ABO∴k=2或k=−2.又∵函数图象位于第一象限,∴k>0,∴k=2.则反比函数解析式为2y x =.故选C.【点睛】此题考查反比例函数系数k 的几何意义,解题关键在于掌握反比例函数的性质.10.B【解析】试题分析:设矩形ABCD 的面积为S=20cm 2,∵O 为矩形ABCD 的对角线的交点,∴平行四边形AOC 1B 底边AB 上的高等于BC 的12.∴平行四边形AOC 1B 的面积=12S .∵平行四边形AOC 1B 的对角线交于点O 1,∴平行四边形AO 1C 2B 的边AB 上的高等于平行四边形AOC 1B 底边AB 上的高的12.∴平行四边形AO 1C 2B 的面积=12×12S=21S 2.…,依此类推,平行四边形AO 4C 5B 的面积=()25115S 20cm 2528=⨯=.故选B .11.A【解析】【分析】根据三视图,从最少的情况考虑,即可解答.【详解】从最少的情况考虑,如下图所示即可实现.右图为俯视情况,其中阴影位置表示放置立方体的位置,仅需4个即可达成.故选:A.【点睛】此题考查由三视图判定几何体,解题关键在于画出图形.12.C【详解】∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,AE=AF,AB=AD,∴Rt△ABE≌Rt△ADF(HL).∴BE=DF.故结论①正确.由Rt△ABE≌Rt△ADF得,∠BAE=∠DAF,∴∠DAF+∠DAF=30°.即∠DAF=15°.故结论②正确.∵BC=CD,∴BC-BE=CD-DF,CE=CF.∵AE=AF,∴AC垂直平分EF.故结论③正确.设EC=x,由勾股定理,得,CG=x2,AG=x2,∴.∴.∴x-=.∴BE+DF)1x=≠.故结论④错误.∵2CEFxS2∆=,2ABEx x22S24∆==,∴2ABE CEFx2S S2∆∆==.故结论⑤正确.综上所述,正确的有4个,故选C.13.2x=【分析】本题含根号,计算比较不便,因此可先对方程两边平方,得到x+2=x2,再对方程进行因式分解即可解出本题.【详解】原方程变形为:x+2=x2即x2-x-2=0∴(x-2)(x+1)=0∴x=2或x=-1∵x=-1时不满足题意.∴x=2.故答案为:2.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法和平方法.14.2【详解】两边都除以2x得,2x-2+12x=0,整理得,2x+12x=2,故答案是:2.15.球(答案不惟一)【解析】【分析】由俯视图可知,该几何体的横截面是一个圆;接下来,结合几何体的特征,即可解答.【详解】由俯视图可知,该几何体的横截面应为圆,符合题意的有球.故答案为:球.【点睛】此题考查由三视图判断几何体,解题关键在于掌握三视图.16.15个.【解析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解:由题意可得,3100%20%a⨯=,解得,a=15(个).17.7.【解析】正方形的性质,全等三角形的判定和性质,矩形的判定和性质,等腰直角三角形的判定和性质,勾股定理.【分析】如图,过O作OF垂直于BC,再过O作OF⊥BC,过A作AM⊥OF,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB.∴∠AOM+∠BOF=90°.又∵∠AMO=90°,∴∠AOM+∠OAM=90°.∴∠BOF=∠OAM.在△AOM和△BOF中,∵∠AMO=∠OFB=90°,∠OAM=∠BOF,OA=OB,∴△AOM≌△BOF(AAS).∴AM=OF,OM=FB.又∵∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形.∴AM=CF,AC=MF=5.∴OF=CF.∴△OCF为等腰直角三角形.∵2,∴根据勾股定理得:CF2+OF2=OC2,即2CF2=(2)2,解得:CF=OF=6.∴FB=OM=OF-FM=6-5=1.∴BC=CF+BF=6+1=7.18.(1)m=14(2)7 10 .【详解】分析:(1)根据班级总人数有50名学生以及利用条形图得出m的值即可.(2)根据在6~10小时的5名学生中随机选取2人,利用树形图求出概率即可.