考研数学三试题解析超详细版
2020考研数学(三)真题(含解析)
![2020考研数学(三)真题(含解析)](https://img.taocdn.com/s3/m/7762686dcc7931b765ce1592.png)
,
而 cos f '(x) cos f '(x) ,故 cos f '(x) 也为偶函数,故 cos f '(x) f (x) 为非奇非偶函数。
(4) 已知幂级数 nan (x 2)n 的收敛区间为(−2,6) ,则 an (x 1)2n 的收敛区间为
n1
n1
(A).(-2,6) (B).(-3,1) (C).(-5,3) (D).(-17,15)
(C) x k11 k23 k34
【答案】 C
(D) x k12 k23 k34
4
(5)设 4 阶矩阵 A (aij ) 不可逆, a12 的代数余子式 A12 0 ,1,2,3,4 是矩阵 A 的列向量组, A*为
A 的伴随矩阵,则 A* x 0 的通解为(
)
(A) x k11 k22 k33
(B) x k11 k22 k34
f ( x)a f ( x) a
ua u a
【解析二】由拉格朗日中值公式得 sin f (x) sin a ( f (x) a)cos ,其中 介于 a 与 f (x) 之间,
由 lim f (x) a b ,知 lim f (x) a 0 ,即 lim f (x) a ,故 lim a ,
)
xa x a
xa
xa
(A) bsin a (B) bcos a (A) bsin f (a) (A) bcos f (a)
【答案】B
【解析一】由 lim f (x) a b ,知 lim f (x) a 0 ,即 lim f (x) a ,
xa x a
2024考研(数学三)真题答案及解析完整版
![2024考研(数学三)真题答案及解析完整版](https://img.taocdn.com/s3/m/25f7a94953ea551810a6f524ccbff121dc36c560.png)
2024考研(数学三)真题答案及解析完整版2024年全国硕士研究生入学考试数学(三)真题及参考答案考研数学三考什么内容?数学三在高等数学这一部分因为要求的内容相对较少,所以很多学校经济类、管理类专业在本科期间所用教材并非理工类专业通常会使用的《高等数学》同济大学版,更多的学校本科阶段的教材是中国人民大学版《微积分》。
而考数学三的同学中在实际复习过程中使用哪一本教材的都有)(函数、极限、连续、一元函数微分学、一元函数积分学、多元函数微积分学、无穷级数、常微分方程与差分方程);线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型);概率论与数理统计(随机事件和概率、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验)。
考研的考试内容有哪些一、考研公共课:政治、英语一、英语二、俄语、日语、数学一、数学二、数学三,考研公共课由国家教育部统一命题。
各科的考试时间均为3小时。
考研的政治理论课(马原22分、毛中特30分、史纲14分、思修18分、形势与政策16分)。
考研的英语满分各为100分(完型10分、阅读理解60分、小作文10分、大作文20分)。
数学(其中理工科考数一、工科考数二、经管类考数三)满分为150分。
数一的考试内容分布:高数56%(84分)、线代22%(33分)、概率22%(33分);数二的内容分布:高数78%(117分)、线代22%(33分);数三的内容分布:高数56%(84分)、线代22%(33分)、概率22%(33分)。
这些科目的考试知识点和考试范围在各科考试大纲上有详细规定,一般变动不大,因此可以参照前一年的大纲,对一些变动较大的科目,必须以新大纲为准进行复习。
二、考研专业课统考专业课:由国家教育部考试中心统一命题,科目包括:西医综合、中医综合、计算机、法硕、历史学、心理学、教育学、农学。
其中报考教育学、历史学、医学门类者,考专业基础综合(满分为300分);报考农学门类者,考农学门类公共基础(满分150分)。
考研数学三真题试卷带答案解析(高清版)
![考研数学三真题试卷带答案解析(高清版)](https://img.taocdn.com/s3/m/6d6d30241fb91a37f111f18583d049649b660e26.png)
2023考研数学三真题试卷带答案解析(高清版)2024年全国硕士研究生入学考试数学(三)真题及参考答案2024年考研数学复习时间规划复习的阶段大致可以分为三个阶段:基础奠定,强化训练,模拟冲刺。
1、6月之前:夯实基础通过看老师的基础课程数,学习基础知识,有视频的可以结合视屏看,看完一节,知道里面讲的什么,公式、概念。
看完一章,结合之前做的笔记,复盘这一章的内容,主要将说明,各知识点都用在什么地方,然后刷一刷这一章的讲义。
看完一章视频或书籍之后,最后做一做三大计算+660题。
2、7-9月:强化训练方法同打基础阶段。
看完视频后做对应的习题330题。
3、10-11月20日:真题冲刺后期可以做一做近10年的真题了,从近往远做,越近的真题越要花时间研究,不懂的地方可以看看名师的知识点讲解。
真题的错题,尤其要弄懂。
4、11月20日-考前:模拟训练最后一两个星期,就需要持续的模拟考场做试卷的状态和题型,建议大家做一做模拟卷,网上就可以购买,一般12月初都出来了,挑自己喜欢的老师即可。
提示:不要看押题卷,知识点学就会后,以不变应万变。
考研必考科目政治、英语和专业课。
所有专业都会考查政治,虽然管理类联考初试不涉及,但复试会考查。
除小语种专业外,其他专业都会考查英语,主要有英语一和英语二。
考研专业分为13个学科大类,包含上百个专业,每一专业都会有自己的专业课考试。
考研初试科目:初试方式为笔试,共四个科目:两门公共课、两门业务课。
两门公共课:政治、英语一或英语二;业务课一:数学或专业基础;业务课二(分为13大类):哲学、经济学、法学、教育学、文学、历史学、理学、工学、农学、医学、军事学、管理学、艺术学等。
法硕、西医综合、中医综合、教育学、历史学、心理学、计算机、农学等属于统考专业课,其他非统考专业课都是各院校自主命题,具体考试科目请参照各大考研院校招生简章。
会计硕士(MPAcc)、图书情报硕士、工商管理硕士(MBA)、公共管理硕士(MPA)、旅游管理硕士、工程管理硕士和审计硕士只考两门,即:英语二和管理类联考综合能力。
2022考研数学三真题及答案解析(数三)
![2022考研数学三真题及答案解析(数三)](https://img.taocdn.com/s3/m/49fc1f8482d049649b6648d7c1c708a1284a0abe.png)
2022年全国硕士研究生入学统一考试数学(三)试题及参考答案一、选择题:1~10题,每小题5分,共50分.1、当0→x 时,)()(x x βα、是非零无穷小量,给出以下四个命题 ① 若)(~)(x x βα,则)(~)(22x x βα; ② 若)(~)(22x x βα,则)(~)(x x βα; ③ 若)(~)(x x βα,则))(()()(x o x x αβα=-; ④ 若))(()()(x o x x αβα=-,则)(~)(x x βα. 其中正确的序号是( )A :①②;B :①④;C :①③④;D :②③④. 答案:C .解析:当0→x 时,若)(~)(x x βα,则1)()(lim 0=→x x x βα,故1)()(lim )()(lim 20220=⎪⎪⎭⎫⎝⎛=→→x x x x x x βαβα,即)(~)(22x x βα,且011)()()(lim0=-=-→x x x x αβα,故))(()()(x o x x αβα=-.所以①③正确.当0→x 时,)(~)(22x x βα,则1)()(lim 220=→x x x βα,此时1)()(lim 0±=→x x x βα,而1)()(lim 0-=→x x x βα时,)(x α与)(x β不是等价无穷小,故 ②不正确.当0→x 时,若))(()()(x o x x αβα=-,1)()(lim ))(()()(lim )()(lim000==-=→→→x x x o x x x x x x x αααααβα,所以)(~)(x x βα,④正确.综上,C 为选项.2 、已知),2,1()1( =--=n nn a nnn ,则}{n a ( ) A :有最大值,有最小值; B :有最大值,没有最小值; C :没有最大值,有最小值; D :没有最大值,没有最小值. 答案:A .解析:1212,1221<-=>=a a ,又1lim =∞→n n a ,故存在0>N ,当N n >时,12a a a n <<,所以}{n a 有最大值和最小值,选项A 正确.3、设函数)(t f 连续,令⎰---=y x dt t f t y x y x F 0)()(),(,则( )A :2222y F x F y F x F ∂∂=∂∂∂∂=∂∂,; B :2222y Fx F y F x F ∂∂-=∂∂∂∂=∂∂,; C :2222y F x F y F x F ∂∂=∂∂∂∂-=∂∂,; D :2222yF x F y F x F ∂∂-=∂∂∂∂-=∂∂,. 答案:C .解析:⎰⎰⎰-----=--=y x y x y x dt t tf dt t f y x dt t f t y x y x F 0)()()()()(),(,⎰⎰--=-----+=∂∂y x y x dt t f y x f y x y x f y x dt t f x F 00)()()()()()(,)(22y x f x F -=∂∂,同理⎰⎰---=--+----=∂∂y x y x dt t f y x f y x y x f y x dt t f yF00)()()()()()(,)(22y x f y F -=∂∂, 综上2222yF x F y F x F ∂∂=∂∂∂∂-=∂∂,,选项C 正确. 4、已知⎰⎰⎰+=++=+=101031021sin 12,cos 1)1ln(,)cos 1(2dx x xI dx x x I dx x x I ,则( ) A :321I I I <<; B :312I I I <<; C :231I I I <<; D :123I I I <<. 答案:A .解析:⎰⎰⎰+=++=+=1010310212sin 1,cos 1)1ln(,)cos 1(2dx xx I dx x x I dx x xI ,先比较21,I I 的大小,令)1,0()1ln(2)(∈+-=x x xx f ,此时0)0(=f ,此时0)1(211121)(<+-=+-='x x x x f ,即)(x f 单调递减,从而0)0()(=<f x f ,可得)1,0()1ln(2∈+x x x《,从而21I I <.再比较23,I I 的大小,因)1,0(,cos 12sin 1,)1ln(∈+<+<+x x x x x ,则2sin 1cos 1)1ln(x xxx +<++,从而23I I >.综上,可得A 正确.5、设A 为3阶矩阵,⎪⎪⎪⎭⎫ ⎝⎛-=Λ000010001,则A 的特征值为011,,-的充分必要条件是( )A :存在可逆矩阵Q P ,,使得Q P A Λ=;B :存在可逆矩阵P ,使得1-Λ=P P A ; C :存在正交矩阵Q ,使得1-Λ=Q Q A ; D :存在可逆矩阵P ,使得TP P A Λ=; 答案:B解析:3阶A 有011,,-三个不同的特征值,所以A 可以相似对角化,故存在可逆矩阵P ,使得1-Λ=P P A ;若存在可逆矩阵P ,使得1-Λ=P P A ,即A 相似与Λ,而相似矩阵具有相同的特征值,而Λ的特征值为011,,-,故A 的特征值为011,,-.因此选B . 6、设矩阵⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=421,1111122b b b a a A ,则线性方程组b Ax =解的情况为( )A :无解; B: 有解; C:有无穷多解或无解 ; D: 有唯一解或无解; 答案:D .解析:⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫⎝⎛→31101110111141211111)|2222b b a a b b a a b A ((1)当1=a 或1=b 时,)|()(b A r A r ≠,方程无解(2)当1≠a 且1≠b 时,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----+→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+-+→11130011110111113110111101111)|a b a b a a b b a a b A ( (i )当b a ≠时,3)|()(==b A r A r ,方程有唯一解 (ii )当b a =时,3)|(2)(==b A r A r ,,方程无解; 综述:方程有唯一解或无解,选D .7、设⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=243211,11,11,11λλαλαλαλα,若向量组321,,ααα与421,,ααα等价,则λ的取值范围( )A :}1,0{ ; B:}2,|{-≠∈λλλR ;C:}2,1,|{-≠-≠∈λλλλR ; D:}1,|{-≠∈λλλR . 答案:C解析:向量组321,,ααα与421,,ααα等价的充要条件是()),,.,,(,,),,(421321421321ααααααααααααr r r ==,而),,,(),,.,,(4321421321αααααααααα,r r =()⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛→λλλλλλλλλλλλαααα2222431201101101111111111,,,(1)当1=λ时,()1).,,(,,),,(4321421321===ααααααααααr r r ,此时向量组等价 (2)当1≠λ时()⎪⎪⎪⎭⎫ ⎝⎛++---→⎪⎪⎪⎭⎫⎝⎛---+→⎪⎪⎪⎭⎫ ⎝⎛-++→24312)1(2001110111111001101110110110111,,,λλλλλλλλλλλαααα(i )当2-=λ时,3).,,(),,(2),,(4321421321===ααααααααααr r r ,,此时向量组不等价 (ii )当1,2-=-≠λλ时,3).,,(2),,(3),,(4321421321===ααααααααααr r r ,,,此时向量组不等价(iii )当1,2-≠-≠λλ时,3).,,(),,(),,(4321421321===ααααααααααr r r ,此时向量组等价 综上,当1,2-≠-≠λλ时,向量组321,,ααα与421,,ααα等价;选C8、随机变量)4,0(~N X ,随机变量⎪⎭⎫⎝⎛31,3~B Y ,且X 与Y 不相关,则=+-)13(Y X D ( )A: 2; B: 4; C: 6; D: 10. 