空调节能技术中英文对照资料外文翻译文献

合集下载

浅谈环保节能状态下暖通空调的新技术中英文

浅谈环保节能状态下暖通空调的新技术中英文

浅谈环保节能状态下暖通空调的新技术中英文The new technology of HVAC energy saving and environmental protection under thestate of暖通空调是分户的中央空调,是能够创造一种舒适的室内环境。

而家居分体的空调只能解决冷暖问题,解决不了空气处理过程。

笔者结合环保节能背景谈谈暖通空调的新技术,对同行从业者具有一定的指导和参考价值。

HVAC is the household central air conditioning, is able to create a comfortable indoor environment. And home furnishing split air-conditioning can only solve the heating problems, solve the air handling process. According to the energy saving technology background about HVAC, have guidance and reference value in fellow practitioners.一、暖通空调新技术基本内容A new HVAC technology, basic content(一)空调系统类型( a ) type of air conditioning system1、按照使用目的,空调可分为:舒适空调---要求温度适宜,环境舒适,对温湿度的调节精度无严格要求、用于住房、办公室等环境等。

工艺空调---对温度有一定的调节精度要求,另外空气的洁净度也要有较高的要求。

用于电子生产车间、机房等。

1, in accordance with the purpose of use, air conditioning can be divided into: - Requirements of comfort air conditioning temperature, comfortable environment, no strict requirements, for housing, office environment of temperature and humidity regulation accuracy. Process air conditioning - have a regulatory requirement to the accuracy of the temperature, the air cleanness also have higher requirements. Used in electronic production workshop, machine.2、按照空气处理方式,可分为:集中式(中央)空调---空气处理设备集中在中央空调室里,处理过的空气通过风管送至各房间的空调系统。

空调中英文对照表

空调中英文对照表

目录1. Specification技术参数 (3)2. Core Parts核心部件 (5)3. Multi Variable Units 多联机 (6)4. Chiller水机 (11)5. PTAC 窗机 (15)6. Wall -mounted Unit挂机 (23)7. Floor Standing Unit立柜机 (29)8. Ceiling Cassette Unit天花机 (32)9. Duct Unit风管机 (40)10. Floor &Ceiling Unit座吊机 (44)11. Electronic Control电控 (48)21.Specification技术参数1.1.Indoor Air Inlet DB(dry bulb)Temp 室内进风干球温度1.2.Indoor Air Inlet WB (wet bulb)Temp 室内进风湿球温度1.3.Outdoor Air Inlet DB Temp 室外进风干球温度1.4.Outdoor Air Inlet WB Temp 室外进风湿球温度1.5.Indoor Air Outlet DB Temp 室内出风干球温度1.6.Indoor Air Outlet WB Temp 室内出风湿球温度1.7.Static Pressure静压1.8.Pressure Difference压差1.9.Airflow Volume风量1.10.Dimension 尺寸1.11.Noise Level 噪音等级1.12.Return Air Temp回气温度1.13.Discharge Air Temp排气温度1.14.Enthalpy Difference焓差1.15.Dehumidification除湿1.16.Sensible Heating Capacity显热量tent Cooling Capacity 潜在制冷量1.18.Total Heating Capacity总制热量1.19.COP能效比1.20.Rated Voltage额定电压1.21.Rated Current额定电流1.22.Rated Power Input额定输入功率1.23.Frequency频率1.24.Refrigerant Charge 冷媒充注 Weight 净重1.26.Gross Weight 毛重1.27.Model 型号42.Core Parts核心部件pressor 压缩机2.2.Condenser 冷凝器2.3.Throttle components 节流部件2.4.Capillary 毛细管2.5.4-way reversing valve 四通阀2.6.Electronic expansion valve (EEV)电子膨胀阀2.7.Thermostatic expansion valve 热力膨胀阀2.8.Evaporator 蒸发器2.9.Vapor-liquid separator 气液分离器2.10.Electronic parts box (E-parts box)电控盒2.11.One-way valve 单向阀63.Multi Variable Units 多联机3.1.Front panel前面板3.2.Ironclad asynchronous motor for outdoor unit 异步铁壳室外电机3.3.Motor Bracket电机支架3.4.Front maintenance board前维修板3.5.Left side board 左侧板3.6.Septum plate 中隔板3.7.Welding assy for suction pipe回气管焊接组件3.8.Suction pipe 回气管3.9.Oil return capillary transition tube回油毛细管过渡管3.10.Chassis assy 底盘组件3.11.Chassis 底盘体3.12.Chassis foot 底脚3.13.Chassis reinforced board底盘加强板3.1pressor 压缩机3.15.One-way valve assy 单向阀组件3.16.Connecting pipe for high pressure one-way valve 高压单向阀连接管3.17.Filter 过滤器3.18.One-way valve 单向阀3.19.Valve seat assy阀座板组件3.20.Valve seat 阀座板3.21.Cut-off valve for two connecting pipes 双接管截止阀DN13 3.22.Rear panel 后面板3.23.Right side board 右侧板3.2rge handle大抽手3.25.Protection grill 防护网3.26.Condenser prewelding assy冷凝器预焊组件3.27.Two-row condenser 两排冷凝器3.28.Condenser exhaust receiver welding assy 冷凝器集气焊接组件3.29.Current dividing capillary assy of condenser 冷凝器分流毛细管组件3.30.Condenser main outlet pipe 冷凝器总出管3.31.Fixing pipe of condenser main outlet pipe 冷凝器总出管固定管3.32.Adfluxion pipe assy 汇流管组件3.33.Adfluxion pipe 汇流管3.34.DN8 Copper adapter with holder DN8带座铜接头3.35.Connecting pipe to low pressure valve低压阀连接管3.36.Electronic expansion valve assy 电子膨胀阀组件3.37.Electronic expansion valve 电子膨胀阀3.38.Plastic encapsulating coil 塑封线圈83.39.Expansion valve capillary 膨胀阀毛细管3.40.E-shape filter E型过滤器3.41.DN4 Copper adapter with holder DN4带座铜接头3.42.Filter for oil return pipe 回油管道过滤器3.43.4-way reversing valve assy 四通阀组件3.44.4-way reversing valve 四通阀3.45.4-way valve reversing coil assy 四通阀线圈组件3.46.Discharge pipe assy 排气管组件3.47.Discharge pipe 排气管3.48.Installation copper tube for probe 探头铜管3.49.Oil return pipeline filter 回油管道过滤器3.50.Oil separator 油分离器3.51.Separator 分离器3.52.Top panel foam assy 顶盖板贴棉组件3.53.Rear frame 后边框3.54.Electronic control components 电控部件3.55.Welding assy for E-parts box 电器盒焊接组件3.56.Cooling fin fixing board 散热片固定板3.57.Cooling fin 散热片3.58.Main board assy for ourdoor unit室外主板组件3.59.Module board assy for outdoor unit室外模块板组件3.60.Module board transformer assy for outdoor unit 室外模块板变压器3.61.Monophase filter 单相滤波器3.62.Rubber ring 橡胶圈(小过线圈)3.63.Amorphous inductor 非晶电感3.64.Eliminator 挡水板3.65.Small handle小抽手3.66.Propeller fan轴流风叶3.67.Plastic front net 塑料前网罩104.Chiller水机4.1Front and rear support for wind inlet guide导风圈前后支撑4.2Front and rear support assy for fan 风机前后支撑组件4.3Middle support assy for fan 风机中支撑组件4.4Sealing board for condenser 冷凝器封板4.5Lateral support for wind inlet guide导风圈侧支撑4.6Front and rear beam 前后横梁4.7Lateral beam assy 侧横梁组件4.8Pipe clamp 管夹4.9Fixing board for distributor分流头固定座4.10Trigonal board 三角板4.11Condenser assy冷凝器部件4.12Water pan assy 接水盘组件4.13Vertical shaft assy 立柱组件4.14Evaporator 干式蒸发器4.15Vapour-liquid separator 汽液分离器4.16Compressor 压缩机组件4.17Compressor support assy 压缩机支撑板组件4.18Support for vapour-liquid separator气分支架组件4.19Pipe support管支架4.20High-pressure switch 高压开关4.21Suction pipe components 回气管部件4.22Low-pressure switch 低压开关4.23Throttle componets 节流部件4.24Electronic expansion valve (EEV)电子膨胀阀4.25EEV coil 电子膨胀线圈4.264-Way reversing valve components 四通阀部件4.274-Way reversing valve coil 四通阀线圈4.28Pressure switch 压力开关124.29Discharge pipe components 排气管部件4.30Base assy底座组件4.31E-parts components 电控部件4.32Current transformer 电流互感器4.33Crankcase heater曲轴箱加热器4.34Adapter board for 4-way reversing valve四通阀转接板4.35Main control panel 控制主板4.36Envirionment temperature sensor 环境温度传感器4.37System water inlet temperature sensor系统进水温度传感器4.38System water outlet temperature sensor系统出水温度传感器4.39Unitary water outlet temperature sensor 单元出水温度传感器4.40Fin temperature sensor翅片温度传感器4.41Fan capacitor风机电容4.42Alternating contactor 交流接触器4.43Power terminal 电源端子台4.44Main board transformer 主板变压器4.45Engineering terminal 工程端子台4.46Trigonal set sqare 固定三角板4.47Compressor support assy 压缩机支撑板组件4.48Wire trough support 线槽支架4.49Middle support for wind inlet guide导风圈中支撑4.50Vertical support for wind inlet guide导风圈纵支撑4.51Support assy for fan 风机支架组件4.52Outdoor unit motor 室外电机4.53Propeller fan 轴流风叶145.PTAC 窗机5.1.Air filter 防尘网5.2.Control panel cover操作盖板5.3.Front panel 前面板5.4.Self-locking switch自锁开关5.5.Connection bar连杆5.6.Horizontal louver 水平导风条5.7.Heat-insulation foam for air-out 出风口保温棉5.8.Scroll case base components风壳座部件5.9.Centrifugal fan离心风轮5.10.Fresh air inlet lever新风门连杆5.11.Fresh air inlet新风门5.12.Scroll case cover 风壳盖5.13.Air deflector导风板5.14.Fixing board for vertical louver导风板固定板5.15.Capacitor clamp 电容卡5.16.Capacitor cap电容帽pressor capacitor压缩机电容5.18.Motor电机5.19.Connecting board搭板5.20.Propeller fan轴流风叶5.21.Rear cover 后盖板5.22.Rear brattice后围板5.23.Shutter clamp百叶窗夹5.24.Left shutter frame安装左框条5.25.Cabinet component外箱部件5.26.Upper shutter frame上框条5.27.Installation support 安装支撑5.28.Nut 螺母165.29.Bolt 螺栓5.30.Lower shutter frame 下框条5.31.Right shutter frame 右框条5.32.Shutter 密封百叶5.33.Connection bar to cabinet 外箱连接条5.34.Shutter locking bar 卡条5.35.Motor capacitor 电机电容5.36.Temperature controller 温控器5.37.Main switch 主令开关5.38.Knob 旋钮5.39.Control panel 控制面板5.40.Control box 控制盒5.41.E-parts box 电控盒5.42.Evaporator assy 蒸发器组件5.43.Suction pipe assy回气管组件5.44.Capillary assy 毛细管组件5.45.Condenser output pipe 冷凝器输出管5.46.Input pipe for evaporator 蒸发器输入管5.47.Input pipe for condenser 冷凝器输入管5.48.Condenser assy 冷凝器组件pressor wiring cover nut 压缩机接线盖螺母5.50.Washer for compressor wiring cover压缩机接线盖垫片pressor wiring cover 压缩机接线盖5.52.Overcurrent protector for compressor压缩机过流保护器5.53.Wire to overcurrent protector 过流保护器线体5.54.Sealing gasket for wiring cover 接线盖密封片pressor 压缩机5.56.Rubber cushion for compressor压缩机胶垫5.57.Fixinging nut for compressor压缩机固定螺母5.58.Fixing gasket for compressor 压缩机固定垫片185.59.Motor support 电机支架5.60.Chassis 底盘5.61.Fixing sheet for front panel 前面板固定片5.62.Front panel 前面板5.63.Transformer变压器5.64.Transformer box 变压器盒5.65.Display board assy显示板组件5.66.Main control board assy主控板组件5.67.Air-inlet board 进风孔板5.68.Evaporator base 蒸发器底座5.69.Cover 盖板5.70.Front brattice 前围板5.71.Protecting clamp fro power cord 电源线保护卡5.72.Protecting U-clamp for power cord 电源线保护圈5.73.Scroll case 涡壳5.74.Air -out frame出风口5.75.Self lock switch 自锁开关5.76.Cover for E-parts box电控盒盖板5.77.Left fixing plate for chassis底盘左固定板5.78.Right fixing plate for chassis 底盘右固定板5.79.Supporting bar for installation 安装支承条5.80.Discharge pipe 排气管5.81.Clamp for wires 电线中间夹子5.82.Fixing board for E-parts box电控盒固定板5.83.Rear cover for control box 线路板盖5.84.Power cord clamp电源线夹5.85.Front cover 前盖板5.86.Long connecting board长搭板5.87.Rear cover 后盖板5.88.Wind guiding board 导流板205.89.Water proof rubber ring 防水橡胶圈5.90.Rear rubber ring for motor电机后橡胶圈5.91.Front rubber ring for motor电机前橡胶圈5.92.Short connecting board 短搭板5.93.Pin销5.94.Expansive core 膨胀芯5.95.Fixing plate for chassis底盘固定板5.96.Installation support 安装支架5.97.Front panel components 前面板部件5.98.Electronic control components 电控部件5.99.Control box assy 控制盒组件5.100.Installation parts 安装附件5.101.Remote controller遥控器5.102.Clamp for temp sensor温包卡5.103.Wind inlet guide 导风圈5.104.Swing switch 摇摆开关5.105.Sychronous motor 同步电机5.106.Defrosting temp controller化霜温控器5.107.Rear side board 后侧板5.108.Adjusting bolt 调整螺栓5.109.Rubber plug 橡胶塞5.110.Sealing gasket 密封圈5.111.Drain hose 出水接管5.112.Right lower fixing clamp for motor电机下压盖(右)5.113.Right upper fixing clamp for motor电机上压盖(右)5.114.Left upper fixing clamp for motor 电机上压盖(左)5.115.Left lower fixing clamp for motor 电机下压盖(左)5.116.Water pan 接水盘5.117.Power cord 电源线5.118.Wire joint 二位接线座225.119.Frame fixing board 面框固定板5.120.Drive gear 传动轮5.121.Wire joint panel 接线底板5.122.Heater cut-out assy 热熔断器组件5.123.PTC heater PTC发热器6.Wall-mounted Unit挂机6.1.Front panel 前面板6.2.Air filter 防尘网6.3.Screw cap 螺丝盖6.4.Panel frame 面框6.5.Air cleaner 复合式空气清新网6.6.Air cleaner upper cover 清新器上盖6.7.Window receiver 接收窗片6.8.LED indicator 显示灯镜6.9.Horizontal louver 水平导风叶6.10.Upper horizontal louver 导风条(上)6.11.Lower horizontal louver 导风条(下)6.12.Vertical louver 垂直导风叶6.13.Air out frame 出风框6.14.Louver holder 导风叶连杆6.15.Sychronous motor 同步电机6.16.Drain hose 出水喉6.17.Evaporator temp sensor assy蒸发器温度传感器组件6.18.Left holder for evaporator 蒸发器左支板6.19.Evaporator 蒸发器6.20.Waterproof board assy 挡水板组件6.21.Bearing holder 轴承座246.22.Cross flow fan, assy 贯流风轮组件6.23.Chassis 底盘6.24.Rear cover for chassis 底盘后盖板6.25.Installation plate for indoor unit 室内机安装板6.26.Little installation plate 小安装板6.27.Connecting pipe clamp 配管固定卡6.28.Fan motor 风机电机6.29.Motor cover 电机盖6.30.E-parts box cover 电控盒盖6.31.Indicator holder 显示灯座6.32.Display board assy 显示板组件6.33.Display board enclosure 显示灯罩6.34.Main control board 主电控板6.35.Transformer 变压器6.36.E-parts box 电控盒6.37.Wire clamp 压线条6.38.Wire joint, 5p 小五位接线座组6.39.Remote controller 遥控器6.40.Remote controller installation support assy 遥控器安装支架组件6.41.Display panel 显示面板6.42.Relay holder 继电器底座6.43.Protection box for relay 继电器保护盒6.44.Bush 衬套6.45.Installation board for louver 百叶安装板6.46.Wire clamp for power cord 电线压条6.47.Relay 继电器6.48.Switch board assy 开关板组件6.49.Installation board base 安装板座6.50.Fan capacitor 风机电容266.51.Strengthening board for chassis 底盘加强板6.52.Supporting board for chassis 底盘下板6.53.Fan wheel support 风轮支架6.54.Louver connecting bar 摇摆连杆6.55.Right support for evaporator 蒸发器右支承6.56.Installation plate for main board 电路板安装座6.57.Installation plate for wire joint 接线座安装板6.58.Bear holder 轴承座6.59.Control board assy 控制面板组件6.60.Protecting plate 防护片6.61.Air cleaner cover 滤清器盖6.62.Right cover for motor 电机右盖板6.63.Fixing clamp for motor 电机固定卡6.64.Right cover for panel frame 面框缺口封板6.65.Wind guide on chassis 底盘导风板6.66.E-parts components 电控部件6.67.Plug 堵塞6.68.Lower clap for panel frame 面框下卡扣6.69.Upper clap for panel frame 面框上卡扣6.70.HEAP filter HEAP滤网6.71.Copper nut, TLM-A01 铜螺母TLM-A016.72.Copper nut, TLM-B02 铜螺母TLM-B026.73.Sponge 海绵6.74.Foam 泡沫6.75.Right joint board of Evaporator 蒸发器右连接板6.76.Right side board of front evaporator前蒸发器右边板6.77.Right side board of rear evaporator后蒸发器右边板287.Floor Standing Unit立柜机7.1.Air out frame assy 出风框部件7.2.Conection bar for horizontal louver横导风条连杆7.3.Sealing foam for air outlet frame出风框边密封泡沫7.4.Display box assy 显示控制盒部件7.5.Control box assy 控制盒底座7.6.Front panel components 前面板部件7.7.Sealing board 密封板7.8.Cover components 盖板部件7.9.Water pan components 接水盘部件7.10.Evaporator 蒸发器7.11.Inlet pipe assy for evaporator 蒸发器输入管组件7.12.Outlet pipe for evaporator 蒸发器输出管组件7.13.PTC eletric heating component PTC电加热部件7.14.Left side board component 左侧板部件7.15.Top cover components 顶盖部件7.16.Chassis components 底盘部件7.17.E-parts box 电器盒7.18.Fan motor capacitor 电机电容7.19.Main control board assy 主控板组件7.20.Electric heating control board assy 电辅热辅助组件7.21.Transformer 变压器7.22.Wire joint, 5p 大五位接线座7.23.Wire clamp 压线板7.24.Right side board components 外箱右侧板部件7.25.Chassis 底盘7.26.Fan motor for indoor unit 室内风扇电机7.27.Drain pipe 排水管7.28.Centrifugal fan 离心风轮307.29.Wind inlet guide 导风圈7.30.Wind inlet grille components 进风格栅部件7.31.Air filter 空气滤尘网7.32.Remote controller 遥控器7.33.Indoor temp sensor 室温传感器7.34.Pipe temp sensor 管温传感器7.35.E-parts box cover 电器盒盖7.36.Scroll case components 涡壳部件7.37.Installation box for main board 电路板安装盒7.38.Anion generator components 负离子发生器部件7.39.Anion generator support 负离子发生器支架7.40.Anion generator box 负离子发生器盒7.41.Anion generator 负离子发生器7.42.Right front board for evaporator蒸发器右侧前挡板7.43.Front panel 前面板7.44.Motor holder 电机座7.45.Electric heater assy 电加热管电加热组件7.46.Lower cover for evaporator 蒸发器下挡板7.47.Rubber underlay for motor 电机减振橡胶垫8.Ceiling Cassette Unit天花机8.1.Water pan components 接水盘部件8.2.Water drain plug 排水塞8.3.Capacitor 电容8.4.E-parts box assy 电控盒组件8.5.E-parts box cover 电控盒盖8.6.Transformer 变压器8.7.Main control board 主控板组件328.8.Wind inlet guide 导风圈8.9.Nut 螺母8.10.Fan clamp 风轮卡片8.11.Fan wheel components 风轮部件8.12.Fan motor for indoor unit 室内风扇电机8.13.Motor gascket 电机钢垫8.14.Evaporator base component 蒸发器底座部件8.15.Chassis 底盘部件8.16.Wire clamp board 压线板8.17.Sealing board for outlet pipe 出管密封板8.18.Installation hanger 安装吊钩8.19.Expansion hanger 膨胀吊钩8.20.Drain pump assy 排水泵组件8.21.Water level sensor assy 液位传感器组件8.22.Pumping pipe clamp 抽水管卡环8.23.Pumping pipe 抽水管8.24.Pumping coupling 抽水接管8.25.Separating board for water pump 水泵挡板8.26.Rubber washerfor water pump 水泵胶垫8.27.Installation support for water pump 水泵安装架8.28.Panel components 面板部件8.29.Installation cover 安装盖板8.30.Cowling 导风板8.31.Filter 滤尘网8.32.Grille switch 格栅开关8.33.Grille switch cover 格栅开关盖8.34.Grille 进风格栅8.35.Panel hanger assy 面板吊钩部件8.36.Control box 控制盒8.37.LED support 灯架348.38.Display board assy 显示板8.39.Control box cover 控制盒盖8.40.Panel 面板8.41.Backup plate for air out 出风口垫板8.42.Fixing hanger for evaporator 蒸发器固定钩8.43.Inlet pipe assy for evaporator 蒸发器输入管组件8.44.Outlet pipe assy for evaporator 蒸发器输出管组件8.45.Evaporator components 蒸发器部件8.46.Fixing board for evaporator 蒸发器固定板8.47.Rubber O-ring for wire crossing 过线胶圈8.48.Pipe temp sensor 管温传感器8.49.Indoor temp sensor assy 室温传感器组件8.50.Remote controller 遥控器8.51.Coupling 联轴器8.52.Bearing 轴承8.53.Bearing holder 轴承座8.54.Axis 连接轴8.55.Electric throttle components 电子节流部件8.56.Warning panel 警示图电器板8.57.Circuit diagram panel 线路图电器板8.58.Small wind inlet guide 小导风圈8.59.E-parts components 电控部件8.60.E-parts box welding assy 电器盒焊接组件8.61.No.3 groove clamp 3号压线扣8.62.PTC transformer PTC变压器8.63.Fan capacitor 风机电容8.64.Terminal of indoor unit 室内端子台8.65.Electronic control board for indoor unit 室内电控板8.66.E-parts box 电器盒8.67.Water pan assy 水盘组件368.68.Auxiliary fixing board for evaporator 蒸发器副固定板8.69.Pre-assembling assy for evaporator main fixing board蒸发器主固定板预装组件8.70.Main fixing board for evaporator 蒸发器主固定板8.71.Evaporator components 蒸发器部件8.72.Evaporator baffle 蒸发器挡板8.73.Evaporator 蒸发器8.74.Installation copper tube for probe 探头铜管8.75.Current dividing assy for evaporator蒸发器分流组件8.76.Current collecting pipe assy for evaporator 蒸发器集流管组件8.77.Insulating tube 保温管8.78.Rubber insulating tube 橡塑保温管8.79.Water pump 水泵8.80.Liquid-level sensor 液位传感器8.81.Water pump motor holder 水泵电机座8.82.Underlay for water pump support 水泵支架垫块8.83.Pre-assembling assy for upper foam 上泡沫预装件8.84.Centrifugal fan 离心风叶8.85.Hanger 挂角8.86.Rear brattice 后围板8.87.Pre-assembling assy for motor 电机预装组件8.88.One-axis indoor motor(YDK-35Q-8P3) 单轴室内电机(YDK-35Q-8P3)8.89.Motor foot underlay 电机脚垫8.90.Chassis assy 底盘组件8.91.Right side board 右侧板8.92.Front brattice 前围板8.93.Drain pipe joint排水管接头8.94.Side maintenance board for water pump水泵侧维修板388.95.Lower pipe clamp 下管夹8.96.Upper pipe clamp 上管夹8.97.Valve panel assy 阀板组件8.98.Wire outlet frame 2 出线护框2 8.99.Valve panel 阀板8.100.Wire board 压线板8.101.Left side board 左侧板8.102.Water outlet pipe 出水管409.Duct Unit风管机9.1.Air-out frame 出风口9.2.Front panel components 前面板部件9.3.Evaporator 蒸发器9.4.Input pipe assy 输入管组件9.5.Output pipe assy 输出管组件9.6.Pipe temp sensor assy of indoor unit 室内管温传感器组件9.7.Panel assy 面板9.8.Air filter 防尘网9.9.Canvas passage 帆布风道9.10.Base board for evaporator 蒸发器下衬板9.11.Water pan components 接水盘部件9.12.Cover for middle beam 横梁上盖组件9.13.Middle beam welding assy 中间横梁焊合件9.14.Chassis components 底盘部件9.15.Left side board assy 左侧板组件9.16.wire-crossing board assy 过线板组件9.17.Cover for right side board 右侧板盖板9.18.Capacitor box 电容盒9.19.Capacitor 电容9.20.E-parts box cover 电控盒盖9.21.Installation support for remote controller 遥控器安装架9.22.Remote controller 遥控器9.23.Electronic control components 电控盒部件9.24.Electric part box 电控盒9.25.Wire joint 接线座9.26.Transfomrer 变压器9.27.Main control board assy 主控板组件9.28.Right upper cover for motor 电机上压盖(右)9.29.Right lower cover for motor 电机下压盖(右)9.30.Motor baffle 电机围板9.31.Right side board assy 右侧板组件9.32.Left upper cover for motor 电机上压盖(左)9.33.Left upper cover for motor 电机下压盖(左)9.34.Fan wheel assy 风轮组件9.35.Fan motor 风扇电机9.36.Left and right wind inlet guide assy 左右导风圈部件9.37.Scroll case welding assy 蜗壳焊合件9.38.Rear board assy 后板部件9.39.Indoor temp sensor 室温传感器组件9.40.Cover assy 顶盖组件9.41.Rear-right side board 右后侧板9.42.Front-right side board 右前侧板429.43.Guiding board for water draining 卸水板9.44.Right fixing clamp for motor axle sleeve 电机轴套右压盖9.45.Left fixing clamp for motor axle sleeve 电机轴套左压盖9.46.Fan assy 风机组件9.47.E-parts box support board 电控盒支撑板9.48.Relay 继电器9.49.Installation support for remote controller 遥控器安装架9.50.Remote controller 遥控器9.51.Tubing support board 配管支撑板9.52.Tubing clamp board 配管压板9.53.E-parts cover 控制盒盖9.54.Display board 显示板组件9.55.Right cover 右盖板9.56.Air inlet channel 回风箱9.57.Left cover 左盖板9.58.Electronic throttle components 电子节流部件9.59.Centrifugal fan wheel 离心风轮10.Floor &Ceiling Unit座吊机10.1.Wind return grille assy 回风格珊组件10.2.Left and right air filter 左右滤尘网10.3.Grille clamp 格栅卡扣10.4.Upper panel assy 上盖板组件10.5.Display board assy 显示板组件10.6.Left cover assy 左盖板组件10.7.Step motor 步进电机10.8.Horizontal louver support 导风条支撑架10.9.Horizontal louver assy 导风条组件4410.10.Air outlet frame assy 出风框组件10.11.Water pan components 接水盘部件10.12.Left scroll case 左涡壳10.13.Right scroll case 右涡壳10.14.Fan wheel 风轮10.15.Baffle for motor 电机围板10.16.Capacitor box 电容盒10.17.Capacitor 电容10.18.Middle beam assy 中间横梁组件10.19.Indoor temp sensor 室温传感器10.20.Pipe temp sensor components 管温传感器部件10.21.Lower installation board assy for evaporator 蒸发器下安装板组件10.22.Evaporator assy 蒸发器组件10.23.E-parts box cover 电器盒盖板10.24.E-parts box assy for indoor unit 室内电控盒组件10.25.wire joint, 6p 六位接线座10.26.wire joint, 8p 八位接线座10.27.Main control board assy for indoor unit 室内主控板组件10.28.Auto restart control board 掉电记忆模块组件10.29.E-parts installation box 电器安装盒10.30.Relay 继电器10.31.Transfomrer 变压器10.32.Left side board components 左侧板部件10.33.Chassis components 底盘部件10.34.Right side board components 右侧板部件10.35.Remote controller installation support 遥控器安装架10.36.Remote controller 遥控器10.37.Upper installation board assy for evaporator 蒸发器上安装板组件4610.38.Motor support 电机支座10.39.Right fixing clamp for motor axle sleeve 电机轴套右压盖10.40.Left fixing clamp for motor axle sleeve 电机轴套左压盖10.41.Asychronous motor 异步电机10.42.Right cover assy 右盖板组件10.43.Installation support 安装支架10.44.Inlet pipe for evaporator assy 蒸发器输入管组件10.45.Outlet pipe for evaporator assy蒸发器输出管组件4811.Electronic Control电控11.1.Transformer 变压器11.2.Film capacitor薄膜电容11.3.Flap motor摆叶电机11.4.Fuse保险丝11.5.Secondary 次级11.6.Primary初级11.7.Super low超低11.8.Receptacle插座11.9.Monophase单相11.10.Power connecting wire电源连接线11.11.Butt plug对接插头11.12.Electric heating tube电加热管11.13.Electric heater assembly电加热器组件11.14.Electromagnetic 4-way valve电磁四通阀11.15.Terminal plate端子座11.16.Electronic relay电子继电器11.17.Resistance value电阻值11.18.Circuit breaker断路器11.19.Diode 二极管11.20.Inductive choke扼流圈11.21.Fan motor风扇电机11.22.Anion generator负离子发生器11.23.Buzzer蜂鸣器11.24.Explosion-proof capacitor防爆电容11.25.Feedback反馈11.26.Reaction反应(反射)11.27.Feedback circuit反馈电路11.28.Overload protection 过载保护11.29.Overload circuit过载电路11.30.Overload protector过载保护器11.31.High-pressure switch高压开关11.32.Fixed capacitor固定电容11.33.Live wire火线11.34.Mutual-inductor互感器11.35.Earth plate 接地牌11.36.To outdoor unit接室外机11.37.To indoor unit接室内机11.38.To signal control wire接信号控制线11.39.To evaporator接蒸发器11.40.Terminal block接线端子座11.41.Auxiliary electric heater辅助电加热器11.42.Null wire零线11.43.Leakage breaker漏电断路器50。