解:(1)m=50﹣6﹣25﹣3﹣2=14.(2)记6~8小时的3名学生为A1、A2、A3,8~10小时的两名学生为B1、B2,∵共有20种等可能结果,至少有1人课外活动时间在8~10小时的有14种可能,∴P(至少1人时间在8~10小时)147 2010 ==.19.(1)换元;(2)13x=23x=【分析】根据题意利用换元法来解方程即可.【详解】解:(1)换元(2)设2x y =,那么原方程可化为260y y --=,解得13y =,22y =-.当3y =时,23x =,∴x =当2y =-时,22x =-(无意义,舍去).∴原方程的解为1x =2x =.【点睛】此题考查解高次方程,解题关键在于利用换元法解题.20.(1)m=﹣4,k=﹣8(2)k <﹣9.【解析】【分析】(1)两个函数交点的坐标满足这两个函数关系式,因此将交点的坐标分别代入反比例函数关系式和一次函数关系式即可求得待定的系数;(2)函数的图象没有交点,则联立的方程组无解,从而用一元二次方程根的判别式可解.考点:反比例函数与一次函数的交点问题,曲线上点的坐标与方程的关系.【详解】解:(1)∵一次函数和反比例函数的图象交于点P (2,m ),∴m=2﹣6,解得m=﹣4.∴点P (2,﹣4).将点P (2,﹣4)代入k y x=,得k=2×(﹣4)=﹣8.∴m=﹣4,k=﹣8.(2)联立反比例函数k y x =和一次函数y=x ﹣6,得k x 6x =-,即x 2﹣6x ﹣k=0..∵要使两函数的图象没有交点,须使方程x 2﹣6x ﹣k=0无解,∴△=(﹣6)2﹣4×(﹣k )=36+4k <0,解得k <﹣9.∴当k <﹣9时,两函数的图象没有交点.21.(1)见解析;(2)∠AFB=75°【详解】(1)证明:∵ABCD是正方形∴AD=BC,∠ADC=∠BCD=90°又∵△CDE是等边三角形∴CE=CD,∠EDC=∠ECD=60°∴∠ADE=∠ECB∴△ADE≌△BCE(SAS)(2)根据等边三角形、等腰三角形、平行线的角度关系,即可求得∠AFB的度数,如下解:∵△CDE是等边三角形∴CE=CD=DE∵四边形ABCD是正方形∴CD=BC∴CE=BC∴△CBE为等腰三角形,且顶角∠ECB=90°﹣60°=30°∴∠EBC=12(180°﹣30°)=75°∵AD∥BC∴∠AFB=∠EBC=75°考点:正方形的性质,等腰三角形,等边三角形的性质,全等三角形的判定点评:本题属于几何的基础题目,综合考虑正方形、等腰三角形、等边三角形的性质,掌握两个三角形全等的判定.22.(1)2 yx =(2)﹣1<x<0或x>1.(3)四边形OABC是平行四边形;理由见解析.【解析】【分析】(1)设反比例函数的解析式为kyx=(k>0),然后根据条件求出A点坐标,再求出k的值,进而求出反比例函数的解析式.(2)直接由图象得出正比例函数值大于反比例函数值时自变量x的取值范围;(3)首先求出OA的长度,结合题意CB∥OA且OABC是平行四边形,再证明OA=OC 【详解】解:(1)设反比例函数的解析式为kyx=(k>0)∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1.∴A(﹣1,﹣2).又∵点A在kyx=上,∴k21-=-,解得k=2.,∴反比例函数的解析式为2 yx =.(2)观察图象可知正比例函数值大于反比例函数值时自变量x的取值范围为﹣1<x<0或x >1.(3)四边形OABC是菱形.证明如下:∵A(﹣1,﹣2),∴OA==.由题意知:CB∥OA且CB=OA.∴四边形OABC是平行四边形.∵C(2,n)在2yx=上,∴2n12==.∴C(2,1).∴OC=.∴OC=OA.∴平行四边形OABC是菱形.23.(1)A(-1,-4)、B(-4,-1),作图见解析;(2)C点的坐标为C1(-2,-2)或C2(2,2).【解析】试题分析:(1)根据两点所在象限及距离坐标轴的距离可得相应坐标,进而把两点做相应的平移,连接即可;(2)看AB的垂直平分线与双曲线哪两点相交即可.试题解析:(1)A(-1,-4)、B(-4,-1)平移后的直线为A′B′;(2)C点的坐标为C1(-2,-2)或C2(2,2).考点:1.反比例函数综合题;2.