数学物理方法 留数定理及其应用
数学物理方法-留数
2
2
sin ei ei 1 z z1 2i 2i
2. 把原积分变成:
2 R(cos,sin ) d f (z) d z
0
|z|1
2 i f (z)在单位元内孤立奇点的留数之和
5.2 利用留数定理计算实函数积分
1
2 i
C
f
( z )dz
Resf
()
C
1
n
2 i C f (z)dz k1 Resf (bk )
x
二者相加,并注意到右边两个积分的围道的方向
相反,其和为零,得到右边所有有限孤立奇点和
无穷远点的留数之和为0。
5.1 留数及其留数定理
6.所有奇点留数之和:应用
例题:求积分
1
zk
e2 ki/4
i 1
i
k 0 k 1 k 2 k 3
都是一阶极点,且都在 z 2内。
y | z | 2
x
例题
5.1 留数及其留数定理
例4
ez
计算积分 |z|2 z(z 1)2 dz
5.2 利用留数定理计算实函数积分
5.2 利用留数定理计算实函数积分
2.留数定理:证明
如图,在每个孤立奇点bk,以bk为中心,做一个小圆 k ,使得每个 k中只包含一个孤立奇点bk。则根据多联通区域的柯西积分公式
有
m
C
f
z dz
k 1 k
f
z dz
其中
也是逆时针方向的。
k
将f z 在bk的邻域内展开为洛朗级数
f
因此
数学物理方法1课件——4.3 留数定理的应用
⎡⎣(z
−
z0 )m
f
(z)⎤⎦
z=0为f(z)的三阶极点
Re sf
(0)
=
1 lim 2! z→0
d2 dz 2
⎛ ⎜⎝
z
− sin z3
z
⎞ ⎟⎠
把z=0看做f(z)的六阶极点
Re sf
(0)
=
1 lim
5! z→0
d5 dz5
⎛ ⎜⎝
z6
z
− sin z6
z
⎞ ⎟⎠
=
1 lim 5! z→0
d5 dz5
∫ I = 2π R(cosθ ,sinθ )dθ 0
∫ 积分为:I =
⎛ z + z−1 z − z−1 ⎞ dz
c
R
⎜ ⎝
2
,
2i
⎟ ⎠
iz
,c为|z|=1的单位圆周
其中
f
(
z)
=
R
⎛ ⎜ ⎝
z
+ z−1 2
,
z
− z−1 2i
⎞ ⎟ ⎠
1 iz
在单位圆内有n个孤立奇点时 zk (k = 1, 2,..., n),
z1
=
−
1
ε
−
1
ε
1−ε2 ,
z2
=
−
1
ε
+
1
ε
1− ε 2
z1和z2分别是函数f(z)的两个一阶极点。
由于 0 < ε < 1 ,因此 | z1 |= 1+
1−ε2 > 1 >1
ε
ε
即z1点不在单位圆内
| z2 |= 1−
留数定理及其应用
式,故 I = 2πi sin 0 = 0.
例3 I=
e1/z dz.
|z|=1
解 本题的被积函数 f (z) = e1/z 在圆周 |z| = 1 的内部有一个本性奇点 z = 0,它在
z = 0 处的 Laurent 展开式为 f (z) = e1/z = 1 + 1/z + . . . + 1/n!zn + . . .,故 Res f (0) =
n=−∞
则
cn
=
1 2πi
Γρ
(z
f (z) − a)n+1
dz.
令 n = −1,得
c−1
=
1 2πi
f (z) dz.
Γρ
与式 (1) 比较,即得
Res f (a) = c−1.
(2)
由此可知,可去奇点处的留数为 0. 注 有些书上直接用式 (2) 作为留数的定义,这与式 (1) 的定义显然是等价的.
数的问题.由上节可以看到,计算极点的留数主要涉及微分运算.对于本性奇点,必须作
Laurent 展开来计算其留数.作 Laurent 展开,通常归结为 Taylor 展开,而计算 Taylor 展
开式的系数也是微分运算问题.所以可以说,留数定理把积分运算转化成了比较容易的微分
运算,因此它为积分的计算提供了一项非常有用的技术.
§3 用留数定理计算围线积分
4
推论一(单极点的留数,第一公式) 若 a 是 f (z) 的单极点,则
Res f (a) = [(z − a)f (z)]|z=a.