答案:D .解析:由题意知,0),(32)(,4)(===Y X Cov Y D X D ,; 10)(9)()3()13(=+=-=+-Y D X D Y X D Y X D ,故选D .9、设随机变量序列 ,,,21n X X X 独立同分布,且i X 的概率密度为⎩⎨⎧<-=其他11)(x xx f 则当∞→n 时,∑=n i i X n 121依概率收敛于( )A :81; B : 61; C: 31; D: 21. 答案:B .解析:61)1(2)1()()(1211222=-=-==⎰⎰⎰-+∞∞-dx x x dx x x dx x f x X E i ,从而∑∑====⎪⎭⎫ ⎝⎛n i i n i i X E n X n E 121261)(11,由辛钦大数定律可得,∑=n i i X n 121依概率收敛于⎪⎭⎫ ⎝⎛∑=n i i X n E 121,从而选B .10、设二维随机变量),(Y X 的概率分布若事件}2},{max{==Y X A 与事件}1},{min{==Y X B 相互独立,则=),(Y X Cov ( )A :6.0- ; B: 36.0-; C: 0; D: 48.0. 答案:B .解析:1.0}2,1{)(,2.0)(,1.0)(=====+=Y X P AB P B P b A P ,由B A ,相互独立,故)()()(B P A P AB P =,解得4.0=b ,由分布律的性质得2.0=a ,6.0)(,2.1)(,2.0)(-==-=XY E Y E X E从而36.0)()()(),(-=-=Y E X E XY E Y X Cov ,故选B . 二、填空题:11~16题,每题5分,共30分.11、若=⎪⎪⎭⎫ ⎝⎛+→xx x e cot 021lim .答案:21e .解析:21tan 21lim21ln cot lim cot 00021lim e eeex e e x xxx x x xx ===⎪⎪⎭⎫⎝⎛+-⎪⎪⎭⎫ ⎝⎛+→→→.12、⎰=++-2024242dx x x x .答案:333ln π-. 解析:原式⎰⎰++-+++=2022024*******dx x x dx x x x ⎰⎰++-++++=20222022)3()1(1642)42(dx x x x x x d 20202|31arctan 36|)42ln(+-++=x x x 333ln π-=.13、已知函数x xe e xf sin sin )(-+=,则=''')2(πf .答案:0.解析:方法一:x xxe xex f sin sin cos cos )(--=',x x e x x e x x x f sin 2sin 2)sin (cos )sin (cos )(-++-='',)cos sin cos 2()sin (cos cos )sin (cos cos )cos sin cos 2()(sin sin 2sin 2sin x x x eex x x e x x x e x x x x f xxxx +-++--+--='''--从而01111)2(=+--='''πf . 方法二:x xe ex f sin sin )(-+=,显然)()(sin sin x f e e x f x x=+=--,故)(x f 为偶函数,且周期π2=T ,于是)(x f '为奇函数,)(x f ''为偶函数,)(x f '''为奇函数,从而0)0(='''f ,而0)0()2(='''='''f f π.14、已知⎩⎨⎧≤≤=其他,010,)(x e x f x ,则=-⎰⎰∞+∞-∞+∞-dy x y f x f dx )()( .答案:2)1(-e .解析:记}10,10|),{(≤-≤≤≤=x y x y x D ,原式⎰⎰⎰⎰-=-=Dx y x Ddxdy e e dxdy x y f x f )()(,2111)1()1(-=-==⎰⎰⎰+-e dy e e dy edx e x x xxy x.15、设A 为3阶矩阵,交换A 的第2行和第3行,再将第2列的1-倍加到第一列,得到矩阵⎪⎪⎪⎭⎫ ⎝⎛----=001011112B ,则1-A 的迹=-)(1A tr .答案:-1.解析:令⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=100011001,010********P P ,则B AP P =21 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛==--0100011111000110010010111120101000011211BP P A 0)1)(1(1011112=++-=-------=-λλλλλλE A ,解得i i -==-=321,,1λλλ 故1-A 的特征值为i i =-=-=321,,1λλλ,从而1)(1-=-A tr16、设C B A ,,为随机事件,且A 与B 互不相容,A 与C 互不相容,B 与C 相互独立,31)()()(===C P B P A P ,则=)|(C B A C B P .答案:85. 解析:()C B A P C B P C B A C B P )()|(=()98)()())(()()(95)()()()()()()()(=+=-+==-+=-+=C B P A P C B A P C B P A P C B A P C P B P C P B P BC P C P B P C B P从而85)|(=C B A C B P . 三、解答题:17~22小题,共94分,解答应写出文字说明,证明过程或演算步骤. 17、(本题满分10分)设函数)(x y 是微分方程x y xy +=+'221满足条件3)1(=y 的解,求曲线)(x y y =的渐近线.解:])2([)(2121C dx ex ex y dxxdxx+⎰+⎰=⎰-])2([C dx e x e x x ++=⎰-]2[C xee xx +=-xCe x -+=2,其中C 为任意常数,又3)1(=y ,得e C =,即xe x x y -+=12)(.22limlim 1=+==-+∞→+∞→xe x x y a xx x ,0lim )2(lim 1==-=-+∞→+∞→xx x e x y b ,故x y 2=为曲线)(x y y =的斜渐近线.18、(本题满分12分)设某产品的产量Q 由资本投入量x 和劳动投入量y 决定,生产函数为612112y x Q =,该产品的销售单价P 与Q 的关系为Q P 5.11160-=,若单位资本投入量和单位蓝洞投入量的价格分别为6和8,求利润最大时的产量.解:利润y x xy y x y x Q Q y x PQ L 862161392086)6.11160(86316121---=---=--=令⎪⎩⎪⎨⎧=--=--='=--=--='--------08)722320(872232006)722320(362166960612132326521612131316121y x xy xy y x L y x y y y x L yx,得驻点)64,256(, 此时38464256126=⨯⨯=Q ,在实际问题中由于驻点唯一,故利润L 在384=Q 处取到最大值. 19、(本题满分12分)已知平面区域}20,42|),{(2≤≤-≤≤-=y y x y y x D ,计算⎰⎰+-=Ddxdy y x y x I 222)(. 解:⎰⎰⎰⎰⎰⎰--+-=+-=ππϕϕπρρϕϕϕρρϕϕϕ2cos sin 20220202222)sin (cos )sin (cos )(d d d d dxdy y x y x I D⎰⎰+-=πππϕϕϕϕ2202)cos sin 21(2d d 22)12(2|)sin (2202-=+-=+-=ππππϕϕπ. 20、(本题满分12分)求幂级数∑∞=++-02)12(41)4(n nnn x n 的收敛域及和函数)(x S . 解:1)12(41)4()32(41)4(lim 22211n <++-++-+++∞→nnn n n n x n xn ,解得1||<x ,从而1=R ,收敛区间)1,1(-,当1±=x 时,∑∞=++-0)12(41)4(n nn n 收敛,故收敛域为]1,1[-. 当]1,1[-∈x ,令∑∑∞=∞=+++-=012)12(412)1()(n n n nn n n x x n x S , 令∑∑∞=+∞=≠+-=+-=0120210,12)1(112)1()(n n n n n n x n x x n x x S ,此时∑∑∞=∞=++=-='⎪⎪⎭⎫ ⎝⎛+-02201211)1(12)1(n nn n n n x x n x ,x dx x n x x n n n arctan 1112)1(0202=+=+-⎰∑∞=,故0,arctan 1)(1≠=x x xx S .∑∑∞=+∞=≠+=+=0120220,1241)12(4)(n n n n n n x n x x n x x S )(,此时2202012444114124x x x n x n n nn n n -=-=='⎪⎪⎭⎫ ⎝⎛+∑∑∞=∞=+)(,0,22ln 4412402012≠-+=-=+⎰∑∞=+x x x dx x n x x n n n )(,故0,22ln 1)(2≠-+=x xx x x S .0=x 时,2)0(=S .综上当]1,1[-∈x ,⎪⎩⎪⎨⎧=-∈-++=0,2]1,0)0,1[,22ln1arctan 1)(x x xx x x x x S ( . 21、(本题满分12分)已知二次型312322213212343),,(x x x x x x x x f +++=,(1)求正交变换Qy x =将),,(321x x x f 化为标准形; (2)证明:2)(min=≠xx x f T x . 解:(1)二次型对应矩阵⎪⎪⎪⎭⎫⎝⎛=301040103A ,0)2()4(3010401032=---=---=-λλλλλλE A ,解得4,2321===λλλ21=λ对应特征向量满足0)2(=-x E A ,解得⎪⎪⎪⎭⎫⎝⎛-=1011ξ432==λλ对应特征向量满足0)4(=-x E A ,解得⎪⎪⎪⎭⎫ ⎝⎛=0102ξ,⎪⎪⎪⎭⎫ ⎝⎛=1013ξ321,,ξξξ已经两两正交,单位化得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛-=22022,010,22022321ηηη,故存在正交矩阵),,(321ηηη=Q ,当Qy x =时232221321442),,(y y y y y y f ++=.(2)2322212322232221232221222442)()()(y y y y y y y y y y y y y y f Qy Q y y f x x x f T T T Qy x T ++++=++++==== 当0≠x 时,由Qy x =得0≠y ,当0,0132≠==y y y 时,2322212322222y y y y y ++++的最小值为2,故2)(min=≠xx x f Tx . 22、(本题12分)设n X X X ,,,21 为来自均值为θ的指数分布总体X 的简单随机样本,m Y Y Y ,,,21 为来自均值为θ2的指数分布总体Y 的简单随机样本,且两样本相互独立,其中)0(>θθ是未知参数,利用样本n X X X ,,,21 ,m Y Y Y ,,,21 ,求θ的最大似然估计量θˆ,并求)ˆ(θD . 解:由题知:总体Y X ,的概率密度为,0021)(,0001)(2⎪⎩⎪⎨⎧≤>=⎪⎩⎪⎨⎧≤>=--y y ey f x x ex f y YxX θθθθ令θθθθθθθθθ21211111121211),(),(∑∑=⋅=⋅===--+=-=-==∏∏∏∏mj j ni ij iy x n m m mj y ni x m j j Y ni i Xee e ey f x fLθθθ2ln )(2ln ln 11∑∑==--+--=mj jni i yx n m m L02ln 2121=+++-=∑∑==θθθθmj jni i yx n m d L d 解得⎪⎪⎭⎫⎝⎛++=∑∑==m j j n i i y x n m 11211ˆθ故θ的最大似然估计量⎪⎪⎭⎫⎝⎛++=∑∑==m j j n i i Y X n m 11211ˆθ⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛++=∑∑∑∑====m j j n i i m j j n i i Y D X D n m Y X n m D D 11211)(41)()(1211)ˆ(θ⎪⎭⎫ ⎝⎛++=)(4)()(12j i Y D m X nD n m 而224)(,)(θθ==j i Y D X D ,从而n m m n n m D +=⎪⎭⎫ ⎝⎛⋅++=222244)(1)ˆ(θθθθ。
2021考研数学三真题及答案解析(全)
![2021考研数学三真题及答案解析(全)](https://img.taocdn.com/s3/m/5819841849649b6649d74761.png)
(16)甲乙两个盒子中各装有 2 个红球和 2 个白球,先从甲盒中任取一球,观察颜色后放入乙盒中,
再从乙盒中任取一球.令 X , Y 分别表示从甲盒和乙盒中取到的红球个数,则 X 与Y 的相关系数
______________.
【答案】 1 . 5
(0, 0) (0,1) (1, 0) (1,1) 0 1 0 1
4
3
(B) .
8
1
(C) .
2
5
(D) .
2
【答案】 A .
【解析】似然函数 L( ) (1 )3(1 )5 , 24
取对数 ln L( ) 3ln(1 ) 5ln(1 ) ;
2
4
求导
d ln L( ) d
3 1
5 1
0 ,得
1 .故正确答案为 A. 4
二、填空题(本题共 6 小题,每小题 5 分,共 30 分.请将答案写在答题纸指定位置
0
f
' y
y x2
0
2x2 x 1 y2 0
即
y
0
得驻点 (1, 0) , (1 , 0) 2
f '' xx
4x
1 x
3(2x2 x4
x
1
y2)
(2)
f '' xy
2 y x3
f '' yy
1 x2
(3)驻点 (1, 0) 处,A=3,B=0,C=1, AC B2 3 0 , A 0
(A)若 P( A | B) P( A) ,则 P( A | B) P( A) .