暖通空调术语英汉对照索引

暖通空调术语英汉对照索引

附录英汉对照索引AA-weighted sound pressure level A声级〔96〕absolute humidity 绝对湿度〔2〕absolute roughness 绝对粗糙度〔25〕absorbate 吸收质〔49〕absorbent 吸收剂〔49〕absorbent 吸声材料〔100〕absorber 吸收器〔85〕absorptance for solar radiation 太阳辐射热吸收系数〔60〕absorption equipment 吸收装置〔49〕absorption of gas and vapo[u]r 气体吸收〔48〕absorptiong refrige rationg cycle 吸收式制冷循环〔80〕absorption-type refrigerating machine 吸收式制冷机〔84〕access door 检查门〔55〕acoustic absorptivity 吸声系数〔100〕actual density 真密度〔44〕actuating element 执行机构〔94〕actuator 执行机构〔94〕adaptive control system 自适应控制系统〔93〕additional factor for exterior door 外门附加率〔19〕additional factor for intermittent heating 间歇附加率〔19〕additional factor for wind force 高度附加率〔19〕additional heat loss 风力附加率〔19〕adiabatic humidification 附加耗热量〔18〕adiabatic humidiflcation 绝热加湿〔66〕adsorbate 吸附质〔49〕adsorbent 吸附剂〔49〕adsorber 吸附装置〔49〕adsorption equipment 吸附装置〔49〕adsorption of gas and vapo[u]r 气体吸附〔48〕aerodynamic noise 空气动力噪声〔98〕aerosol 气溶胶〔43〕air balance 风量平衡〔35〕air changes 换气次数〔35〕air channel 风道〔51〕air cleanliness 空气洁净度〔104〕air collector 集气罐〔31〕air conditioning 空气调节〔59〕air conditioning condition 空调工况〔76〕air conditioning equipment 空气调节设备〔70〕air conditioning machine room 空气调节机房〔59〕air conditioning system 空气调节系统〔62〕air conditioning system cooling load 空气调节系统冷负荷〔62〕air contaminant 空气污染物〔51〕air-cooled condenser 风冷式冷凝器〔82〕air cooler 空气冷却器〔74〕air curtain 空气幕〔30〕air cushion shock absorber 空气弹簧隔振器〔101〕air distribution 气流组织〔68〕air distributor 空气分布器〔54〕air-douche unit with water atomization 喷雾风扇〔56〕air duct 风管、风道〔51〕air filter 空气过滤器〔58〕air handling equipment 空气调节设备〔70〕air handling unit room 空气调节机房〔59〕air header 集合管〔52〕air humidity 空气湿度〔2〕air inlet 风口〔54〕air intake 进风口〔41〕air manifold 集合管〔52〕air opening 风口〔54〕air pollutant 空气污染物〔51〕air pollution 大气污染〔50〕air preheater 空气预热器〔73〕air return method 回风方式〔70〕air return mode 回风方式〔70〕air return through corridor 走廊回风〔70〕air space 空气间层〔15〕air supply method 送风方式〔69〕air supply mode 送风方式〔69〕air supply (suction) opening with slide plate 插板式送〔吸〕风口〔54〕air supply volume per unit area 单位面积送风量〔69〕air temperature 空气温度〔2〕air through tunnel 地道风〔40〕air-to-air total heat exchanger 全热换热器〔73〕air-to-cloth ratio 气布比〔48〕air velocity at work area 作业地带空气流速〔5〕air velocity at work place 工作地点空气流速〔4〕air vent 放气阀〔31〕air-water systen 空气—水系统〔64〕airborne particles 大气尘〔43〕air hater 空气加热器〔29〕airspace 空气间层〔15〕alarm signal 报警信号〔90〕ail-air system 全空气系统〔63〕all-water system 全水系统〔64〕allowed indoor fluctuation of temperature and relative humidity 室内温湿度允许波动X围〔5〕ambient noise 环境噪声〔97〕ammonia 氨〔78〕amplification factor of centrolled plant 调节对象放大系数〔87〕amplitude 振幅〔100〕anergy 〔77〕angle of repose 安息角〔44〕ange of slide 滑动角〔44〕angle scale 热湿比〔67〕angle valve 角阀〔31〕annual [value] 历年值〔3〕annual coldest month 历年最冷月〔3〕annual hottest month 历年最热月〔3〕anticorrosive 缓蚀剂〔78〕antifreeze agent 防冻剂〔78〕antifreeze agent 防冻剂〔78〕apparatus dew point 机器露点〔67〕apparent density 堆积密度〔45〕aqua-ammonia absorptiontype-refrigerating machine 氨—水吸收式制冷机〔84〕aspiation psychrometer 通风温湿度计〔102〕Assmann aspiration psychrometer 通风温湿度计〔102〕atmospheric condenser 淋激式冷凝器〔83〕atmospheric diffusion 大气扩散〔40〕atmospheric dust 大气尘〔43〕atmospheric pollution 大气污染〔50〕atmospheric pressure 大气压力〔6atmospheric stability 大气稳定度〔50〕atmospheric transparency 大气透明度〔10〕atmospheric turblence 大气湍流〔50〕automatic control 自动控制〔86〕automatic roll filter 自动卷绕式过滤器〔58〕automatic vent 自动放气阀〔32〕available pressure 资用压力〔27〕average daily sol-air temperature 日平均综合温度〔60〕axial fan 轴流式通风机〔55〕azeotropic mixture refrigerant 共沸溶液制冷剂〔77〕Bback-flow preventer 防回流装置〔53〕back pressure of steam trap 凝结水背压力〔14〕back pressure return 余压回水〔15〕background noise 背景噪声〔98〕back plate 挡风板〔39〕bag filler 袋式除尘器〔57〕baghouse 袋式除尘器〔57〕barometric pressure 大气压力〔6〕basic heat loss 根本耗热量〔18〕bend muffler 消声弯头〔100〕bimetallic thermometer 双金属温度计〔102〕black globe temperature 黑球温度〔2〕blow off pipe 排污管〔23〕blowdown 排污管〔23〕boiler 锅炉〔27〕boiller house 锅炉房〔14〕boiler plant 锅炉房〔14〕boiler room 锅炉房〔14〕booster 加压泵〔29〕branch 支管〔22〕branch duct (通风) 支管〔51〕branch pipe 支管〔22〕building envelope 围护结构〔15〕building flow zones 建筑气流区〔37〕building heating entry 热力入口〔15〕bulk density 堆积密度〔45〕bushing 补心〔24〕butterfly damper 蝶阀〔52〕by-pass damper 空气加热器〕旁通阀〔41〕by-pass pipe 旁通管〔23〕Ccanopy hood 伞形罩〔42〕capillary tube 毛细管〔84〕capture velocity 控制风速〔43〕capture velocity 外部吸气罩〔41〕capturing hood 卡诺循环〔79〕Carnot cycle 串级调节系统〔92〕cascade control system 铸铁散热器〔29〕cast iron radiator 催化燃烧〔49〕catalytic oxidation 催化燃烧〔49〕ceilling fan 吊扇〔56〕ceiling panelheating 顶棚辐射采暖〔12〕center frequency 中心频率〔97〕central air conditionint system 集中式空气调节系统〔63〕central heating 集中采暖〔11〕central ventilation system 新风系统〔64〕centralized control 集中控制〔91〕centrifugal pressor 离心式压缩机〔82〕centrifugal fan 离心式通风机〔55〕check damper (通风〕止回阀〔53〕check valve 止回阀〔31〕chilled water 冷水〔76〕chilled water system with primary-secondary pumps 一、二次泵冷水系统〔81〕chimney (排气〕烟囱〔50〕circuit 环路〔24〕circulating fan 风扇〔55〕circulating pipe 循环管〔23〕circulating pump 循环泵〔29〕clean room 洁净室〔104〕cleaning hole 清扫孔〔54〕cleaning vacuum plant 真空吸尘装置〔58〕cleanout opening 清扫孔〔54〕clogging capacity 容尘量〔47〕close nipple 长丝〔24〕closed booth 大容积密闭罩〔42〕closed full flow return 闭式满管回水〔15〕closed loop control 闭环控制〔87〕closed return 闭式回水〔15〕closed shell and tube condenser 卧式壳管式冷凝器〔82〕closed shell and tube evaporator 卧式壳管式蒸发器〔83〕closed tank 闭式水箱〔28〕coefficient of accumulation of heat 蓄热系数〔17〕coefficient of atmospheric transpareney 大气透明度〔10〕coefficient of effective heat emission 散热量有效系数〔38〕coficient of effective heat emission 传热系数〔16〕coefficient of locall resistance 局部阻力系数〔26〕coefficient of thermal storage 蓄热系数〔17〕coefficient of vapo[u]r 蒸汽渗透系数〔18〕coefficient of vapo[u]r 蒸汽渗透系数〔18〕coil 盘管〔74〕collection efficiency 除尘效率〔47〕bustion of gas and vapo[u]r 气体燃烧〔58〕fort air conditioning 舒适性空气调节〔59〕mon section 共同段〔25〕pensator 补偿器〔31〕ponents (通风〕部件〔52〕pression 压缩〔79〕pression-type refrigerating machine 压缩式制冷机〔81〕pression-type refrigerating system 压缩式制冷系统〔81〕pression-type refrigeration 压缩式制冷〔80〕pression-type refrigeration cycle 压缩式制冷循环〔79〕pression-type water chiller 压缩式冷水机组〔81〕concentratcd heating 集中采暖〔11〕concentration of narmful substance 有害物质浓度〔36〕condensate drain pan 凝结水盘〔74〕condensate pipe 凝结水管〔22〕condensate pump 凝缩水泵〔29〕condensate tank 凝结水箱〔28〕condensation 冷凝〔79〕condensation of vapo[u]r 气体冷凝〔49〕condenser 冷凝器〔82〕condensing pressure 冷凝压力〔75〕condensing temperature 冷凝温度〔75〕condensing unit 压缩冷凝机组〔81〕conditioned space 空气调节房间〔59〕conditioned zone 空气调节区〔59〕conical cowl 锥形风帽〔52〕constant humidity system 恒湿系统〔64〕constant temperature and humidity system 恒温恒湿系统〔64〕constant temperature system 恒温系统〔64〕constant value control 定值调节〔91〕constant volume air conditioning system 定风量空气调节系统〔63〕continuous dust dislodging 连续除灰〔48〕continuous dust dislodging 连续除灰〔48〕continuous heating 连续采暖〔11〕contour zone 稳定气流区〔38〕control device 控制装置〔86〕control panel 控制屏〔95〕control valve 调节阀〔95〕control velocity 控制风速〔43〕controlled natural ventilation 有组织自然通风〔37〕controlled plant 调节对象〔86〕controlled variable 被控参数〔86〕controller 调节器〔94〕convection heating 对流采暖〔12〕convector 对流散热器〔29〕cooling 降温、冷却〔39、66〕cooling air curtain 冷风幕〔74〕cooling coil 冷盘管〔74〕cooling coil section 冷却段〔72〕cooling load from heat 传热冷负荷〔62〕cooling load from outdoor air 新风冷负荷〔62〕cooling load from ventilation 新风冷负荷〔62〕cooling load temperature 冷负荷温度〔62〕cooling system 降温系统〔40〕cooling tower 冷却塔〔83〕cooling unit 冷风机组〔56〕cooling water 冷却水〔76〕correcting element 调节机构〔95〕correcting unit 执行器〔94〕correction factor for orientaion 朝向修正率〔19〕corrosion inhibitor 缓蚀剂〔78〕coupling 管接头〔23〕cowl 伞形风帽〔52〕criteria for noise control cross 噪声控频标准〔98〕cross fan 四通〔24〕crross-flow fan 贯流式通风机〔55〕cross-ventilation 穿堂风〔37〕cut diameter 分割粒径〔47〕cyclone 旋风除尘器〔56〕cyclone dust separator 旋风除尘器〔56〕cylindrical ventilator 筒形风帽〔52〕Ddaily range 日较差〔6〕damping factot 衰减倍数〔17〕data scaning 巡回检测〔90〕days of heating period 采暖期天数〔9〕deafener 消声器〔99〕decibel(dB) 分贝〔96〕degree-days of heating period 采暖期度日数〔9〕degree of subcooling 过冷度〔79〕degree of superheat 过热度〔80〕dehumidification 减湿〔66〕dehumidifying cooling 减湿冷却〔66〕density of dust particle 真密度〔44〕derivative time 微分时间〔89〕design conditions 计算参数〔2〕desorption 解吸〔49〕detecting element 检测元件〔93〕detention period 延迟时间〔18〕deviation 偏差〔87〕dew-point temperature 露点温度〔2〕dimond-shaped damper 菱形叶片调节阀〔53〕differential pressure type flowmeter 差压流量计〔103〕diffuser air supply 散流器〔54〕diffuser air supply 散流器送风〔69〕direct air conditioning system 直流式空气调节系统〔64〕direct bustion 直接燃烧〔48〕direct-contact heat exchanger 汽水混合式换热器〔28〕direct digital control (DDC) system 直接数字控制系统〔92〕direct evaporator 直接式蒸发器〔83〕direct-fired lithiumbromide absorption-type refrigerating machine 直燃式溴化锂吸收式制冷机〔85〕direct refrigerating system 直接制冷系统〔80〕direct return system 异程式系统〔20〕direct solar radiation 太阳直接辐射〔10〕discharge pressure 排气压力〔76〕discharge temperature 排气温度〔76〕dispersion 大气扩散〔49〕district heat supply 区域供热〔15〕district heating 区域供热〔15〕disturbance frequency 扰动频率〔100〕dominant wind direction 最多风向〔7〕double-effect lithium-bromide absorption-type refigerating machine 双效溴化锂吸收式制冷机〔85〕double pipe condenser 套管式冷凝器〔82〕down draft 倒灌〔39〕downfeed system 上分式系统〔21〕downstream spray pattern 顺喷〔67〕drain pipe 泄水管〔23〕drain pipe 排污管〔23〕droplet 液滴〔44〕drv air 干空气〔65〕dry-and-wet-bulb thermometer 干湿球温度表〔102〕dry-bulb temperature 干球温度〔2〕dry cooling condition 干工况〔67〕dry dust separator 干式除尘器〔56〕dry expansion evaporator 干式蒸发器〔83〕dry return pipe 干式凝结水管〔22〕dry steam humidifler 干蒸汽加湿器〔72〕dualductairconing ition 双风管空气调节系统〔63〕dual duct system 双风管空气调节系统〔63〕duct 风管、风道〔51〕dust 粉尘〔43〕dust capacity 容尘量〔47〕dust collector 除尘器〔56〕dust concentration 含尘浓度〔46〕dust control 除尘〔46〕dust-holding capacity 容尘量〔47〕dust removal 除尘〔46〕dust removing system 除尘系统〔46〕dust sampler 粉尘采样仪〔104〕dust sampling meter 粉尘采样仪〔104〕dust separation 除尘〔45〕dust separator 除尘器〔56〕dust source 尘源〔45〕dynamic deviation 动态偏差〔88〕Eeconomic resistance of heat transfer 经济传热阻〔17〕economic velocity 经济流速〔26〕efective coefficient of local resistance 折算局部阻力系数〔26〕effective legth 折算长度〔25〕effective stack height 烟囱有效高度〔50〕effective temperature difference 送风温差〔70〕ejector 喷射器〔85〕ejetor 弯头〔24〕elbow 电加热器〔73〕electric heater 电加热段〔71〕electric panel heating 电热辐射采暖〔13〕electric precipitator 电除尘器〔57〕electricradian theating 电热辐射采暖〔13〕electricresistance hu-midkfier 电阻式加湿器〔72〕electro-pneumatic convertor 电—气转换器〔94〕electrode humidifler 电极式加湿器〔73〕electrostatic precipi-tator 电除尘器〔57〕eliminator 挡水板〔74〕emergency ventilation 事故通风〔34〕emergency ventilation system 事故通风系统〔40〕emission concentration 排放浓度〔51〕enclosed hood 密闭罩〔42〕enthalpy 焓〔76〕enthalpy control system 新风〕焓值控制系统〔91〕enthalpy entropy chart 焓熵图〔77〕entirely ventilation 全面通风〔33〕entropy 熵〔76〕environmental noise 环境噪声〔97〕equal percentage flow characteristic 等百分比流量特性〔89〕equivalent coefficient of local resistance 当量局部阻力系数〔26〕equivalent length 当量长度〔25〕equivalent[continuous A] sound level 等效〔连续A〕声级〔96〕evaporating pressure 蒸发压力〔75〕evaporating temperature 蒸发温度〔75〕evaporative condenser 蒸发式冷凝器〔83〕evaporator 蒸发器〔83〕excess heat 余热〔35〕excess pressure 余压〔37〕excessive heat 余热〔35〕exergy 〔76〕exhaust air rate 排风量〔35〕exhaust fan 排风机〔41〕exhaust fan room 排风机室〔41〕exhaust hood 局部排风罩〔41〕exhaust inlet 吸风口〔54〕exhaust opening 吸风口〔54〕exhaust opening orinlet 风口〔54〕exhaust outlet 排风口〔54〕exaust vertical pipe 排气〕烟囱〔50〕exhausted enclosure 密闭罩〔42〕exit 排风口〔54〕expansion 膨胀〔79〕expansion pipe 膨胀管〔23〕explosion proofing 防爆〔36〕expansion steam trap 恒温式疏水器〔32〕expansion tank 膨胀水箱〔28〕extreme maximum temperature 极端最高温度〔6〕extreme minimum temperature 极端最低温度〔6〕Ffabric collector 袋式除尘器〔57〕face tube 皮托管〔103〕face velocity 罩口风速〔42〕fan 通风机〔55〕fan-coil air-conditioning system 风机盘管空气调节系统〔64〕fan-coil system 风机盘管空气调节系统〔64〕fan-coil unit 风机盘管机组〔72〕fan house 通风机室〔41〕fan room 通风机室〔41〕fan section 风机段〔72〕feed-forward control 前馈控制〔91〕feedback 反应〔86〕feeding branch tlo radiator 散热器供热支管〔23〕fibrous dust 纤维性粉尘〔43〕fillter cylinder for sampling 滤筒采样管〔104〕fillter efficiency 过滤效率〔47〕fillter section 过滤段〔71〕filltration velocity 过滤速度〔48〕final resistance of filter 过滤器终阻力〔47〕fire damper 防火阀〔53〕fire prevention 防火〔36〕fire protection 防火〔36〕fire-resisting damper 防火阀〔53〕fittings (通风〕配件〔52〕fixed set-point control 定值调节〔91〕fixed support 固定支架〔24〕fixed time temperature (humidity) 定时温〔湿〕度〔5〕flame bustion 热力燃烧〔48〕flash gas 闪发气体〔78〕flash steam 二次蒸汽〔14〕flexible duct 软管〔52〕flexible joint 柔性接头〔52〕float type steam trap 浮球式疏水器〔32〕float valve 浮球阀〔31〕floating control 无定位调节〔88〕flooded evaporator 满液式蒸发器〔83〕floor panel heating 地板辐射采暖〔13〕flow capacity of control valve 调节阀流通能力〔90〕flow characteristic of control valve 调节阀流量特性〔89〕foam dust separator 泡沫除尘器〔57〕follow-up control system 随动系统〔92〕forced ventilation 机械通风〔33〕forward flow zone 射流区〔69〕foul gas 不凝性气体〔78〕four-pipe water system 四管制水系统〔65〕fractional separation efficiency 分级除尘效率〔47〕free jet 自由射流〔68〕free sillica 游离二氧化硅〔43〕free