(5)
推论二(二阶极点的留数) 若 a 是 f (z) 的二阶极点,则
Res f (a) = [(z − a)2f (z)] |z=a.
《数学物理方法》第4章留数定理及其应用
z
sin z6
z
,
0]
1 d5
lim
z0
5!
dz5
z sin z
1 5!
12
小结
1 定义
Re s[f
( z ),
z0 ]
1
2 i
C
f (z)dz c1
2 定理
n
f (z)dz 2i R es[ f (z), zk ]
3 计算方法 C
k 1
ⅰ 一级奇点 ⅱ m 级极点
Re
s[
f
(
z),
k 1
15
法则4
Re s[
f
(z),
]
Re s[
f
(1) z
1 z2
, 0]
证明
1
Re s[ f (z), ]
2 i C
f (z)dz
z ei
1 2 f (ei )iei d
2 i 0
z 1
rei
1
ei
ei
r 1
1 2
2 i 0
f
(
1 rei
)
i rei
d
1 2
2 i 0
(见例2.1.2=p29-30 和例2.1.4=p30)。
它们指出在什么条件下,f(z)及f(z)eimz沿 上半平面的无穷大半圆周的积分为零。
22
2.大圆弧引理-第二章内容
若(z)在无穷远点的无心邻域内连续,在大 圆弧CR(z=Rei, R→∞,12 )上
23
引理1 若z在上半平面及实轴上趋于∞时, zf(z)
n
f (z)dz 2i R es[ f (z), zk ]
y
第六章 留数理论及应用
第六章 留数理论及应用第一节 留数1、留数定理:设函数f (z )在点0z 解析。
作圆r z z C =-|:|0,使f (z )在以它为边界的闭圆盘上解析,那么根据柯西定理,积分⎰Cdz z f )(等于零。
设函数f (z )在区域R z z <-<||00内解析。
选取r ,使0<r<R ,并且作圆r z z C =-|:|0,那么如果f (z )在0z 也解析,则上面的积分也等于零;如果0z 是f (z )的孤立奇点,则上述积分就不一定等于零;这时,我们把积分⎰C dz z f i)(21π 定义为f (z )在孤立奇点0z 的留数,记作),(Res 0z f ,这里积分是沿着C 按逆时针方向取的。
注解1、我们定义的留数),(Res 0z f 与圆C 的半径r 无关:事实上,在R z z <-<||00内,f (z )有洛朗展式:∑+∞-∞=-=n n nz z z f )()(0α,而且这一展式在C 上一致收敛。
逐项积分,我们有,2)()(10-+∞-∞==-=∑⎰⎰απαi dz z z dz z f n Cnn C因此,10),(Res -=αz f 。
注解2、即f (z )在孤立奇点0z 的留数等于其洛朗级数展式中1z z -的系数。
注解3、如果0z 是f (z )的可去奇点,那么.0),(Res 0=z f定理1.1(留数定理)设D 是在复平面上的一个有界区域,其边界是一条或有限条简单闭曲线C 。
设f (z )在D 内除去有孤立奇点n z z z ,...,,21外,在每一点都解析,并且它在C 上每一点都解析,那么我们有:),,(Res 2)(1k nk Cz f i dz z f ∑⎰==π这里沿C 的积分按关于区域D 的正向取。
证明:以D 内每一个孤立奇点k z 为心,作圆k γ,使以它为边界的闭圆盘上每一点都在D 内,并且使任意两个这样的闭圆盘彼此无公共点。
留数定理及其应用
留数定理及其应用
留数定理是复变函数理论中的重要定理,用于计算函数在奇点处的留数。
具体来说,如果函数f(z)在区域D内解析,除了有
限个孤立奇点外,则对于D内的任意简单闭曲线C,有如下
留数定理:
∮Cf(z)dz = 2πi * sum(Res(f, z_k))
其中,∮C表示沿C的积分,Res(f, z_k)是函数f(z)在奇点z_k
处的留数。
留数定理的应用主要包括以下几个方面:
1. 计算积分:通过计算函数在奇点处的留数,可以用留数定理来计算复变函数沿闭合曲线的积分。
这样可以简化积分计算,尤其对于实数不易计算的积分,留数定理非常有用。
2. 计算极限:通过留数定理,可以计算复变函数在某个奇点处的极限。
如果函数的极限存在,那么它等于该点处的留数。
3. 解析延拓:通过计算函数在奇点处的留数,可以确定函数在奇点处的性质,如极点的类型(一级极点、二级极点等)以及解析延拓的可能性。
4. 解析函数恢复:留数定理可以用于还原函数原本的性质,即通过计算函数在奇点处的留数,可以还原函数在奇点前的数值。
总之,留数定理是复变函数理论中的重要工具,广泛应用于多个数学和工程领域,如积分计算、边界值问题、电路分析等。
它简化了复变函数的计算和研究,为解决实际问题提供了有效的方法。
数学物理方法课件:第四章 留数定理及其应用
z0
z0 z 2i 2i 2
z0 0 是f(z)的三阶极点
Re
s
f(0)
lim
z0
1 2!