(B)若 P( A | B) P( A) ,则 P( A | B) P( A)
1990考研数学三真题及超详细答案解析
![1990考研数学三真题及超详细答案解析](https://img.taocdn.com/s3/m/a488d1d25f0e7cd18525365b.png)
1990年全国硕士研究生入学统一考试数学三试题解析一、填空题(本题满分15分,每小题3分.) (1)【答案】2【解析】对原式进行分子有理化,分子分母同乘以有理化因子3n n n n ++-.3(3)(3)lim()lim 3n n n n n n n n n n n n n n n n n n→∞→∞+--+--⋅++-=++-3lim3n n n n n n n n n→∞+-+=++-,再分子分母同时除以n ,有原式lim3111n n n→∞=++-.因为lim0n n→∞=,其中a 为常数,所以原式42.11==+(2)【答案】b a +【解析】由于()F x 在0x =处连续,故0(0)lim ()x A F F x →==.0lim ()x F x →为“0”型的极限未定式,又()f x 在点0处导数存在,所以 00()sin ()cos lim lim 1x x f x a x f x a xA b a x →→'++===+.【相关知识点】函数()y f x =在点0x 连续:设函数()y f x =在点0x 的某一邻域内有定义,如果00lim ()(),x x f x f x →=则称函数()f x 在点0x 连续.(3)【答案】142【解析】先解出两条曲线在平面的交点,即令22x x =+, 解得1x =-和2x =,故所围成的平面图形如右图所示: 所求面积为 ()2212S x x dx -=+-⎰223111124.232x x x -⎛⎫=+-= ⎪⎝⎭(4)【答案】12340a a a a +++=O 2【解析】由于方程组有解()()r A r A ⇔=,对A 作初等行变换, 第一行乘以()1-加到第四行上,有1122334141100110001100 11000110011 10010101a a a a a a a a a --⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥→⎢⎥⎢⎥--⎢⎥⎢⎥+-⎣⎦⎣⎦, 第二行加到第四行上,再第三行乘以()1-加到第四行上,有11223312341241100110001101100011110110a a a a a a a a a a a a a --⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥--⎢⎥⎢⎥+++++⎣⎦⎣⎦. 为使()()r A r A =,常数1234,,,a a a a 应满足条件:12340a a a a +++=.【相关知识点】非齐次线性方程组有解的判定定理:设A 是m n ⨯矩阵,线性方程组Ax b =有解的充分必要条件是系数矩阵的秩等于增广矩阵()A A b =的秩,即是()()r A r A =(或者说,b 可由A 的列向量12,,,n ααα线表出,亦等同于12,,,n ααα与12,,,,n b ααα是等价向量组).设A 是m n ⨯矩阵,线性方程组Ax b =,则 (1) 有唯一解 ⇔ ()().r A r A n == (2) 有无穷多解 ⇔ ()().r A r A n =<(3) 无解 ⇔ ()1().r A r A +=⇔b 不能由A 的列向量12,,,n ααα线表出.(5)【答案】23【解析】这是一个四重伯努利试验概率模型,设试验的成功率即射手的命中率为p ,则进行四次独立的射击, 设事件Y 为“射手命中目标的次数”,Y 服从参数804,81n p ==的二项分布,由二项分布的概率公式,事件“四次均不中”的概率为4(1)p -,它是至少命中一次的对立事件.依题意48012(1)118133p p p -=-⇒-=⇒=. 本题的另一种分析方法是用随机变量X 表示独立地进行射击中命中目标的次数,p 表示一次射击的命中率,则(4,)X B p ~,依题意{}{}41101,81k P X P X k ===-==∑ 即412(1).813p p -=⇒= 【相关知识点】二项分布的概率公式:若(,)Y B n p ~,则{}(1)k kn k n P Y k C p p -==-,0,1,,k n =.二、选择题(本题满分15分,每小题3分.) (1)【答案】(B)【解析】由于sin 2lim 2x x x e e ππ→⋅=⋅,而2lim tan x x π→=+∞,所以, sin 2lim tan x x x x e π→⋅⋅=+∞,故()f x 无界.或考察()f x 在2(1,2,)4n x n n ππ=+=的函数值,有lim ()lim n n n n f x x →∞→∞==+∞,可见()f x 是无界函数.应选(B).以下证明其他结论均不正确.由444444sin sin f e f eππππππ⎛⎫- ⎪⎝⎭⎛⎫⎛⎫=≠-= ⎪ ⎪⎝⎭⎝⎭,知(A)不正确; 由0044f ,f ππ⎛⎫⎛⎫>->⎪ ⎪⎝⎭⎝⎭,而()00f =,知(D)不正确. 证明(C)不正确可用反证法. 设()sinxg x tan x e=⋅,于是()g x 的定义域为0122D x |x k ,k ,,,,ππ⎧⎫=≠+=±±⎨⎬⎩⎭且()g x 的全部零点为012n x n ,n ,,,.π==±±若()()f x xg x =以T ()0T >为周期,则有()()()x T g x T xg x ,x D.++=∀∈令0x ,=有()0Tg T ,=即()0g T =.从而T k π=,其中k 为某一正数.于是2k π也是()xg x 的周期.代入即得,对x D ∀∈有()()()()()222x k g x k x k g x xg x .πππ++=+=这表明()20k g x π≡在x D ∈上成立,于是()0g x ≡在x D ∈上成立,导致了矛盾. 故()()f x xg x =不可能是周期函数.【相关知识点】极限的四则运算法则:若0lim ()x x f x A →=,0lim ()x x g x B →=,则有 0lim ()()x x f x g x AB →⋅=.(2)【答案】(D)【解析】通过变量代换1t x =+或按定义由关系式(1)()f x af x +=将()f x 在1x =的可导性与()f x 在0x =的可导性联系起来.令1t x =+,则()(1)f t af t =-.由复合函数可导性及求导法则,知()f t 在1t =可导,且11()(1)(1)(0)t t f t af t t af ab =='''=--==,因此,应选(D).【相关知识点】复合函数求导法则:如果()u g x =在点x 可导,而()y f x =在点()u g x =可导,则复合函数[]()y f g x =在点x 可导,且其导数为()()dy f u g x dx ''=⋅ 或 dy dy dudx du dx=⋅. (3)【答案】(C)【解析】本题考查线性无关的概念与理论,以及充分必要性条件的概念.(A)(B)(D)均是必要条件,并非充分条件.也就是说,向量组12,,,s ααα线性无关,可以推导出(A)(B)(D)选项,但是不能由(A)(B)(D)选项中的任意一个推导出向量组12,,,sααα线性无关.例如:(1,0),(0,1),(1,1)显然有(1,0)(0,1)(1,1)(0,0)+-=,该向量组线性相关.但(A)(B)(D)均成立.根据“12,,,s ααα线性相关的充分必要条件是存在某(1,2,,)i i s α=可以由111,,,,i i s αααα-+线性表出.”或由“12,,,s ααα线性无关的充分必要条件是任意一个(1,2,,)i i s α=均不能由111,,,,i i s αααα-+线性表出.”故选(C).(4)【答案】A【解析】由于B A ⊂,所以A B A +=,于是有()()P A B P A +=.故本题选A. 对于B 选项,因为B A ⊂,所以事件B 发生,则事件A 必然发生,所以()()P AB P B =,而不是()()P AB P A =,故B 错.对于C 选项,因为B A ⊂,由条件概率公式()()()P AB P B A P A =,当,B A 是相互独立的事件时,才会有()()P B A P B =;所以C 错.对于D 选项,因为B A ⊂,所以事件B 发生事件A 不发生是个不可能事件,故()0P B A -=,所以(D)错.(5)【答案】(C)【解析】由离散型随机变量概率的定义,有{}{}{}1,11,1P X Y P X Y P X Y ===-=-+=={}{}1}{11}{1P X P Y P X P Y ==-⋅=-+=⋅=1111122222=⨯+⨯=. 故本题选(C).而(B)、(D)选项是错误的.对于(A)选项,题目中只说了随机变量X 和Y 相互独立,且他们的概率分布相同,但是二者是不同的事件,并不能说事件X 与事件Y 是同一事件.故(A)错.三、计算题(本题满分20分,每小题5分.) (1)【解析】在2[,]x e e ∈上,()22ln ln ()0211x x I x x x x '==>-+-,故函数()I x 在2[,]e e 上单调增加,最大值为2()I e .由22(1)1(1)(1)(1)dx d x d x x x --==---,有 ()2222ln 1()ln 11e e eetI e dt td t t ⎛⎫==- ⎪-⎝⎭-⎰⎰ ()2222ln ln 11()1111e e e e e e e et dt t dt t t t t t t =-+=-+-----⎰⎰[]2221ln(1)2ln(1)111e e e e =-++------- 11ln 1e e e +=++. 【相关知识点】1.对积分上限的函数的求导公式:若()()()()t t F t f x dx βα=⎰,()t α,()t β均一阶可导,则[][]()()()()()F t t f t t f t ββαα'''=⋅-⋅.2.假定()u u x =与()v v x =均具有连续的导函数,则,uv dx uv u vdx ''=-⎰⎰ 或者 .udv uv vdu =-⎰⎰(2)【解析】区域D 是无界函数,设{}()0{,0,}b y yD D y b x y y b x =≤≤=≤≤≤≤,不难发现,当b →+∞时有b D D →,从而22220limlimbyby y y y b b DD xedxdy xedxdy edy xdx ---→+∞→+∞==⎰⎰⎰⎰⎰⎰20111lim ()249b y b y y e dy -→+∞=-⎰ 2220055lim lim 72144b b y t b b ye dy t y e dt --→+∞→+∞==⎰⎰ 255lim (1).144144b b e -→+∞=-=(3)【解析】因系数21(1,2,)n a n n==,故()()2212211lim lim lim 111n n n n nn a n a n n+→∞→∞→∞+===+, 这样,幂级数的收敛半径11R ρ==.因此当131,x -<-<,即24x <<时级数绝对收敛.当2x =时,得交错级数211(1)nn n ∞=-∑;当4x =时,得正项级数211n n∞=∑,二者都收敛,于是原级数的收敛域为[2,4].【相关知识点】1.求收敛半径的方法:如果1n lim n na a ρ+→∞=,其中1,n n a a +是幂级数0nn n a x ∞=∑的相邻两项的系数,则这幂级数的收敛半径1, 0,, 0,0, .R ρρρρ⎧≤≤+∞⎪⎪⎪=+∞=⎨⎪=+∞⎪⎪⎩y2.交错级数的莱布尼茨判别法:设交错级数11(1)n n n u ∞-=-∑满足:(1)1,1,2,;n n u u n +≥= (2)lim 0.n n u →∞=则11(1)n n n u ∞-=-∑收敛,且其和满足1110(1),n n n u u ∞-=<-<∑余项1.n n r u +<3.p 级数:11pn n∞=∑当1p >时收敛;当1p ≤时发散. (4)【解析】方法1:所给方程为一阶线性微分方程,可直接利用通解公式求解.cos cos sin ln xdx xdx x y e e xe dx C --⎡⎤⎰⎰=+⎢⎥⎣⎦⎰ sin sin ln [ln ]x x e xdx C e x x x C --⎡⎤=+=-+⎣⎦⎰.