silicon dioxide 游离二氧化硅〔43〕freon 氟利昂〔77〕frequency interval 频程〔97〕frequency of wind direction 风向频率〔7〕fresh air handling unit 新风机组〔71〕fresh air requirement 新风量〔67〕friction factor 摩擦系数〔25〕friction loss 摩擦阻力〔25〕frictional resistance 摩擦阻力〔25〕fume 烟〔雾〕〔44〕fumehood 排风柜〔42〕fumes 烟气〔44〕Ggas-fired infrared heating 煤气红外线辐射采暖〔13〕gas-fired unit heater 燃气热风器〔30〕gas purger 不凝性气体别离器〔84〕gate valve 闸阀〔31〕general air change 全面通风〔33〕general exhaust ventilation (GEV) 全面排风〔33〕general ventilation 全面通风〔33〕generator 发生器〔85〕global radiation 总辐射〔10〕grade efficiency 分级除尘效率〔47〕granular bed filter 颗粒层除尘器〔57〕granulometric distribution 粒径分布〔44〕gravel bed filter 颗粒层除尘器〔57〕gravity separator 沉降室〔56〕ground-level concentration 落地浓度〔51〕guide vane 导流板〔52〕Hhair hygrometor 毛发湿度计〔102〕hand pump 手摇泵〔29〕harmful gas and vapo[u]r 有害气体〔48〕harmful substance 有害物质〔35〕header 分水器、集水器〔30、31〕heat and moisture transfer 热湿交换〔67〕heat balance 热平衡〔35〕heat conduction coefficient 导热系数〔16〕heat conductivity 导热系数〔16〕heat distributing network 热网〔15〕heat emitter 散热器〔29〕heat endurance 热稳定性〔17〕heat exchanger 换热器〔27〕heat flowmeter 热流计〔103〕heat flow rate 热流量〔16〕heat gain from appliance and equipment 设备散热量〔61〕heat gain from lighting 照明散热量〔61〕heat gain from occupant 人体散热量〔61〕heat insulating window 保温窗〔41〕heat(thermal)insuation 隔热〔39〕heat(thermal)lag 延迟时间〔18〕heat loss 耗热量〔18〕heat loss by infiltration 冷风渗透耗热量〔19〕heat-operated refrigerating system 热力制冷系统〔81〕heat-operated refrigetation 热力制冷〔80〕heat pipe 热管〔74〕heat pump 热泵〔85〕heat pump air conditioner 热泵式空气调节器〔71〕heat release 散热量〔38〕heat resistance 热阻〔16〕heat screen 隔热屏〔39〕heat shield 隔热屏〔39〕heat source 热源〔13〕heat storage 蓄热〔61〕heat storage capacity 蓄热特性〔61〕heat supply 供热〔14〕heat supply network 热网〔15〕heat transfer 传热〔15〕heat transmission 传热〔15〕heat wheel 转轮式换热器〔73〕heated thermometer anemometer 热风速仪〔103〕heating 采暖、供热、加热〔11、14、66〕heating appliance 采暖设备〔27〕heating coil 热盘管〔74〕heating coil section 加热段〔71〕heating equipment 采暖设备〔27〕heating load 热负荷〔19〕heating medium 热媒〔13〕heating medium parameter 热媒参数〔14〕heating pipeline 采暖管道〔22〕heating system 采暖系统〔20〕heavy work 重作业〔105〕high-frequency noise 高频噪声〔98〕high-pressure ho twater heating 高温热水采暖〔12〕high-pressure steam heating 高压蒸汽采暖〔12〕high temperature water heating 高温热水采暖〔12〕hood 局部排风罩〔41〕horizontal water-film syclonet 卧式旋风水膜除尘器〔57〕hot air heating 热风采暖〔12〕hot air heating system 热风采暖系统〔20〕hot shop 热车间〔39〕hot water boiler 热水锅炉〔27〕hot water heating 热水采暖〔11〕hot water system 热水采暖系统〔20〕hot water pipe 热水管〔22〕hot workshop 热车间〔39〕hourly cooling load 逐时冷负荷〔62〕hourly sol-air temperature 逐时综合温度〔60〕humidification 加湿〔66〕humidifier 加湿器〔72〕humididier section 加湿段〔71〕humidistat 恒湿器〔94〕humidity ratio 含湿量〔65〕hydraulic calculation 水力计算〔24〕hydraulic disordeer 水力失调〔26〕hydraulic dust removal 水力除尘〔46〕hydraulic resistance balance 阻力平衡〔26〕hydraulicity 水硬性〔45〕hydrophilic dust 亲水性粉尘〔43〕hydrophobic dust 疏水性粉尘〔43〕Iimpact dust collector 冲激式除尘器〔58〕impact tube 皮托管〔103〕impedance muffler 阻抗复合消声器〔99〕inclined damper 斜插板阀〔53〕index circuit 最不利环路〔24〕indec of thermal inertia (valueD) 热惰性指标〔D值〕〔17〕indirect heat exchanger 外表式换热器〔28〕indirect refrigerating sys 间接制冷系统〔80〕indoor air design conditions 室内在气计算参数〔5〕indoor air velocity 室内空气流速〔4〕indoor and outdoor design conditions 室内外计算参数〔2〕indoor reference for air temperature and relative humidity 室内温湿度基数〔5〕indoor temperature (humidity) 室内温〔湿〕度〔4〕induction air-conditioning system 诱导式空气调节系统〔64〕induction unit 诱导器〔72〕inductive ventilation 诱导通风〔34〕industral air conditioning 工艺性空气调节〔59〕industrial ventilation 工业通风〔33〕inertial dust separator 惯性除尘器〔56〕infiltration heat loss 冷风渗透耗热量〔19〕infrared humidifier 红外线加湿器〔73〕infrared radiant heater 红外线辐射器〔30〕inherent regulation of controlled plant 调节对象自平衡〔87〕initial concentration of dust 初始浓度〔47〕initial resistance of filter 过滤器初阻力〔47〕input variable 输入量〔89〕insulating layer 保温层〔105〕integral enclosure 整体密闭罩〔42〕integral time 积分时间〔89〕interlock protection 联锁保护〔91〕intermittent dust removal 定期除灰〔48〕intermittent heating 间歇采暖〔11〕inversion layer 逆温层〔50〕inverted bucket type steam trap 倒吊桶式疏水器〔32〕irradiance 辐射照度〔4〕isoenthalpy 等焓线〔66〕isobume 等湿线〔66〕isolator 隔振器〔101〕isotherm 等温线〔66〕isothermal humidification 等温加湿〔67〕isothermal jet 等温射流〔68〕Jjet 射流〔68〕jet axial velocity 射流轴心速度〔69〕jet divergence angle 射流扩散角〔69〕jet in a confined space 受限射流〔68〕Kkatathermometer 卡他温度计〔102〕Llaboratory hood 排风柜〔42〕lag of controlled plant 调节对象滞后〔87〕large space enclosure 大容积密闭罩〔42〕latent heat 潜热〔60〕lateral exhaust at the edge of a bath 槽边排风罩〔42〕lateral hoodlength of pipe section 侧吸罩〔42〕length of pipe section 管段长度〔25〕light work 轻作业〔105〕limit deflection 极限压缩量〔101〕limit switch 限位开关〔95〕limiting velocity 极限流速〔26〕linear flow characteristic 线性流量特性〔89〕liquid-level ga[u]ge 液位计〔103〕liquid receiver 贮液器〔84〕lithium bromide 溴化锂〔78〕lithium-bromide absorption-type refrigerating machine 溴化锂吸收式制冷机〔84〕lithium chloride resistance hygrometer 氯化锂电阻湿度计〔93〕load pattern 负荷特性〔62〕local air conditioning 局部区域空气调节〔59〕local air suppiy system 局部送风系统〔40〕local exhaustventilation (LEV) 局部排风〔34〕local exhaust system 局部排风系统〔40〕local heating 局部采暖〔11〕local relief 局部送风〔34〕local relief system 局部送风系统〔40〕local resistance 局部阻力〔25〕local solartime 地方太阳时〔10〕local ventilation 局部通风〔34〕local izedairsupply for air-heating 集中送风采暖〔12〕local ized air control 就地控制〔91〕loop 环路〔24〕louver 百叶窗〔41〕low-frequencynoise 低频噪声〔98〕low-pressure steam heating 低压蒸汽采暖〔12〕lyophilic dust 亲水性粉尘〔43〕lyophobic dust 疏水性粉尘〔43〕Mmain 总管、干管〔22〕main duct 通风〕总管、〔通风〕干管〔51〕main pipe 总管、干管〔22〕make-up water pump 补给水泵〔28〕manual control 手动控制〔91〕mass concentration 质量浓度〔36〕maximum allowable concentration (MAC) 最高容许浓度〔36〕maximum coefficient of heat transfer 最大传热系数〔17〕maximum depth of frozen ground 最大冻土深度〔7〕maximum sum of hourly colling load 逐时冷负荷综合最大值〔62〕mean annual temperature (humidity) 年平均温〔湿〕度〔6〕mean daily temperature (humidity) 日平均温〔湿〕度〔5〕mean dekad temperature (humidity) 旬平均温〔湿〕度〔6〕mean monthly maximum temperature 月平均最高温度〔6〕mean monthly minimum temperature 月平均最低温度〔6〕mean monthly temperature (humidity) 月平均温〔湿〕度〔6〕mean relative humidity 平均相对湿度〔7〕mean wind speed 平均风速〔7〕mechanical air supply system 机械送风系统〔40〕mechanical and hydraulic bined dust removal 联合除尘〔46〕mechanical anemometer 机械式风速仪〔103〕mechanical cleaning off dust 机械除尘〔46〕mechanical dust removal 机械排风系统〔40〕mechanical exhaust system 机械通风系统〔40〕mechanical ventilation 机械通风〔33〕media velocity 过滤速度〔48〕metal radiant panel 金属辐射板〔30〕metal radiant panel heating 金属辐射板采暖〔13〕micromanometer 微压计〔103〕micropunch plate muffler 微穿孔板消声器〔90〕mid-frequency noise 中频噪声〔98〕middle work 中作业〔105〕midfeed system 中分式系统〔22〕minimum fresh air requirmente 最小新风量〔68〕minimum resistance of heat transfer 最小传热阻〔17〕mist 雾〔44〕mixing box section 混合段〔71〕modular air handling unit 组合式空气调节机组〔71〕moist air 湿空气〔65〕moisture excess 余湿〔35〕moisure gain 散湿量〔61〕moisture gain from appliance and equipment 设备散湿量〔61〕moisturegain from occupant 人体散湿量〔61〕motorized valve 电动调节阀〔95〕motorized (pneumatic) 电〔气〕动两通阀〔95〕2-way valvemotorized (pneumatic)3-way valve 电〔气〕动三通阀〔95〕movable support 活动支架〔24〕muffler 消声器〔99〕muffler section 消声段〔72〕multi-operating mode automtic conversion 工况自动转换〔90〕multi-operating mode control system 多工况控制系统〔92〕multiclone 多管〔旋风〕除尘器〔56〕multicyclone 多管〔旋风〕除尘器〔56〕multishell condenser 组合式冷凝器〔82〕Nnatural and mechanical bined ventilation 联合通风〔33〕natural attenuation quantity of noise 噪声自然衰减量〔99〕natural exhaust system 自然排风系统〔37〕natural freguency 固有频率〔100〕natural ventilation 自然通风〔33〕NC-curve[s] 噪声评价NC曲线〔97〕negative freedback 负反应〔86〕neutral level 中和界〔39〕neutral pressure level 中和界〔39〕neutral zone 中和界〔39〕noise 噪声〔97〕noise control 噪声控制〔98〕noise criter ioncurve(s) 噪声评价NC曲线〔97〕noisc rating number 噪声评价NR曲线〔97〕noise reduction 消声〔99〕non azeotropic mixture refragerant 非共沸溶液制冷剂〔77〕non-monsection 非共同段〔25〕non condensable gas 不凝性气体〔78〕non condensable gas purger 不凝性气体别离器〔84〕non-isothermal jct 非等温射流〔68〕nonreturn damper 〔通风〕止回阀〔53〕nonreturn valve 止回阀〔31〕normal coldest month 累年最冷月〔3〕normal coldest 3-month period 累年最冷三个月〔3〕normal hottest month 累年最热月〔3〕normal hottest 3month period 累年最热三个月〔3〕normal three summer months 累年最热三个月〔3〕normal three winter months 累年最冷三个月〔3〕normals 累年值〔3〕nozzle outlet air suppluy 喷口送风〔69〕number concentration 计数浓度〔36〕number of degree-day of heating period 采暖期度日数〔9〕Ooctave 倍频程〔97〕1/3 octave 倍频程〔97〕octave band 倍频程〔97〕oil cooler 油冷却器〔84〕oill-fired unit heater 燃油热风器〔30〕one-and-two pipe bined heating system 单双管混合式采暖系统〔21〕one (single)-pipe circuit (cross-over) heating system 单管跨越式采暖系统〔21〕one(single)-pipe heating system 单管采暖系统〔21〕one(single)-pipe loop circuit heating system 水平单管采暖系统〔21〕one(single)-pipe seriesloop heating system 单管顺序式采暖系统〔21〕one-third octave band 倍频程〔97〕on-of control 双位调节〔88〕open loop control 开环控制〔86〕open return 开式回水〔15〕open shell and tube condenser 立式壳管式冷凝器〔82〕open tank 开式水箱〔28〕operating pressure 工作压力〔27〕operating range 作用半径〔26〕opposed multiblade damper 对开式多叶阀〔52〕organized air supply 有组织进风〔33〕organized exhaust 有组织排风〔34〕organized natural ventilation 有组织自然通风〔37〕outdoor air design conditions 室外空气计算参数〔7〕outdoor ctitcal air temperature for heating 采暖室外临界温度〔9〕outdoor design dry-bulb temperature for summer air conlitioning 夏季空气调节室外计算干球温度〔8〕outdoor design hourly temperature for summer air conditioning 夏季空气调节室外计算逐时温度〔9〕outdoor design mean daily temperature for summer air conditioning 夏季空气调节室外计算日平均温度〔9〕outdoor design relative humidityu for summer ventilation 夏季通风室外计算相对湿度〔8〕outdoor design relative humidity for winter air conditioning 冬季空气调节室外计算相对湿度〔8〕outdoor design temperature ture for calculated envelope in winter冬季围护结构室外计算温度〔8〕outdoor design temperature ture for heating 采暖室外计算温度〔7〕outdoor design temperature for summer ventilation 夏季通风室外计算温度〔8〕outdoor design temperature for winter air conditioning 冬季空气调节室外计算温度〔8〕outdoor design temperature for winter vemtilation 冬季通风室外计算温度〔7〕outdoor designwet-bulb temperature for summer air conditioning 夏季空气调节室外计算湿球温度〔8〕outdoor mean air temperature during heating period 采暖期室外平均温度〔9〕outdoor temperature(humidity) 室外温〔湿〕度〔5〕outlet air velocity 出口风速〔70〕out put variable 输出量〔89〕overall efficiency of separation 除尘效率〔47〕overall heat transmission coefficient 传热系数〔16〕overflow pipe 溢流管〔23〕overheat steam 过热蒸汽〔14〕overlapping averages 滑动平均〔4〕overshoot 超调量〔88〕Ppackaged air conditioner 整体式空气调节器〔70〕packaged heat pump 热泵式空气调节器〔71〕packed column 填料塔〔58〕packed tower 填料塔〔58〕panel heating 辐射采暖〔12〕parabolic flow character-istic 抛物线流量特性〔90〕parallel multiblade damperin 平行式多叶阀〔53〕parameter detection 参数检测〔90〕part 通风〕部件〔52〕partial enclosure 局部密闭罩〔42〕partial pressure of water vapo[u]r 水蒸汽分压力〔6〕particle 粒子〔44〕particle counter 粒子计数器〔104〕particle number concentration 计数浓度〔36〕particle size 粒径〔44〕particle size distribution 粒径分布〔44〕particulate 粒子〔44〕particulate collector 除尘器〔56〕particulates 大气尘〔43〕passage ventilating duct 通过式风管〔52〕penetration rate 穿透率〔47〕percentage of men,women and children 群集系数〔62〕percentage of possible sunshine 日照率〔7〕percentage of return air 回风百分比〔68〕perforated ceiling air supply 孔板送风〔69〕perforated plate tower 筛板塔〔58〕periodic dust dislodging 定期除灰〔48〕piece (通风〕部件〔52〕pipe fittings 管道配件〔23〕pipe radiator 光面管散热器〔29〕pipe section 管段〔25〕pipe coil 光面管放热器〔29〕pitot tube 皮托管〔103〕plate heat exchanger 板式换热器〔73〕plenum chamber 静压箱〔74〕plenum space 稳压层〔70〕plug 丝堵〔24〕plume 烟羽〔50〕plume rise height 烟羽抬升高度〔50〕PNC-curve[s] 噪声评价PNC曲线〔97〕pneumatic conveying 气力输送〔46〕pueumatic transport 气力输送〔46〕pneumatic valve 气动调节阀〔95〕pneumo-electrical convertor 气-电转换器〔94〕positioner 定位器〔95〕positive feedback 正反应〔86〕powerroof ventilator 屋顶通风机〔55〕preferred noise criteria curve[s] 噪声评价PNC曲线〔97〕pressure drop 压力损失〔26〕pressure enthalpy chart 压焓图〔77〕pressure ga[u]ge 压力表〔103〕pressure of steam supply 供汽压力〔14〕pressure reducing valve 减压阀〔31〕pressure relief device 泄压装置〔53〕pressure relief valve 安全阀〔31〕pressure thermometer 压力式温度计〔102〕pressure volume chart 压容图〔77〕primary air fan-coil system 风机盘管加新风系统〔64〕primary air system 新风系统〔64〕primary retirn air 一次回风〔68〕process air conditioning 工艺性空气调节〔59〕program control 程序控制〔91〕proportional band 比例带〔89〕proportional control 比例调节〔88〕proportional-integral (PI)control 比例积分调节〔88〕proportional-integralderivative(PID)control 比例积分微分调节〔88〕protected(roof)monitor 避风天窗〔39〕psychrometric chart 声级计〔104〕pulvation action 干湿球温度表〔102〕push-pull hood 焓湿图〔65〕pulvation action 尘化作用〔45〕push-pull hood 吹吸式排风罩〔42〕Qquick open flow characteristic 快开流量特性〔89〕Rradiant heating 辐射采暖〔12〕radiant intensity 辐射强度〔4〕radiation intensity 辐射强度〔4〕radiator 散热器〔29〕radiator heating 散热器采暖〔12〕radiator heating system 散热器采暖系统〔20〕radiator valve 散热器调节阀〔32〕rating under air conditioning condition 空调工况制冷量〔75〕reactive muffler 抗性消声器〔99〕receiver 贮液器〔84〕receiving hood 承受式排风罩〔42〕reciprocating pressor 活塞式压缩机〔82〕recirculation cavity 空气动力阴影区〔38〕recording thermometer 自记温度计〔102〕reducing coupling 异径管接头〔24〕。

