主轴部件设计

合集下载

机床主轴部件设计

机床主轴部件设计

机床主轴部件设计主轴部件是机床重要部件之一。

作为机床的执行件,其功能是支承并带动工件或刀具旋转进行切削,承受切削力和驱动力等载荷,完成表面成形运动。

主轴部件由主轴及其支承轴承和安装在主轴上的传动件、密封件及定位元件等组成。

对于钻、镗床,主轴部件还包括轴套和镗杆等。

主轴部件的工作性能对整机性能和加工质量以及机床生产率有着直接影响,是打算机床性能和技术经济指标的重要因素。

一、主轴部件应满意的基本要求(1)旋转精度——主轴的旋转精度是指机床主轴部件装配后,在无载荷、低速转动条件下,在安装工件或刀具的主轴部位的径向圆跳动和端面圆跳动。

旋转精度取决于主轴、轴承、箱体孔以及主轴上其他相关零件的制造、装配和调整精度。

(2)刚度——主轴部件的刚度是指其在外加载荷作用下反抗变形的力量,通常以主轴前端部产生一个单位位移的弹性变形时,在位移方向上所施加的作用力的大小来表示。

主轴部件的刚度是综合刚度,它是主轴、轴承和轴承座等刚度的综合反映。

因此,主轴的尺寸和外形,使用轴承的类型、数量、预紧程度和配置形式,传动件的数量及布置方式,以及主轴部件的制造和装配质量等都影响主轴部件的刚度。

(3)抗振性——主轴部件的抗振性是指反抗受迫振动和自激振动而保持平稳运转的力量。

在切削过程中,由于各种因素引起的冲击力和交变力的干扰,使主轴产生振动。

抗振性差,表现为主轴部件工作时易产生振动且振幅较大,降低已加工表面质量和刀具寿命,加速传动件的磨损,诱发加工时的噪声,影响工作环境。

严峻的振动则可破坏刀具或主轴部件正常运转,使加工无法进行。

(4)温升及热变形——主轴部件运转时,因各相对运动处的摩擦生热,切削区的切削热等使主轴部件的温度上升,其尺寸、外形及位置发生变化,造成主轴部件的热变形。

主轴热变形可引起轴承间隙变化,温升后会使润滑油粘度降低,这些变化都会影响主轴部件的工作性能,降低加工精度。

(5)精度保持性——主轴部件的精度保持性是指长期地保持其原始制造精度的力量。

机械制造装备课程设计--数控车床主轴箱部件设计

机械制造装备课程设计--数控车床主轴箱部件设计

机械制造装备课程设计--数控车床主轴箱
部件设计
1. 简介
本文档旨在介绍机械制造装备课程设计中的数控车床主轴箱部件设计的基本要点和步骤。

2. 设计目标
- 优化主轴箱结构,提高数控车床的工作效率和精度;
- 减少主轴箱部件的重量,提高车床的运动性能;
- 确保主轴箱部件的可靠性和耐久性。

3. 设计步骤
1. 确定设计需求和限制条件;
2. 进行主轴箱结构的初步设计,包括布局和尺寸的确定;
3. 选择合适的材料,并进行强度和刚度计算;
4. 进一步优化主轴箱的结构,包括减少重量和提高刚度;
5. 进行主轴箱部件的详细设计,包括加工工艺和装配要求;
6. 制定主轴箱部件的制造工艺和工艺路线;
7. 进行主轴箱部件的制造和装配;
8. 对主轴箱进行性能测试和调试;
9. 检查和维护主轴箱部件的可靠性和耐久性。

4. 设计要点
- 主轴箱的结构应合理布局,避免部件之间的干涉;
- 主轴箱的材料应选择高强度和刚度的合金材料;
- 在设计过程中要考虑加工和装配的可行性;
- 主轴箱部件的表面处理应满足使用和保护要求;
- 相关设计要素应符合机械制造装备的相关标准和规范。