方法2: 用函数()cos sin P x dxxdxx e e e ⎰⎰==同乘方程两端,构造成全微分方程.方程两端同乘sin xe,得sin sin sin sin cos ()()ln xx x x ey ye x ye ye x '''+=⇒=,再积分一次得sin ln ln x ye C xdx C x x x =+=+-⎰.最后,再用sin xe-同乘上式两端即得通解sin [ln ]xy ex x x C -=-+.【相关知识点】一阶线性非齐次方程()()y P x y Q x '+=的通解为()()()P x dx P x dx y e Q x e dx C -⎛⎫⎰⎰=+ ⎪⎝⎭⎰, 其中C 为任意常数.四、(本题满分9分)【解析】(1)利润为销售收入减去成本,所以利润函数为22121212121514328210()x x x x x x x x π=++----+221212121513318210.x x x x x x =++---由多元函数极值点的必要条件,有1211212248130,0.75, 1.25.820310,x x x x x x x x ππ∂⎧=--+=⎪∂⎪⇒==⎨∂⎪=--+=⎪∂⎩ 因驻点惟一,且实际问题必有最大值,故投入电台广告费用0.75万元,报纸广告费用1.25万元可获最大利润.(2)若广告费用为1.5万元,则应当求利润函数(与(1)中解析式相同)221212121513318210,x x x x x x π=++---在12 1.5x x +=时的条件最大值.拉格朗日函数为221212121212(,,)1513318210( 1.5),L x x x x x x x x x x λλ=++---++-由 1211221248130,820310,1.50Lx x x Lx x x Lx x λλλ∂⎧=--++=⎪∂⎪∂⎪=--++=⎨∂⎪⎪∂=+-=⎪∂⎩ 120, 1.5.x x ⇒==因驻点惟一,且实际问题必有最大值,故应将广告费1.5万元全部用于报纸广告,可使利润最大.【相关知识点】拉格朗日乘数法:要找函数(,)z f x y =在附加条件(,)0x y ϕ=下的可能极值点,可以先作拉格朗日函数(,)(,)(,),L x y f x y x y λϕ=+其中λ为参数.求其对x 与y 的一阶偏导数,并使之为零,然后与附加条件联立起来:(,)(,)0,(,)(,)0,(,)0.x x y y f x y x y f x y x y x y λϕλϕϕ⎧+=⎪+=⎨⎪=⎩ 由这方程组解出,x y 及λ,这样得到的(,)x y 就是函数(,)f x y 在附加条件(,)0x y ϕ=下的可能极值点.五、(本题满分6分)【解析】方法1:当0a =时,()()()()f a b f b f a f b +==+,即不等式成立; 若0a >,因为2121 ()()()(0)[()()][()(0)]()()[()()],f a b f a f b f f a b f b f a f f a f a a f f ξξξξ+--+=+---''''=-=- 其中120a b a b ξξ<<≤<<+.又()f x '单调减少,故21()()f f ξξ''≤.从而有()()()(0)0f a b f a f b f +--+≤,即()()()f a b f a f b +≤+.方法2:构造辅助函数,将式子移到不等式右边,再将b 视为变量x ,得辅助函数 令()()()(),[0,]F x f x f a f a x x b =+-+∈,由于(0)0f =,所以(0)0F =,又因为()()(),F x f x f a x '''=-+且0a ≥,()f x '在(0,)b 单调减少,所以()0F x '≥,于是()F x 在[0,]b 上单调递增,故()(0)0F b F ≥=,即()()()f a b f a f b +≤+,其中0a b a b c ≤≤≤+≤.【相关知识点】拉格朗日中值定理:如果函数()f x 满足在闭区间[,]a b 上连续;在开区间(),a b 内可导,那么在(),a b 内至少有一点()a b ξξ<<,使等式()()()()f b f a f b a ξ'-=-成立.六、(本题满分8分)【解析】本题中,方程组有解()()r A r A ⇔=.(相关定理见第一题(4))对增广矩阵作初等行变换,第一行乘以()3-、()5-分别加到第二、四行上,有111111111132113001226301226012265433120122625a a a b b a ⎡⎤⎡⎤⎢⎥⎢⎥------⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎢⎥------⎣⎦⎣⎦, 第二行乘以1、()1-分别加到第三、四行上,第二行再自乘()1-,有1111112263.322aa b a a ⎡⎤⎢⎥⎢⎥→⎢⎥-⎢⎥-⎣⎦(1) 当30b a -=且220a -=,即1,3a b ==时方程组有解. (2) 当1,3a b ==时,方程组的同解方程组是1234523451,2263,x x x x x x x x x ++++=⎧⎨+++=⎩ 由()523n r A -=-=,即解空间的维数为3.取自变量为345,,x x x ,则导出组的基础解系为123(1,2,1,0,0),(1,2,0,1,0),(5,6,0,0,1)T T T ηηη=-=-=-.(3) 令3450x x x ===,得方程组的特解为(2,3,0,0,0)Tα=-.因此,方程组的所有解是112233k k k αηηη+++,其中123,,k k k 为任意常数.【相关知识点】若1α、2α是对应齐次线性方程组0Ax =的基础解系,则Ax b =的通解形式为1122,k k ηηξ++其中12,ηη是0Ax =的基础解系,ξ是Ax b =的一个特解.七、(本题满分5分)【解析】若A 、B 是n 阶矩阵,且,AB E =则必有.BA E =于是按可逆的定义知1A B -=.如果对特征值熟悉,由0kA =可知矩阵A 的特征值全是0,从而E A -的特征值全是1,也就能证明E A -可逆.由于0kA =,故()21()k k k E A E A A A E A E --++++=-=. 所以E A -可逆,且()121k E A E A A A ---=++++.八、(本题满分6分)【解析】(反证法)若12X X +是A 的特征向量,它所对应的特征值为λ,则由定义有:1212()()A X X X X λ+=+.由已知又有 12121122()A X X AX AX X X λλ+=+=+. 两式相减得 1122()()0X X λλλλ-+-=.由12λλ≠,知12,λλλλ--不全为0,于是12,X X 线性相关,这与不同特征值的特征向量线性无关相矛盾.所以,12X X +不是A 的特征向量.【相关知识点】矩阵特征值与特征向量的定义:设A 是n 阶矩阵,若存在数λ及非零的n 维列向量X 使得AX X λ=成立,则称λ是矩阵A 的特征值,称非零向量X 是矩阵A 的特征向量.九、(本题满分4分)【解析】样本空间含样本点总数为310C ;即十个数字任意选三个有多少种选择方案. 有利于事件1A 的样本点数为38C ;十个数字除去0和5任意选三个有多少种选择方案.有利于事件2A 的样本点数为33982C C -;十个数字除去0任意选三个的选择方案和十个数字除去5任意选三个的选择方案再减去中间多算了一次的方法数,即是事件1A 被加了两次,所以应该减去38C .由古典型概率公式,3813107();15C P A C ==33982310214()15C C P A C -==. 【相关知识点】古典型概率公式:()i i A P A =有利于事件的样本点数样本空间的总数.十、(本题满分5分) 【解析】(1) 由连续型随机变量边缘分布的定义,且lim 0,ax x e -→+∞=(a 为常数)有X 和Y 的边缘分布函数分别为0.51,0,()(,)lim (,)0,0;x X y e x F x F x F x y x -→+∞⎧-≥=+∞==⎨<⎩若若 0.51,0,()(,)lim (,)0,0.y Y x e y F y F y F x y y -→+∞⎧-≥=+∞==⎨<⎩若若 由于对任意实数,x y 都满足(,)()()X Y F x y F x F x =.因此X 和Y 相互独立.(2) 因为X 和Y 相互独立,所以有{}{}{}0.1,0.10.10.1P X Y P X P Y α=>>=>⋅>0.050.050.1[1(0.1)][1(0.1)]X Y F F e e e ---=--=⋅=.十一、(本题满分7分)【解析】若已知正态分布的期望和方差,在计算有关概率时可将其转化为标准正态分布的有关概率,通过()x Φ表计算.但是正态分布的参数μ与2σ未知时,则应先根据题设条件求出μ与2σ的值,再去计算有关事件的概率.设X 为考生的外语成绩,依题意有2~(,)X N μσ,且72μ=,但2σ未知.所以可标准化得72~(0,1)X N σ-.由标准正态分布函数概率的计算公式,有{}{}96722496196110.023,P X P X σσ-⎛⎫⎛⎫>=-≤=-Φ=-Φ= ⎪ ⎪⎝⎭⎝⎭2410.0230.977.σ⎛⎫Φ=-= ⎪⎝⎭查表可得 242,12σσ==,即2~(72,12)X N , {}72608412(1)10.68212X P X P ⎧-⎫≤≤=≤=Φ-=⎨⎬⎩⎭.。
2021年全国硕士研究生招生考试数学三真题详细解析
![2021年全国硕士研究生招生考试数学三真题详细解析](https://img.taocdn.com/s3/m/e52602b29b6648d7c0c746c9.png)
案.
1 0 −1
(7)已知矩= 阵 A
2
−1
1
,若下三角可逆矩阵
P
和上三角可逆矩阵
Q
,使
PAQ
为对角矩阵,
−1 2 −5
则 P , Q 可以分别取( )
1 0 0 1 0 1
(A)
0
1
0
,
0
1
3
.
0 0 1 0 0 1
1 0 0 1 0 0
(B)
2
−1
0
,
0
1
0
.
−3 2 1 0 0 1
1 0 0 1 0 1
(C)
2
−1
0
,
0
1
3
.
−3 2 1 0 0 1
【答案】应选(C).
1 0 0 1 2 −3
(D)
0
1
0
,
0
−1
2
.
1 3 1 0 0 1
【分析】本题如果希望通过矩阵方程来求得 P , Q 显然难度较大,但对于客观题,一个计算问题通过
答案验证显然要简单得多。将选项代入快速验算,容易到本题答案为(C). 【详解】对选项 C,
【详解】对于选项(A),
P( A B) =P( AB) =P( A) ⇒ P( AB) =P( A)P(B) , P(B)
( ) 事件 A, B 相互独立,即互不干扰,因此易得 P A B = P ( A) ,故 A 正确.
( ) ( ) 对于选项(B),知 P( A B) = P( AB) > P ( A) ⇔ P( AB) > P( A)P(B) ,若 P A B > P A 成立,则 P(B)
2022年研究生考试数学三真题及详解
![2022年研究生考试数学三真题及详解](https://img.taocdn.com/s3/m/074d7ac2d4bbfd0a79563c1ec5da50e2524dd1dc.png)
【解析】
lim
x0
1
e 2
x
cot x
elim cot x0
xIn
1ex 2
lim ex 1
ex0 2tan x
1
e2
(12)
2 0
2x 4 x2 +2x+4
dx
【答案】 ln 3 3 3
【解析】
数学(三)解析 第 5 页
2 2x 4
2 2x+2
6
0 x2 +2x+4 dx 0 x2 +2x+4 x+12 +3 dx
为 6 和 8,求利润最大时的产量.