电气自动化专业毕业设计外文翻译(中英文对照翻译)-制冷压缩机速度的模糊控制

电气自动化专业毕业设计外文翻译(中英文对照翻译)-制冷压缩机速度的模糊控制

毕业设计(论文)外文翻译Fuzzy Control of The Compressor Speed in aRefrigeration plant制冷压缩机速度的模糊控制制冷压缩机速度的模糊控制摘要在这篇文章里,所提到的是在通常应用于商业上的蒸汽压缩制冷装之中,用模糊控制算法控制制冷压缩机的速度使之达到最有效的速度来控制冷气的温度。

它主要的目标是根据模糊控制算法,通过变换器对压缩机速度进行连续调控,并估算节能效果;不同于传统恒温控制,这里通过控制压缩机冷藏容量,施加给控制压缩机50Hz的开关运转频率。

通过控制压缩机的电动机的供电电流达到的速度变化范围是30-50Hz,由于转动频率过低会有因飞溅系统而出现的润滑问题,现今所提供的压缩机转动频率一般不考虑小于30Hz的。

在这个范围,在二个最适当的工作流体之中,可以代替R22有很多,例如R407C (R32/R125/R134a 23/25/52%组)和R507 (R125/R143A 50/50%组)比较好。

压缩机速度模糊控制与传统的温度控制相比,更多的用于冷藏和其他制冷系统。

实验结果表明,当R407C 作为工作流体时,可以达到显著的节能效果,( 13%)。

值得注意的是,从节能观点看,当压缩机速度变化时可以达到的最佳的效果。

另外,考虑到变换器费用问题,回收期要比可接受的产品型号更具有决定性。

关键词:压缩系统; 冷室; 活塞式压缩机; 易变的速度; 章程; 模糊逻辑;R407C; R5071引言蒸气压缩冷却装置,虽则被设计满足最大载荷,但为了延长寿命,通常在部分装载下工作,并通过开关周期调控,在50 Hz的频率下运作,这样就决定了高能消耗量的恒温控制。

而且,制冷时耗电量低被认为间接的释放了温室气体; 改进上述的系统的能量转换效率可以减少这种排放物。

各种各样的冷藏容量控制方法和部分装载理论表明压缩机速度变异是最高效率的技术。

[1,2]。

冷藏容量控制这个方法在最近3–10年已经被分析研究,包括提高压缩机的速度以不断的达到制冷效果。

空调、制冷词汇中英文对照表

空调、制冷词汇中英文对照表

中文名称 制冷 空气调节 环境条件 标准工况 空调工况 制冷量 标准制冷量 性能系数 温度 湿度 压力 干空气 湿空气 大气压力 饱和空气 干球温度 湿球温度 露点温度 机器露点 绝对湿度 相对湿度 含湿量 空气循环 制冷系统 制冷循环 制热循环 蒸发 冷凝 过冷 过热 过程 压缩 膨胀 节流 灌注量 氟里昂22 润滑油 吸气端 排气端 低压侧 高压侧 蒸发压力 冷凝压力 吸气压力 排气压力 蒸发温度 冷凝温度
52664113.xls(03版) Parts Structure Manufacturer Approved information Attachment Procedure Underline Specification list Height Diameter Tolerance Model Model mark Index Index of files Specifications list Self-making part Cooperation part Purchased part Files of consumer Item Outlines and dimensions Controlling systems Function Liquid crystal indicate Machine workmanship Decoration Assembly quality Immunity Mechanic drawing Stardand parts General assembly Summary of technological work Outlet with flare Leakage test Moisture resistance Technological efficiency Review of technological efficiency Machinability Production process Process Item no. Code no. Description Standards Page no. Remarks Electra Size Technological documentation Process route Process design Process factor Process specification Process parameter Process preparation of production Manufacturing equipment Production program Type of production Production batch Production cycle Raw material 4

空调、制冷词汇中英文对照表(改)

空调、制冷词汇中英文对照表(改)

QJGD-A空调制冷词汇中英文对照表(新)空调、制冷词汇中英文对照表1主题内容与适用范围本标准适用于本公司的所有空调产品及技术文件所使用的名词、术语。

本标准提供一套标准的,统一的制冷、空调名词,术语的中英文对照表,用作产品说明书,图样及有关技术文件的用词规范。

22.1温度湿度压力pressure干空气dryair湿空气moistair大气压力atmosphericpressure饱和空气saturatedair干球温度drybulbtemperature 湿球温度wetbulbtemperature 露点温度dewpointtemperature 机器露点apparatusdewpoint 绝对湿度absolutehumidity蒸发冷凝过冷过热过程压缩膨胀节流throttling灌注量refrigerantcharge制冷剂refrigerant氟利昂22freon22润滑油lubricantoil吸气端suctionend排气端dischargeend低压侧lowpressureside高压侧highpressureside蒸发压力evaporatingpressure冰堵脏堵油堵液击结霜frostformation除霜defrosting自动除霜automaticdefrosting 定时除霜timedefrosting空气净化aircleaning空气除臭airdeodorization 空气离子化airionization 循环风量airflowvolume制热量heatingcapacity噪声noise消声产品图纸尺寸长度宽度超薄系列保护装置protectiondevices 纠正correct(correction) 更改modification(modify) 编制compile标准化standardize校对lookthrough工艺technology(workmanship) 审核check审定examineandapprove批准approve签名日期组件零件结构厂商附录方案起动电流startingcurrent运转电流runningcurrent泄漏电流leakagecurrent耐压试验high-voltagetest安全试验securitytest温升试验temperture-raisetest溢水试验waterover-flowtest(raintest) 潮态试验humidity-statetest把手handle功率power电流开路断路短路附加绝缘supplementaryinsulation加强绝缘reinforcedinsulation对重绝缘doubleinsulation额定电压ratedvoltage额定电压范围ratedvoltagerange工作电压workingvoltage额定输入功率ratedinput额定电流ratedcurrent额定频率ratedfrequency额定频率范围ratedfrequencyrangeXYZI特点(数据性能考数specsifications诊断diagnostic高度height直径diameter公差tolerance用户手册owner’smanual产品说明节productinstructionmanual 包装箱packagecarton装箱单packinglist铭牌nameplate型号商标项目外形尺寸outlinesanddimensions控制系统controllingsystems功能function液晶显示1iquidcrystolindicate加工工艺machineworkmanshiop装饰decoration装配质量assemblyquality 抗干扰immunity机械制图mechanicdrawing 标准件stardardparts总装检汛防潮序号代号名称description规格standards页数pageno.备注remarks格力电器GREEelectric幅面size工艺文件technologicaldocumentation 工艺路线processroute工艺设计processdesign工艺要素processfactor工件半成品semifinishedproduct成品finalproduct合格品conformingproduct不合格品non-conformingproduct废品scrap焊接welding热处理heattreatment表面处理surfacetreatment机械加工machining装配assembly工序安装基准夹具弯管扩口缩口除锈rustremoval清洗cleaning2.2机器词汇部分房间空调器roomairconditioner单元式空调机unitaryairconditioner窗式空调机window-typeairconditioner分体式空调器split-typeairconditioner室内机indoorunit室外机outdoorunit蒸发器evaporator(回转气缸U吊顶式ceilingsuspended吸顶式ceilingcassettes(ceilingconcealed) 壁挂式wallmounted落地式floorstanding光管plaincopperpipe内螺纹管innergroovecopperpipe翅片管finnedtube四通换向阀4—wayreversingvalve单向阀checkvalve轴流风机axialflowfan(propellerfan)底盘(前(后侧板边板网罩扫风电机swingmotor(louvermotor)步进电机stepmotor(vanemotor)进风格栅airintakegrill步进电机座vanecrank继电器引线relayassylead电器安装板electricalsupportingplate盖板coverplate(topplate)电容capacitor电容夹capacitorclamp胶圈o-gasket波纹软管 corrugatedpipe四芯(六芯)控制线signalcablewith4(6)cores 电热管heaterelement扫风叶片支架louversupport左右端盖 sidebox(L,R)电源线powercord控制器controller红外遥控器remotecontroller 继电器relay主令开关 mainswitch螺钉螺栓螺母垫圈插片插孔PTC控制面膜 controllingpanel脚轮castor固定螺丝 setscrew底板underplate水位开关 water-levelswitch触摸开关 touchswitch热断路thermalcut-out限温器temperaturelimiter 电脑芯片 IC集成电路 integratedcircuit插座插头蜗壳水箱扫风叶片 swinglouver支撑条supportbar导风叶片 lowerlouver出风格栅 frontgrill出水管drainageduct出水槽outletforwater模具mould灯箱lightbox机壳body感温包temp.sensor2.3温度计thermometer水银温度计mercurialthermometer 电阻温度计resistancethermometer 热敏电阻 thermistor热电偶thermocouple热电偶温度计thermocouplethermometor 量热计calorimeter表压gaugepressure绝对压力 absolutepressure压力计pressuregauge真空喷嘴机械风速仪mechanicalanemometer数字风速仪digitalanemometer热线风速仪hot-wireanemometer声级计soundlevelmeter工具tool测量放大器measurementamplifier电容传声器condensermicrophone绝缘电阻表insolationresistancemeter耐压测试仪high_voltagereliabilitymeter接地电阻测试台 testingstationofearthingresistance板子3.0附录二按汉语拼音字母顺序排列的词表附加说明:附录一按英文字母顺序排列的词汇表空气调节 airconditioning空调工况 airconditioningcondition大气压力 atmosphericpressure机器露点 apparatusdewpoint绝对湿度 absolutehumidity空气循环 aircirculation自动除霜 automaticdefrosting批准附录装配工艺孔auxiliaryhole实除排量 actualdisplacemant轴流风机 axialflowfan(propellerfan) 进风格栅 airintakegrill交流接触器ACcontactor过滤网airfilter绝对压力 absolutepressure风速仪anemometer制冷系统故障breakdownoftherefrigerationsystem 基本绝缘 basicinsulation螺栓机壳冷凝压缩纠正编制审核check组件components电流current开路circuit-open断路circuit-break短路circuit-short爬电距离 creepagedistance电气间隙 clearanceI类器具classIappliance气候类别 climatetype代号清洗气缸贯流风机 cross-flowfan(linefrowfan) 截止阀cut-offvalve(ballvalve)底盘(底板) chassis(lowerpanel)盖板coverplate(topplate)电容capacitor电容夹capacitorclamp线路图circuitdiagram连接管堵头connectionpipecap 波纹软管 corrugatedpipe控制器controller脚轮除霜defrosting图纸drawing尺寸dimension日期date对重绝缘 doubleinsulation数据data诊断diagnostic直径diameter装饰decoration电气强度 dielectricstrength名称基准蒸发evaporation膨胀expansion蒸发压力 evaporatingpressure蒸发温度 evaporatingtemperature 审定examineandapprove接地方式 earthingmethods蒸发器evaporator边板endplate(endpanel)电器安装板electricalsupportingplate 电气原理图electricalprinciplediagram脏堵结霜特点(功能成品扩口落地式floorstanding翅片管finnedtube风扇电机 fanmotor保险丝fuse过滤栅filtergrille出风格栅 frontgrill风叶护网 fanguard测量计flowrator喷嘴flownozzle油堵greasyblockage总装垫圈表压湿度把手高度热处理heattreatment热交换器 heatexchanger电热管heaterelement高压保护 highpressureswitch 湿度计hygrometer热线风速仪hot-wireanemometer耐压测试仪high-voltagereliabilitymeter 卤素检漏仪halogenleakdetector温度传感器humiditysensor冰堵iceplug项目序号插片插孔集成电路 integratedcircuit绝缘电阻表insolationresistancemeter夹具jigsandfixtures润滑油lubricantoil低压侧lowpressureside长度length校对lookthrough泄漏电流 leakagecurrent堵转试验 lockedtest液晶显示 liquidcrystolindicate 检汛灯箱更改厂商型号model型号标识 modelmark加工工艺 machineworkmanship机械制图 mechanicdrawing防潮moistureresistance可加工性 machinability工艺设备 manufacturingequipment 机械加工 machining加工精度 machiningaccuracy电机支架 motorsupport模具噪声铭牌缩口necking螺母nut用户手册owner’smanual外形尺寸 outlinesanddimensions 喇叭口outletwithflare工序operation室外机outdoorunit胶圈o-gasket油分离器 oilseparator出水槽outletforwater压力过程产品零件方案功率包箱生产过程 productionprocess 工艺过程 process页数pageno工艺路线 processroute工艺设计 processdesign工艺要素 processfactor工艺规范 processspecification工艺参数 processparameter工艺准备 processpreparationofproduction工艺纲领 productionprogram弯管光管网罩PTC插头蜗壳真空计vauucngauge合格证qualitycertificate制冷refrigeration制冷量refrigeratingcapacity(coolingcapacity) 相对湿度 relativehumidity制冷系统 refrigerationsystem制冷循环 refrigerationcycle灌注量refrigerantcharge制冷剂refrigerant运转电流 runningcurrent备注除锈转子式压缩机rotarycompressor 继电器引线relayassylead无线遥控器remotecontroller继电器relay电机固定圈rubbermount电阻温度计resistancethermometer 标准工况 standardcondition标准制冷量standardrating饱和空气 saturatedair含湿量specifichumidity过冷过热液击消声系列签名结构起动电流 startingcurrent安全试验 securitytest起动试验 startingtest附加绝缘 supplementaryinsulation 电源引线 supplyleads流线型streamline性能考数 specsifications汇总表specificationslist自制件self-makingpart标准件stardardparts规格幅面废品安装侧板扫风电机 swingmotor(louvermotor)步进电机 stepmotor(vanemotor)吸气管suctionpipe四芯(六芯)控制线signalcablewith4(6)cores 左右端盖 sidebox(L.R)螺钉screw固定螺丝 setscrew插座socket扫风叶片 swinglouver支撑条supportbar温度节流工艺XYZ连接typeZattachment公差tolerance商标trademark工艺性technologiculefficiency工艺文件technologicaldocumentation 生产类型 typeofproduction理论排量 theoreticaldisplacement管路系统 tubingsystems保温管thermalinsulationpipe温控器thermostat变压器transformer工具扩口器tube-outletexpamder接地电阻测试台 testingstationofearthingresistance泄漏电流测试装置testingequipmentofleakingcurrent灼热丝试验装置 testingequipmentforscorching漏电起痕试验装置testingequipmentofscrapwithleakingcurrent弯管器tubebender超簿ultra-thin标题栏underline单元式空调机unitaryairconditioner U形管U-shapetube底板真空宽度工件焊接壁挂式wallmounted接线板TerminalBoard水位开关 water-levelswitch水箱watertank壁挂机安装板wallframe湿球温度计wetbulbthermometer板子wrench四通换向阀4-wayreversingvalve附录二按汉语拼音字母顺序排列的词汇表安全试验 securitytest安装把手包箱备注壁挂式wallmounted壁挂机安装板wallframe边板endplate(endpanel)编制compile变压器transformer标准工况 standardcondition标准制冷量standardrating标准化standardize标题栏underline标准件standardparts表压冰堵侧板插片插座产品产品说明书productinstructionmanual 厂商manufacturer超薄ultra-thin潮态试验 humidity–statetest成品finalproduct尺寸dimension尺寸链dimensionchain翅片管finnedtube冲击钻electricdrivenrotaryhammer 出风格栅 frontgrill出水管drainageduct除霜除锈代号灯箱底盘(底板) chassis(lowerpanel)底板underplate垫圈gasket电流current电气间隙 clearance电源软线 powersupplycord电源引线 supplyleads电气强度 dielectricstrength电机支架 motorsupport电器安装板electricalsupportingplate 电容电阻温度计resistancethermometer电容传声器condensermicrophone电子检漏仪electricalleakdetector 吊顶式ceilingsuspended吊顶机风扇窝壳 casingset定时除霜 timedefrosting 堵转实验 lockedtest短路circurt-short断路circuit-break对重绝缘 doubleinsulation方案防潮废品风扇电机 fanmotor风叶护网 fanguard风速仪anemometer幅面size氟时昂22 freon22辅助材料 auxiliarymatial附录attachment附加绝缘 supplementaryinsulation盖板coverplate(topplate)干空气dryair高度更改工艺工艺过程 process工艺文件 technologicaldocumentation 工艺路线 processroute工艺设计 processdesign工艺要素 processfactor工艺规范 processspecification工艺参数 processparameter工艺准备 processpreparationofproduction 工艺设备 manufacturingequipment工件workpiece工序工具功率功能公差光管规格过冷subcooling过热superheat过程process过滤器strainer过滤网airfilter过滤栅filtergrille含湿量specifichumidity焊接welding合格证qualitycertificate 合格品conformingproduct基准机壳技术文件 technicalfile技术要求 technicalrequirement 继电器引线relayassylead继电器relay夹具jigsandfixtures加强绝缘 reinforcedinsulation加工工艺 machineworkmanshiop加工精度 machiningaccuracy检汛leakagetest胶圈o-gasket脚轮节流结霜结构纠正绝缘电阻 insulationresistance绝对压力 absolutepressure绝缘电阻表insolationresistancemeter 开路circuit-open抗干扰immunity可加工性 machinability可控硅controlledsilicon空气调节 airconditioning空调工况 airconditioningcondition 空气循环 aircirculation宽度扩口冷凝冷凝温度 condensingtemperature冷凝器condenser离心风机 centrifugalfan(siroccofan) 理论排量 theoreticaldisplacement连接管堵头connectionpipecap量热计calorimeter零件parts流线型streamline流量计flowrator漏电起痕试验装置testingequipmentofscrapwithleakingcurrent螺钉螺栓螺母铭牌名称模具内螺纹管 innergroovecopperpipe爬电距离 creepagedistance排气端dischargeend排气压力 dischargepressure排气温度 dischargetemperature排气阀dischargevalve排气管dischargepipe排水管drainagepipe喷嘴flownozzle膨胀expansion批准气缸签名前(后清洗热断路thermalcut-out热敏电阻 thermistor热电偶thermocouple热电偶温度计thermocouplethermometor 热线风速仪hot-wireanemometer认证资料 approvedinformation润滑油lubricantoil扫风电机 swingmotor(louvermotor) 扫风叶片支架loueversupport扫风叶片 swinglouver商标审核审定湿度湿空气moistair湿球温度 wetbulbtemperature湿球温度计wetbulbthermometer 湿度计hygrometer湿度传感器humiditysensor。