5. 结论
通过本文档的介绍,我们了解到,在机械制造装备课程设计中,数控车床主轴箱部件设计的步骤和要点。

合理的主轴箱设计可以提
高车床的工作效率和精度,减少重量,优化运动性能,并确保可靠
性和耐久性。

设计过程中需考虑布局、材料选择、加工装配等因素,并符合相关标准和规范。

数控机床主轴设计

数控机床主轴设计

数控机床主轴设计
一、概述
1.数控机床主轴是机床加工过程中的核心部件,其质量直接影响到机
床的精度和生产效率。

数控机床主轴设计的主要任务是解决加工件的加工
精度、表面质量和生产效率等要求的技术问题。

2.数控机床主轴设计工作需要满足性能、结构、重量、尺寸、动力、
控制、安装等方面的要求,其中最重要的是性能和结构要求。

二、主轴结构设计
1.针对不同的加工工艺的要求,数控机床主轴设计的结构形式有很多,常见的有研磨轴、多段轴、悬臂式轴等。

2.研磨轴是机床主轴的基本结构,一般用于精超磨削,其结构特点为
研磨轴有较长的平稳运行区段,其强度高,通常采用梃形连接,耐磨性能好,是目前机床常用的轴形式。

3.多段轴是指主轴有多段,每段之间有齿轮连接,它可以满足不同加
工工艺的需求。

4.悬臂式轴是指主轴的两端分别有悬臂,是一种自转和轴向振动均有
良好平衡的结构形式,是用于精铣、拉床等加工工艺的主轴形式。

三、主轴性能设计
1.主轴的动力要求是指主轴所需的动力。

主要有机械动力、电动机动
力和气动动力等形式,根据不同的加工工艺要求,采用不同动力形式实现,其中机械动力是最常用的动力形式。

第3章_典型部件设计(主轴、支承件、导轨)

第3章_典型部件设计(主轴、支承件、导轨)
(1) 角接触球轴承 接触角a是球轴承的一个主要设计参数。 接触角a是滚动体与滚道接触点处的公法线与 主轴轴线垂直平面间的夹角。
3.1.4.1 主轴部件主支承常用滚动轴承 (1) 角接触球轴承(向心推力球轴承)
角接触球轴承极限转速较高;可以同时承受 径向和一个轴向的载荷,a越大,可承受的进给力 越大。主轴用的a一般取15o或25o。
传动件放在主轴的后悬伸端,较多用于带传 动,可便于传动带的更换,如磨床。
3.1.3.3 主轴传动件位置的合理布置 (2) 驱动主轴的传动轴位置的合理布置 ★在布置传动轴的位置时,应尽量使传动力
Q与切削力P两者引起的主轴轴端位移和轴承受力 的影响能互相抵消一部分。
3.1.3.4 主轴主要结构参数的确定 主轴的主要结构参数有:
3.1.4.1 主轴部件主支承常用滚动轴承 (1) 角接触球轴承 球轴承为点接触,刚度不高,为提高刚度,
同一支承处可多联组配。 组配方式有三种: 背靠背组合;面对面组合;同向组合。
3.1.4.1 主轴部件主支承常用滚动轴承 (2) 双列短圆柱滚子轴承 特点:内圈有1:12的锥孔,轴向移动内圈可
径向圆跳动
端面圆跳动
3.1.4 主轴滚动轴承
主轴轴承的类型、配置方式、精度、安装、 调整、润滑和冷却等都直接影响主轴部件的工作 性能。
常用主轴轴承有滚动轴承、液体动压轴承, 液体静压轴承、空气静压轴承等。
轴承的轴向承载能力和刚度,由强到弱依次 为:推力球轴承、推力角轴承、圆锥滚子轴承、 角接触球轴承;
以调整轴承的径向间隙和预紧; 轴承的滚子能承受较大的
径向载荷和转速; 轴承由两列滚子交叉排列,
数量较多,因此刚度很高; 不能承受轴向载荷。
3.1.4.1 主轴部件主支承常用滚动轴承 (3) 圆锥滚子轴承 特点:刚度和承载能力大,既可承受径向力,