数学(三)解析 第 7 页
【答案】384
【解析】利润
L
PQ
C
1160
1
1.5 12 x 2
1
y6
1
12 x 2
y
1 6
6x
8y
,即
11
1
L 13920x2 y6 216xy3 6x 8y
,令
Lx
1
6960x 2
1
y6
1
216 y 3
6
0
Ly
1
2320x 2
0 0 0 0
1
1
1
(7)设
1
=
1
,
2
=
,
3
=
1
,
4
=
,若向量组
1,2
,3
与
1,2
,4
等
1
1
2
价,则 的取值范围是(
)
数学(三)解析 第 3 页
2023年全国硕士研究生招生考试数学试题(数学三)真题解析
![2023年全国硕士研究生招生考试数学试题(数学三)真题解析](https://img.taocdn.com/s3/m/0feb009ef424ccbff121dd36a32d7375a517c67a.png)
2023 考研数学三真题及解析一、选择题:1~10 小题,每小题 5 分,共 50 分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上.1.已知函数 f( ,x y ) = ln ( y + x sin y ),则( ).(A )()0,1f x ∂∂不存在,()0,1fy∂∂存在(B )()0,1f x∂∂存在,()0,1fy ∂∂不存在(C )()0,1f x∂∂()0,1f y∂∂均存在(D )()0,1f x∂∂()0,1f y∂∂均不存在【答案】(A )【解析】 本题考查具体点偏导数的存在性,直接用定义处理,()0,10f =()()()()0,1000ln 1sin1sin1,10,1sin1,0lim lim limsin1,0x x x x x f x f x fx x x x x +−→→→+ −→∂=== ∂−→ 故()0,1f x∂∂不存在()()()0,1110,0,1ln lim lim 111y y f y f f y y y y →→−∂===∂−−,()0,1f y∂∂存在,选(A )2.函数() 0,()1cos ,0.x f x x x x ≤=+>的一个原函数是( )(A)), 0,()(1)cos sin ,0.x x F x x x x x −≤= +−>(B))1, 0,()(1)cos sin ,0.x x F x x x x x +≤=+−>(C)), 0,()(1)sin cos ,0.x x F x x x x x −≤= ++>(D))1, 0,()(1)sin cos ,0.x x F x x x x x +≤=++> 【答案】(D) .【分析】本题主要考查原函数的概念,分段函数不定积分的求法以及函数可导与连续的关系.【详解】由于当0x <时,)1()lnF xx x C==+∫当0x >时,()()2()1cos d 1sin cos F x x x x x x x C =+=+++∫由于()F x 在0x =处可导性,故()F x 在0x =处必连续因此,有00lim ()lim ()x x F x F x −+→→=,即 121C C =+.取20C =得)1, 0,()(1)sin cos ,0.x x F x x x x x −+≤= ++> 应选(D) .【评注】此题考查分段函数的不定积分,属于常规题,与2016年真题的完全类似,在《真题精讲班》系统讲解过. 原题为已知函数2(1),1,()ln , 1.x x f x x x −< = ≥则()f x 的一个原函数是( )(A) 2(1),1,()(ln 1), 1.x x F x x x x −<= −≥ (B) 2(1),1,()(ln 1)1, 1.x x F x x x x −<=+−≥ (C) 2(1),1,()(ln 1)1, 1.x x F x x x x −<= ++≥ (D) 2(1),1,()(ln 1)1, 1.x x F x x x x −<= −+≥3.若微分方程0y ay by ′′′++=的解在(,)−∞+∞上有界,则( )(A )00a b <>, (B )00a b >>, (C )00a b =>, (D )00a b =<, 【答案】(C )【解析】特征方程为20r ar b ++=,解得1,2r =.记24a b ∆=−当0∆>时,方程的通解为1212()e e r x r x yx c c ⋅⋅=+,当12,c c 不全为零时()y x 在(,)−∞+∞上无界.当12,c c 不全为零时()y x 在(,)−∞+∞上无界.当0∆=时,1202ar r −=<=,方程的通解为1112()e e r x r x yx c c x =+,当12,c c 不全为零时()y x 在(,)−∞+∞上无界.当0∆<时,1,22a r i β=−±,方程的通解为()212()e cos sin axy x c x c x ββ−=+. 只有当0a =,且240a b ∆=−<,即0b >时,lim ()lim ()0x x y x y x →+∞→−∞==,此时方程的解在(,)−∞+∞上有界. 故选(C )【评注】此题关于x →+∞方向的讨论,在《基础班》习题课上讲解过,见《基础班》习题课第八讲《常微分方程》第15题.4.已知()1,2,n n a b n <=,若1nn a∞=∑与1n n b ∞=∑均收敛.则1nn a∞=∑绝对收敛是1n n b ∞=∑绝对收敛的( )(A )充分必要条件 (B )充分不必要条件 (C )必要不充分条件(D )既非充分也非必要条件 【答案】(A ) 【解析】由题设条件知()1nn n ba ∞=−∑为收敛的正项级数,故()1n n n b a ∞=−∑也是绝对收敛的若1nn a∞=∑绝对收敛,则n n n n n n n b b a a b a a =−+≤−+,由比较判别法知,1n n b ∞=∑绝对收敛;若1n n b ∞=∑绝对收敛,则则nn n n n n n aa b b a b b =−+≤−+,由比较判别法知,1n n a ∞=∑绝对收敛;故应选(A )【评注】本题考查正项级数的比较判别法,及基本不等式放缩.关于上述不等式《基础班》第一讲在讲解数列极限定义时就反复强调过.5.设A,B 分别为n 阶可逆矩阵,E 是n 阶单位矩阵,*M 为M 的伴随矩阵,则AE OB 为( ) (A )*****−A B B A O A B (B )****− A B A B OB A(C )****−B A B A OA B (D )****−B A A B OA B 【答案】(D )【解析】由分块矩阵求逆与行列式的公式,结合1∗−=A A A 得11111∗−−−−− −==A E A E A E E A A AB B O B O B O B O B ∗∗∗∗−=B O A A A B B 选(D )【评注】这钟类型的题在02年,09年均考过完全类似的题,《基础班》第二讲也讲过,原题为【例1】设,A B ∗∗分别为n 阶可逆矩阵,A B 对应的伴随矩阵,∗∗=A O C O B6.二次型()()()222123121323(,,)4f x x x x x x x x x =+++−−的规范形为( ). (A )2212y y + (B )2212y y −(C )222123y y y −−(D )222123y y y +−【答案】(B )【详解】因为123(,,)f x x x 222123121323233228x x x x x x x x x =−−+++方法1.二次型的矩阵为 211134143 =− −A , 由()()211134730143λλλλλλλ−−−−=−+−=+−=−−+E A ,得特征值为0,7,3−,故选(B )方法2.()222123123121323,,233228f x x x x x x x x x x x x =−−+++()()()22232322211232323233842x x x x x x x x x x x x ++=+++−−−+ 222222322332323126616222x x x x x x x x x x x +++++−=+−()22231237222x x x x x +=+−− 故所求规范形为()2212312,,f x x x y y =−【评注】本题考查二次型的规范形,与考查正负惯性指数是同一类题,在《基础班》《强化班》均讲过. 《解题模板班》类似例题为【11】设123123(,,),(,,)T T a a a b b b αβ==,,αβ线性无关,则二次型123112233112233(,,)()()f x x x a x a x a x b x b x b x =++++的规范型为( ).(A)21y (B) 2212y y + (C) 2212y y − (D) 222123y y y ++7.已知向量12121,,1222150390,1====ααββ,若γ既可由12,αα表示,也由与12,ββ表示,则=γ( ).(A )334k (B )3510k(C )112k − (D )158k【答案】(D ) 【解析】由题意可设11212212x y x y +==+γααββ,只需求出21,x x 即可即解方程组112112220x y y x +−−=ααββ()121212211003,,2150010131910011,−−−−=−→− −−ααββ 得()()2211,,1,3,,1,1TTx k x y y =−−,k 为任意常数11221212133215318x k k k k k x+=−+=−+=−=γαααα,故选(D )【评注】1.此题与《强化班》讲义第三讲练习第12题完全类似,原题为【12】(1)设21,αα,21,ββ均是三维列向量,且21,αα线性无关, 21,ββ线性无关,证明存在非零向量ξ,使得ξ既可由21,αα线性表出,又可由21,ββ线性表出.(2)当 =4311α,=5522α:1231β= − ,2343β−=−时,求所有既可由21,αα线性表出,又可21,ββ线性表出的向量。
2022考研数三真题及解析18
![2022考研数三真题及解析18](https://img.taocdn.com/s3/m/3fb758597ed5360cba1aa8114431b90d6c85896e.png)
2022 年全国硕士研究生入学统一考试数学三试题一、填空题(此题共5小题,每题3分,总分值15分。
把答案填在题中横线上。
)(1) 设()f x 有一个原函数sin xx ,那么2()xf x dx ππ'=⎰(2) 1112n n n -∞=⎛⎫= ⎪⎝⎭∑(3) 设101020101A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,而2n ≥为整数,那么12n n A A --=(4) 在天平上重复称量一重为a 的物品,假设各次称量结果相互独立且同服从正态分布2(,0.2)N a .假设以n X 表示n 次称量结果的算术平均值,那么为使{}0.10.95n P X a -<≥,n 的最小值应不小于自然数(5) 设随机变量(),1,2,,;2ij X i j n n =≥独立同分布,2ij EX =,那么行列式111212122212n n n n nnX X X X X X Y X X X =的数学期望EY =二、选择题(此题共5小题,每题3分,总分值15分。
每题给出得四个选项中,只有一个是符合题目要求的,把所选项前的字母填在提后的括号内。
) (1) 设()f x 是连续函数,()F x 是()f x 的原函数,那么 ( )(A) 当()f x 是奇函数时,()F x 必是偶函数。
(B) 当()f x 是偶函数时,()F x 必是奇函数。
(C) 当()f x 是周期函数时,()F x 必是周期函数。
(D) 当()f x 是单调增函数时,()F x 必是单调增函数。
(2) 设(,)f x y 连续,且(,)(,)Df x y xy f u v dudv =+⎰⎰,其中D 是由20,,1y y x x ===所围成的区域,那么(,)f x y 等于 ( )(A)xy (B)2xy (C)18xy + (D)1xy + (3) 设向量β可由向量组12,,,m ααα线性表示,但不能由向量组(Ⅰ)121,,,m ααα-线性表示,记向量组(Ⅱ)121,,,m αααβ-,,那么 ( )(A) m α不能由(I)线性表示,也不能由(Ⅱ)线性表示。
2020考研数学三真题及答案解析
![2020考研数学三真题及答案解析](https://img.taocdn.com/s3/m/70e7e94b04a1b0717fd5ddc4.png)
的收敛区间,只需要求出
lim
n→∞
an+1 an
的值即可,
∞
而条件告诉我们幂级数 ∑ nan (x − 2)n 的收敛区间为 (−2, 6) ,即收敛半径为 4 n=1
lim (n = + 1)an+1 lim n += 1 an+1 li= m an+1 1
n→∞ nan
n→∞ n an
a n→∞ n
旺旺id 河北师大研胜教育
积函数为偶函数的变限积分函数为奇函数。所以,本题选 A ;对于 C和D 选项, f ′(x) 为偶
函数,则 cos= f ′(x) cos f ′(−x) 为偶函数, f (x) 为奇函数,则 cos f ′(x) + f (x) 既非奇函数又
非偶函数。
∞
∞
(4).已知幂级数 ∑ nan (x − 2)n 的收敛区间为 (−2, 6) ,则 ∑ an (x + 1)2n 的收敛区间为
2020 年全国硕士研究生入学统一考试
数学(三)试题及解析
一、选择题:1~8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个
选项是符合题目要求的.
(1)设 lim f (x) − a = b ,则 lim sin f (x) − sin=a ( )
x→a x − a
x→a
x−a
(A) x =k1α1 + k2α2 + k3α3 (C) x = k1α1 + k2α3 + k3α4
(B) x =k1α1 + k2α2 + k3α4 (D) x = k1α2 + k2α3 + k3α4
2020考研数学三真题及答案解析
![2020考研数学三真题及答案解析](https://img.taocdn.com/s3/m/70e7e94b04a1b0717fd5ddc4.png)
旺旺id 河北师大研胜教育
积函数为偶函数的变限积分函数为奇函数。所以,本题选 A ;对于 C和D 选项, f ′(x) 为偶
函数,则 cos= f ′(x) cos f ′(−x) 为偶函数, f (x) 为奇函数,则 cos f ′(x) + f (x) 既非奇函数又
非偶函数。
∞
∞
(4).已知幂级数 ∑ nan (x − 2)n 的收敛区间为 (−2, 6) ,则 ∑ an (x + 1)2n 的收敛区间为
又 ABC ⊂ AB , P( ABC) ≤ P( AB) = 0
原式 = 1 − 1 + 1 − 1 + 1 − 1 − 1 = 5 4 12 4 12 4 12 12 12
(8) .若二维随机变量 (X ,Y ) 服从 N 0,0;1,4;− 1 ,则下列服从标准正态分布且与 X 独立的
2
是(
4
12
()
(A). 3
4
(B). 2
3
(C) . 1
2
(D). 5
12
旺旺id 河北师大研胜教育
【答案】(D)
【解析】
P( ABC) + P( ABC) + P( ABC) = P( A I B UC) + P(B I A UC) + P(C I A U B) = P( A) − P( AB) − P( AC) + P( ABC) + P(B) − P( AB) − P(BC) + P( ABC) + P(C) − P( AC) − P(BC) + P( ABC)
dx
(11)设产量为 Q ,单价为 P ,厂商成本函数为 C(Q=) 100 +13Q ,需求函数为 Q= (P) 800 − 2 ,
2024考研数学三真题及参考答案
![2024考研数学三真题及参考答案](https://img.taocdn.com/s3/m/77f2f7a05ebfc77da26925c52cc58bd6318693d2.png)
2024年全国硕士研究生入学统一考试数学(三)试题考试时间:180分钟,满分:150分一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1)已知函数f (x) = lim ,则( )【答案】D(2)积分+k πsin x dx ( )【答案】Bπ(3)交换积分次序∫π2dx i1n x f (x, y)dy 则( )6【答案】A(4)已知ln(2 + x) = a n x n ,则na2n = ( )(A)−(B)−(C)(D)【答案】A(5)设二次型在正交变换下的标准型为f (x1, x2, x3 ) = y12−2y22+ 3y32,则( )【答案】C(行列式为-6,迹为2)(6)【答案】C(7)【答案】C(a = 0, a = )(8)E[(X −Ex)3 ] = ( )【答案】0(9)【答案】B (p2 > p1> )(10)设随机变量X, Y 相互独立,且均服从参数为λ的指数分布,令Z = X −Y ,则下列随机变量与Z 同分布的是( )(A)X + Y (B)(C)2X (D)X【答案】D二、填空题:11~16小题,每小题5分,共30分,请将答案写在答题纸指定位置上.(11)【答案】3(12)=【答案】ln 3 −n→∞1 + nx n(13)函数f (x , y ) = 2x 3 − 9x 2 − 6y 4 +12x + 24y 的极值点是 【答案】 (1,1) (14)【答案】 (15)【答案】 (16)【答案】50162 3三、解答题:17~22 小题,共 70 分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明 过程或演算步骤.(17)(本题满分 10 分)1 1 已知区域D 是第一象限内的有界区域,它由xy = , xy = 3, y = x , y = 3x 围成, 3 3计算(1+ x − y )dxdy D【答案】 ln 3(18)(本题满分 12 分)∂2 z ∂ 2 z 已知z = z (x , y ) 由方程z + e x + y ln(1+ z 2 ) = 0确定,求 ∂ 2x + ∂ 2 y (0,0)【答案】 −1− 2ln 2(19)(本题满分 12 分)已知t > 0 ,曲线 y = xe −2x 与x = t , x = 2t 及x 轴所围的面积为S (t ) ,求S (t ) 的最大值ln 2 3【答案】 + 16 64(20)(本题满分 12 分)设函数f (x ) 有 2 阶导数,f ′(0) = f ′(1) , f ′′(x ) ≤ 1(1)当x ∈ (0,1) 时,f (x ) − f (0)(1− x ) − f (1)x ≤ (2) ∫01f (x )dx − ≤【答案】(1)泰勒公式展开(2)分部积分或泰勒公式(21)(本题满分 12 分)【答案】(1) Ax = α 是Bx = β的解 (2) a = 1(22)(本题满分 12 分)设总体X 服从[0,θ] 上的均匀分布,X 1, X 2, , X n 为总体的简单随机样本,记X(n) = max{X1, X2, , Xn} ,Tc= cX(n)(1)求c ,使得E(Tc) = θ(2)记h(c) = E(Tc−θ)2 = θ,求c ,使得h(c) 最小【答案】(1)c = (2)c =参考答案一、选择题:1~10小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上。
2020年全国硕士研究生入学考试数学三试题完整版附答案解析
![2020年全国硕士研究生入学考试数学三试题完整版附答案解析](https://img.taocdn.com/s3/m/f13202dc3c1ec5da50e270c7.png)
为 X 独立的是().