空调专业毕业设计外文翻译--工程热力学和制冷循环

空调专业毕业设计外文翻译--工程热力学和制冷循环

附录B 英文翻译THERMODYNAMICS AND REFRIGERATION CYCLES THERMODYNAMICS is the study of energy, its transformations, and its relation to states of matter. This chapter covers the application of thermodynamics to refrigeration cycles. The first part reviews the first and second laws of thermodynamics and presents methods for calculating thermodynamic properties. The second and third parts address compression and absorption refrigeration cycles, two common methods of thermal energy transfer.THERMODYNAMICSA thermodynamic system is a region in space or a quantity of matter bounded by a closed surface. The surroundings include everything external to the system, and the system is separated from the surroundings by the system boundaries. These boundaries can be movable or fixed, real or imaginary. Entropy and energy are important in any thermodynamic system. Entropy measures the molecular disorder of a system. The more mixed a system, the greater its entropy; an orderly or unmixed configuration is one of low entropy. Energy has the capacity for producing an effect and can be categorized into either stored or transient forms.Stored EnergyThermal (internal) energy is caused by the motion of molecules and/or intermolecular forces.Potential energy (PE) is caused by attractive forces existing between molecules, or the elevation of the system.mgzPE=(1)wherem =massg = local acceleration of gravityz = elevation above horizontal reference planeKinetic energy (KE) is the energy caused by the velocity of molecules and is expressed as22m VKE=(2)whereV is the velocity of a fluid stream crossing the system boundary.Chemical energy is caused by the arrangement of atoms composing the molecules.Nuclear (atomic) energy derives from the cohesive forces holding protons and neutrons together as the atom’s nucleus.Energy in TransitionHeat Q is the mechanism that transfers energy across the boundaries of systems with differing temperatures, always toward the lower temperature. Heat is positive when energy is added to the system (see Figure 1).Work is the mechanism that transfers energy across the boundaries of systems with differing pressures (or force of any kind),always toward the lower pressure. If the total effect produced in the system can be reduced to the raising of a weight, then nothing but work has crossed the boundary. Workis positive when energy is removed from the system (see Figure 1).Mechanical or shaft work W is the energy delivered or absorbed by a mechanism, such as a turbine, air compressor, or internal combustion engine.Flow work is energy carried into or transmitted across the system boundary because a pumping process occurs somewhere outside the system, causing fluid to enter the system. It can bemore easily understood as the work done by the fluid just outside the system on the adjacent fluid entering the system to force or push it into the system. Flow work also occurs as fluid leaves the system.Flow work =pv (3)where p is the pressure and v is the specific volume, or the volume displaced per unit mass evaluated at the inlet or exit.A property of a system is any observable characteristic of the system. The state of a system is defined by specifying the minimum set of independent properties. The most common thermodynamic properties are temperature T, pressure p, and specific volume v or density ρ. Additional thermodynamic properties include entropy, stored forms of energy, and enthalpy.Frequently, thermodynamic properties combine to form other properties. Enthalpy h is an important property that includes internal energy and flow work and is defined as≡(4) pvh+uwhere u is the internal energy per unit mass.Each property in a given state has only one definite value, and any property always has the same value for a given state, regardless of how the substance arrived at that state.A process is a change in state that can be defined as any change in the properties of a system. A process is described by specifying the initial and final equilibrium states, the path (if identifiable), and the interactions that take place across system boundaries during theprocess.A cycle is a process or a series of processes wherein the initial and final states of the system are identical. Therefore, at the conclusion of a cycle, all the properties have the same value they had at the beginning. Refrigerant circulating in a closed system undergoes acycle.A pure substance has a homogeneous and invariable chemical composition. It can exist in more than one phase, but the chemical composition is the same in all phases.If a substance is liquid at the saturation temperature and pressure,it is called a saturated liquid. If the temperature of the liquid is lower than the saturation temperature for the existing pressure, it is called either a subcooled liquid (the temperature is lower than the saturation temperature for the given pressure) or a compressed liquid (the pressure is greater than the saturation pressure for the given temperature).When a substance exists as part liquid and part vapor at the saturation temperature, its quality is defined as the ratio of the mass of vapor to the total mass. Quality has meaning only when the substance is saturated (i.e., at saturation pressure and temperature).Pressure and temperature of saturated substances are not independent properties.If a substance exists as a vapor at saturation temperature and pressure, it is called a saturated vapor. (Sometimes the term dry saturated vapor is used to emphasize that the quality is 100%.)When the vapor is at a temperature greater than the saturation temperature, it is a superheated vapor. Pressure and temperature of a superheated vapor are independent properties, because the temperature can increase while pressure remains constant. Gases such as air at room temperature and pressure are highly superheated vapors.FIRST LAW OF THERMODYNAMICSThe first law of thermodynamics is often called the law of conservation of energy. The following form of the first-law equation is valid only in the absence of a nuclear or chemical reaction.Based on the first law or the law of conservation of energy for any system, open or closed, there is an energy balance asNet amount of energy Net increase of stored=added to system energy in systemor[Energy in] – [Energy out] = [Increase of stored energy in system]Figure 1 illustrates energy flows into and out of a thermodynamic system. For the general case of multiple mass flows with uniform properties in and out of the system, the energy balance can be written=-++++-+++∑∑W Q gz V pv u m gz V pv u m out out in in )2()2(22 []system i i f f gz V pv u m gz V pv u m )2()2(22++-++ (5)where subscripts i and f refer to the initial and final states,respectively.Nearly all important engineering processes are commonly modeled as steady-flow processes. Steady flow signifies that all quantities associated with the system do not vary with time. Consequently,0)2()2(22=-+++-++∑∑W Q gz V h m gz V h m leavingstream all entering stream all (6)where h = u + pv as described in Equation (4).A second common application is the closed stationary system for which the first law equation reduces to[]system i f u u m W Q )(-=- (7)SECOND LAW OF THERMODYNAMICSThe second law of thermodynamics differentiates and quantifies processes that only proceed in a certain direction (irreversible) from those that are reversible. The second law may be described in several ways. One method uses the concept of entropy flow in an open system and the irreversibility associated with the process. The concept of irreversibility provides added insight into the operation of cycles. For example, the larger the irreversibility in a refrigeration cycle operating with a given refrigeration load between two fixed temperature levels, the larger the amount of work required tooperate the cycle. Irreversibilities include pressure drops in lines andheat exchangers, heat transfer between fluids of different temperature, and mechanical friction. Reducing total irreversibility in a cycle improves cycle performance. In the limit of no irreversibilities, a cycle attains its maximum ideal efficiency. In an open system, the second law of thermodynamics can be described in terms of entropy asdI s m s m dS e e i i T Q system +-+=δδδ(8)wheredS = total change within system in time dt during process systemδm s = entropy increase caused by mass entering (incoming)δm s = entropy decrease caused by mass leaving (exiting)δQ/T = entropy change caused by reversible heat transfer between system and surroundings at temperature TdI = entropy caused by irreversibilities (always positive)Equation (8) accounts for all entropy changes in the system. Rearranged, this equation becomes []I d dS s m s m T Q sys i i e e -+-=)(δδδ (9)In integrated form, if inlet and outlet properties, mass flow, and interactions with the surroundings do not vary with time, the general equation for the second law isI ms ms T Q S S out in revsystem i f +-+=-∑∑⎰)()(/)(δ (10)In many applications, the process can be considered to operate steadily with no change in time. The change in entropy of the system is therefore zero. The irreversibility rate, which is the rate of entropy production caused by irreversibilities in the process, can be determined by rearranging Equation (10):∑∑∑--=surrin out T Q ms ms I )()( (11) Equation (6) can be used to replace the heat transfer quantity.Note that the absolute temperature of the surroundings with which the system is exchanging heat is used in the last term. If the temper-ature of the surroundings is equal to the system temperature, heat istransferred reversibly and the last term in Equation (11) equals zero.Equation (11) is commonly applied to a system with one mass flow in, the same mass flow out, no work, and negligible kinetic or potential energy flows. Combining Equations (6) and (11) yields []surr inout in out T h h s s m I ---=)( (12)In a cycle, the reduction of work produced by a power cycle (or the increase in work required by a refrigeration cycle) equals the absolute ambient temperature multiplied by the sum of irreversibilities in all processes in the cycle. Thus, the difference in reversible and actual work for any refrigeration cycle, theoretical or real, operating under the same conditions, becomes∑+=I T W W reversible actual 0 (13)THERMODYNAMIC ANAL YSIS OFREFRIGERATION CYCLESRefrigeration cycles transfer thermal energy from a region of low temperature T to one of higher temperature. Usually the higher-T R temperature heat sink is the ambient air or cooling water, at temperature T 0, the temperature of the surroundings.The first and second laws of thermodynamics can be applied to individual components to determine mass and energy balances and the irreversibility of the components. This procedure is illustrated in later sections in this chapter.Performance of a refrigeration cycle is usually described by a coefficient of performance (COP), defined as the benefit of the cycle (amount of heat removed) divided by the required energy input to operate the cycle:Useful refrigerating effectCOP ≡Useful refrigeration effect/Net energy supplied from external sources (14)Net energy supplied from external sources For a mechanical vapor compression system, the net energy supplied is usually in the form of work, mechanical or electrical, and may include work to the compressor and fans or pumps. Thus,net evapW Q COP = (15)In an absorption refrigeration cycle, the net energy supplied is usually in the form of heat into the generator and work into the pumps and fans, ornet gen evapW Q Q COP += (16)In many cases, work supplied to an absorption system is very small compared to the amount of heat supplied to the generator, so the work term is often neglected.Applying the second law to an entire refrigeration cycle shows that a completely reversible cycle operating under the same conditions has the maximum possible COP. Departure of the actual cycle from an ideal reversible cycle is given by the refrigerating efficiency:tev R COP COP)(=η (17)The Carnot cycle usually serves as the ideal reversible refrigeration cycle. For multistage cycles, each stage is described by a reversible cycle.工程热力学和制冷循环工程热力学是研究能量及其转换和能量与物质状态之间的关系。

空调系统中英文翻译

空调系统中英文翻译

英文文献Air Conditioning SystemsAir conditioning has rapidly grown over the past 50 years, from a luxury to a standard system included in most residential and commercial buildings. In 1970, 36% of residences in the U.S. were either fully air conditioned or utilized a room air conditioner for cooling (Blue, et al., 1979). By 1997, this number had more than doubled to 77%, and that year also marked the first time that over half (50.9%) of residences in the U.S. had central air conditioners (Census Bureau, 1999). An estimated 83% of all newhomes constructed in 1998 had central air conditioners (Census Bureau, 1999). Air conditioning has also grown rapidly in commercial buildings. From 1970 to 1995, the percentage of commercial buildings with air conditioning increased from 54 to 73% (Jackson and Johnson, 1978, and DOE, 1998).Air conditioning in buildings is usually accomplished with the use of mechanical or heat-activated equipment. In most applications, the air conditioner must provide both cooling and dehumidification to maintain comfort in the building. Air conditioning systems are also used in other applications, such as automobiles, trucks, aircraft, ships, and industrial facilities. However, the description of equipment in this chapter is limited to those commonly used in commercial and residential buildings.Commercial buildings range from large high-rise office buildings to the corner convenience store. Because of the range in size and types of buildings in the commercial sector, there is a wide variety of equipment applied in these buildings. For larger buildings, the air conditioning equipment is part of a total system design that includes items such as a piping system, air distribution system, and cooling tower. Proper design of these systems requires a qualifiedengineer. The residential building sector is dominatedby single family homes and low-rise apartments/condominiums. The cooling equipment applied in these buildings comes in standard “packages” that are often both sized and installed by the air conditioning contractor.The chapter starts with a general discussion of the vapor compression refrigeration cycle then moves to refrigerants and their selection, followed by packaged Chilled Water Systems。

空调空气调节外文翻译文献

空调空气调节外文翻译文献

空调空气调节外文翻译文献(文档含英文原文和中文翻译)翻译:空气调节空调是保证室内舒适的空气环境而不受环境影响的一门学科。

一般说来,通风是输送可能加热了的空气,而空调则是加热或冷却空气并对空气的湿度进行调节。

通常,适宜的天气状况为:冬季室温18—20度,夏季室温为21—24度,相对湿度为40%—60%,且空气洁净度高。

这要根据地区气候、纬度、季节不同,分别对待。

例如,格兰气温区:冬季空调应提供净化过的热空气。

由于加热降低了相对湿度,因此,一般采用某种加热装置,如喷水器,蒸汽喷雾器,同时也用预热器和主加热器来控制湿度。

夏季空调应提供净化了的冷空气。

由于冷却提高了相对湿度,必须装备某种去湿装置。

是空气接触冷表面或冷水喷淋来进行去湿,因此多余的水分被冷凝并使空气在低温下处于饱和状态。

然后应提高空气的温度,利用加热或与未被冷却的空气相混合的方法来得到更适宜的相对湿度。

空气通过某种吸湿物质可以去湿。

因此,在实验室中,容器内如放入一个装有强硫酸或氯化钙的器皿,由于它们吸水力强,该容器可以保持干燥。

空气调节的应用必须考虑下列不同环境:1.人群聚集的地方,如餐厅、影院、剧院等等;2.工作不得不在有限的区间进行,这些工作既紧张,又要求精度高,如手术室、仪表装配车间等地方;3.必须排除空气中灰尘的地方;4.只有严格地控制温度和湿度值,才能够完成工艺流程的地方;5.建筑物的外型和用途促成相当多的热量的地方。

如装有大面积玻璃易受阳光照射的多层办公大楼,而且包括能产生热量的办公用的机器,计算机,密集的电力照明等;6.在各类大型会议室、演讲厅、实验室以及动物饲养房;7.进深很大的现代化建筑物的中心区域,那里的房间设施远离自然通风和窗户,并因受居住者及照明等影响,使室内获得热量。

在热带或亚热带国家,为降低室内高温使人的工作和生活条件好些,主要采用空气调节。

不列颠群岛海洋性气候和世界类似的地区中,一般不会长期酷热。

然而,现代化的建筑物及当代生活和工作方式造成的某些情况,使得为了提供可以接受的舒适环境,采用空调乃是最佳方案。

空调节能技术中英文对照外文翻译文献

空调节能技术中英文对照外文翻译文献

空调节能技术中英文对照外文翻译文献(文档含英文原文和中文翻译)中英文对照资文翻译空调节能技术的研究1、引言节能可以说是楼宇自动控制系统的出发点和归宿。

众所周知,在智能建筑中HV AC (采暖、通风和空调)系统所耗费的能量要占到大楼消耗的总能量的极大部分比例,大致在50%~60%左右。

特别是冷冻机织、冷却塔、循环水泵和空调机组、新风机组,都是耗能大户。

所以实有必要发展一种有效的空调系统节能方法,尤其用是在改善现有大楼空调系统自动化上方面。

DDC(Dircctdigitalcontrol)直接数字化控制,是一项构造简单操作容易的控制设备,它可借由接口转接设各随负荷变化作系统控制,如空调冷水循环系统、空调箱变频自动风量调整及冷却水塔散热风扇的变频操控等,可以让空调系统更有效率的运转,这样不仅为物业管理带来很大的经济效益,而且还可使系统在较佳的工况下运行,从而延长设备的使用寿命以及达到提供舒适的空调环境和节能之目的。

一般大楼常用的空调系统有CA V、V A V、VWV等,各有不同操控方式,都可以用DDC控制。

(1)定风量系统(CA V)定风量系统(ConstantAirV olume,简称CA V)定风量系统为空调机吹出的风量一定,以提供空调区域所需要的冷(暖)气。

当空调区域负荷变动时,则以改变送风温度应付室内负荷,并达到维持室内温度度于舒适区的要求。

常用的中央空调系统为AHU(空调机)与冷水管系统(FCU系统)。

这两者一般均以定风量(CA V)来供应空调区,为了应付室内部分负荷的变动,在AHU定风量系统以空调机的变温送风来处理,在一般FCU系统则以冷水阀ON/OFF控制来调节送风温度。

(2)变风量系统(V A V)变风量系统(VarlableAirV olume,简称V A V)即是空调机(AHU或FCU)可以调变风量。

常用的中央空调系统为AHU(空调机)与冷水管系统FCL系统。

这两者一般均以定风量(CA V)来供应空调区,为了应付室内部分负荷的变动,在AHU定风量系统以空调机的变温送风来处理,在一般FCU系统则以冷水阀ON/OFF控制来调节送风温度。

暖通空调英文参考文献(精选124个最新)

暖通空调英文参考文献(精选124个最新)