d2 dz 2
z3 f(z)
1 d2
lim
z0
2!
dz
2
1
z
2i
12
lim
z0
2!(z
2i)3
1 i
8i 8
[例2] [解1]
求
f(z)
1 zn 1
f(z)(z 1)(z
在z0=1的留数
k!
Re s
f(z0)
a1
bm 1 (m
1
d m1
1)!dzm1
(z)
z z0
Re s
f(z0)(m
1 1)!zlimz0
ddzmm11(z
z0)m
f(z)
[推论]
若
f(z)
P(z),其中
Q(z)
P(z)和
Q(z)都在
[z则证0点:明解] 析R,Pe(s且zf0)(Pz(00),z0)QQ(P0((,z0)zzQ00))(0z0) 0,Q(z0) 0
对
R
z
k
环 域中一个正向
(顺时针)回路l’,另作一
l
个围绕 点半径r很大的圆
形环路C。根据柯西定理:
C
f(z)dz f(z)dz ak zkdz
l
C()
k C
zkdz (rei)kd(rei)
C
C
ir
k
1
2
e
i(k
1)
d
0
2i
k 1 k 1
0
第四章留数定理及其应用
x ol
f (z)dz l
ak
zkdz
l
ak l zkdz a1 2 i
k
k
66
因此f (z)在z=的留数为f (z)在z=邻域内的罗朗展开式 中z-1项的系数的a-1相反数,即
Re sf () a1 若f (z)在有限远的可去奇点邻域内的罗朗展开式中没有负 幂项, f (z)在有限远的可去奇点上的留数为零;若无限远 点为可去奇点时, f (z)在无限远点邻域内的罗朗展开式中 没有正幂项,但有负幂项,所以无限远点为可去奇点时, Res f ()一般不为零.
f (z) P(z) 1 其中P(z)=1,Q(z)=sinz,则:
Q(z) sin z
Res
f
(k )
lim
zk
1 (sin z)'
lim
zk
1 cos z
(1)k
k 0, 1, 2,
1144
由于z=不是f (z)的孤立奇点(是各奇点z=k当 k 时
的极限点),因此在z=的留数没有意义.
四、推论
若函数f (z)在复平面上除有限个孤立奇点外解析,则函 数f (z)在各奇点(包括无限远点)上的留数和为零. 此 定理称为留数和定理.
77
【证】 设闭曲线l把复平面内所有的有限远的孤立奇点都包围 在内,则:
m
l f (z)dz 2 i Resf (bk ) k=1
无限远点的留数为: f (z)dz 2 i Resf () l
b
a F ( x)dx C F (z)dz l F (z)dz
2 i[F(z)在闭曲线所包围的区域内各奇点上的留数之和].