A. 5 ( X + Y ) B. 5 ( X −Y ) C. 3 ( X + Y ) D. 3 ( X −Y )
5
5
3
3
答案: B
解析:
E
5 5
(X
− Y )
=
5 E(X −Y) = 5
5 (0 − 0) = 0 5
D
5 (X 5
−
Y
)
=
1 5
D(
X
−
Y
)
=
1 5
6.设 A 为 3 阶矩阵 a1, a2 为 A 的属于特征值 1 的线性无关的特征向量, a3 为 A 的属于特征
1 0 0
值-1
的特征向量,则满足
P
−1
AP
=
0
−1
0
的可逆矩阵为
0 0 1
A.(a1 + a3, a2 ,-a3) B.(a1 + a2, a2 ,-a3) C.(a1 + a3, −a3 ,a2 ) D.(a1 + a2, −a2 ,a2 )
2020 年全国硕士研究生入学考试数学三试题
完整版附答案解析
一、选择题:1~8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个
选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上.
f (x)−a
sin f ( x) − sin a
1.设 lim
= b, 则 lim
=
x→a x − a
x→a
x−a
A. b sin a
B. b cos a
C. b sin f (a)
2020考研数学三真题及答案解析【完整版】
![2020考研数学三真题及答案解析【完整版】](https://img.taocdn.com/s3/m/6f145952240c844769eaeef6.png)
2020考研数学三真题及解析(完整版)一、选择题:1~8小题,第小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上.1.设lim(),limsin ()sin x x f x a f x ab x a x a→∞→∞--=--则A.sin b a B.cos b a C.sin ()b f a D.cos ()b f a 答案:B解析:sin ()sin [()]limlimcos cos .x a x a f x af x a b a x a x aξ→→--==--(其中ξ介于()f x 与a 之间)∴选B2.()()11ln |1|()12x x e x f x e x -+=--第二类间断点个数A.1B.2C.3D.4答案:C 解析:0,2,1,1x x x x ====-为间断点111110000ln |1|ln |1|ln |1|lim ()lim limlim (1)(2)222x x x x x x e x e x e x e f x e x x x ----→→→→+++===-=----0x =为可去间断点1122ln |1|lim ()lim(1)(2)x x x x e x f x e x -→→+==∞--2x =为第二类间断点1111ln |1|lim ()lim 0(1)(2)x x x x e x f x e x ---→→+==--1111ln |1|lim ()lim (1)(2)x xx x e x f x e x ++-→→+==∞--1x =为第二类间断点1111ln |1|lim ()lim(1)(2)x x x x e x f x e x -→-→-+==∞--1x =-为第二类间断点3.设奇函数()f x 在(,)-∞+∞上具有连续导数,则A.[]0cos ()'()xf t f t dt +⎰是奇函数B.[]0cos ()'()xf t f t dt +⎰是偶函数C.[]0cos '()()xf t f t dt +⎰是奇函数D.[]0cos '()()xf t f t dt +⎰是偶函数答案:A 解析:()[cos ()()]d xF x f t f t t'=+⎰()cos ()()F x f x f x ''=+由()f x 为奇函数知,()f x '为偶函数.cos ()f x 为偶函数.故()F x '为偶函数.()F x 为奇数∴选A4.设幂级数1(2)nnn na x ∞=-∑的收敛区间为(-2,6),则21(1)nnn a x ∞=+∑的收敛区间为A.(-2,6)B.(-3,1)C.(-5,3)D.(-17,15)答案:B 解析:由于1111(1)11limlim 4n n n n n n n a a na a R ρ++→∞→∞+====12121lim4.4n n na R a ρρ+→∞===∴=22R '∴==,故所求收敛域为(-3,1),∴选B.5.设4阶矩阵()ij A a =不可逆,12a 的代数余子式1212340,,,,A αααα≠为矩阵A 的列向量组,*A 为A 的伴随矩阵,则*0A x =的通解为A.112233x k k k ααα=++B.112234x k k k ααα=++C.112334x k k k ααα=++D.122334x k k k ααα=++答案:C 解析:∵A 不可逆∴|A |=0∵120A ≠∴()3r A =∴*()1r A =∴*0A x =的基础解系有3个线性无关的解向量.∵*||0A A A E ==∴A 的每一列都是*0A x =的解又∵120A ≠∴134,,ααα线性无关∴*0A x =的通解为112334x k k k ααα=++,故选C.6.设A 为3阶矩阵,12,αα为A 的属于特征值1的线性无关的特征向量,3α为A 的属于-1的特征向量,则1100010001P AP -⎛⎫ ⎪=- ⎪ ⎪⎝⎭的可逆矩阵P 为A.1323(,,)αααα+-B.1223(,,)αααα+-C.1332(,,)αααα+-D.1232(,,)αααα+-答案:D解析:1122,A A αααα==33A αα=-1100010001P AP -⎛⎫ ⎪=- ⎪⎪⎝⎭ P ∴的1,3两列为1的线性无关的特征向量122,ααα+P 的第2列为A 的属于-1的特征向量3.α-1232(,,)P αααα∴=+-∴选D7.设,,A B C 为三个随机事件,且1()()()4P A P B P C ===,()0P AB =,()P AC =1()12P BC =,则,,A B C 中恰有一个事件发生的概率为A.34 B.23C.12D.512答案:D 解析:()()()[()]P ABC P ABUC P A P A BUC ==-()()()()()()111004126P A P AB AC P A P AB P AC P ABC =-+=+-+=--+=()()()[()]()()()()111004126P BAC P B AUC P B P B AUC P B P BA P BC P ABC ==-=--+=--+=()()()[()]()()()()111104121212P CBA P CBUA P C P CU BUA P C P CB P CA P ABC ==-=--+=--+=()()()()1115661212P ABC ABC ABC P ABC P ABC P ABC ++=++=++=8.设随机变量(,)X Y 服从二维正态分布10,0;1,4;2N ⎛⎫- ⎪⎝⎭,随机变量中服从标准正态分布且与X 独立的是A.()5X Y +B.()5X Y -C.()3X Y +D.()3X Y -答案:C解析:[]12(),)333D X Y DX DY X Y ⎤+=++⎥⎣⎦[]123352133()03()~(0,1).3DX DY E X Y X Y N =++=-=⎤+=⎥⎣⎦+二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸指定的位置上9.设arctan[sin()],z xy x y =++则(0,)d |z π=________.解析:d d d zz z x y x x∂∂=+∂∂2(0,π)1[cos()],π11[sin()]z z y x y x xy x y x ∂∂=++=-∂+++∂2(0,π)1[cos()],11[sin()]z zx x y y xy x y y ∂∂=++=-∂+++∂∴(0,π)(π1)d d zx y x ∂=--∂10.曲线2e 0xyx y ++=在点(0,-1)处的切线方程为________.解析:21(22)0xy y e y xy ''+++=①将0,1x y ==-代入①得1.y k '==11(0)1.y x y x ∴+=-=-即11.Q 表示产量,成本()10013C Q Q =+,单价p ,需求量800() 2.3Q P P =-+则工厂取得利润最大时的产量为______.解析:()L QP C Q =-8003100132800161002Q QQ QQ Q ⎛⎫=--- ⎪+⎝⎭=--+22160016(2)()0(2)8Q L Q Q Q -+'==+∴=12.设平面区域21(,),0121x D x y y x x ⎧⎫=≤≤≤≤⎨⎬+⎩⎭,则D 绕y 轴旋转所成旋转体体积为______.解析:11222102x dy x dyππ+⎰⎰1122102121312014141ln 32411ln 23821ln 23y dy dyy y y πππππππ⎛⎫=+- ⎪⎝⎭⎡⎤=+-⎢⎥⎣⎦⎛⎫=⋅+- ⎪⎝⎭⎛⎫=- ⎪⎝⎭⎰⎰13.行列式01101111011a a a a --=--________.解析:2224201101101101111011011000011110111111000021214.0a a a a a a a aaa a a a a aa aaaa a a aa a a----=----+-+-==----=--=-14.随机变量X 的概率分布1{},1,2,32kP X k k Y ===…,表示X 被3除的余数,则()E Y =______.解析:{0}{3,1,2.}P Y P X k k ====L 3101{1}{31,0,1,2.}2k k P Y P X k k ∞+====+==∑L 321{2}{32,0,1,2.}2k k P Y P X k k ∞+====+==∑L 313211()1222k k k k E Y ∞∞++===⋅+⋅∑∑111111221188=+--87=三、解答题:15~23小题,共94分.请将解答写在答题纸指定位置上.解答写出文字说明、证明过程或演算步骤.15.已知,a b 为常数,11e nn ⎛⎫+- ⎪⎝⎭与a b n ,当n →∞时为等价无穷小,求,a b .15.【解】1ln 11ln 112111e 11lim lim [e e]1lim e[e 1]11lim e ln 11111lim e 1211lim e 2nn an n n an a n n a n a n a n n n b b n n b n n b n n n b n n n b ⎛⎫+ ⎪⎝⎭→∞→∞⎛⎫+- ⎪⎝⎭→∞→∞→∞-→∞⎛⎫+- ⎪⎝⎭==-=⋅⋅-⎡⎤⎛⎫=⋅⋅+- ⎪⎢⎥⎝⎭⎣⎦⎡⎤⎛⎫=⋅-- ⎪⎢⎥⎝⎭⎣⎦⎛⎫=- ⎪⎝⎭10a ∴-=1e 112a b ⎛⎫∴=⋅-= ⎪⎝⎭e 2b =-16.求二元函数33(,)8f x y x y xy =+-的极值解析:.求一阶导可得22324fx y x fy x y∂=-∂∂=-∂令100601012f x x x f y y y∂⎧⎧==⎪⎪=⎧∂⎪⎪⎨⎨⎨∂=⎩⎪⎪==⎪∂⎪⎩⎩可得求二阶导可得2222226148f f fx y x x y y∂∂∂==-=∂∂∂当0,00. 1.0x y A B C -====-=时.20AC B -<故不是极值.当11612x y ==时1. 1. 4.A B C ==-=2110.10,612AC B A ⎛⎫->=> ⎪⎝⎭故且极小值极小值33111111,8661261212216f ⎛⎫⎛⎫⎛⎫=+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭17.若250,(0)1,(0)1y y y f f ''''++===-,则(1)求()f x (2)()d n n a f x x π+∞=⎰,求1nni a =∑解析:(1)250y y y '''++=的特征方程为2250r r ++=∴1212r i⋅=-±∴12()e (cos 2sin 2)xy x c x c x -=+1212()e (cos 2sin 2)e (2sin 22cos 2)x x y x c x c x c x c x --'=-++-+∵(0)1,(0)1y y '==-∴121,0c c ==∴()ecos 2xy x x-=(2)()d e cos 2d x n n n a f x x x xππ+∞+∞-==⎰⎰cos 2d e cos 2e e d cos 2e2e sin 2d e 2sin 2d e e 2sin 2e 2e cos 2d 5e 1e 5x x x n n n n x n n xn n xx n n n n n n x x x x x x x x x a a ππππππππππππ+∞+∞+∞---+∞--+∞--+∞+∞-----=-=-⋅+=--=-+=-+-+∴=-∴=-⎰⎰⎰⎰⎰211[e e e ]51e [1e ]51e 11e 5e 1nn i i n n a ππππππππ---=----=-+++-=-⋅--=-⋅-∑…18.(,)(,)d d Df x y x f x y x y =+⎰⎰其中221(,)0x y D x y y ⎧⎫+≤⎪⎪=⎨⎬≥⎪⎪⎩⎭求(,)d Dxf x y σ⎰⎰解析:积分区域D如图:(,)(,)d d Df x y x f x y x y =⎰⎰两边积分得(,)d d d (,)d d d d D DD D f x y x y x y f x y x y x x y =+⋅⎰⎰⎰⎰⎰⎰⎰⎰100d 2d D x y x y=⎰⎰⎰2012(1)d 2x x =-⎰31220(1)d x x =-⎰42031πsin cos d 422x t t t π==⋅⋅⎰3π16=d d 0Dx x y =⎰⎰所以3π(,)d d 16D f x y x y =⎰⎰3π(,)16f x y x =从而23π(,)d d d d d 16D D Dxf x y x y x y x x y =+⎰⎰⎰⎰⎰⎰23πd d 16Dx x y =⎰⎰12003πd d 16x y =⎰13π16x x =⎰22203πsin sin cos d 16x t t t t π=⎰22203πsin (1sin )d 16t t t π=-⎰3π1π31π1622422⎛⎫=⋅-⋅⋅ ⎪⎝⎭3π256=19.()f x 在[0,2]上具有连续导数,max{|()|},[0,2]M f x x =∈(1)证[0,2]|()|M f ξξ'∃∈≤(2)若[0,2]|()|0x f x M M '∀∈≤=则解析:证明:(1)由max{|()|}[0,2]M f x x =∈,知存在[0,2]c ∈,使|()|f c M =,若[0,1]c ∈由拉格朗日中值定理得至少存在一点(0,)c ξ∈,使()(0)()()f c f f c f c c ξ-'==从而|()||()|f c M f M c cξ'==≥若(1,2]c ∈,同理存在(,2)c ξ∈使(2)()()()22f f c f c f c c ξ--'==--从而|()||()|22f c M f M c c ξ'==≥--综上,存在(0,2)ξ∈,使|()|f M ξ'≥.(2)若0M >,则0,2.c ≠由(0)(2)0f f ==及罗尔定理知,存在(0,2)η∈,使()0,f η'=当(0,]c η∈时,00()(0)()d |()||()(0)||()|d ,cc f c f f x x M f c f c f f x x Mc '-='==-≤<⎰⎰又2(2)()()d c f f c f x x'-=⎰2|()||(2)()||()|(2)c M f c f f c f x dx M c '==-≤≤-⎰于是2(2)2M Mc M c M <+-=矛盾.故0.M =20.设二次型22121122(,)44f x x x x x x =++经正交变换1122x y Q x y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭化为二次型22121122(,)4g y y ay y y by =++,其中a b ≥.(1)求,a b 的值.(2)求正交矩阵Q .解析:(1)设1-22==-242a A B b ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦由题意可知T 1.Q AQ Q AQ B -==∴A 合同相似于B∴144a ba b ab +=+⎧≥⎨=⎩∴ 4.1a b ==(2)212||524E A λλλλλ--==--∴A 的特征值为0,5当0λ=时,解(0)0E A x -=.得基础解为121α⎡⎤=⎢⎥⎣⎦当5λ=时,解(5)0E A x -=得基础解为212α⎡⎤=⎢⎥-⎣⎦又B 的特征值也为0,5当0λ=时,解(0)0E B x -=得1212βα⎡⎤==⎢⎥-⎣⎦当5λ=时,解(5)0E B x -=得2121βα⎡⎤==⎢⎥⎣⎦对12,αα单位化111222||||αγααγα====令112221[,],[,]Q Q γγγγ==则T T 11220005Q AQ Q BQ ⎡⎤==⎢⎥⎣⎦故T T 2112Q Q AQ Q B=可令T 1243553455Q Q Q =⎤⎥⎥=⎥⎥⎦⎡⎤-⎢⎥=⎢⎥⎢⎥--⎢⎥⎣⎦21.设A 为2阶矩阵,(,)P A αα=,其中α是非零向量且不是A 的特征向量.(1)证明P 为可逆矩阵(2)若260A A ααα+-=,求1P AP -,并判断A 是否相似于对角矩阵.