立式加工中心主轴部件设计说明

立式加工中心主轴部件设计说明

引言装备工业的技术水平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术及装备是发展高新技术产业和尖端工业(如:信息技术及其产业,生物技术及其产业,航空、航天等国防工业产业)的使能技术和最基本的装备。

制造技术和装备是人类生产活动的最基本的生产资料,而数控技术则是当今先进制造技术和装备最核心的技术。

当今世界各国制造业广泛采用数控技术,以提高制造能力和水平,提高对动态多变市场的适应能力和竞争能力。

此外世界上各工业发达国家还将数控技术及数控装备列为国家的战略物资,不仅采取重大措施来发展自己的数控技术及其产业,而且在“高精尖”数控关键技术和装备方面对我国实行封锁和限制政策。

数控机床技术的发展自1953年美国研制出第一台三坐标方式升降台数控铣床算起,至今已有很多年历史了。

20世纪90年开始,计算机技术及相关的微电子基础工业的高速发展,给数控机床的发展提供了一个良好的平台,使数控机床产业得到了高速的发展。

我国数控技术研究从1958年起步,国产的第一台数控机床是北京第一机床厂生产的三坐标数控铣床。

虽然从时间上看只比国外晚了几年,但由于种种原因,数控机床技术在我国的发展却一直落后于国际水平,到1980年我国的数控机床产量还不到700台。

到90年代,我国的数控机床技术发展才得到了一个较大的提速。

目前,与国外先进水平相比仍存在着较大的差距。

总之,大力发展以数控技术为核心的先进制造技术已成为世界各发达国家加速经济发展、提高综合国力和国家地位的重要途径。

1 绪论1.1 加工中心的发展状况1.1.1 加工中心的国外发展对于高速加工中心,国外机床在进给驱动上,滚珠丝杠驱动的加工中心快速进给大多在40m/min以上,最高已达到90m/min。

采用直线电机驱动的加工中心已实用化,进给速度可提高到80~100m/min,其应用围不断扩大。

国外高速加工中心主轴转速一般都在12000~25000r/min,由于某些机床采用磁浮轴承和空气静压轴承,预计转速上限可提高到100000r/min。

机械制造装备设计(第2章 金属切削机床设计5-6 主轴&支承)

机械制造装备设计(第2章 金属切削机床设计5-6 主轴&支承)

2.5.3 主轴部件结构设计
(二)推力轴承的位置配置型式 (2)后端配置 两个方向的推力轴承都布置在后支承处。 这类配置方案前支承处轴承较少,发热小,
温升低;但主轴受热后向前伸长,影响轴向精度。 这种配置用于轴向精度要求不高的普通精度
机床,如立铣、多刀车床等。
2.5.3 主轴部件结构设计
(二)推力轴承的位置配置型式 (3)两端配置 两个方向的推力轴承分别布置在前后两个支承
2.5.3 主轴部件结构设计
(三)主轴传动件位置的合理布置
合理布置传动件在主轴上的轴 向位置,可以改善主轴的受力情况 ,减少主轴变形,提高主轴的抗振 性。
主轴上传动件轴向布置时,应 尽量靠近前支承,有多个传动件时 ,其中最大传动件应靠近前支承。
2.5.3 主轴部件结构设计
(四)主轴主要结构参数的确定 主轴前、后轴径直径D1和D2,主轴内孔直径d,主轴前端悬 伸量a和主轴主要支承间的跨距L,这些参数将直接影响主 轴旋转精度和主轴刚度。
2.5.3 主轴部件结构设计 (一)主轴部件的支承数目 也可以前、中支承为主要支承,后支承为辅助支承。
角接触 球轴承 背对背
安装
2.配置型式
(1)前端配置 两个方向的推力轴承都布置在前支承处。 这类配置方案在前支承处轴承较多,发热大, 温升高;但主轴受热后向后伸长,不影响轴向精度 ,精度高,对提高主轴部件刚度有利。 这种配置用于轴向精度和刚度要求较高的高精 度机床或数控机床。
离和主轴前端的悬伸量,传动件的布置方式,主轴组
件的制造和装配质量等。 刚度不足,影响机床的加工精 度、传动质量及工作的平稳性。
2.5.1 主轴部件应满足的基本要求
(3)抗振性:指抵抗受迫振动和自激振动的能力。 主轴振动有两种类型:

普通车床(I型)主轴箱部件设计 1最大加工直径为中320mm的普通车床的主轴箱部件设计

普通车床(I型)主轴箱部件设计 1最大加工直径为中320mm的普通车床的主轴箱部件设计

普通车床(I型)主轴箱部件设计1. 引言本文档旨在设计一台最大加工直径为中320mm的普通车床的主轴箱部件。

主轴箱作为车床的核心组成部分,承担着支撑主轴、传动力和保护内部机械构件的重要功能。

因此,在设计中需要考虑结构强度、传动效率以及操作便捷性等因素。

2. 设计要求根据普通车床的使用需求和性能要求,对主轴箱部件的设计进行以下要求:1.加工直径:最大加工直径为320mm。

2.结构强度:能够承受工件及切削力的作用,保证稳定加工。

3.传动效率:采用高效的传动装置,提高加工效率。

4.操作便捷性:设计合理的操作界面和控制手柄,方便操作人员操作和控制。

3. 设计方案针对上述设计要求,我们提出如下设计方案:3.1 结构设计主轴箱采用箱式结构,由底座、壳体和盖板组成。

底座用于支撑整个主轴箱,保证稳定性;壳体用于固定内部机械构件,提供结构强度;盖板用于封闭主轴箱,以保护内部机械构件。

3.2 传动装置设计为了提高传动效率,我们采用直线方式传动。

主轴驱动采用齿轮传动装置,通过主动齿轮和被动齿轮的啮合,实现主轴的旋转。

同时,为了减小传动误差,我们使用高精度的齿轮和轴承。

3.3 操作界面设计为了方便操作人员操作和控制,我们设计了直观明了的操作界面。

操作界面包括加工参数显示、控制手柄和启停按钮等。

加工参数显示能够实时显示主轴箱的工作状态和加工参数,方便操作人员掌控加工情况;控制手柄用于调整加工参数和操作主轴箱;启停按钮用于启动或停止主轴箱。

4. 结构设计细节4.1 主轴箱结构主轴箱底座采用铸铁材料制作,具有良好的刚性和稳定性。

底座底部设计了平整的接地面,以便于稳定安装。

主轴箱壳体采用钢板焊接,具有足够的强度和刚度。

壳体内部设置了各种支承轴承和传动装置的安装座位,确保机械构件的固定和稳定性。

主轴箱盖板采用铝合金材料制作,具有轻便和良好的密封性。

盖板上设置了透明的观察窗口,方便操作人员观察内部机械构件的运行状态。

4.2 传动装置主轴箱的主动齿轮和被动齿轮采用高精度的钢材制作,具有耐磨性和高传动效率。

第三章-主轴部件

第三章-主轴部件


动压轴承和静压轴承两类。按照流体介质不同可分为

液体滑动轴承和气体滑动轴承。

(一)动压轴承

动压轴承按油楔数分为单油楔和多油楔。多油楔轴承

的轴心位置稳定性好,抗振动和冲击性能好。故多采

用多油楔轴承。
多油楔轴承有固定多油楔和活动多油楔两类。
返回本节
下一页
返回主页
退出
3.1.5 主轴滑动轴承
第 三

支承,中间支承为辅助支承,参见图2‐23; 也可以前、中支承为主要支承,后支承为
设 计
辅助支承,见图2‐29。且后者应用较多。
返回本节
下一页
返回主页
退出
图2‐23 卧式车床主轴箱展开图
中间支承为辅助支承 前后支承为主支承
图2‐29 加工中心主轴箱展开图
第 三