其中
b
第四章 留数定理及其应用
类型II 设积分 类型
∫
∞
−∞
存在, f ( x) dx存在,复变函数 f (z) 在
实轴上没有奇点,在上半平面内只有有限个奇点, 实轴上没有奇点,在上半平面内只有有限个奇点,且
lim z f ( z ) = 0,(0 ≤ arg z ≤ π )
z →∞
则
∫
∞
−∞
f ( x) dx = 2π i
Im z > 0
2.另一个定义 在无穷远点的去心邻域 R < | z | < ∞ , 另一个定义:在无穷远点的去心邻域 另一个定义 的洛朗展式为: 若 f (z) 的洛朗展式为:
f ( z) =
n=−∞
an z n , ∑
∞
( R < | z | < ∞)
则无穷远点的留数值为: 则无穷远点的留数值为:
Res f (∞) = −a−1
∑ Res f ( z)
C
(*)
证明: 证明:
∫
∞
−∞
f ( x) dx = lim ∫ f ( z ) dz − lim ∫
R→∞
R→∞ CR
f ( z ) dz
引理4.1) 引理 = lim ∫ f ( z ) dz − 0 (引理
R→∞ C
= 2π i
Im z > 0
∑ Res f ( z)
(留数定理 留数定理) 留数定理
留数:负一次幂的系数. 留数:负一次幂的系数 适用于所有的孤立奇点类型; 适用于所有的孤立奇点类型 特别是本性奇点或性质不明的奇点 特别是本性奇点或性质不明的奇点. 本性奇点
例4.4 例4.5
f ( z) = e 求 Res f (0)
留数的定义,性质以及应用
P( z ) ( z − z0 ) f ( z ) = Q ( z ) − Q ( z0 ) 因为 z − z0
令 z→z0 即得(5.2.6)
9
ze dz 2 ∫ 例 1 计算积分 C z − 1 , C 为正向圆周|z|=2.
z ez f ( z) = 2 [解] 由于 z − 1 有两个一级极点+1,−1, 而
z
[解] z=0 为被积函数的一级极点, z=1 为二级 极点, 而 z z e e Res[ f ( z ),0] = lim z ⋅ = lim = 1. 2 2 z →0 z → 0 ( z − 1) z ( z − 1)
15
⎤ 1 d ⎡ e 2 Res[ f ( z ),1] = lim ( z − 1) ⎢ 2⎥ (2 − 1)! z →1 d z ⎣ z ( z − 1) ⎦
6
2. 留数的计算规则 规则1 如果z0为f(z)的一级极点, 则
Res[ f ( z ), z0 ] = lim ( z − z0 ) f ( z )
z → z0
m −1
(5.2.4)
规则2 如果z0为f(z)的m级极点, 则
d 1 m Res[ f ( z ), z0 ] = lim m −1 {( z − z0 ) f ( z )} (m − 1)! z → z0 d z (5.2.5)
例1 例2 例3 例4 计算积分 计算积分 计算积分
| z | =1
∫
dz (0 < ε < 1) 2 ε z + 2z + ε
ze z dz 2 z −1 z dz 4 z −1
| z|= 2
∫
| z| = 2
∫
《数学物理方法》第4章留数定理及其应用
法则1 如果z0为f (z)的一级极点,那么
Re
s[
f
( z ),
z0
]
lim ( z
z z0
z0
)
f
(z)
证明
f (z)
c1
z
1 z0
c0
c1 ( z
z0 )
(z z0 ) f (z) c1 c0 (z z0 ) c1(z z0 )2
例1 计算积分
C
zez z2
1
dz,
其中C为正向圆周:| z
12
3)
Re s[
tan
z,
2k 1] 2
sin (cos
z z)
z 2k 1
1
.
2
2
tan zdz 2i
Res[tan z, 2k 1] = 10i
|z|3
k 0
2
11
z sin z
例5 计算下列积分 |z|1
z6 dz.
解 z 0为f (z)的三级极点.