解析:(1)0.A ααλα≠≠且故.A αα与线性无关则(,)2r A αα=则P 可逆.21(,)(,)06()1106.11AP A A A A x A P AP ααααα-==⎛⎫= ⎪-⎝⎭⎛⎫= ⎪-⎝⎭故(2)由260A A ααα+-=设2(6)0(3)(2)0A A E A E A E αα+-=+-=由20(6)0A A E x α≠+-=得有非零解故|(3)(2)|0A E A E +-=得|3|0|2|0A E A E +=-=或若|(3)|0(2)02A E A E A ααα+≠-==则有故与题意矛盾|3|0|2|0A E A E +=-=故同理可得于是A 的特征值为123 2.λλ=-=A 有2个不同特征值故A α相似对角化22.二维随机变量(,)X Y在{(,)0D x y y =<<上服从均匀分布11000X Y Z X Y ->⎧=⎨-≤⎩ ,21000X Y Z X Y +>⎧=⎨+≤⎩ (1)求12(,)Z Z 联合分布(2)12Z Z ρ解析:(1)(,)x y服从均匀分布则2,0(,)0,y f x y π⎧<<⎪=⎨⎪⎩其他则121{0,0}{,}4P Z Z P X Y X Y ===≤≤-=121{0,1}{,}2P Z Z P X Y Y X ===≤>-=12{1,0}{,}0P Z Z P X Y X Y ===>≤-=121{1,1}{;}4P Z Z P X Y X Y ===>>-=(2)12,Z Z的相关系数ρ=1113116444.3316=-⋅==23.设某种元件的使用寿命T 的分布函数为1e,0,()0,.mt t F t θ⎛⎫- ⎪⎝⎭⎧⎪-≥=⎨⎪⎩其他其中m θ,为参数且大于零.(1)求概率{}P T t >与{|}P T S t T S >+>,其中0,0S t >>.(2)任取n 个这种元件做寿命试验,测得它们的寿命分别为12,,n t t t …,若m 已知,求θ的最大似然估计值ˆθ.解析:(1){}1()m t P T t F t e θ⎛⎫- ⎪⎝⎭>=-={}{}mt P T s t T s P T t e θ⎛⎫- ⎪⎝⎭>+>=>=(2)1.,0()()0t m m m m t e t f t F t else θθ⎛⎫- ⎪--⎝⎭⎧⎪≥'==⎨⎪⎩ 似然函数()1()n i i L f t θθ==∏,()11100n m m i i t m n mn n i m t t e t else θθ-=---⎧∑⎪≥=⎨⎪⎩ 当120,0,,0n t t t ≥≥≥ 时()111()nm mi i t m n mn n L m t t e θθθ-=---∑= 取对数11ln ()ln ln (1)ln n nm mi i i i L n m mn m t t θθθ-===-++-∑∑求导数(1)1ln ()n m m i i d L mn m t d θθθθ-+==-+∑令ln ()0d L d θθ=解得θ所以θ的最大似然估计值θ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年考研数学(三)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim0=--→b x ae xx x ,则a =______,b =______.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y )0,则2fu v∂=∂∂.%(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则212(1)f x dx -=⎰.(4) 二次型2132********)()()(),,(x x x x x x x x x f ++-++=的秩为 .(5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P _______.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则12221112()()2n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎢⎥⎣⎦∑∑.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (1 , 0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ ]…(8) 设f (x )在(, +)内有定义,且a x f x =∞→)(lim , ⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g ,则(A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ ] (9) 设f (x ) = |x (1 x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点. `(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点.[ ](10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim1>+∞→nn n u u ,则∑∞=1n n u 发散. (4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是(A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4). [ ]:(11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ](12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ ]((13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量.[ ](14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1. [ ]三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) 《(15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→. (16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 422=+y x 和1)1(22=++y x 所围成的平面区域(如图).,(17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥xaxadt t g dt t f )()(,x[a , b ),⎰⎰=babadt t g dt t f )()(.证明:⎰⎰≤b aba dx x xg dx x xf )()(.(18) (本题满分9分) 设某商品的需求函数为Q = 100 5P ,其中价格P(0 , 20),Q 为需求量.(I) 求需求量对价格的弹性d E (d E > 0); 】(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加. (19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x 的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式.~(20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, T b αb α)2,2,1(3+---=, Tβ)3,3,1(-=,试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式. (21) (本题满分13分) 设n 阶矩阵 ]⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111b b b b b b A .(Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵. (22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布;"(Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布. (23) (本题满分13分) 设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量;{(Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.2016年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim0=--→b x ae xx x ,则a =1,b =4-.【分析】本题属于已知极限求参数的反问题. 【详解】因为5)(cos sin lim0=--→b x a e xx x ,且0)(cos sin lim 0=-⋅→b x x x ,所以0)(lim 0=-→a e x x ,得a = 1. 极限化为51)(cos lim )(cos sin lim00=-=-=--→→b b x x x b x a e x x x x ,得b =4.|因此,a = 1,b =4.【评注】一般地,已知)()(limx g x f = A , (1) 若g (x ) 0,则f (x ) 0;(2) 若f (x ) 0,且A 0,则g (x ) 0.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y )0,则)()(22v g v g vu f'-=∂∂∂.【分析】令u = xg (y ),v = y ,可得到f (u , v )的表达式,再求偏导数即可. 【详解】令u = xg (y ),v = y ,则f (u , v ) =)()(v g v g u+, ¥所以,)(1v g u f =∂∂,)()(22v g v g v u f '-=∂∂∂. (3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则21)1(221-=-⎰dx x f .【分析】本题属于求分段函数的定积分,先换元:x1 = t ,再利用对称区间上奇偶函数的积分性质即可.【详解】令x1 = t ,⎰⎰⎰--==-121121221)()()1(dt x f dt t f dx x f=21)21(0)1(12121212-=-+=-+⎰⎰-dx dx xe x .【评注】一般地,对于分段函数的定积分,按分界点划分积分区间进行求解.!(4) 二次型2132********)()()(),,(x x x x x x x x x f ++-++=的秩为 2 .【分析】二次型的秩即对应的矩阵的秩, 亦即标准型中平方项的项数, 于是利用初等变换或配方法均可得到答案.【详解一】因为2132********)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=于是二次型的矩阵为 ⎪⎪⎪⎭⎫ ⎝⎛--=211121112A ,由初等变换得 ⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→000330211330330211A ,从而 2)(=A r , 即二次型的秩为2.】【详解二】因为2132********)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++= 2322321)(23)2121(2x x x x x -+++= 2221232y y +=,其中 ,21213211x x x y ++= 322x x y -=.所以二次型的秩为2.(5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X Pe1. 【分析】 根据指数分布的分布函数和方差立即得正确答案. )【详解】 由于21λDX =, X 的分布函数为 ⎩⎨⎧≤>-=-.0,0,0,1)(x x e x F x λ故=>}{DX X P =≤-}{1DX X P =≤-}1{1λX P )1(1λF -e1=.【评注】本题是对重要分布, 即指数分布的考查, 属基本题型.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则22121212)()(21σn n Y Y X X En j j n i i =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+-+-∑∑==.…【分析】利用正态总体下常用统计量的数字特征即可得答案.【详解】因为 2121])(11[1σX X n E n i i =--∑=, 2122])(11[2σY Y n E n j j =--∑=, 故应填 2σ.【评注】本题是对常用统计量的数字特征的考查.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (1 , 0). (B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ A ]【分析】如f (x )在(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )(在(a , b )内有界.【详解】当x0 , 1 , 2时,f (x )连续,而183sin )(lim1-=+-→x f x ,42sin )(lim 0-=-→x f x , 42sin )(lim 0=+→x f x ,∞=→)(lim 1x f x ,∞=→)(lim 2x f x , 所以,函数f (x )在( 1 , 0)内有界,故选(A).【评注】一般地,如函数f (x )在闭区间[a , b ]上连续,则f (x )在闭区间[a , b ]上有界;如函数f (x )在开区间(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在开区间(a , b )内有界.(8) 设f (x )在(, +)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则 (A) x = 0必是g (x )的第一类间断点.(B) x = 0必是g (x )的第二类间断点.^(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关.[ D ]【分析】考查极限)(lim 0x g x →是否存在,如存在,是否等于g (0)即可,通过换元xu 1=, 可将极限)(lim 0x g x →转化为)(lim x f x ∞→.【详解】因为)(lim )1(lim )(lim 0u f x f x g u x x ∞→→→=== a (令xu 1=),又g (0) = 0,所以,当a = 0时,)0()(lim 0g x g x =→,即g (x )在点x = 0处连续,当a0时,)0()(lim 0g x g x ≠→,即x = 0是g (x )的第一类间断点,因此,g (x )在点x = 0处的连续性与a 的取值有关,故选(D). |【评注】本题属于基本题型,主要考查分段函数在分界点处的连续性. (9) 设f (x ) = |x (1 x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ C ] 【分析】由于f (x )在x = 0处的一、二阶导数不存在,可利用定义判断极值情况,考查f (x )在x = 0的左、右两侧的二阶导数的符号,判断拐点情况. ~【详解】设0 < < 1,当x(, 0)(0 ,)时,f (x ) > 0,而f (0) = 0,所以x = 0是f (x )的极小值点. 显然,x = 0是f (x )的不可导点. 当x ( , 0)时,f (x ) = x (1x ),02)(>=''x f ,当x(0 ,)时,f (x ) = x (1x ),02)(<-=''x f ,所以(0 , 0)是曲线y = f (x )的拐点.故选(C).【评注】对于极值情况,也可考查f (x )在x = 0的某空心邻域内的一阶导数的符号来判断. (10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.-(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim1>+∞→nn n u u ,则∑∞=1n n u 发散. (4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是 (A) (1) (2). (B) (2) (3).(C) (3) (4).(D) (1) (4).[ B ]【分析】可以通过举反例及级数的性质来说明4个命题的正确性. 【详解】(1)是错误的,如令nn u )1(-=,显然,∑∞=1n n u 分散,而∑∞=-+1212)(n n n u u 收敛.(2)是正确的,因为改变、增加或减少级数的有限项,不改变级数的收敛性. ~(3)是正确的,因为由1lim 1>+∞→nn n u u可得到n u 不趋向于零(n),所以∑∞=1n n u 发散.(4)是错误的,如令n v n u n n 1,1-==,显然,∑∞=1n n u ,∑∞=1n n v 都发散,而∑∞=+1)(n n n v u 收敛. 故选(B).【评注】本题主要考查级数的性质与收敛性的判别法,属于基本题型.(11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ).(C) 至少存在一点),(0b a x ∈,使得0)(0='x f .'(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ]【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项. 