金 属 切 削 机 床 设 计
后支承为辅助支承 前中支承为主支承
《机械制造装备设计》
第三章 典型部件设计
主讲:王焱清
机械学院工业与制造工程系
3.1 主轴部件设计
退出

一、主轴部件应满足的基本要求
三 章
二、主轴部件的传动方式
金 属

三、主轴部件结构设计


四、主轴滚动轴承
床 设

五、主轴滑动轴承
返回本章
上一页


下一页


3.1.1 主轴部件应满足的基本要求
第 三

金 属 切 削 机



放在两个支承间靠近支承,受力情况良好, 最为常前见。
3.1.3 主轴部件结构设计

数控机床主轴总体设计

数控机床主轴总体设计

数控机床主轴总体设计
报告
一、报告概述
数控机床主轴设计涉及机床整体结构及其相关机构的设计,是数控机
床制造过程中的重要步骤,也是控制机床精度和加工质量的关键因素。


文将重点介绍数控机床主轴的设计,包括其设计要点、数控机床主轴的结
构设计和参数设计,以及检验和润滑等。

二、主轴的设计要点
1.数控机床主轴的设计应考虑机床的整体结构和控制要求。

2.主轴为定心支承结构,必须考虑受力、应力、热变形等方面的影响,以确保设计符合要求,并能满足用户的实际要求。

3.主轴运行部件应确定所需转速、变速比、功率等参数,以确保设备
具有良好的动力性能。

4.数控机床的主轴应考虑到在高速运行时,动平衡质量及其调整要求。

5.主轴及其附件的安装应考虑其各自的尺寸和形位关系,以确保正确
安装及更换。

三、主轴结构设计
1.主轴材料选择
主轴材料可以根据设计要求选择金属材料或高分子材料。

其中金属材
料包括钢、铝合金、镁合金等,而高分子材料则包括塑料或玻璃钢等,具
体选择要考虑材料的机械性能、抗腐蚀性能和使用寿命等。

2.主轴结构设计。

数控车床主轴组件设计

数控车床主轴组件设计

数控车床主轴组件设计数控车床主轴组件是数控机床中最基本、最重要的部件之一。

其主要作用是将旋转电机的动力转化为刀具的相对运动。

主轴组件的设计质量直接影响到机床的加工精度、切削效率和使用寿命。

因此,在数控车床的设计中,主轴组件的设计显得尤为重要。

本文将从设计要求、主要结构、材料选用、加工工艺等方面详细阐述数控车床主轴组件的设计。

一、设计要求在数控车床主轴组件设计过程中,需要考虑以下一些因素:1. 总体尺寸:根据数控车床的使用场景,确定主轴组件的长度、直径等尺寸,并保证其能够安装到机床上并协调运动。