一次函数图象与几何变换.24.(1)四边形ADEF是平行四边形,理由见解析;(2)∠BAC=150°时,四边形ADEF是矩形;(3)当60∠=时,以A,D,E,F为顶点的四边形不存在.BAC︒【分析】(1)四边形ADEF是平行四边形.根据△ABD,△EBC都是等边三角形容易得到全等条件证明△DBE≌△ABC,然后利用全等三角形的性质和平行四边形的判定可以证明四边形ADEF是平行四边形.(2)若边形ADEF是矩形,则∠DAF=90°,然后根据周角的性质得到∠BAC=150°.(3)当∠BAC=60°时,∠DAF=180°,此时D、A、F三点在同一条直线上,以A,D,E,F为顶点的四边形就不存在.【详解】(1)四边形ADEF是平行四边形.理由:∵△ABD,△EBC都是等边三角形,∴AD=BD=AB,BC=BE=EC∠DBA=∠EBC=60°∴∠DBE+∠EBA=∠ABC+∠EBA.∴∠DBE=∠ABC.在△DBE和△ABC中∵BD=BA∠DBE=∠ABCBE=BC,∴△DBE≌△ABC.∴DE=AC.又∵△ACF是等边三角形,∴AC=AF.∴DE=AF.同理可证:AD=EF,∴四边形ADEF平行四边形;(2)∵四边形ADEF是矩形,∴∠DAF=90°.∴∠BAC=360°−∠DAF−∠DAB−∠FAC=360°−90°−60°−60°=150°.∴∠BAC=150°时,四边形ADEF是矩形.(3)当∠BAC=60°时,以A,D,E,F为顶点的四边形不存在,理由如下:若∠BAC=60°,则∠DAF=360°−∠BAC−∠DAB−∠FAC=360°−60°−60°−60°=180°此时,点A.D.F共线,∴以A.D.E.F为顶点的四边形不存在.【点睛】此题考查矩形的判定,全等三角形的判定与性质,平行四边形的判定,解题关键在于证明△DBE≌△ABC.25.(1)(n+3),(n+2),(n+2)(n+3);(2)n=20;(3)共花1604元钱购买瓷砖;(4)不存在黑瓷砖与白瓷砖块数相等的情形.【解析】试题分析:(1)第一个图形用的正方形的个数=3×4=12,第二个图形用的正方形的个数=4×5=20,第三个图形用的正方形的个数=5×6=30…以此类推,根据发现的规律可得在第n 个图中,第一横行共(n+3)块瓷砖,第一竖列共有(n+2)块瓷砖,铺设地面所用瓷砖的总块数为(n+2)(n+3)个;(2)根据(1)中的结果可得(n+2)(n+3)=506,解方程即可得;(3)根据(2)得出的结果,求出白瓷砖和黑瓷砖各有多少块,分别乘上它们的单价再相加即可;(4)先假设黑瓷砖与白瓷砖块数相等的情形,根据黑、白瓷砖数量相等,看是否得到n的整数解即可.试题解析:(1)第一个图形用的正方形的个数=3×4=12,第二个图形用的正方形的个数=4×5=20,第三个图形用的正方形的个数=5×6=30…以此类推,在第n个图中,第一横行共(n+3)块瓷砖,第一竖列共有(n+2)块瓷砖,铺设地面所用瓷砖的总块数为(n+2)(n+3)个,故答案为(n+3),(n+2),(n+2)(n+3);(2)根据题意得:(n+2)(n+3)=506,解得n1=20,n2=﹣25(不符合题意,舍去);(3)观察图形可知,每﹣横行有白砖(n+1)块,每﹣竖列有白砖n块,因而白砖总数是n (n+1)块,n=20时,白砖为20×21=420(块),黑砖数为506﹣420=86(块),故总钱数为420×3+86×4=1260+344=1604(元),答:共花1604元钱购买瓷砖;(4)根据题意得:n(n+1)=2(2n+3),解得(不符合题意,舍去),∴不存在黑瓷砖与白瓷砖块数相等的情形.。
2023-2024学年度北师版九上数学期末考试卷(含详细解析)
![2023-2024学年度北师版九上数学期末考试卷(含详细解析)](https://img.taocdn.com/s3/m/afb047aa534de518964bcf84b9d528ea81c72fe3.png)
E1C 的中点,D3、E3 分别是 D2B、E2C 的中点,…,Dn、En 分别是 Dn-1B、En-1C 的中点,
则 D1E1=
,进一步计算 D2E2,D3E3,…,猜想 DnEn= 试卷第 2页,共 5页
(n≥1,且 n 为整
数).