随着现代社会建筑业和经济的发展,空调已成为人们生活中不可缺少的部分,已遍布社会的各个领域,对空调质量的要求也越来越高。

暖通空调技术发展迅速,取得了较好的社会反响,下面是搜索整理的暖通空调英文参考文献,欢迎借鉴参考。

暖通空调英文参考文献一: [1]. Foreign-Trade Zone (FTZ) 281--Miami, Florida; Authorization of Production Activity; Carrier InterAmerica Corporation (Heating, Ventilating and Air Conditioning Systems); Miami, Florida[J]. The Federal Register / FIND,2016,81(238). [2]. Energy; New Energy Study Results Reported from Chengdu University (Study on the utilization of heat in the mechanically ventilated Trombe wall in a house with a central air conditioning and air circulation system)[J]. Energy Weekly News,2018. [3]. Volvo Truck Corporation; "Energy Consumption Of A Multiple Zone Heating, Ventilating And Air Conditioning System For A Vehicle And Method" in Patent Application Approval Process (USPTO 20180297443)[J]. Energy Weekly News,2018. [4]. Energy; Studies from Lawrence Berkeley National Laboratory Provide New Data on Energy (Practical Factors of Envelope Model Setup and Their Effects On the Performance of Model Predictive Control for Building Heating, Ventilating, and Air Conditioning ...)[J]. Energy Weekly News,2019. [5]Qingsong Ma,Hiroatsu Fukuda,Myonghyang Lee,TakumiKobatake,Yuko Kuma,Akihito Ozaki. Study on the utilization of heatin the mechanically ventilated Trombe wall in a house with a central air conditioning and air circulation system[J]. AppliedEnergy,2018,222. [6]F.J. Fernández,M.B. Folgueras,I. Suárez. Energy study in water loop heat pump systems for office buildings in the IberianPeninsula[J]. Energy Procedia,2017,136. [7]G. Benndorf,N. Réhault,M. Clairembault,T. Rist. Describing HVAC controls in IFC – Method and application[J]. EnergyProcedia,2017,122. [8]D.H. Blum,K. Arendt,L. Rivalin,M.A. Piette,M. Wetter,C.T. Veje. Practical factors of envelope model setup and their effects on the performance of model predictive control for building heating, ventilating, and air conditioning systems[J]. AppliedEnergy,2019,236. [9]Kai Chang,Qingyuan Zhang. Improvement of the hourly global solar model and solar radiation for air-conditioning design inChina[J]. Renewable Energy,2019,138. [10]Dingyi Cheng,Wen Zhang,Kai Wang. Hierarchical reserve allocation with air conditioning loads considering lock time using Benders decomposition[J]. International Journal of Electrical Power and Energy Systems,2019,110. [11]Chen Yue,Le Tong,Shizhong Zhang. Thermal and economicanalysis on vehicle energy supplying system based on waste heat recovery organic Rankine cycle[J]. Applied Energy,2019,248. [12]Honghai Yang,Jun Wang,Ning Wang,Fengchang Yang. Experimental study on a pulsating heat pipe heat exchanger for energy saving in air-conditioning system in summer[J]. Energy & Buildings,2019,197. [13]Lisha Liu,Yanwei Dou,Bo Yao,Pengju Bie,Lei Wang,MinPeng,Jianxin Hu. Historical and projected HFC-410A emission from room air conditioning sector in China[J]. AtmosphericEnvironment,2019,212. [14]Huakeer Wang,Wei Lu,Zhigen Wu,Guanhua Zhang. Parametric analysis of applying PCM wallboards for energy saving in high-rise lightweight buildings in Shanghai[J]. Renewable Energy,2020,145. [15]Chao Liang,Xianting Li,Arsen Krikor Melikov,XiaoliangShao,Baoming Li. A quantitative relationship between heat gain and local cooling load in a general non-uniform indoor environment[J]. Energy,2019,182. [16]Mohamed Abdelgaied,A.E. Kabeel,Yehya Zakaria. Performance improvement of desiccant air conditioner coupled withhumidification-dehumidification desalination unit using solar reheating of regeneration air[J]. Energy Conversion and Management,2019,198. [17]K. Harby,Fahad Al-Amri. An investigation on energy savings ofa split air-conditioning using different commercial cooling pad thicknesses and climatic conditions[J]. Energy,2019,182. [18]Yang Lv,Guangyao Hu,Jingyi Liang,Xi Chen,Bin Chen,Tongke Zhao,Xiaoying Lu,Bin Wang,Wenjie Yuan,Yimin Li. Study on microwave sterilization technology of humidifier in central air conditioning system[J]. Building and Environment,2019,160. [19]Pui Kwan Cheung,C.Y. Jim. Impacts of air conditioning on air quality in tiny homes in Hong Kong[J]. Science of the Total Environment,2019,684. [20]Xu Zhu,Zhimin Du,Zhijie Chen,Xinqiao Jin,Xiaoqing Huang. Hybrid model based refrigerant charge fault estimation for the data centre air conditioning system[J]. International Journal of Refrigeration,2019. [21]Jixiang Wang,Xingying Chen,Jun Xie,Shuyang Xu,Kun Yu,Lei Gan. Dynamic control strategy of residential air conditioningsconsidering environmental and behavioral uncertainties[J]. Applied Energy,2019,250. [22]Jun Mei,Xiaohua Xia. Distributed control for a multi-evaporator air conditioning system[J]. Control EngineeringPractice,2019,90. [23]Feng Cheng,Xiu-Wei Li,Xiao-Song Zhang. Integral thermal and electrical energy utilization of the capacitive deionization regeneration method for absorption air-conditioning system[J]. Renewable Energy,2020,145. [24]Bourhan Tashtoush,Almutaz Ballah R. Algharbawi. Parametric study of a Novel Hybrid Solar Variable Geometry Ejector cooling with Organic Rankine Cycles[J]. Energy Conversion andManagement,2019,198. [25]Garrett J. Marshall,Colin P. Mahony,Matthew J. Rhodes,Steve R. Daniewicz,Nicholas Tsolas,Scott M. Thompson. Thermal Managementof Vehicle Cabins, External Surfaces, and Onboard Electronics: An Overview[J]. Engineering,2019. [26]M.A. Said,Hamdy HASSAN. A study on the thermal energy storage of different phase change materials incorporated with the condenser of air-conditioning unit and their effect on the unitperformance[J]. Energy & Buildings,2019,202. [27]Carsten Palkowski,Stefan von Schwarzenberg,Anne Simo. Seasonal cooling performance of air conditioners: The importance of independent test procedures used for MEPS and labels[J].International Journal of Refrigeration,2019,104. [28]Mauro. Cannistraro,Michele Trancossi. Enhancement of Indoor comfort in the presence of Large glazed radiant surfaces by a local Heat Pump system based on Peltier cells[J]. Thermal Science and Engineering Progress,2019. [29]Abolfazl Mohammadi,Amin Jodat. Investigation of the kinetics of TBAB + carbon dioxide semiclathrate hydrate in presence of tween 80 as a cold storage material[J]. Journal of MolecularLiquids,2019,293. [30]Farkad A. Lattieff,Mohammed A. Atiya,Adel A. Al-Hemiri. Test of solar adsorption air-conditioning powered by evacuated tube collectors under the climatic conditions of Iraq[J]. Renewable Energy,2019,142. [31]Guilherme B. Ribeiro,Jader R. Barbosa. Use of peripheral fins for R-290 charge reduction in split-type residential air-conditioners[J]. International Journal of Refrigeration,2019,106. 暖通空调英文参考文献二: [32]Jianzhong SUN,Fangyuan WANG,Shungang NING. Aircraft air conditioning system health state estimation and prediction for predictive maintenance[J]. Chinese Journal of Aeronautics,2019. [33]Seyed Mohsen Pourkiaei,Mohammad Hossein Ahmadi,Milad Sadeghzadeh,Soroush Moosavi,Fathollah Pourfayaz,Lingen Chen,Mohammad Arab Pour Yazdi,Ravinder Kumar. Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials[J]. Energy,2019,186. [34]S. Lowrey,G. Le Bonniec,Z. Sun. Fluid flow modulation in a domestic refrigerative dehumidifier with air-side gearing[J]. International Journal of Refrigeration,2019,106. [35]Xin Wu,Kaixin Liang,Dian Jiao. Air conditioner group collaborative method under multi-layer information interaction structure[J]. Energy,2019,186. [36]Hongtao Zhang,Huanxin Chen,Yabin Guo,Jiangyu Wang,Guannan Li,Limei Shen. Sensor fault detection and diagnosis for a water source heat pump air-conditioning system based on PCA and preprocessed by combined clustering[J]. Applied Thermal Engineering,2019,160. [37]Binjian Nie,Xiaohui She,Zheng Du,Chunping Xie,YongliangLi,Zhubing He,Yulong Ding. System performance and economic assessment of a thermal energy storage based air-conditioning unit for transport applications[J]. Applied Energy,2019,251. [38]Carolina M. Rodriguez,Marta D'Alessandro. Indoor thermal comfort review: The tropics as the next frontier[J]. UrbanClimate,2019,29. [39]Shiyu Yang,Man Pun Wan,Wanyu Chen,Bing Feng Ng,Deqing Zhai. An adaptive robust model predictive control for indoor climate optimization and uncertainties handling in buildings[J]. Building and Environment,2019,163. [40]F. Fellin,M. Boldrin,E.S. Cucinotta,M. Zaupa. Simulation and verification of air cooling system for -1MVdc MITICA High Voltage hall in Padova[J]. Fusion Engineering and Design,2019,146. [41]B.Y. Zhao,Z.G. Zhao,Y. Li,R.Z. Wang,R.A. Taylor. An adaptive PID control method to improve the power tracking performance ofsolar photovoltaic air-conditioning systems[J]. Renewable and Sustainable Energy Reviews,2019,113. [42]Yukun Xu,Xin Wang,Jingsi Ma,Chen Huang,Zhuo Zhu. Study of convective heat transfer load induced by nozzle air supply in large spaces with thermal stratification based on Block-Gebhart model[J]. Sustainable Cities and Society,2019,50. [43]Junqing Wei,Jinping Liu,Xiongwen Xu,Jiangao Ruan,Guoli Li. Experimental and computational investigation of the thermalperformance of a vertical tube evaporative condenser[J]. Applied Thermal Engineering,2019,160. [44]Xi Meng,Junfei Du,Yanna Gao,Hanting Yu. Effect of inner decoration coating on inner surface temperatures and heat flows under air-conditioning intermittent operation[J]. Case Studies in Thermal Engineering,2019,14. [45]A. Gurubalan,M.P. Maiya,Patrick J. Geoghegan. A comprehensive review of liquid desiccant air conditioning system[J]. Applied Energy,2019,254. [46]Xu Zhu,Zhimin Du,Xinqiao Jin,Zhijie Chen. Fault diagnosis based operation risk evaluation for air conditioning systems in data centers[J]. Building and Environment,2019,163. [47]Liu Chen,Yikun Tan. The performance of a desiccant wheel air conditioning system with high-temperature chilled water from natural cold source[J]. Renewable Energy,2020,146. [48]Peter Niemann,Gerhard Schmitz. Experimental investigation ofa ground-coupled air conditioning system with desiccant assisted enthalpy recovery during winter mode[J]. Applied Thermal Engineering,2019,160. [49]Xi Wu,Chaobin Dang,Shiming Xu,Eiji Hihara. State of the art on the flammability of hydrofluoroolefin (HFO) refrigerants[J]. International Journal of Refrigeration,2019. [50]Bharat Soni,Ameeya Kumar Nayak. Effect of inspiration cycle and ventilation rate on heat exchange in human respiratoryairways[J]. Journal of Thermal Biology,2019,84. [51]A. Siricharoenpanich,S. Wiriyasart,R. Prurapark,P. Naphon. Effect of cooling water loop on the thermal performance of air conditioning system[J]. Case Studies in Thermal Engineering,2019. [52]Lun Zhang,Xia Song,Xiaosong Zhang. Theoretical analysis of exergy destruction and exergy flow in direct contact process between humid air and water/liquid desiccant solution[J]. Energy,2019,187. [53]Giorgio Baldinelli,Antonella Rotili,Riccardo Narducci,Maria Luisa Di Vona,Assunta Marrocchi. Experimental analysis of an innovative organic membrane for air to air enthalpy exchangers[J]. International Communications in Heat and Mass Transfer,2019,108. [54]Qingang Xiong,M. Vaseghi,Jagar A. Ali,Samir Mustafa Hamad,M. Jafaryar,M. Sheikholeslami,Ahmad Shafee,Tawfeeq AbdullahAlkanhal,Trung Nguyen-Thoi,I. Tlili,Zhixiong Li. Nanoparticle application for heat transfer and irreversibility analysis in an air conditioning unit[J]. Journal of Molecular Liquids,2019,292. [55]Chaobo Zhang,Xue Xue,Yang Zhao,Xuejun Zhang,Tingting Li. An improved association rule mining-based method for revealingoperational problems of building heating, ventilation and air conditioning (HVAC) systems[J]. Applied Energy,2019,253. [56]Rui Chen,Jianhua Wu,Jvyuan Duan. Performance and refrigerant mass distribution of a R290 split air conditioner with different lubricating oils[J]. Applied Thermal Engineering,2019,162. [57]Ilse María Hernández-Romero,Luis Fabián Fuentes-Cortés,Rajib Mukherjee,Mahmoud M. El-Halwagi,Medardo Serna-González,FabricioNápoles-Rivera. Multi-scenario model for optimal design of seawater air-conditioning systems under demand uncertainty[J]. Journal of Cleaner Production,2019,238. [58]M. Salem Ahmed,Ashraf Mimi Elsaid. Effect of Hybrid and Single Nanofluids on the Performance Characteristics of Chilled Water Air Conditioning System[J]. Applied Thermal Engineering,2019. [59]Sebastian Gonzato,Joseph Chimento,Edward O’Dwyer,Gonzalo Bustos-Turu,Salvador Acha,Nilay Shah. Hierarchical pricecoordination of heat pumps in a building network controlled using model predictive control[J]. Energy & Buildings,2019. [60]Dongxiao Wang,Runji Wu,Xuecong Li,Chun Sing Lai,XueqingWu,Jinxiao Wei,Yi Xu,Wanli Wu,Loi Lei Lai. Two-stage optimal scheduling of air conditioning resources with high photovoltaic penetrations[J]. Journal of Cleaner Production,2019,241. [61]Yuren Zhou,Clement Lork,Wen-Tai Li,Chau Yuen,Yeong Ming Keow. Benchmarking air-conditioning energy performance of residential rooms based on regression and clustering techniques[J]. Applied Energy,2019,253. [62]Athanasios Besis,Elisavet Botsaropoulou,ConstantiniSamara,Athanasios Katsoyiannis,Linda Hanssen,Sandra Huber. Perfluoroalkyl substances (PFASs) in air-conditioner filter dust of indoor microenvironments in Greece: Implications for exposure[J]. Ecotoxicology and Environmental Safety,2019,183. 暖通空调英文参考文献三: [63]Yuan Wang,Yonggao Yin,Xiaosong Zhang,Xing Jin. Study of an integrated radiant heating/cooling system with fresh air supply for household utilization[J]. Building and Environment,2019,165. [64]Mark Goldsworthy,Lavinia Poruschi. Air-conditioning in low income households; a comparison of ownership, use, energy consumption and indoor comfort in Australia[J]. Energy &Buildings,2019,203. [65]Zhiyao Yang,Ming Qu,Omar Abdelaziz,Kyle R. Gluesenkamp. Development and case study of the liquid desiccant system module in sorption system simulation program (SorpSim)[J]. Applied Thermal Engineering,2019,162. [66]Hyun-Guk Kim,Can Nerse,Semyung Wang. Topography optimization of an enclosure panel for low-frequency noise and vibrationreduction using the equivalent radiated power approach[J]. Materials & Design,2019,183. [67]Jose A. Becerra,Jesus Lizana,Maite Gil,Angela Barrios-Padura,Patrice Blondeau,Ricardo Chacartegui. Identification of potential indoor air pollutants in schools[J]. Journal of Cleaner Production,2019. [68]Lin Cheng,Yuxiang Wan,Liting Tian,Fang Zhang. Evaluating energy supply service reliability for commercial air conditioning loads from the distribution network aspect[J]. AppliedEnergy,2019,253. [69]Chaoqun Zhuang,Shengwei Wang,Kui Shan. Probabilistic optimal design of cleanroom air-conditioning systems facilitating optimal ventilation control under uncertainties[J]. Applied Energy,2019,253. [70]Santiphap Nakkaew,Thunyawat Chitipalungsri,Ho Seon Ahn,Dong-Wook Jerng,Lazarus Godson Asirvatham,Ahmet Selim Dalk?l,Omid Mahian,Somchai Wongwises. Application of the heat pipe to enhance the performance of the vapor compression refrigeration system[J]. Case Studies in Thermal Engineering,2019. [71]X. Cui,M.R. Islam,K.J. Chua. An experimental and analytical study of a hybrid air-conditioning system in buildings residing in tropics[J]. Energy & Buildings,2019,201. [72]Xiaolin Wang,Xiaoqiang Zhai,Huanqi Zhang,Lei Zhou. A theoretical and experimental study of a TBAB salt hydrate based cold thermal energy storage in an air conditioning system[J]. Thermal Science and Engineering Progress,2019,13. [73]M. Duquesne,C. Mailhé,K. Ruiz-Onofre,F. Achchaq. Biosourced organic materials for latent heat storage: An economic and eco-friendly alternative[J]. Energy,2019,188. [74]Zhenjun Ma,Haoshan Ren,Wenye Lin. A review of heating, ventilation and air conditioning technologies and innovations usedin solar-powered net zero energy Solar Decathlon houses[J]. Journal of Cleaner Production,2019,240. [75]Sen Huang,Di Wu. Validation on aggregate flexibility from residential air conditioning systems for building-to-gridintegration[J]. Energy & Buildings,2019,200. [76]Abhijit Dutta,Himadri Chattopadhyay,Humaira Yasmin,Mohammad Rahimi-Gorji. Entropy generation in the human lung due to effect of psychrometric condition and friction in the respiratory tract[J]. Computer Methods and Programs in Biomedicine,2019,180. [77]Chaoqun Zhuang,Shengwei Wang. An adaptive full-range decoupled ventilation strategy for buildings with spaces requiring strict humidity control and its applications in different climatic conditions[J]. Sustainable Cities and Society,2019. [78]A. Avgelis,A. M. Papadopoulos. On the evaluation of heating, ventilating and air conditioning systems[J]. Advances in Building Energy Research,2010,4(1). [79]. Excessive Noise Levels in Laboratory Work Spaces Produced by the Heating, Ventilating, and Air Conditioning Systems[J].Applied Occupational and Environmental Hygiene,2001,16(5). [80]Joseph Firrantello,William Bahnfleth,Paul Kremer. Field measurement and modeling of UVC cooling coil irradiation for heating, ventilating, and air conditioning energy use reduction (RP-1738)—Part 1: Field measurements[J]. Science and Technology for the Built Environment,2018,24(6). [81]Xia Wu,Zhe Tian,Chengzhi Tian,Yuanyuan Wang,Jiaqing Li. New design-day method for building cooling load calculation in China[J]. Building Research & Information,2019,47(8). [82]金勲,大泽元毅,阪东美智子. Indoor Environment and Health in Facilities for Elderly Part 2. Survey on Heating, Ventilating andAir Conditioning[J]. Techinical Papers of Annual Meeting the Society of Heating,Air-conditioning and Sanitary Engineers ofJapan,2016,2014.8(0). [83]KAMITANI katsuhiro. D-21 A Study on energy conservation estimate of HVAC fan and pump systems used for comfort heating, ventilating and air conditioning[J]. Techinical Papers of Annual Meeting the Society of Heating,Air-conditioning and Sanitary Engineers of Japan,1990,1990(0). [84]内田秀雄. 〔140〕空気调和に适した吸收式冷冻机 : A.A.Giannini : "Absorption Refrigeration Applied for Air Conditioning Offices", Heating and Ventilating, Jan 1950,pp 65-70.A.A.Berestneff, "A New Development in Absorption Refrigeration, "Refrigerating Engineering, vol.57,June 1949,pp 553-557.L.Bert Nye : "Use of Gas for Air Conditioning, "Refrigerating Engineering, Apr 1950,pp 366-369.A.A.Berestheff, "Absorption Refrigeration, "Mechanical Engineering, March 1950,vol.72,No.3,pp 216-220.(15.暖冷房および冷冻)[J]. Journal of the Society of Mechanical Engineers,1950,53(381). [85]Syahril Ardi,Setyowati Setyowati. DESAIN SISTEM KENDALI MESIN PENGUJI KEBOCORAN UDARA MENGGUNAKAN SISTEM KENDALI PLC OMRON CJ2M DI HVAC (HEATING, VENTILATING, AND AIR CONDITIONING)[J]. Jurnal Teknik Mesin,2016,5(4). [86]Syahril Ardi,Setyowati .. DISAIN SISTEM KENDALI MESIN AIR LEAK TEST MENGGUNAKAN SISTEM KENDALI PLC OMRON CJ2M DI HVAC(HEATING, VENTILATING, AND AIR CONDITIONING) LINE 6[J]. JurnalIlmiah SINERGI,2015,19(1). [87]. 5421192 Leak detection in heating, ventilating and air conditioning systems using an environmentally safe material[J]. Journal of Cleaner Production,1995,3(4). [88]Thomas Glatzl,Harald Steiner,Franz Kohl,Thilo Sauter,Franz Keplinger. Development of an air flow sensor for heating, ventilating, and air conditioning systems based on printed circuit board technology[J]. Sensors & Actuators: A. Physical,2016,237. [89]Eusébio Z.E. Conceio,M a Manuela J.R. Lúcio. Heating, Ventilating and Air Conditioning Systems Control Based in the Predicted Mean Vote Index[J]. IFAC Proceedings Volumes,2010,43(1). [90]Yuguo Li. Special Issue—Selected Papers Presented in the 6th International Symposium on Heating, Ventilating and Air Conditioning, Nanjing, China, 6–9 November, 2009[J]. Energy & Buildings,2010,43(5). [91]Mahdi Mohammadi Tehrani,Yvan Beauregard,Michel Rioux,Jean Pierre Kenne,Rejean Ouellet. A Predictive Preference Model for Maintenance of a Heating Ventilating and Air Conditioning System[J]. IFAC PapersOnLine,2015,48(3). [92]Michael Anderson,Michael Buehner,Peter Young,DouglasHittle,Charles Anderson,Jilin Tu,David Hodgson. An experimental system for advanced heating, ventilating and air conditioning (HVAC) control[J]. Energy & Buildings,2006,39(2). [93]B. Stephens,J. A. Siegel. Ultrafine particle removal by residential heating, ventilating, and air‐conditioning filters[J]. Indoor Air,2013,23(6). 暖通空调英文参考文献四: [94]María José Gacto,Rafael Alcalá,Francisco Herrera. A multi-objective evolutionary algorithm for an effective tuning of fuzzy logic controllers in heating, ventilating and air conditioning systems[J]. Applied Intelligence,2012,36(2). [95]Ming-Li Chiang, Yuan-Ming Chan, Li-Chen Fu. Integration of Supervisory and Nonlinear Control for a Heating, Ventilating, andAir Conditioning System[P]. Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on,2005. [96]Jiangjiang Wang, Dawei An, Chengzhi Lou. Application of Fuzzy-PID Controller in Heating Ventilating and Air-Conditioning System[P]. Mechatronics and Automation, Proceedings of the 2006 IEEE International Conference on,2006. [97]Jiangjiang Wang, Chunfa Zhang, Youyin Jing. Hybrid CMAC-PID Controller in Heating Ventilating and Air-Conditioning System[P]. Mechatronics and Automation, 2007. ICMA 2007. International Conference on,2007. [98]Jiangjiang Wang, Chunfa Zhang, Youyin Jing. Application of an intelligent PID control in heating ventilating and air-conditioning system[P]. Intelligent Control and Automation, 2008. WCICA 2008. 7th World Congress on,2008. [99]Gacto, M.J., Alcala, R., Herrera, F.. Evolutionary Multi-Objective Algorithm to effectively improve the performance of the classic tuning of fuzzy logic controllers for a heating, ventilating and Air Conditioning system[P]. Genetic and Evolutionary Fuzzy Systems (GEFS), 2011 IEEE 5th International Workshop on,2011. [100]Anderson, M., Young, P., Hittle, D., Anderson, C., Tu, J., Hodgson, D.. MIMO robust control for heating, ventilating and air conditioning (HVAC) systems[P]. Decision and Control, 2002, Proceedings of the 41st IEEE Conference on,2002. [101]An Yu Wang,Jun Li. The Cooperative Organizational Modes for Technological Exploitation: Evidence from Chinese HeatingVentilating and Air Conditioning Industry[J]. Advanced Materials Research,2010,983. [102]Avgelis, A.,Papadopoulos, A. M.. On the evaluation of heating, ventilating and air conditioning systems[J]. Advances in Building Energy Research,2010,4(1). [103]Hossein Mirinejad,Seyed Hossein Sadati,Maryam Ghasemian,Hamid Torab. Control Techniques in Heating, Ventilating and Air Conditioning Systems[J]. Journal of Computer Science,2008,4(9). [104]Tubbs R L. Excessive noise levels in laboratory work spaces produced by the heating, ventilating, and air conditioningsystems.[J]. Applied occupational and environmentalhygiene,2001,16(5). [105]Bellucci Sessa R,Riccio G. [Air quality control systems: heating, ventilating, and air conditioning (HVAC)].[J]. Giornale Italiano di Medicina del Lavoro ed Ergonomia,2004,26(4). [106]. 35395 Leak detection in heating, ventilating and air conditioning systems using an environmentally safe material[J]. Applied Thermal Engineering,1997,17(7). [107]M. Zaheer-uddin,G.R. Zheng. Optimal control of time-scheduled heating, ventilating and air conditioning processes in buildings[J]. Energy Conversion and Management,2000,41(1). [108]Rafael Alcalá,Jorge Casillas,Oscar Cordón,AntonioGonzález,Francisco Herrera. A genetic rule weighting and selection process for fuzzy control of heating, ventilating and airconditioning systems[J]. Engineering Applications of Artificial Intelligence,2004,18(3). [109]. 97/04121 Thermal and behavioral modeling of occupant-controlled heating, ventilating and air conditioning systems[J].Fuel and Energy Abstracts,1997,38(5). [110]. 00/00504 Optimal control of time-scheduled heating, ventilating and air conditioning processes in buildings[J]. Fuel and Energy Abstracts,2000,41(1). [111]Leon R. Glicksman,Steven Taub. Thermal and behavioral modeling of occupant-controlled heating, ventilating and air conditioning systems[J]. Energy & Buildings,1997,25(3). [112]Waiel F. Abd El-Wahed. A multi-attribute model for selecting the best heat ventilating air conditioning system[J]. Journal of Discrete Mathematical Sciences and Cryptography,1999,2(1). [113]R. B. Simmons,S. A. Crow. Fungal colonization of air filters for use in heating, ventilating, and air conditioning (HVAC)systems[J]. Journal of Industrial Microbiology,1995,14(1). [114]Junying Zhang, Xuelai Zhang, Ai'qing Fu Cold Thermal Storage Technology Institute of Shanghai Maritime University, Shanghai, China 200135. The Design of the Cool Storage Transportation Container[A]. 中国土木工程学会.Proceedings of the World Engineers' Convention 2004[C].中国土木工程学会:中国土木工程学会,2004:3. [115]Sharma Kashika,Ravindra Khaiwal,Mor Suman,Kaur-Sidhu Maninder,Sehgal Rakesh. Detection and identification of dust mite allergens in the air conditioning filters in Chandigarh, India.[J]. Environmental science and pollution researchinternational,2019,26(23). [116]Soni Bharat,Nayak Ameeya Kumar. Effect of inspiration cycle and ventilation rate on heat exchange in human respiratoryairways.[J]. Journal of thermal biology,2019,84. [117]Dutta Abhijit,Chattopadhyay Himadri,Yasmin Humaira,Rahimi-Gorji Mohammad. Entropy generation in the human lung due to effectof psychrometric condition and friction in the respiratorytract.[J]. Computer methods and programs in biomedicine,2019,180. [118]Wagner Jennifer A,Greeley Damon G,Gormley Thomas C,Markel Troy A. Analyzing ICU Patient Room Environmental Quality Through Unoccupied, Normal, and Emergency Procedure Modes: An EQI Evaluation.[J]. HERD,2019,12(4). [119]Johnston James D,Cowger Ashlin E,Graul Robert J,NashRyan,Tueller Josie A,Hendrickson Nathan R,Robinson Daniel R,Beard John D,Weber K Scott. Associations between evaporative cooling anddust-mite allergens, endotoxins, and β-(1→ 3)-d-glucans in house dust: A study of low-income homes.[J]. Indoor air,2019. [120]Besis Athanasios,Botsaropoulou Elisavet,SamaraConstantini,Katsoyiannis Athanasios,Hanssen Linda,Huber Sandra. Perfluoroalkyl substances (PFASs) in air-conditioner filter dust of indoor microenvironments in Greece: Implications for exposure.[J]. Ecotoxicology and environmental safety,2019,183. [121]Nishimura Takeshi,Kaneko Akihisa. Temperature profile of the nasal cavity in Japanese macaques.[J]. Primates; journal of primatology,2019,60(5). [122]Qiushi Wan,Chuqi Su,Xiaohong Yuan,Linli Tian,Zuguo Shen,Xun Liu. Assessment of a Truck Localized Air Conditioning System with Thermoelectric Coolers[J]. Journal of ElectronicMaterials,2019,48(9). [123]Ma?gorzata Go?ofit-Szymczak,Agata Stobnicka-Kupiec,Rafa? L. Górny. Impact of air-conditioning system disinfection on microbial contamination of passenger cars[J]. Air Quality, Atmosphere & Health,2019,12(9). [124]Takeshi Nishimura,Akihisa Kaneko. Temperature profile of the nasal cavity in Japanese macaques[J]. Primates,2019,60(5). 以上就是关于暖通空调英文参考文献的分享,希望对你有所帮助。