2. 刚性要求:数控车床需要进行高精度的加工,因此主轴组件的刚性需要足够高,能够承受切削力和切削热等负载,保证刀具的精度和寿命。

3. 精度要求:主轴组件的精度取决于各个部件的加工质量和装配精度。

不同的加工要求对主轴组件精度的要求不尽相同,因此在设计过程中需要根据实际需求设定相应的精度标准。

4. 特殊要求:根据数控车床的特殊加工要求,主轴组件可能还需要具备高温抗性、低噪音、低振动、耐腐蚀等特殊性能,因此需要针对实际需求进行定制化设计。

二、主要结构数控车床主轴组件主要由主轴箱、主轴、轴承、传动装置、调速装置和夹具等组成。

1. 主轴箱:主要承载整个主轴组件,并连接到车床上。

主轴箱需要具备足够的刚性和稳定性,防止在高速运转时产生振动和因热膨胀引起的变形。

2. 主轴:作为主轴组件的核心部件,需要具备高强度、高精度和高刚性。

通常采用高强度钢材或工程塑料材料制造,以确保其能承受高速运转和不同方向向心力的作用。

3. 轴承:轴承承受主轴的径向和轴向力,并保证主轴组件的转动平稳和精度稳定。

常用的轴承有滚动轴承和滑动轴承两种,选择时需要根据应用场景和对精度的要求进行综合考虑。

4. 传动装置:传动装置将电动机的旋转动力传递到主轴上,通常采用皮带传动、齿轮传动和磁力传动三种方式。

5. 调速装置:调速装置是保证数控车床能够满足不同加工需要的关键部分。

3.6主轴部件设计

3.6主轴部件设计

2、三支承 见图3-24 前后支承为主,中间支承为辅。 前、中支承为主,后支承为辅。 (多采用) 三支承方式对三支承孔的同心 度要求较高,制造装配复杂,乃需 消除间隙和预紧,但不能三个轴承 都预紧,以免干涉。
(二)推力轴承位置配置形式
推力轴承的配置形式影响主 轴轴向刚度和热变形的方向和大 小。
1、前端配置
两个方向的推力轴承都布置在 前支承处,前支承处轴承发热大, 温度高;但主轴受热后向后伸长, 不影响轴向精度,精度高,用于高 精度机床,数控机床。
2、后端配置
两个方向的推力轴承都布置在 后支承处。较少用,发热小、温度 低,主轴受热后向前伸长,影响轴 向精度,用于普通精度机床,立铣, 多刀车床。
3、两端配置
2、刚度型 图3-64b 前支承采用双列短圆柱滚子 轴承受径向载荷和60°角接触双 列向心推力球轴承承受轴向载荷, 后支承采用双列短圆柱滚子轴承, 用于中等转速和切削负载较大, 要求刚度高的机床,如数控车床, 镗削单元。
3、刚度速度型 图3-64c 前轴承采用三联角接触球轴承, 后支承采用双列短圆柱滚子轴承, 动力从后端传入,后轴承要承受较 大的传动力,所以采用双列短圆柱 滚子轴承。
(三)主轴传动件位置的合理布
置 1、传动件在主轴上轴向位置的 合理布置 合理布置传动件在主轴上的轴 向位置,可以改善主轴的受力情况 减小其变形,提高主轴的抗振性。 布置原则:传动力引起的主轴 弯曲变形要小,引起主轴前轴端在 影响加工精度敏感方向上的位移要 小。(不叠加)
Q
F
Q1
i 传动件放在两个支承中间靠近前支承 处,受力较好,用得最为普遍 ii 传动件放在轴前悬伸端,主要用于大 转盘的机床,如立车、镗床等,传动齿 轮直接安装在转盘上。 iii 传动件放在后悬伸端,较多地用于带 传动,为了更换传动带方便,如磨床。