14.如图,已知矩形 ABCD 中 ( AD AB) , EF 经过对角线的交点 O ,且分别交 AD、
A.12% 7% x%
B. 112% 1 7% 2 1 x%
C.12% 7% 2x %
D. 112% 1 7% 1 x% 2
10.函数
y
3 x
是(
)
A.一次函数 二、填空题
B.二次函数
C.反比例函数
第 II 卷(非选择题)
D.正比例函数
11.如图,在平行四边形 ABCD 中,点 E 在边 DC 上,DE:EC=4:1,连接 AE、BE,
x 轴于点 B,且△AOB 的面积为 1. (1)求 m,k 的值; (2)若一次函数 y=nx+2(n≠0)的图象与反比例函数 y= k 的图象有两个不同的公共点,
x 求实数 n 的取值范围.
21.如图,在平面直角坐标系中,点 A、B 分别在 x 轴、y 轴的正半轴上,OA=4,AB=5, 点 D 在反比例函数 y k (k>0)的图象上, DA OA ,点 P 在 y 轴负半轴上,OP=7.
3.C
【分析】构建方程组,利用一元二次方程的根的判别式进行求解.
y
4
【详解】解:由 x
,消去 y 得到: x2 bx 4 0 ,
y x b
一次函数 y x b 与反比例函数 y 4 的图象有 2 个公共点, x
△ 0 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上数学期末试卷一.选择题(共10小题)1.已知x=2是一元二次方程x2+mx+2=0的一个解,则m的值是()A.﹣3 B.3 C.0 D.0或32.方程x2=4x的解是()A.x=4 B.x=2 C.x=4或x=0 D.x=03.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=,则△CEF的面积是()A.B.C.D.3题4.在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()A.11+B.11﹣C.11+或11﹣D.11+或1+5.有一等腰梯形纸片ABCD(如图),AD∥BC,AD=1,BC=3,沿梯形的高DE剪下,由△DEC与四边形ABED不一定能拼成的图形是()A.直角三角形B.矩形C.平行四边形 D.正方形5题6.如图是由5个大小相同的正方体组成的几何体,它的俯视图为()A.B.C.D.7.下列函数是反比例函数的是()A.y=x B.y=kx﹣1 C.y=D.y=8.矩形的面积一定,则它的长和宽的关系是()A.正比例函数B.一次函数C.反比例函数 D.二次函数9.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.极差是5 B.中位数是9 C.众数是5 D.平均数是910.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是()A.24 B.18 C.16 D.6二.填空题(共6小题)11.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为_____.12.如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=_________度.13.有两张相同的矩形纸片,边长分别为2和8,若将两张纸片交叉重叠,则得到重叠部分面积最小是_________ ,最大的是_________ .14.直线l1:y=k1x+b与双曲线l2:y=在同一平面直角坐标系中的图象如图所示,则关于x的不等式>k1x+b的解集为_________ .15.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有_________ 个黄球.16.如图,在正方形ABCD中,过B作一直线与CD相交于点E,过A作AF垂直BE于点F,过C作CG 垂直BE于点G,在FA上截取FH=FB,再过H作HP垂直AF交AB于P.若CG=3.则△CGE与四边形BFHP的面积之和为_________ .三.解答题(共11小题)17.解方程:(1)x2﹣4x+1=0.(配方法)(2)解方程:x2+3x+1=0.(公式法)(3)解方程:(x﹣3)2+4x(x﹣3)=0.(分解因式法)18.已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.19.如图,△ABC中,AB=AC,AD是△ABC外角的平分线,已知∠BAC=∠ACD.(1)求证:△ABC≌△CDA;(2)若∠B=60°,求证:四边形ABCD是菱形.20.如图,梯形ABCD中,AB∥CD,AC⊥BD于点0,∠CDB=∠CAB,DE⊥AB,CF⊥AB,E.F为垂足.设DC=m,AB=n.(1)求证:△ACB≌△BDA;(2)求四边形DEFC的周长.21.如图,阳光下,小亮的身高如图中线段AB所示,他在地面上的影子如图中线段BC所示,线段DE 表示旗杆的高,线段FG表示一堵高墙.