f (z)dz=2i Res[ f (z), 0]
n
f (z)dz 2i R es[ f (z), zk ]
C
k 1
证明 由复闭路定理得
n
f (z)dz f (z)dz
C
k 1 Ck
由留数的定义得
n
f (z)dz 2i R es[ f (z), zk ]
C
k 1
y C1
C
z•1 C2 o C3 • z3 •z2 x
5
三、留数的计算
z0
]
lim(
lim
z z0
P(z0 ) Q(z0 )
数学物理方法留数定理例题
数学物理方法留数定理例题一、留数定理简介留数定理是数学物理方法中的一个重要定理,起源于复分析领域。
它指出,在一定条件下,一个函数在某个区域的边界上的取值与在该区域内部某一点的取值相同。
这个定理由德国数学家卡尔·魏尔斯特拉斯(Carl Wiener)于1880年首次提出,后来被法国数学家让·卡当(Jean Coulomb)命名为“留数”。
留数定理在复分析、实分析、偏微分方程等领域具有广泛的应用。
二、留数定理的应用1.解析延拓留数定理可以用于解析延拓问题。
当一个函数在某个区域内具有奇偶性时,可以通过留数定理将该函数在边界上的取值延拓到内部点。
这种方法在解决复杂区域的积分问题时非常有用。
2.计算积分利用留数定理可以计算复杂区域的积分。
通过将积分区域分解为简单区域,并在每个简单区域内部选择一个代表点,计算代表点处的函数值,最后将各个代表点处的函数值相加,即可得到积分结果。
这种方法称为“分部积分法”。
3.求解微分方程留数定理还可以应用于求解微分方程。
通过在边界上设置适当的边界条件,可以将微分方程转化为一个或多个积分方程。
利用留数定理计算积分,可以得到微分方程的解。
三、留数定理的推广留数定理在复分析领域有多种推广形式。
例如,在多元函数中,留数定理可以推广为多重留数定理;在无穷级数中,留数定理可以用来计算级数的和;在偏微分方程中,留数定理可以用于求解边界值问题。
四、留数定理与其他数学物理方法的联系与区别留数定理与其他数学物理方法,如解析延拓、residue 计算、积分方程方法等有密切联系。
它们都用于解决复分析和实分析中的问题,但具体应用场景和解决问题的手段不同。
留数定理侧重于研究函数在边界与内部点之间的关系,而其他方法则关注如何利用这种关系求解问题。
五、留数定理在实际问题中的应用案例留数定理在实际问题中具有广泛的应用。
例如,在电路分析中,留数定理可以用于计算复杂电路中的电流、电压等物理量;在经济学中,留数定理可以用于研究货币供应量、利率等经济变量之间的关系;在生物学中,留数定理可以用于研究生物种群的数量动态等。
第4章留数定理及其应用
4.1
留数定理
residue
f ( z ) dz = 2π i ∑ Re sf (bk )
k =1 m
一、留数定理 若函数 f(z)在 D 内除有限个孤立奇点 bk 外解析,则
∫
L
( Re s f (bk ) = a−k ) 1
D L: 内任意的包含有限个孤立奇点的闭合曲线。
Re s f (bk ) :f(z)在 D
8
式中 ϕ ( z ) ,ψ ( z ) 均在 b 点解析, ϕ (b) ≠ 0 ,而 b 为ψ ( z ) 的一阶零点 (即ψ (b) = 0, ψ ' (b) ≠ 0 )
ϕ ( z) a−1 = lim( z − b) f ( z ) = lim( z − b) z →b z →b ψ ( z)
1 = 2i
(3)计算 Resf(0)
1 1 方法一: Resf (0) = lim( z − 0) f ( z ) = lim z ( z − 2i ) z = − 2i z →0 z →0
方法二: a2 = 0 是 f(z)的一阶极点,且 f ( z ) = ( z − 2i) z ⇒ ψ ( z )
⇒ 2π i Re s f (∞ ) + 2π i ∑ Re s f (bk ) = 0 ⇒
∑ Re s f (b ) + Re s f (∞) = 0
k k
k
——求 z = ∞处留数的另一种方法;可将求许多有限远点 的残数之和的问题转化为求无穷远点的留数问题。
19
2. 应用:先求出容易求的留数,再利用这个定理求比较 难求的留数。 例:求
n
n = −∞
( a nk ) 2π i δ n , −1 ∑
《数学物理方法》3留数定理及其应用
1)
z0 1 是f(z)的单极点
Re s f(1) lim( z 1)f(z) 1
z1
n
[解2]
Re
s
f(1)
lzim1( zn
1 1)
lzim1
1 nz n1
1 n
[例3] 求 f(z) 1 的极点及其留数
sin z
[解] z n(n 0, 1, 2, )
z0
z0 z 2i 2i 2
z0 0 是f(z)的三阶极点
Re
s
f(0)
lim
z0
1 2!
d2 dz 2
z3 f(z)
1 d2
lim
z0
2!
dz
2
1
z
2i
lim
z0
1 2!(z
2 2i)3
1 i
8i 8
[例2] [解1]
求
f(z)
1 zn 1
f(z)(z 1)(z
在z0=1的留数
f(z)
z n 是f(z)的单极点
Re
s
f(n)
zlimn( z
n) 1
sin
z
lim
zn
( z n)
(sin z)
lim
zn
1 cos
z
(
1)n
[例] 求
f(z)(szin
2z 1)3
ez 的极点及其留数
z1
[解] z0 1是f(z)的单极点
z0 1 是f(z)的三阶极点
zkdz (re i)kd(re i)
C
C
ir
k
1
2
e
6.2留数定理及其应用
R e s [ f ( z ), ] C 1 0 .