立式数控铣床主轴部件的设计PPT课件

立式数控铣床主轴部件的设计PPT课件

主电机传来的运 动由齿轮⑭经双键, 套筒(23)和双键 带动主轴转动。齿 轮⑭安装在套筒 (23)上,而且套 筒(23)由一对向 心球轴承支承在箱 体上,使主轴得到 卸荷(即主轴只传 递扭矩),这样减 少了主轴变形,提 高了主轴工作性能。
整个主轴部件装在长
套筒中,转动手轮经过 锥齿轮,使丝杠转动, 通过螺母⑪带动套筒 (23)作轴向调整,调 整后将套筒(23)夹紧。
接触角为 90°,因此承受轴向力能力高,但允许极限转速低,且容易发热。
XK5040立式铣床就是用的双列圆柱滚 子轴承、双向推力角接触球轴承及角接 触球轴承
二、轴承配置
轴承配置是根据机床用途、主轴的工作条件(载荷大小及方向、 转速等)以及所要求的工作性能来确定的。
对于铣床主轴轴承,主张采用两支点配置,两支点结构简单、制 造方便、经济效果好,但要求主轴单件应有足够的刚度。三支点主轴 工艺性差, 三孔同轴度很难保证,主轴温升也高,在刚度允许的情 况下尽可能不采用三支点结构。如果主轴刚度不足可采用两支点为主 要支承,第三点为辅助支承,辅助支承可放在中间或后边,采用这种 结构要求有较大的游隙,一般在 0.03~0.07 之间,只有当载荷较大 主轴产生弯曲时辅助支承才起作用,这样可以弥补主轴刚度不足,也 可以减少温升。
主轴悬伸量a
主轴悬伸量(又称悬伸长度)是指主轴前端至前支承点的 距离,它的大小对主轴组件的刚度和抗振性有显著影响。 悬伸量小,轴端位移就小,刚度得到提高。
主轴悬伸量的大小往往受结构限制,主要取决于主轴端部 的结构型式及尺寸、刀具或夹具的安装方式、前轴承的类 型及配置、润滑与密封装置的结构尺寸等。
主轴抗振性
主轴组件的抗振性是指切削加工时,主轴保持平稳的 运转而不发生振动的能力。主轴组件抗振性及在必要时 安装阻尼(消振)器。另外,使主轴固有频率远远大于激 振力的频率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分类
齿轮传动 按主轴的转速、传递的 扭矩,运动平稳性
带传动 要求、结构、装卸、维 修要求选取
电机直接驱动
主轴部件设计
1、齿轮传动 结构简单、紧凑,能传递较大 的扭矩,能适应变转速、变载荷工 作,线速度不能过高,常小于 12~15m/s,不如带传动平稳。 2、带传动 类型:平带、三角带、多楔带, 同步齿形带(P122图3-52)
许温升 普通机床 30~40℃
主轴部件设计
5、精度保持性 a.概念 精度保持性指长期地保 持其原始制造精度的能力 b.影响因素 磨损,主轴轴承、 轴颈表面、装夹工件刀具的定位表 面的磨损 (磨损的速度与磨擦的种类有关,与 结构特点、粗糙度、热处理方式、 润滑、防护、使用条件有关。)
主轴部件设计
二、主轴部件的传动方式
主轴部件设计
3、两端配置
两个方向的推力轴承分别布置在前 后两个支承处,这类配置方案当主轴受 热伸长后,影响轴承的轴向间隙,为避 免松动,可用弹簧消除间隙和补偿热膨 胀,用于短主轴主,轴部如件设组计 合机床。
4、中间配置
两个方向的推力轴承配置在前 支承的后侧,此方案可减少主轴的 悬伸量,使主轴热膨胀后向后伸长, 但前支承结构复杂,温升可能较高。
主轴部件设计
径向跳动影响因素:主轴轴颈 的园度、轴承滚道及滚子园度、主 轴及回转件的动平衡。
轴向跳动影响因素:轴承支承 端面,轴肩的垂直度,止推轴承的 滚道及滚子误差。
轴、径向跳动影响因素:主轴 主要定心面的轴、径向跳动(锥孔 误差,mol精度。)
主轴部件设计
2、刚度 a. 概念:主轴部件的刚度指其 在外载荷作用下抵抗变形的能力。 (以主轴前端产生单位位移的弹性 变形时,在位移方向上施加的作用 力来定义)。
主轴受到的驱动力相对于切削 力的方向取决于驱动主轴的传动轴 位置。应尽可能将该驱动轴布置在 合理位置,使驱动力引起的主轴变 形可抵消一部分因切削力引起的主 轴轴端精度敏感方向上的位移。
主轴部件设计