(1)请你在图中画出旗杆在同一时刻阳光照射下形成的影子;(2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗杆的高DE=15m,旗杆与高墙的距离EG=16m,请求出旗杆的影子落在墙上的长度.22.一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.23.如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.24.如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.参考答案一.选择题(共10小题)1.A 2.C 3.A 4.D 5.D 6.A 7.C 8.C 9.A 10.C二.填空题(共6小题)11.20% 12.50 13.14.x<或0<x<15.15 16.9三.解答题(共11小题)17..(1).x1=2+,x2=2﹣(2)x1=,x2=.(3).18.解答:(1)证明:∵△=(m+2)2﹣4(2m﹣1)=(m﹣2)2+4,∴在实数范围内,m无论取何值,(m﹣2)2+4>0,即△>0,∴关于x的方程x2﹣(m+2)x+(2m﹣1)=0恒有两个不相等的实数根;(2)解:根据题意,得12﹣1×(m+2)+(2m﹣1)=0,解得,m=2,则方程的另一根为:m+2﹣1=2+1=3;①当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为:;该直角三角形的周长为1+3+=4+;②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为2;则该直角三角形的周长为1+3+2=4+2.19.解答:证明:(1)∵AB=AC,∴∠B=∠ACB,∵∠FAC=∠B+∠ACB=2∠ACB,∵AD平分∠FAC,∴∠FAC=2∠CAD,∴∠CAD=∠ACB,∵在△ABC和△CDA中,∴△ABC≌△CDA(ASA);(2)∵∠FAC=2∠ACB,∠FAC=2∠DAC,∴∠DAC=∠ACB,∴AD∥BC,∵∠BAC=∠ACD,∴AB∥CD,∴四边形ABCD是平行四边形,∵∠B=60°,AB=AC,∴△ABC是等边三角形,∴AB=BC,∴平行四边形ABCD是菱形.20.解答:(1)证明:∵AB∥CD,∠CDB=∠CAB,∴∠CDB=∠CAB=∠ABD=∠DCA,∴OA=OB,OC=OD,∴AC=BD,在△ACB与△BDA中,,∴△ACB≌△BDA.(2)解:过点C作CG∥BD,交AB延长线于G,∵DC∥AG.CG∥BD,∴四边形DBGC为平行四边形,∵△ACB≌△BDA,∴AD=BC,即梯形ABCD为等腰梯形,∵AC=BD=CG,∴AC⊥BD,即AC⊥CG,又CF⊥AG,∴∠ACG=90°,AC=BD,CF⊥FG,∴AF=FG,∴CF=AG,又AG=AB+BG=m+n,∴CF=.又∵四边形DEFC为矩形,故其周长为:2(DC+CF)=.21.解答:解:(1)如图:线段MG和GE就表示旗杆在阳光下形成的影子.(2)过M作MN⊥DE于N,设旗杆的影子落在墙上的长度为x,由题意得:△DMN∽△ACB,∴又∵AB=1.6,BC=2.4,DN=DE﹣NE=15﹣xMN=EG=16∴解得:x=,答:旗杆的影子落在墙上的长度为米.22.解答:解:(1)50÷25%=200(次),所以实验总次数为200次,条形统计图如下:(2)=144°;(3)10÷25%×=2(个),答:口袋中绿球有2个.23.解答:证明:(1)∵四边形ABDE是平行四边形(已知),∴AB∥DE,AB=DE(平行四边形的对边平行且相等);∴∠B=∠EDC(两直线平行,同位角相等);又∵AB=AC(已知),∴AC=DE(等量代换),∠B=∠ACB(等边对等角),∴∠EDC=∠ACD(等量代换);∵在△ADC和△ECD中,,∴△ADC≌△ECD(SAS);(2)∵四边形ABDE是平行四边形(已知),∴BD∥AE,BD=AE(平行四边形的对边平行且相等),∴AE∥CD;又∵BD=CD,∴AE=CD(等量代换),∴四边形ADCE是平行四边形(对边平行且相等的四边形是平行四边形);在△ABC中,AB=AC,BD=CD,∴AD⊥BC(等腰三角形的“三合一”性质),∴∠ADC=90°,∴▱ADCE是矩形.24.解答:解:(1)∵BC∥x轴,点B的坐标为(2,3),∴BC=2,∵点D为BC的中点,∴CD=1,∴点D的坐标为(1,3),代入双曲线y=(x>0)得k=1×3=3;∵BA∥y轴,∴点E的横坐标与点B的横坐标相等,为2,∵点E在双曲线上,∴y=∴点E的坐标为(2,);(2)∵点E的坐标为(2,),B的坐标为(2,3),点D的坐标为(1,3),∴BD=1,BE=,BC=2∵△FBC∽△DEB,∴即:∴FC=∴点F的坐标为(0,)设直线FB的解析式y=kx+b(k≠0)则解得:k=,b=∴直线FB的解析式y=。