外文文献及翻译:空调节能技术的研究

外文文献及翻译:空调节能技术的研究

中文4160字英文原文How Air Conditionersenergy conservation technologyresearch1. IntroductionsThe energy conservation may say is the building character automatic control system starting point and the home to return to. It is well known, in the intelligent construction, HV AC (heating, ventilates and air conditioning) the system consumes to have to occupy the building consumption total energy enormous partial proportions, approximately about 50% ~60%. Specially cold: East the unit, the cooling tower, the circulating water pump and the air conditioning unit, the new atmosphere unit, all are consumes energy the big household. Therefore really has essential develops one effective air-conditioning system energy conservation method, especially uses is in improves in the existing building air-conditioning system automation the aspect.DDC (Directdigitalcontr01) the direct of numerical control, is a structure simple operation easy control device, it may borrow by the connection switches over the equipment to make the systems control along with the load change, like the air conditioning cold water circulatory system, the air conditioning box frequency conversion automatic amount of wind adjustment and the cooling tower radiation ventilator frequency conversion holds controls and so on, may let an air-conditioning system more effective revolution, like this, not only brings the very big economic efficiency for the estate management, moreover also may cause the system to move under a better operating mode, thus lengthens the equipment the service life as well as achieved provides goal of the comfortable air conditioning environment and the energy conservation.The general building commonly used air-conditioning system has CA V, V A V, VWV and so on, respectively has differently holds controls the way, all may use DDC to control.1)decides the amount of wind system (ConstantAirV olume, is called CA V).Decides certainly the amount of wind system the amount of wind which blows out for the air conditioner certainly, provides coldly (is warm) the gas which the air conditioning region needs. When air conditioning region load variation, then changes the blast temperature to deal with in the room to shoulder, and achieves themaintenance indoor temperature to the comfortable area request. The commonly used central air-conditioning system is AHU (air conditioner) and the cooling water pipe system (the FCU system). These two generally decides the amount of wind (CA V) to supply the air conditioning area, in order to deal with in the room the partial loads change, decides the amount of wind system in AHU to change warm by the air conditioner blows of processes, controls in the general FCU system by cold water valve ON/OFF adjusts the blast temperature.2)changes the amount of wind system (V A V)Changes the amount of wind system (VarlableAirV olume, is called V A V) is the air conditioner (AHU or FCU) may move changes the amount of wind. The commonly used central air-conditioning system is AHU (air conditioner) and the cooling water pipe system FCU system. These two generally decides the amount of wind (CA V) to supply the air conditioning area, in order to deal with in the room the partial loads change, decides the amount of wind system in AHU to change warm by the air conditioner blows of processes, controls in the general FCU system by cold water valve ON/OFF adjusts the blast temperature. However these two has wasted the massive energy on the blast system. Because in long-term low load time the air feeder also carries out the entire amount of wind revolution to consume the electricity, this not only is not easy to maintain in the stable room humidity the condition, also wastes the massive blasts revolution energy. Changes the amount of wind system is aims at the blast system to consume the electricity shortcoming the energy conservation countermeasure.3)changes the current capacity system (VWV)So-called changes the current capacity system (VariableWaterV olume, is called VWV), is enhances the heat source machine by the certain water temperature supply air conditioner the efficiency, but changes by the special water pump delivers the water volume, while convenient achieves saves the effect which the water pump uses electricity. Changes the water volume system to depend on the water pump to the water pump system energy conservation efficiency the control mode and the VWV use proportion but different, whether there is the general VWV control mode section speed change (SP) and the bidirectional valve control mode. Above three kind of air-conditioning system is the present building air conditioning most often the system which designs. The central air conditioning control also is the pipeline, the fitting, the valve body or the valve centralism hypothesis control fluid provides the airconditioning. Therefore effectively combines the central air conditioning control namely to be able the active control to consume energy, the design conforms with the energy conservation the air-conditioning system.In recent years, the our country majority of areas, in particular southeast the coastal area summer the air conditioning energy consumption suddenly was rising, the air conditioning uses electricity the tendency which increases sharply to cause the electrical network power supply to be intense. Statistics have indicated, our country every year the burning hot season air conditioning consumed the electricity to occupy 1/3 in recent years which the entire society uses electricity, the massive electrical energies swallow by the industry and the civil construction air conditioning, in particular large-scale construction central air-conditioning system, like each kind of commercial construction (office, market, hospital, hotel and so on) central air conditioning because its space big, person current capacity many, operation time long, management complex characteristic, causes the movement energy consumption to be quite high, the commercial construction air conditioning energy consumption nearly occupies its total energy consumption 50%. The central air conditioning design capacity is according to the biggest load computation, but in a major part building year only has several dozensdays time central air conditioning to be at the biggest load condition. The central air conditioning cold load throughout is in during the dynamic change, like every day sooner or later, each season in turn, every year samsara, the environment and the humanities condition, real-time will be affecting the central air conditioning cold load. General, it also gives the general energy conservation control domain the worker brought enormously has displayed the talent the space.The power load gap increases, the electric power supply tense aspect with difficulty obtains in recent years relaxes. Therefore, energy conservation in particular electricity saving, not only has the significant social significance moreover to have the urgent practical significance. Positively studies the development promotion green environmental protection new air conditioning technology and the equipment, the suppression air conditioning energy consumption increases, has become the building warmly to pass air conditioning domain urgent and the popular research topic. The dependence technology innovation, the system innovation, the energy conservation falls consumes, enhances the energy use efficiency, guaranteed are least in the "energy consumption, in the environmental pollution smallest" foundation, realizes the"energy conservation first, structure many Yuan, environment friendly" energy developmental strategy.In our telecommunication production, air conditioning energy conservation supervisory work weaker, the energy waste phenomenon is serious, therefore strengthens air conditioning the maintenance management and the technological transformations, may achieve the energy conservation the goal.2. Air conditioning energy conservation system research survey1) Through the load control, achieves the energy conservation goal. (a) The burning hot season new atmosphere load occupies the entire cold load 25-40%, reduces the new atmosphere load, reduces the new atmosphere energy consumption, the choice smallest essential new amount of wind, also can achieve the goal. But the new amount of wind smallest supply on the one hand the country had the standard, moreover the new amount of wind insufficient will affect the air quality, will endanger the human body health. (b) Outside the optimized construction the surrounding protection structure energy conservation design, uses the heat preservation thermal insulation material technology, reduces the air conditioning load, the realization construction energy conservation, but simultaneously also causes the building cost rise, the promotion to receive the certain limit.2) gathers can the air conditioning. Gathers coldly through the ice, avoids the daytime to use electricity the peak, at night stores up the air conditioning freezing water refrigeration, daytime does not start the air conditioning main engine only to use the aqueous system to circulate. This method itself certainly does not conserve energy the province electricity, but optimized the electrical network power supply, to already implemented the time sharing electrovalence the area, played "to economize does not conserve energy" the role, had the area promotion significance.3) water source heat pump. Is opposite says to the air and the soil, the water is the most ideal spatial transfer cold heat source, the water source heat pump also therefore has the environmental protection, is highly effective, the energy conservation and so on the multitudinous merit, but our country water source heat pump engineering research is not very mature, compares with some developed countries also has the certain disparity. At the same time, the water source heat pump although has very many merits, but receives the geology, the environment, the policy and so on the limit quite is also big, this caused the water source heat pump to be restricted in an our country more widespread application.4) In the central air-conditioning system individually consumes energy the equipment energy conservation transformation. (a) Air blower and water pump general frequency changer velocity modulation energy conservation, this is at present uses more technologies. This method simple practical, electricity saving effect obvious, but product and so on water pump, air blower is the system auxiliary engine partially, occupies the overall system energy consumption approximately is 40%, therefore the excavation space is limited. (b) The refrigeration main engine, the refrigeration unit's power consumption holds the very big share in the air-conditioning system, saves this part of consuming energy is the entire air-conditioning system economy movement key. At present generally all uses reduces the indoor temperature standard, enhances the cold water temperature and so on the measure realization refrigeration main engine energy conservation.Above several methods deficiency has only considered the partial energy conservation, but had not considered from the overall system overall situation.5) the dynamic load track energy conservation control system take the entire central air-conditioning system as a body, unceasingly changes the condition according to the air conditioning area load, through changes in the main engine and the circulatory system various parameters movement change situation, the lock following load change, realizes in meets the load need under the premise the prompt quota supplies cold quantity, namely achieves "according to must supply", basically achieved "does not lag, are not many for, many gives" the goal. This method not only compared with the permanent current capacity water pump gentle breeze machine has realized the auxiliary engine largest scale energy conservation, moreover optimized the main engine movement operating mode, might achieve the overall system conserved energy 15-35%. This is this topic research key point.3. Dynamic loads tracks energy conservation control planThe traditional central air-conditioning system adjustment plan is: Uses the permanent current capacity pattern or the heat sink side permanent current capacity but the load side changes the current capacity pattern, the system must shoulder is according to the biggest load, the worst meteorological condition and the worst use working conditions designs, when actual moves 50% above time, the system must shoulder all below 50%, the existence has the enormous energy dissipation. Also when shoulders Q when the change, the traditional system movement parameter simply cannot achieve the synchronized adjustment, the lag adjustment methodbesides passively increase the unloading through the main engine, nearly no other controls method.This research topic will abandon the former control plan, will recognize, the servo-control system theory, the intelligence control system theory take the model as the foundation, will unify with the central air conditioning main engine refrigeration technology and the cold intermediary circulatory system control, take the frequency conversion technology as the assistance method, the realization central air conditioning entire system whole coordination movement and the overall performance optimization. This research is the air conditioning energy conservation new idea, has represented the energy conservation technology recent development tendency.1) circulatory system energy conservation: By the system angle, through to the terminal load parameter, the central air conditioning main engine, the auxiliary engine movement operating mode change, the gathering temperature, the pressure and so on the many kinds of coefficient of variation, then through the load move computation, the change system freezing water current capacity, the cooling water current capacity and the cooling tower air blower amount of wind adapts the air conditioning load change, simultaneously causes the main engine movement operating mode throughout to be in optimized in the best operating point. Generally when full load pumping machine needs the full speed movement, has not conserved energy the space, but uses the redundant technology and the frequency conversion technology unifies, the proportioning pump and the variable displacement pump coordinate,it is the truths.To freezes the aqueous system to use the best output energy control. When the ambient temperature, the air conditioning terminal load changes, Optimized the main engine movement pattern each group freezing water for the backwater temperature, the temperature difference, the differential pressure and the current capacity also along with it change, these parameters which the flowmeter, the differential-pressure pickup and the temperature sensor examines delivers to the intelligent controller, the real-time data and the system historyperformance data which the controller basis gathers, the real-time idea figures out the refrigeration quantity which the terminal air conditioning load needs, as well as each group freezing water for the backwater temperature, the temperature difference, the differential pressure and the current capacity best value, and to this adjusts various frequency changers output frequency, the control freezes the water pump the rotational speed, Changes its current capacity to cause the freezing aqueous system for the backwater temperature, the temperaturedifference, the differential pressure and the current capacity movement the optimum value which produces in the controller.Because the freezing aqueous system has used the output energy dynamic control, the realization air conditioning host frozen intermediary current capacity follows the terminal load the demand supply, causes the air-conditioning system in each kind of load situation, all can both guarantee terminal user's comfortableness, and maximum limit has saved the system energy consumption.The cooling water system uses the best hot transfer efficiency control. The cooling water and the cooling tower air blower system uses the best transfer efficiency control. When the ambient temperature, the air conditioning terminal load changes, central air conditioning main engine load factor along with it change, main engine condenser best hot transformation temperature also along with it change. The intelligent controller basis gathers the real-time data and the system history performance data, calculates the main engine condenser the best hot transformation temperature (inflection point temperature) and the cooling water is best, the inlet temperature, and by this adjustment cooling water pump and the cooling tower air blower frequency changer output frequency, the control cooling water pump and the cooling tower air blower rotational speed, the dynamic adjustment cooling water current capacity and the cooling tower air blower amount of wind, causes the cooling water to enter, the outlet temperature approaches the optimum value which the intelligent controller produces, thus guaranteed the central air conditioning main engine is at under the best transfer efficiency condition to move as necessary.Because the cooling water system uses the best transfer efficiency control, had guaranteed the central air conditioning main engine in the full load and in the partial load situation, is at the best active status, throughout maintains the best energy use factor (namely the COP value), thus reduced the air conditioning main engine energy consumption, simultaneously because the cooling water pump and the cooling tower air blower frequently in are lower than under the fixed load to move, also maximum limit saved the cooling water pump and the cooling tower air blower energy consumption.2) Auxiliary engine energy conservation: Each kind pumps the kind (freezing to pump, cold water pump, air blower and so on) the movement energy conservation. Use has the space vector control the frequency conversion velocity modulation way, changes the proportioning pump the variable displacement pump. Auxiliary engine energy conservation many to 40% .3) optimizes the auxiliary engine movement pattern: Generally when full load pumping machine needs the full speed movement, has not conserved energy the space, but uses the redundant technology and the frequency conversion technology unifies, the proportioning pump and the variable displacement pump coordinate, the optimized movement pattern, may cause the auxiliary engine unit to synthesize the energy conservation.4) multi- parameters non-linearity control: This system for multi- parameters, when changes, the nonlinear system, take the computer as the control method, designs a set to have from seeks the stable security control system which the superior auto-adapted intelligent control, the function consummates.This central air conditioning dynamic load track energy conservation control system, with the central air-conditioning system necessary use, may realize the central air-conditioning system highly effective energy conservation, the effect is remarkable. After the theoretical calculation, compares with the permanent current capacity central air-conditioning system, whole year the average electricity saving rate may reach 20%-30%. This project technology content is high, is the collection warmly passes the air conditioning technology, the refrigeration technology, the intelligent control theory and the computer control technology is a body central air conditioning highly effective energy conservation system.4. forecasts equipment system invests the market, if every year has will surpass 200 sets of products completely to install is bigger than 50,000 m2 in the floor space in the commercial construction central air conditioning engine room, it saves the electric quantity to be equal to every year newly built 50,000 kW power plant, decrease the peak will use electricity to the summer electrical network also plays certainly alleviates the role, truly will realize the society sustainable coordinated development.空调节能技术的研究1.引言节能可以说是楼字自动控制系统的出发点和归宿。

建筑节能外墙保温技术及节能材料毕业论文中英文资料对照外文翻译文献综述

建筑节能外墙保温技术及节能材料毕业论文中英文资料对照外文翻译文献综述

建筑节能外墙保温技术及节能材料毕业论文中英文资料对照外文翻译文献综述外墙保温技术及节能材料中英文资料对照外文翻译文献综述文献翻译On the external wall insulation technology and energy saving materials[ Abstract ] as the energy conservation and protect environment requirements of the continuous improvement, building maintenance structure heat preservation technology is also increasing, especially in exterior wall insulation technology has made great progress, and become an important building energy saving technology. At present, the building is often used in external wall insulation are mainly within the insulation, insulation and other methods, according to the development of new technologies, new energy-saving materials should be developed and utilized, so as to really implement building energy conservation.[ Key words ] external wall insulation building materials energy-saving building Building energy saving is the implementation of the national environmental protection and energy conservation policy is the main content, it is to carry out the sustainable development of the national economy important component. The national Ministry of construction in1995 promulgated the" rules for the implementation of city building energy saving" and other documents, the" energy conservation design standard for residential buildings ' partial '" JGJ26-95as a mandatory standard, at the same time, the Ministry of construction and was released in October 1, 2000seventy-sixthcalled" regulation of civil building energy saving", do not conform to the standard of energy saving project, shall not approved for construction.In such a series of energy-saving policies, regulations, standards and mandatory guidance, China's energy-saving housing construction work unceasingly thorough, continuously improve the energy efficiency standards, the introduction of the development of many new energy-saving technology and materials, vigorously promote the use of residential buildings. But our country's current level of building energy conservation, but also far lower than developed countries, China's building energy consumption per unit area is still a climate similar to the developed countries 3times to 5 times. Construction energy conservation is China's construction industry is an important task.One, external wall thermal insulation technologyEnergy saving thermal insulation wall construction technology mainly divided into exterior wall internal insulation and exterior wall insulation in two categories.1internal insulation technology and its characteristics. Within the external wall insulation construction, in the exterior wall structure with internal heat insulation layer. Thermal insulation in the construction speed is fast, convenient and flexible operation, can ensure the construction progress. Internal insulation application time is long, the technology is mature, construction technology and inspection standard is perfect. In 2001the construction of external wall insulation in about 90% of the engineering application of internal insulation technology. To be popularized in large area of internal insulation technology : reinforced gypsum composite polystyrene insulation board,polymer mortar composite polystyrene insulation board, reinforced cement composite polystyrene insulation panels, interior wall decoration with polystyrene board plastering gypsum and wipe with particles of polystyrene insulation slurry and anti-crack mortar is pressed into the mesh approach.But the internal insulation will occupy the area of use," bridge" is not easy to solve, easy to crack, but also affects the construction speed, influence dweller decoration two, and the inner wall hanging and fixing it easy to break the internal insulation structure. Internal insulation technology of irrationality, it would be replaced by external insulation.2external insulation technology and its characteristics. External insulation is currently promoting a building energy-saving insulation technology. The outer and inner thermal insulation, reasonable technology, has its obvious advantages, the use of the same specification, the same size and insulation material, insulation than the inner heat preservation effect is good. External thermal insulation technology applies not only to new construction, also apply to the transformation of old buildings, applicable to a wide range, with high technical content; external insulation package in the main structure of the lateral, to protect the main structure, prolongs the service life of buildings; effectively reduces the thermal bridges in building construction, increase the construction of effective space; while eliminating condensation, improve the living comfort.(1) external external thermal insulation external insulation materials of rock ( ore) cotton, glass cottonMat, polystyrene foam board ( referred to as polystyrene board, EPS, XPS ), ceramisite concrete composite polystyrene insulation board, stone decorative wire mesh frame sandwichwallboard. The polystyrene board has excellent physical properties and cheap cost, already all over the world within the external wall insulation plug technology is widely used in. The plug-in technology is the use of adhesive mortar or special fasteners, thermal insulation material affixed hanging on the wall, then wipe the anti-cracking mortar, press glass fiber grid cloth to form a protective layer, finally combined with decorative surface. This type of external insulation installation is time-consuming, difficult construction, and the construction period to be occupied dominant, main body after the inspection to construction. In the high-rise construction, the safety of construction personnel is not easy to be guaranteed.(2) polystyrene plate wall of a casting moldingThe technique is in the concrete frame shear wall system the polyphenyl board built in building templates, in the gating of the wall outside, then pouring the concrete, concrete and polystyrene board in a casting molding for composite wall. The technology to solve the external insulation problems, its advantage is very obvious. Because the outer wall body with insulation layer of a survival, efficiency, significantly shortening the construction period, and the construction personnel safety assured. But when construction in winter, polystyrene board insulation effect, can reduce the peripheral wall heat preservation measures. But in the concrete to uniform, continuous casting, or because the concrete lateral pressure effect will cause the polystyrene board in Chaimo after deformation and staggered stubble, affect the order of the construction.All kinds of insulation technology and advantages1, expanded polystyrene board and thin plastering and reinforced by glass fiber approach and advantagesIt is currently in use in our country most one kind of external insulation wall, wherein the polystyrene board in the primary wall fixed in one of three ways:1) by bonding mortar fixed;2) using a mechanical fixture fixed;3) more than two kinds of fixed combination. This approach has the following advantages:1) because it is in Europe and the United States have been in use for nearly thirty years, in the United States have built high up to 44 layers, therefore. This technology already formed a system, the bonding layer, heat-insulating layer and facing layer supporting the use, more mature technical documents;2) due to the expanded polystyrene insulation materials, the price is very expensive, so that the whole system of moderate price. Convenient user acceptance;3) no complex construction technology, construction unit after a brief training, can grasp the essentials for construction, technology promotion;4) it set insulation, waterproofing and decoration function in a body, has the advantages of multiple functions;5) the whole system has good weatherability, good waterproof and water vapor permeability;6) a variety of color and texture of thesurface coating for selection, and the entire system supporting the use of. At present. This approach in Beijing, Northeast China and other places has been widely applied, Beijing Yu Garden, Wolong garden, the Ministry of construction of C eight, C ten buildings transformation and many other engineering, have adopted this approach. However, due to expansion polystyrene against termites, termite in areas not available; due to the construction of environmental temperature of 4 degrees, not suitable for winter construction.In 2, the extruded polystyrene for external thermal insulation wallExtruded polystyrene is in recent years developed a new type of thermal insulation material. At present, extruded polystyrene and the tea layer wall fixed mode mainly adopts mechanical fasteners. The material has the advantages that:1) extruded polystyrene with dense surface and inner layer of the obturator structure. Its thermal conductivity is much lower than the same thickness of expanded polystyrene, therefore has a better thermal insulation properties of expanded polystyrene. In the same building, its thickness can be less than other types of insulation material;2) due to the inner layer of the [ knife hole structure. So it has good humidity resistance, in the humid environment, can keep good thermal insulation properties;3) suitable for cold insulation on the special requirements of the building, and can also be used for exterior wall facing material for brick or stone building,4) as a result of extruded polystyrene and the base wall fixing mode of soil using mechanical fastener. In winter the normal construction. At present. In Beijing, the river runs and other regions have to use this material for outer wall external thermal insulation construction, such as the Beijing New Oriental Plaza, Bank of China and other large public buildings. But the extruded polystyrene price is on the high side, thus is suitable for higher grade of the building. The construction technology and node structure needs to be further perfected.The 3single side steel mesh polystyrene board with the exterior wall external insulationThis is developed in recent years, used for cast-in-place concrete construction of external wall insulation system, a kind of liu. It has the following advantages:1) this system in the construction of. The steel mesh polystyrene board is arranged to pouring wall inside an external mold, external insulation boardand the wall a survival, after stripping the insulation board and the wall be made one, thus saving manpower, time and cost of installation;2) selection of steel mesh polystyrene plate, light weight, easy construction;3) construction easy to master. Winter construction of polystyrene board as usual;4) the lateral hanging wire, finishes available tiles. At present, this system is mainly used for cast-in-place concrete, high-rise residential, its construction, installation technology has yet to be further improved.A 4 insulation paste material for exterior wall thermal insulationIn recent years, insulation paste is also beginning to be used in building outer wall heat preservation. The utility model has the advantages of:1) insulation paste adhesive layer, insulating layer and the decorative layer has formed a system, for supporting the use of;2) thermal insulation mortar for exterior wall thermal insulation, the basic wall roughness requirement is not high, easy in the shape of the basal wall construction;3) comparison of the construction process is simple, the operation easy to master;4) some insulation slurry material used in recycling of waste polystyrene granule as aggregate, energy saving, is beneficial to protect environment;5) can be used to repair the wall plastering surface cracks. At present, Beijing has many high-rise building exterior insulation with thermal paste, such as modern literature museum. However, insulation paste exterior wall external insulation node structure, construction process has yet to be further improved.Above a few kinds of external wall thermal insulation technology, due to the adoption of the materials and construction technology are different, so their applicable scope are not the same. In use. Should be according to the design ofconstruction cost, geographic location and other factors to choose.In two, the external wall thermal insulation energy-saving materialsEnergy saving materials belonging to the thermal insulation materials. Insulation material is used for building or thermal equipment, heat transfer impedance material or material complex, including both insulation materials, including cold insulation materials. Insulation material sense, on one hand is to satisfy the architectural space or thermal equipment, thermal environment, on the other hand, in order to save energy. With the worldwide energy shortage, thermal insulation material in energy-saving aspects of the meaning is more and more important. Only the general residents of heating air conditioning, through the use of thermal insulation building materials, which can be the basis of the existing energy-saving 50% ~80%. According to the Japanese energy-saving practice proved, each using1 tons of insulating material, can save coal3 tons / year, the energy-saving efficiency is10 times the cost of production. Thus, in some countries, the thermal insulation material as following coal, petroleum, natural gas, nuclear power after the fifth big" energy".The 1insulation material performance. Adiabatic, is to maximize heat transfer impedance, so the requirement of adiabatic material must has great thermal resistance and low thermal conductivity.From material composition, organic polymer thermal conductivity than the inorganic non-metallic material; thermal conductivity than the metallic material; gaseous material thermal conductivity less than the liquid material, the liquid material isless than solid. So when conditions permit, should try to use the organic polymer materialsor amorphous inorganic material, which is favorable for heat insulation.From the material structure, as the material is apparent density decreased, the porosity increases, the material inside the pores as a substantially enclosed micro hole, coefficient of heat conductivity of the material is relatively small. For foam products, to meet the requirements of thermal insulation materials and the best apparent density of 16~ 40kg / m3.2 commonly used thermal insulation materials. Can meet the performance requirements for exterior insulation energy-saving materials are: polystyrene foam board ( EPS and XPS ), rock ( ore) cotton board, glass wool felt and super light particles of polystyrene insulation slurry etc.. All of the above materials are a common feature of the materials within a closed hole, their apparent density is small, it is also used as insulation materials required.Rock ( ore) wool and glass wool are sometimes referred to as the mineral cotton, which belongs to the field of inorganic material. Rock wool, not combustion, low price, to meet the heat insulation performance but also has a certain sound insulation effect. But the rock quality varied widely, good thermal insulation properties of low density, the tensile strength is low, poor durability.Three, conclusionAt present our country external wall thermal insulation technology development is very rapid, is the focus of energy conservation. External wall insulation technology and energy-saving materials innovation are inseparable, building energyconservation must be based on the development of new energy-saving materials as the premise, must have sufficient insulation material base. Energy saving materials development must again and external wall thermal insulation technology combined, can truly play its role. It is the result of energy saving material innovation, external wall insulation technology superiority can be taken seriously increasingly by people. So in promoting external wall insulation technology, new energy-saving materials should be developed and utilized, so as to realize building energy saving.Reference.[1] building energy research center of Tsinghua University. Annual report on China building energy efficiency2009[ M]. Beijing: China Building Industry Press,2009: 48-57.文献翻译浅谈外墙保温技术及节能材料[摘要]随着对节约能源与保护环境的要求的不断提高,建筑维护结构的保温技术也在日益加强,尤其是外墙保温技术得到了长足的发展,并成为我国一项重要的建筑节能技术。