(四)主轴主要结构参数的确定 主轴的主要结构参数有:主轴
前、后轴颈的直径D1、D2,主轴内 孔直径d,主轴前端悬伸量a,主轴 主要支承间的跨距L。图3-56
主轴部件设计
特点:靠摩擦力传动(除同步 齿形带外),结构简单,制造容易, 成本低,适用于大中心距传动,皮 带吸振,传动平稳,噪声小,适宜 变速传动,打滑起过载保护。
缺点:有滑动,不能用于速比 要求准确的场合。
同步齿形带:带上的齿形与带
轮上的轮齿相啮合传递运动和力,
无滑动,传动比准确,传动精度高,
强度高。
主轴部件设计
4、升温和热变形 主轴部件运转时,因各相对运 动处摩擦生热,切削区的切削热等 使主轴部件的温度升高,形状尺寸 和位置发生变化,造成主轴部件的 热变形—引起轴承间隙变化,润滑 油粘度降低,影响主轴工作性能, 降低加工精度。
主轴部件设计
高精度机床 8~10℃ 精密机床 15机直接驱动 电机转子轴与主轴制成一体 (图3-53)。 结构简化,提高了刚度,降低 了噪声和振动,有宽的调速范围, 大的输出功率和扭矩。 用于精密机床,高速加工中心, 数控车床。
主轴部件设计
三、主轴部件结构设计
(一)主轴部件的支承数目 1、前、后两支承(P100 图3-25) 前支承为双列短圆柱滚子轴承, 后为圆锥滚子轴承。 结构简单,制造方便,易保证精 度,需消除间隙和预紧。
主轴部件设计
2、三支承 见图3-24 前后支承为主,中间支承为辅。 前、中支承为主,后支承为辅。 (多采用) 三支承方式对三支承孔的同心 度要求较高,制造装配复杂,乃需 消除间隙和预紧,但不能三个轴承 都预紧,以免干涉。
主轴部件设计
(二)推力轴承位置配置形式 推力轴承的配置形式影响主
轴轴向刚度和热变形的方向和大 小。
主轴部件设计
(三)主轴传动件位置的合理布 置
1、传动件在主轴上轴向位置的 合理布置
合理布置传动件在主轴上的轴 向位置,可以改善主轴的受力情况 减小其变形,提高主轴的抗振性。
布置原则:传动力引起的主轴 弯曲变形要小,引起主轴前轴端在 影响加工精度敏感方向上的位移要 小。(不叠加)
主轴部件设计
QF
Q1
主轴部件设计
1、前端配置
两个方向的推力轴承都布置在 前支承处,前支承处轴承发热大, 温度高;但主轴受热后向后伸长, 不影响轴向精度,精度高,用于高 精度机床,数控机床。
主轴部件设计
2、后端配置
两个方向的推力轴承都布置在 后支承处。较少用,发热小、温度 低,主轴受热后向前伸长,影响轴 向精度,用于普通精度机床,立铣, 多刀车床。
i 传动件放在两个支承中间靠近前支承 处,受力较好,用得最为普遍 ii 传动件放在轴前悬伸端,主要用于大 转盘的机床,如立车、镗床等,传动齿 轮直接安装在转盘上。 iii 传动件放在后悬伸端,较多地用于带 传动,为了更换传动带方便,如磨床。
主轴部件设计
Q F
Q1 Q
F
Q1
主轴部件设计
2、驱动主轴的传动轴位置的合 理布置
主轴部件设计
静刚度 作用力是静力引起的 弹性变形 图3-54
b. kj Fj / yj
动刚度 作用力是交变力引起的 弹性变形
kd Fd /Yd
主轴部件设计
c. 影响因素:主轴的尺寸和形 状,滚动轴承的类型和数量、预紧 和配置形式、传动件的布置方式、 主轴部件的制造和装配质量。
主轴部件设计
3、抗振性 a.概念:抗振性指抵抗受迫振动 和自激振动的能力 冲击力和交变力是由材料硬度不 均匀,加工余量的变化,主轴部件不 平衡,轴承或齿轮存在缺陷以及切削 过程中的颤振引起。 b.影响因素:主轴部件的静刚度, 质量分布及阻尼
§3.6 主轴部件设计
主轴部件设计
功用:支承并带动工件或刀具 旋转进行切削,承受切削力和驱动 力等载荷,完成表面成形运动。
组成:支承轴承、传动件、密 封件、定位元件、主轴。
主轴部件设计
一、主轴部件应满足的基本要求
1、旋转精度 a. 概念:主轴的旋转精度是指 装配后,在无载荷、低速转动的条 件下,在安装工件或刀具的主轴部 位的径向和轴向跳动。 b.影响因素:旋转精度取决于 主轴、轴承、箱体孔等的制造、装 配和调整精度。
相关文档
最新文档