R es[ f (z ), ] R es[ f ( 1 ) 1
2
, 0]
z z
R es[
1 (1 -3 z)(1 -z )
4
,0] 0
四.利用留数计算某些实积分
(1)
2
0
R (cos , sin ) d 型 , 其中 R (cos , sin ) 为
由留数定理一: I 2 i(R es [ f ( z ), 1] R es [ f ( z ), i ])
1 2 2 i lim [( z 1) f ( z )] lim [( z i ) f ( z ) z1 z i (2 1)!
2 i(
6 ( 1 )( 4 )( 6 )
1
.
解 f (z) 2 3 (1 z )
0
1 2 i
1 (1 x )
2 3
dx
1
2
1
1 (1 x )
2 3
dx
3
2 i Re s [ f ( z ), i ] i 1 12 3 16
( 3 1 )! z i
lim [( z i )
z ai 2
f ( z ) ) lim (( z bi ) f ( z ))]
z bi
2 i[
b
3
2
3a
2
2 2 2
4a i(b
a
2 bi ( b
1
2
)
a
2 2
]
(b 2a )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于条件(1)
奇点 z=/2i, 3/2i,
数学物理方法2015.02
第二节 应用留数定理计算实函数的积分
计算积分 设 f ( z)
1 dx cosh x
y=
1 cosh z
奇点 z=/2i, 3/2i, ,周期 2i -R
0
O
R
R
eix 1 dx cosh x 1 e
eiz C cosh z dz
0 eiR y eiR y dy i dy cosh( R iy ) cosh( R iy )
2 i iz Res f ( z ) e 1 e z i / 2
第二节 应用留数定理计算实函数的积分
计算积分 设 f ( z)
eix dx cosh x
y=
y=/2 y=0
1 cosh z
奇点 z=/2i, 3/2i, ,周期 2i -R
eiz C cosh z dz R R eix eix dx dx R cosh x R cosh( x i ) i
| z z0 |
f z dz a z z dz
n | z z0 | n n 0
z0
2 ia1
如何计算留数,或系数a-1
数学物理方法2015.02
第一节 留数及留数定理
留数的计算方法
(1) 一般方法:利用留数的定义来求留数 (2) 根据孤立奇点的类型来计算留数
问题:寻找一条新的方法
第二节 应用留数定理计算实函数的积分
设函数 f (z) 在闭合回路C所围成的区 域B内除有限个孤立奇点 z1, z2, …, zN 外解析,并且直到边界连续,则有
其中
C
f z dz 2 i Res f ( z j )
j 1
N
C
z
1
z
N
2
B
z
f z 0 可去奇点: Res zz
数学物理方法2015.02
第二节 应用留数定理计算实函数的积分 类型二
f x dx
其中被积函数在实轴上无奇点;积分区间为(-,)
无穷积分的收敛性 柯西主值
v. p
f x dx lim
R R R
R
f x dx
f x dx lim
f ( z)
1 (1 z 2 ) 2
y z=i O z=-i x
1 dx 2 i Res f ( z ) 2 2 z i (1 x )
数学物理方法2015.02
第二节 应用留数定理计算实函数的积分
说明II:
1. 当函数 f (z) 在上半平面上有无穷多个 奇点时该如何处理 2. 例子
第五章 留数定理及其应用
第一节 留数及留数定理 第二节 应用留数定理计算实函数的 积分
ห้องสมุดไป่ตู้
数学物理方法2015.02
第一节 留数及留数定理
留数的概念
设 z0 是函数 f (z) 的孤立奇点,则由Laurent定理 知:在 z=z0 点的某个去心邻域内 f (z) 可展开成 Laurent级数
f z
(A) 可去奇点 (B) m 级极点
Res f z 0
z z0
d m1 1 m Res f z lim m1 z z 0 f z z z z0 m 1! z0 dz
(C) 本性奇点
数学物理方法2015.02