【详解】首先,由已知)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ;另外,0)()(lim)(>--='+→ax a f x f a f a x ,由极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >. 同理,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以,(A) (B) (C)都正确,故选(D).【评注】 本题综合考查了介值定理与极限的保号性,有一定的难度. #(12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ D ] 【分析】 利用矩阵A 与B 等价的充要条件: )()(B r A r =立即可得.【详解】因为当0||=A 时, n A r <)(, 又 A 与B 等价, 故n B r <)(, 即0||=B , 故选(D). 【评注】本题是对矩阵等价、行列式的考查, 属基本题型.(13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 ;(A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量. [ B ] 【分析】 要确定基础解系含向量的个数, 实际上只要确定未知数的个数和系数矩阵的秩. 【详解】 因为基础解系含向量的个数=)(A r n -, 而且⎪⎩⎪⎨⎧-<-===.1)(,0,1)(,1,)(,)(*n A r n A r n A r n A r根据已知条件,0*≠A 于是)(A r 等于n 或1-n . 又b Ax =有互不相等的解, 即解不惟一, 故1)(-=n A r . 从而基础解系仅含一个解向量, 即选(B).【评注】本题是对矩阵A 与其伴随矩阵*A 的秩之间的关系、线性方程组解的结构等多个知识点的综合考查.¥(14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1. [ C ]【分析】 利用标准正态分布密度曲线的对称性和几何意义即得.【详解】 由αx X P =<}|{|, 以及标准正态分布密度曲线的对称性可得21}{αx X P -=>. 故正确答案为(C). 【评注】本题是对标准正态分布的性质, 严格地说它的上分位数概念的考查.三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) `(15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→. 【分析】先通分化为“”型极限,再利用等价无穷小与罗必达法则求解即可. 【详解】xx xx x x x x x x 2222202220sin cos sin lim )cos sin 1(lim -=-→→ =346)4(21lim 64cos 1lim 44sin 212lim 2sin 41lim 22020304220==-=-=-→→→→x x x x x x x x x x x x x x . 【评注】本题属于求未定式极限的基本题型,对于“0”型极限,应充分利用等价无穷小替换来简化计算.(16) (本题满分8分) 求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的平面区域(如图). %【分析】首先,将积分区域D 分为大圆}4|),{(221≤+=y x y x D 减去小圆}1)1(|),{(222≤++=y x y x D ,再利用对称性与极坐标计算即可.【详解】令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D ,由对称性,0=⎰⎰Dyd σ.⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ⎰⎰⎰⎰--=θπππθθcos 20223220220dr r d dr r d .)23(916932316-=-=ππ所以,)23(916)(22-=++⎰⎰πσDd y y x .)【评注】本题属于在极坐标系下计算二重积分的基本题型,对于二重积分,经常利用对称性及将一个复杂区域划分为两个或三个简单区域来简化计算. (17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥xaxadt t g dt t f )()(,x[a , b ),⎰⎰=babadt t g dt t f )()(.证明:⎰⎰≤b aba dx x xg dx x xf )()(.【分析】令F (x ) = f (x ) g (x ),⎰=xa dt t F x G )()(,将积分不等式转化为函数不等式即可. 【详解】令F (x ) = f (x ) g (x ),⎰=xa dt t F x G )()(,由题设G (x ) 0,x [a , b ],·G (a ) = G (b ) = 0,)()(x F x G ='.从而⎰⎰⎰⎰-=-==bab aba babadx x G dx x G x xG x xdG dx x xF )()()()()(,由于 G (x ) 0,x [a , b ],故有0)(≤-⎰b adx x G ,即0)(≤⎰ba dx x xF .因此⎰⎰≤babadx x xg dx x xf )()(.【评注】引入变限积分转化为函数等式或不等式是证明积分等式或不等式的常用的方法. (18) (本题满分9分) ( 设某商品的需求函数为Q = 1005P ,其中价格P(0 , 20),Q 为需求量.(I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加.【分析】由于d E > 0,所以dP dQ Q P E d =;由Q = PQ 及dPdQQ P E d =可推导 )1(d E Q dPdR-=. 【详解】(I) PPdP dQ Q P E d -==20.(II) 由R = PQ ,得)1()1(d E Q dPdQ Q P Q dP dQ P Q dP dR -=+=+=. 、又由120=-=PPE d ,得P = 10.当10 < P < 20时,d E > 1,于是0<dPdR,故当10 < P < 20时,降低价格反而使收益增加.【评注】当d E > 0时,需求量对价格的弹性公式为dPdQQ P dP dQ Q P E d -==. 利用需求弹性分析收益的变化情况有以下四个常用的公式:Qdp E dR d )1(-=,Q E dp dRd )1(-=,p E dQ dR d)11(-=, d E EpER-=1(收益对价格的弹性). (19) (本题满分9分) ~设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x 的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式.【分析】对S (x )进行求导,可得到S (x )所满足的一阶微分方程,解方程可得S (x )的表达式.【详解】(I) +⋅⋅⋅+⋅⋅+⋅=864264242)(864x x x x S ,易见 S (0) = 0, 、+⋅⋅+⋅+='642422)(753x x x x S)642422(642 +⋅⋅+⋅+=x x x x)](2[2x S x x +=.因此S (x )是初值问题0)0(,23=+='y x xy y 的解.(II) 方程23x xy y +='的通解为]2[3C dx e x ey xdx xdx+⎰⎰=⎰-22212x Ce x +--=,、由初始条件y(0) = 0,得C = 1.故12222-+-=x e x y ,因此和函数12)(222-+-=x e x x S .【评注】本题综合了级数求和问题与微分方程问题,2002年考过类似的题. (20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, T b αb α)2,2,1(3+---=, Tβ)3,3,1(-=,试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;:(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式.【分析】将β可否由321,,ααα线性表示的问题转化为线性方程组βαk αk αk =++332211是否有解的问题即易求解. 【详解】 设有数,,,321k k k 使得βαk αk αk =++332211. (*) 记),,(321αααA =. 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---+-=323032221111),(b a a b a βA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111b a b a .(Ⅰ) 当0=a 时, 有[⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→10001001111),(b βA . 可知),()(βA r A r ≠. 故方程组(*)无解, β不能由321,,ααα线性表示. (Ⅱ) 当0≠a , 且b a ≠时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→0100101011001a a 3),()(==βA r A r , 方程组(*)有唯一解:a k 111-=, ak 12=, 03=k . 此时β可由321,,ααα唯一地线性表示, 其表示式为 211)11(αaαa β+-=. …(Ⅲ) 当0≠=b a 时, 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--→0000111011001a a , 2),()(==βA r A r , 方程组(*)有无穷多解, 其全部解为a k 111-=, c ak +=12, c k =3, 其中c 为任意常数. β 可由321,,ααα线性表示, 但表示式不唯一, 其表示式为321)1()11(αc αc aαa β+++-=. 【评注】本题属于常规题型, 曾考过两次(1991, 2000).(21) (本题满分13分) ^设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111b b b b b b A . (Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵.【分析】这是具体矩阵的特征值和特征向量的计算问题, 通常可由求解特征方程0||=-A E λ和齐次线性方程组0)(=-x A E λ来解决.【详解】 (Ⅰ) 1当0≠b 时,111||---------=-λbbbλbb b λA E λ$=1)]1(][)1(1[------n b λb n λ ,得A 的特征值为b n λ)1(11-+=,b λλn -===12 . 对b n λ)1(11-+=,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=-b n b b b b n b b b b n A E λ)1()1()1(1 →⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------)1(111)1(111)1(n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------0000111111111111 n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------0000111111111111n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---000000001111n n n n n →⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---0000110010101001解得Tξ)1,,1,1,1(1 =,所以A 的属于1λ的全部特征向量为Tk ξk )1,,1,1,1(1 = (k 为任意不为零的常数).(对b λ-=12,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=-b b b b b b b b b A E λ 2→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛000000111 得基础解系为T ξ)0,,0,1,1(2 -=,T ξ)0,,1,0,1(3 -=,T n ξ)1,,0,0,1(,-= .故A 的属于2λ的全部特征向量为n n ξk ξk ξk +++ 3322 (n k k k ,,,32 是不全为零的常数).2 当0=b 时,n λλλλA E λ)1(1010001||-=---=-,【特征值为11===n λλ ,任意非零列向量均为特征向量.(Ⅱ)1当0≠b 时,A 有n 个线性无关的特征向量,令),,,(21n ξξξP =,则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---+=-b b b n AP P 11)1(112 当0=b 时,E A =,对任意可逆矩阵P , 均有E AP P =-1.【评注】本题通过考查矩阵的特征值和特征向量而间接考查了行列式的计算, 齐次线性方程组的求解和矩阵的对角化等问题, 属于有一点综合性的试题. 另外,本题的解题思路是容易的, 只要注意矩阵中含有一个未知参数, 从而一般要讨论其不同取值情况. (22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ;⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布.【分析】本题的关键是求出),(Y X 的概率分布,于是只要将二维随机变量),(Y X 的各取值对转化为随机事件A 和B 表示即可.【详解】 (Ⅰ) 因为 121)|()()(==A B P A P AB P , 于是 61)|()()(==B A P AB P B P , 则有 121)(}1,1{====AB P Y X P , ?61)()()(}0,1{=-====AB P A P B A P Y X P , 121)()()(}1,0{=-====AB P B P B A P Y X P , 32)]()()([1)(1)(}0,0{=-+-=⋃-=⋅===AB P B P A P B A P B A P Y X P , ( 或 32121611211}0,0{=---===Y X P ), 即),(Y X 的概率分布为:(Ⅱ) 方法一:因为 41)(==A P EX ,61)(==B P EY ,121)(=XY E , 41)(2==A P EX ,61)(2==B P EY ,|163)(22=-=EX EX DX ,165)(22=-=EY EY DY ,241)(),(=-=EXEY XY E Y X Cov , 所以X 与Y 的相关系数 1515151),(==⋅=DYDX Y X Cov ρXY . 方法二: X, Y 的概率分布分别为X 0 1 Y 0 1P43 41 P 65 61 则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而|.1515),(=⋅=DYDX Y X Cov XY ρ(Ⅲ) Z 的可能取值为:0,1,2 .32}0,0{}0{=====Y X P Z P , 41}1,0{}0,1{}1{===+====Y X P Y X P Z P , 121}1,1{}2{=====Y X P Z P , 即Z 的概率分布为:【评注】本题考查了二维离散随机变量联合概率分布,数字特征和二维离散随机变量函数的分布等计算问题,属于综合性题型 (23) (本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量;^(Ⅱ) 当1=α时, 求未知参数β的最大似然估计量;(Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.【分析】本题是一个常规题型, 只要注意求连续型总体未知参数的矩估计和最大似然估计都须已知密度函数, 从而先由分布函数求导得密度函数. 【详解】 当1=α时, X 的概率密度为⎪⎩⎪⎨⎧≤>=+,,,101,),(1x x x ββx f β(Ⅰ) 由于⎰⎰+∞++∞∞--=⋅==11,1);(ββdx x βx dx βx xf EX β 令X ββ=-1, 解得 1-=X X β, <所以, 参数β的矩估计量为 1-=X Xβ.(Ⅱ) 对于总体X 的样本值n x x x ,,,21 , 似然函数为∏=+⎪⎩⎪⎨⎧=>==ni i βnni n i x x x x βαx f βL 1121.,0),,,2,1(1,)();()(其他当),,2,1(1n i x i =>时, 0)(>βL , 取对数得 ∑=+-=ni ixββn βL 1ln )1(ln )(ln ,对β求导数,得∑=-=ni i x βn βd βL d 1ln )]([ln , 令0ln )]([ln 1=-=∑=ni i x βn βd βL d , 解得 ∑==ni ixnβ1ln ,于是β的最大似然估计量为∑==n i ixnβ1ln ˆ. ( Ⅲ) 当2=β时, X 的概率密度为⎪⎩⎪⎨⎧≤>=,,,αx αx x αβx f 0,2),(322016年考研各科目专用题库复习和考试软件说明:本人已于2015年通过了考研。