按第一种方法来计算
R R
R
f x dx
数学物理方法2015.02
f x dx v. p
f x dx
第二节 应用留数定理计算实函数的积分
将实积分化成闭合回路的复积分
R R
CR
lim
R
f x dx
f x dx
f ( z)dz
第二节 应用留数定理计算实函数的积分
2. 利用实函数到复函数的自然扩张
f ( x) f ( z )
C
a
b
a
b
b
b a
a
f ( x)dx f ( z )dz
a
b
f ( x) dx f ( z) dz f ( z) dz
C
数学物理方法2015.02
第二节 应用留数定理计算实函数的积分
成立的前提: (1) f (z)在上半平面只有有限个奇点
lim (2) R
数学物理方法2015.02
CR
f ( z )e imz dz 0
第二节 应用留数定理计算实函数的积分
说明I:
对于条件(2)
lim f ( z )e imz dz 0成立 1. 在什么条件下有 R
约当引理:若 f (z)0 (z ),则有
第二节 应用留数定理计算实函数的积分
定积分的计算
Newton-Leibnitz公式
困难:求原函数
b
a
f ( x)dx F (b) F (a)
其中函数F(x)是函数f(x)的原函数
2
0
1 d 1 cos
数学物理方法2015.02
0
sin(x 2 )dx
0
cos(x 2 )dx
R
CR
lim
CR
f ( z )e imz dz 0
2. 关于条件 f (z)0 (z )的一点说明 3. 例子:计算积分
0
x sin x dx 1 x2
z f ( z) 1 z2
y z=i O z=-i x
x sin x 1 xeix iz dx dx 2 Res f ( z ) e 2 2 z i 1 x i 1 x
数学物理方法2015.02
第二节 应用留数定理计算实函数的积分
思考:
计算积分
cos x dx, 2 cosh x
cos x dx 4 cosh x
数学物理方法2015.02
第二节 应用留数定理计算实函数的积分
实轴上有奇点的情况
0
1 1 * * 1 R cos ,sin d R ( z z ), ( z z ) dz 2 2i iz | z| 1
数学物理方法2015.02
第二节 应用留数定理计算实函数的积分
举例:
例1:
2
0
1 d 1 cos
其中0<<1
留数定理的应用
例1
dz (0 1) 计算积分 2 z 2z | z| 1
1 z2 2z
设 f ( z)
奇点 z
1 1 2
一级极点
1
z z
0
dz 2 iResf ( z ) 2 z 2z | z| 1
cos x dx, cosh x
cos x dx 3 cosh x
数学物理方法2015.02
第二节 应用留数定理计算实函数的积分 类型三
CR
f x eimx dx
O R
其中被积函数 f (x) 在实轴上无奇点; -R 积分区间为(-,),m > 0
f ( x)eimx dx 2 i { f ( z)eimz 在上半平面内所有奇点 处的留数和 }
C
R
R
CR
f ( z )dz
-R
O
R
利用留数定理
f ( x)dx 2 i { f ( z )在上半平面内所有奇点 处的留数和 }
成立的前提: (1) f (z)在上半平面只有有限个奇点
lim (2) R
CR
f ( z )dz 0
数学物理方法2015.02
第二节 应用留数定理计算实函数的积分
1 i 2 i ( z z ) 1 2
数学物理方法2015.02
第一节 留数及留数定理
例2 计算积分
| z| 2
ze z dz 2 z 1
例3
计算积分
| z| 2
z dz 4 z 1
例4
计算积分
| z| 2
ez dz 2 z ( z 1)
数学物理方法2015.02
1 C cosh z dz R R 1 1 R dx dx R cosh x R cosh( x i ) 0 1 1 i dy i dy 0 cosh( R iy ) cosh( R iy )
数学物理方法2015.02
O
R
说明I:
对于条件(2)
lim f ( z )dz 0 成立 1. 在什么条件下有 R
引理:若 z f (z)0 (z ),则有
R
CR
lim
CR
f ( z )dz 0