中英文 空调节能技术的研究

中英文 空调节能技术的研究

外文翻译中文空调节能技术的研究摘要:一台空调基本上是没有被隔离的箱子的一个冰箱。

它象氟里昂一样利用冷媒的蒸发提供冷却。

在一台空调里氟里昂蒸发循环的过程和冰箱里的相同。

关键词:水塔、改变气候、压缩机、节能当外面的温度开始上升时,很多人寻找室内的空调的极好的安慰。

象水塔和电源线一样,空调是我们每天看见但是很少注意的那些东西之一。

它将不是很高兴的知道这些不可缺少的机器怎样运转他们的魔术吗?在这篇文章里,我们将检查空调–从微观到宏观–以使你对你所看见的知道得更多!低温的各个方面。

空调的定型是各种尺寸,冷却能力和价格。

我们经常看见的一种类型是窗式空气调节器。

窗式空气调节器是冷却一个小的区域的一种容易和节约的方法。

居住在郊区的地区的大多数人通常在他们的后院有这些中之一:如果你住在一座公寓大厦里,这或许是一个熟悉的情景:大多数商业和办公楼在他们的屋顶上有冷凝装置,并且当你飞到上空时,仓库和商业区可能让人把10 或者20 套冷凝装置隐藏在他们的屋顶上:当你徘徊在很多医院,大学和办公室联合企业的周围时,你会找到连接空气调节系统的大的冷却塔:即使这些机器中的每个都有一个相当清楚的外表,他们全部以相同的原理工作。

让我们近距离地看一下。

基本的想法,一台空调基本上是没有被隔离的箱子的一个冰箱。

它象氟里昂一样利用冷媒的蒸发提供冷却。

在一台空调里氟里昂蒸发循环的过程和冰箱里的相同。

根据在线梅里厄姆织工字典,氟里昂一般“用于任何各种各样的调节器”。

根据在线梅里厄姆织工字典,氟里昂一般"用于作为致冷剂和作为气溶胶推进者使用的任何各种各样的不易燃的碳氟化合物。

”这就是在一台空调里的蒸发循环是怎么样工作(看出冰箱怎样为关于这个系列的完整的细节工作):1. 压缩机压缩低温的氟里昂气体,产生高温,高压氟里昂气体。

2. 这种高温气体通过一套线圈,因此它能使它的热消散,并且它凝结成一种液体。

3. 氟里昂液体充满一个膨胀阀,并且在这个过程里蒸发变得低温,低压氟里昂气体。

中央空调控制系统中英文对照外文翻译文献

中央空调控制系统中英文对照外文翻译文献

中英文对照外文翻译(文档含英文原文和中文翻译)基于PLC的中央空调控制系统1引言在PLC被开发出来的三十年里,它经过不断地发展,已经能结合模拟I/O,网络通信以及采用新的编程标准如IEC 61131-3。

然而,工程师们只需利用数字I/O和少量的模拟I/O数以及简单的编程技巧就可开发出80%的工业应用。

PLC已经广泛的应用在所有的工业部门。

据“美国市场信息”的世界PLC以及软件市场报告称,1995年全球PLC及其软件的市场经济规模约50亿美元[5]。

随着电子技术和计算机技术的发展,PLC的功能得到大大的增强。

由于采用传统的工具可以解决80%的工业应用,这样就强烈地需要有低成本简单的PLC;从而促进了低成本微型PLC的增长,它带有用梯形逻辑编程的数字I/O。

然而,这也在控制技术上造成了不连续性,一方面80%的应用需要使用简单的低成本控制器,而另一方面其它的20%应用则超出了传统控制系统所能提供的功能。

工程师在开发这些20%的应用需要有更高的循环速率,高级控制算法,更多模拟功能以及能更好地和企业网络集成。

在八十和九十年代,那些要开发“20%应用”的工程师们已考虑在工业控制中使用PC。

PC所提供的软件功能可以执行高级任务,提供丰富的图形化编程和用户环境,并且PC的COTS部件使控制工程师能把不断发展的技术用于其它应用。

这些技术包括浮点处理器;高速I/O总线,如PCI和以太网;固定数据存储器;图形化软件开发工具。

而且PC还能提供无比的灵活性,高效的软件以及高级的低成本硬件。

冰蓄冷中央空调是将电网夜间谷荷多余电力以冰的冷量形式储存起来,在白天用电高峰时将冰融化提供空调服务。

由于我国大部分地区夜间电价比白天低得多,所以采用冰储冷中央空调能大大减少用户的运行费用。

冰蓄冷中央空调系统配置的设备比常规空调系统要增加一些,自动化程度要求较高,但它能自动实现在满足建筑物全天空调要求的条件下将每天所蓄的能量全部用完,最大限度地节省运行费用。

建环毕业翻译(中英文对照)

建环毕业翻译(中英文对照)

外文翻译中文空调工作过程和节能技术的研究摘要:一台空调基本上是没有被隔离的箱子的一个冰箱。

它象氟里昂一样利用冷媒的蒸发提供冷却.在一台空调里氟里昂蒸发循环的过程和冰箱里的相同。

关键词:水塔、改变气候、压缩机、节能当外面的温度开始上升时,很多人寻找室内的空调的极好的安慰。

象水塔和电源线一样,空调是我们每天看见但是很少注意的那些东西之一。

它将不是很高兴的知道这些不可缺少的机器怎样运转他们的魔术吗?在这篇文章里,我们将检查空调–从微观到宏观–以使你对你所看见的知道得更多!低温的各个方面.空调的定型是各种尺寸,冷却能力和价格。

我们经常看见的一种类型是窗式空气调节器.窗式空气调节器是冷却一个小的区域的一种容易和节约的方法。

居住在郊区的地区的大多数人通常在他们的后院有这些中之一:如果你住在一座公寓大厦里,这或许是一个熟悉的情景:大多数商业和办公楼在他们的屋顶上有冷凝装置,并且当你飞到上空时,仓库和商业区可能让人把10 或者20 套冷凝装置隐藏在他们的屋顶上:当你徘徊在很多医院,大学和办公室联合企业的周围时,你会找到连接空气调节系统的大的冷却塔:即使这些机器中的每个都有一个相当清楚的外表,他们全部以相同的原理工作。

让我们近距离地看一下。

基本的想法,一台空调基本上是没有被隔离的箱子的一个冰箱。

它象氟里昂一样利用冷媒的蒸发提供冷却.在一台空调里氟里昂蒸发循环的过程和冰箱里的相同。

根据在线梅里厄姆织工字典,氟里昂一般“用于任何各种各样的调节器”。

根据在线梅里厄姆织工字典,氟里昂一般”用于作为致冷剂和作为气溶胶推进者使用的任何各种各样的不易燃的碳氟化合物。

”这就是在一台空调里的蒸发循环是怎么样工作(看出冰箱怎样为关于这个系列的完整的细节工作):1。

压缩机压缩低温的氟里昂气体,产生高温,高压氟里昂气体.2. 这种高温气体通过一套线圈,因此它能使它的热消散, 并且它凝结成一种液体。

3。

氟里昂液体充满一个膨胀阀, 并且在这个过程里蒸发变得低温,低压氟里昂气体。

暖通空调系统专业外文翻译

暖通空调系统专业外文翻译

暖通空调系统专业外文翻译英文文献Air Conditioning SystemsAir conditioning has rapidly grown over the past 50 years from a luxury to a standard system included in most residential and commercial buildings In 1970 36 of residences in the US were either fully air conditioned or utilized a room air conditioner for cooling Blue et al 1979 By 1997 this number had more than doubled to 77 and that year also marked the first time that over half 509 of residences in the US had central air conditioners Census Bureau 1999 An estimated 83 of all new homes constructed in 1998 had central air conditioners Census Bureau 1999 Air conditioning has also grown rapidly in commercial buildings From 1970 to 1995 the percentage of commercial buildings with air conditioning increased from 54 to 73 Jackson and Johnson 1978 and DOE 1998Air conditioning in buildings is usually accomplished with the use of mechanical or heat-activated equipment In most applications the air conditioner must provide both cooling and dehumidification to maintain comfort in the building Air conditioning systems are also used in other applications such as automobiles trucks aircraft ships and industrialfacilities However the description of equipment in this chapter is limited to those commonly used in commercial and residential buildings Commercial buildings range from large high-rise office buildings to the corner convenience store Because of the range in size and types of buildings in the commercial sector there is a wide variety of equipment applied in these buildings For larger buildings the air conditioning equipment is part of a total system design that includes items such as a piping system air distribution system and cooling tower Proper design of these systems requires a qualified engineer The residential building sector is dominatedby single family homes and low-rise apartmentscondominiums The cooling equipment applied in these buildings comes in standard packages that are often both sized and installed by the air conditioning contractor The chapter starts with a general discussion of the vapor compression refrigeration cycle then moves to refrigerants and their selection followed by packaged Chilled Water Systems11 Vapor Compression CycleEven though there is a large range in sizes and variety of air conditioning systems used in buildings most systems utilize the vapor compression cycle to produce the desired cooling and dehumidification This cycle is also used for refrigerating and freezing foods and for automotive air conditioning The first patent on a mechanically drivenrefrigeration system was issued to Jacob Perkins in 1834 in London and the first viable commercial system was produced in 1857 by James Harrison and DE SiebeBesides vapor compression there are two less common methods used to produce cooling in buildings the absorption cycle and evaporative cooling These are described later in the chapter With the vapor compression cycle a working fluid which is called the refrigerant evaporates and condenses at suitable pressures for practical equipment designsThe four basic components in every vapor compression refrigeration system are the compressor condenser expansion device and evaporator The compressor raises the pressure of the refrigerant vapor so that the refrigerant saturation temperature is slightly above the temperature of the cooling medium used in the condenser The type of compressor used depends on the application of the system Large electric chillers typically use a centrifugal compressor while small residential equipment uses a reciprocating or scroll compressorThe condenser is a heat exchanger used to reject heat from the refrigerant to a cooling medium The refrigerant enters the condenser and usually leaves as a subcooled liquid Typical cooling mediums used in condensers are air and water Most residential-sized equipment uses air as the cooling medium in the condenser while many larger chillers use water After leaving the condenser the liquid refrigerant expands to a lowerpressure in the expansion valveThe expansion valve can be a passive device such as a capillary tube or short tube orifice or an active device such as a thermal expansion valve or electronic expansion valve The purpose of the valve is toregulate the flow of refrigerant to the evaporator so that the refrigerant is superheated when it reaches the suction of the compressor At the exit of the expansion valve the refrigerant is at a temperature below that of the medium air or water to be cooled The refrigerant travels through a heat exchanger called the evaporator It absorbs energy from the air or water circulated through the evaporator If air is circulated through the evaporator the system is called a direct expansion system If water is circulated through the evaporator it is called a chiller In either case the refrigerant does not make direct contact with the air or water in the evaporatorThe refrigerant is converted from a low quality two-phase fluid to a superheated vapor under normal operating conditions in the evaporator The vapor formed must be removed by the compressor at a sufficient rate to maintain the low pressure in the evaporator and keep the cycle operating All mechanical cooling results in the production of heat energy that must be rejected through the condenser In many instances this heat energy is rejected to the environment directly to the air in the condenser or indirectly to water where it is rejected in a cooling tower With someapplications it is possible to utilize this waste heat energy to provide simultaneous heating to the building Recovery of this waste heat at temperatures up to 65°C 150°F can be used to reduce costs for space heatingCapacities of air conditioning are often expressed in either tons or kilowatts kW of cooling The ton is a unit of measure related to the ability of an ice plant to freeze one short ton 907 kg of ice in 24 hr Its value is 351 kW 12000 Btuhr The kW of thermal cooling capacity produced by the air conditioner must not be confused with the amount of electrical power also expressed in kW required to produce the cooling effect21 Refrigerants Use and SelectionUp until the mid-1980s refrigerant selection was not an issue in most building air conditioning applications because there were no regulations on the use of refrigerants Many of the refrigerants historically used for building air conditioning applications have been chlorofluorocarbons CFCs and hydrochlorofluorocarbons HCFCs Most of these refrigerants are nontoxic and nonflammable However recent US federal regulations EPA 1993a EPA 1993b and international agreements UNEP 1987 have placed restrictions on the production and use of CFCs and HCFCs Hydrofluorocarbons HFCs are now being used in some applications where CFCs and HCFCs were used Having an understanding of refrigerants can helpa building owner or engineer make a more informed decision about the best choice of refrigerants for specific applications This section discusses the different refrigerants used in or proposed for building air conditioning applications and the regulations affecting their use The American Society of Heating Refrigerating and Air Conditioning Engineers ASHRAE has a standard numbering systemfor identifying refrigerants ASHRAE 1992 Many popular CFC HCFC and HFC refrigerants are in the methane and ethane series of refrigerants They are called halocarbons or halogenated hydrocarbons because of the presence of halogen elements such as fluorine or chlorine King 1986 Zeotropes and azeotropes are mixtures of two or more different refrigerants A zeotropic mixture changes saturation temperatures as it evaporates or condenses at constant pressure The phenomena is called temperature glide At atmospheric pressure R-407C has a boiling bubble point of –44°C –47°F and a condensation dew point of –37°C –35°F which gives it a temperature glide of 7°C 12°F An azeotropic mixture behaves like a single component refrigerant in that the saturation temperature does not change appreciably as it evaporates or condenses at constant pressure R-410A has a small enough temperature glide less than 55°C 10°F that it is considered a near-azeotropic refrigerant mixture ASHRAE groups refrigerants by their toxicity and flammability ASHRAE 1994 Group A1 is nonflammable and least toxic while Group B3 isflammable and most toxic Toxicity is based on the upper safety limit for airborne exposure to the refrigerant If the refrigerant is nontoxic in quantities less than 400 parts per million it is a Class A refrigerant If exposure to less than 400 parts per million is toxic then the substance is given the B designation The numerical designations refer to the flammability of the refrigerant The last column of Table com shows the toxicity and flammability rating of common refrigerantsRefrigerant 22 is an HCFC is used in many of the same applications and is still the refrigerant of choice in many reciprocating and screw chillers as well as small commercial and residential packaged equipment It operates at a much higher pressure than either R-11 or R-12 Restrictions on the production of HCFCs will start in 2004 In 2010 R-22 cannot be used in new air conditioning equipment R-22 cannot be produced after 2020 EPA 1993bR-407C and R-410A are both mixtures of HFCs Both are considered replacements for R-22 R-407C is expected to be a drop-in replacement refrigerant for R-22 Its evaporating and condensing pressures for air conditioning applications are close to those of R-22 Table com However replacement of R-22 with R-407C should be done only after consulting with the equipment manufacturer At a minimum the lubricant and expansion device will need to be replaced The first residential-sized air conditioning equipment using R-410A was introduced in the US in 1998 Systems usingR-410A operate at approximately 50 higher pressure than R-22 Table com thus R-410A cannot be used as a drop-in refrigerant for R-22 R-410A systems utilize compressors expansion valves and heat exchangers designed specifically for use with that refrigerantAmmonia is widely used in industrial refrigeration applications and in ammonia water absorption chillers It is moderately flammable and has a class B toxicity rating but has had limited applications in commercial buildings unless the chiller plant can be isolated from the building being cooled Toth 1994 Stoecker 1994 As a refrigerant ammonia has many desirable qualities It has a high specific heat and high thermal conductivity Its enthalpy of vaporization is typically 6 to 8 times higher than that of the commonly used halocarbons and it provides higher heat transfer compared to halocarbons It can be used in both reciprocating and centrifugal compressorsResearch is underway to investigate the use of natural refrigerants such as carbon dioxide R-744 and hydrocarbons in air conditioning and refrigeration systems Bullock 1997 and Kramer 1991 Carbon dioxide operates at much higher pressures than conventional HCFCs or HFCs and requires operation above the critical point in typical air conditioning applications Hydrocarbon refrigerants often thought of as too hazardous because of flammability can be used in conventional compressors and have been used in industrial applications R-290 propane has operatingpressures close to R-22 and has been proposed as a replacement for R-22 Kramer 1991 Currently there are no commercial systems sold in the US for building operations that use either carbon dioxide or flammable refrigerants31 Chilled Water SystemsChilled water systems were used in less than 4 of commercial buildings in the US in 1995 However because chillers are usually installed in larger buildings chillers cooled over 28 of the US commercial building floor space that same year DOE 1998 Five types of chillers are commonly applied to commercial buildings reciprocating screw scroll centrifugal and absorption The first four utilize the vapor compression cycle to produce chilled water They differ primarily in the type of compressor used Absorption chillers utilize thermal energy typically steam or combustion source in an absorption cycle with either an ammonia-water or water-lithium bromide solution to produce chilled water32 Overall SystemAn estimated 86 of chillers are applied in multiple chiller arrangements like that shown in the figure Bitondo and Tozzi 1999 In chilled water systems return water from the building is circulated through each chiller evaporator where it is cooled to an acceptable temperature typically 4 to 7°C 39 to 45°F The chilled water is then distributed to water-to-air heat exchangers spread throughout the facility In theseheat exchangers air is cooled and dehumidified by the cold water During the process the chilled water increases in temperature and must be returned to the chiller sThe chillers are water-cooled chillers Water is circulated through the condenser of each chiller where it absorbs heat energy rejected from the high pressure refrigerant The water is then pumped to a cooling tower where the water is cooled through an evaporation process Cooling towers are described in a later section Chillers can also be air cooled In this configuration the condenserwould be a refrigerant-to-air heat exchanger with air absorbing the heat energy rejected by the high pressure refrigerantChillers nominally range in capacities from 30 to 18000 kW 8 to 5100 ton Most chillers sold in the US are electric and utilize vapor compression refrigeration to produce chilled water Compressors for these systems are either reciprocating screw scroll or centrifugal in design A small number of centrifugal chillers are sold that use either an internal combustion engine or steam drive instead of an electric motor to drive the compressorThe type of chiller used in a building depends on the application For large office buildings or in chiller plants serving multiple buildings centrifugal compressors are often used In applications under 1000 kW 280 tons cooling capacities reciprocating or screw chillers may be moreappropriate In smaller applications below 100 kW 30 tons reciprocating or scroll chillers are typically used33 Vapor Compression ChillersThe nominal capacity ranges for the four types of electrically driven vapor compression chillers Each chiller derives its name from the type of compressor used in the chiller The systems range in capacities from the smallest scroll 30 kW 8 tons to the largest centrifugal 18000 kW 5000 tons Chillers can utilize either an HCFC R-22 and R-123 or HFC R-134a refrigerant The steady state efficiency of chillers is often stated as a ratio of the power input in kW to the chilling capacity in tons A capacity rating of one ton is equal to 352 kW or 12000 btuh With this measure of efficiency the smaller number is better centrifugal chillers are the most efficient whereas reciprocating chillers have the worst efficiency of the four types The efficiency numbers provided in the table are the steady state full-load efficiency determined in accordance to ASHRAE Standard 30 ASHRAE 1995 These efficiency numbers do not include the auxiliary equipment such as pumps and cooling tower fans that can add from 006 to 031 kWton to the numbers shownChillers run at part load capacity most of the time Only during the highest thermal loads in the building will a chiller operate near its rated capacity As a consequence it is important to know how the efficiency of the chiller varies with part load capacity a representative data for theefficiency in kWton as a function of percentage full load capacity for a reciprocating screw and scroll chiller plus a centrifugal chiller with inlet vane control and one with variable frequency drive VFD for the compressor The reciprocating chiller increases in efficiency as it operates at a smaller percentage of full load In contrast the efficiency of a centrifugal with inlet vane control is relatively constant until theload falls to about 60 of its rated capacity and its kWton increases to almost twice its fully loaded valueIn 1998 the Air Conditioning and Refrigeration Institute ARI developed a new standard that incorporates into their ratings part load performance of chillers ARI 1998c Part load efficiency is expressed by a single number called the integrated part load value IPLV The IPLV takes data similar to that in Figure com and weights it at the 25 50 75 and 100 loads to produce a single integrated efficiency number The weighting factors at these loads are 012 045 042 and 001 respectively The equation to determine IPLV isMost of the IPLV is determined by the efficiency at the 50 and 75 part load values Manufacturers will provide on request IPLVs as well as part load efficienciesThe four compressors used in vapor compression chillers are each briefly described below While centrifugal and screw compressors are primarily used in chiller applications reciprocating and scrollcompressors are also used in smaller unitary packaged air conditioners and heat pumps34 Reciprocating CompressorsThe reciprocating compressor is a positive displacement compressor On the intake stroke of the piston a fixed amount of gas is pulled into the cylinder On the compression stroke the gas is compressed until the discharge valve opens The quantity of gas compressed on each stroke is equal to the displacement of the cylinder Compressors used in chillers have multiple cylinders depending on the capacity of the compressor Reciprocating compressors use refrigerants with low specific volumes and relatively high pressures Most reciprocating chillers used in building applications currently employ R-22Modern high-speed reciprocating compressors are generally limited to a pressure ratio of approximately nine The reciprocating compressor is basically a constant-volume variable-head machine It handles various discharge pressures with relatively small changes in inlet-volume flow rate as shown by the heavy line labeled 16 cylinders Condenser operation in many chillers is related to ambient conditions for example through cooling towers so that on cooler days the condenser pressure can be reduced When the air conditioning load is lowered less refrigerant circulation is required The resulting load characteristic is represented by the solid line that runs from the upper right to lower leftThe compressor must be capable of matching the pressure and flow requirements imposed by the system The reciprocating compressor matches the imposed discharge pressure at any level up to its limiting pressure ratio Varying capacity requirements can be met by providing devices that unloadindividual or multiple cylinders This unloading is accomplished by blocking the suction or discharge valves that open either manually or automatically Capacity can also be controlled through the use of variable speed or multi-speed motors When capacity control is implemented on a compressor other factors at part-load conditions need to considered such as a effect on compressor vibration and sound when unloaders are used b the need for good oil return because of lower refrigerant velocities and c proper functioning of expansion devices at the lower capacities With most reciprocating compressors oil is pumped into the refrigeration system from the compressor during normal operation Systems must be designed carefully to return oil to the compressor crankcase to provide for continuous lubrication and also to avoid contaminating heat-exchanger surfacesReciprocating compressors usually are arranged to start unloaded so that normal torque motors are adequate for starting When gas engines are used for reciprocating compressor drives careful matching of the torque requirements of the compressor and engine must be considered35 Screw CompressorsScrew compressors first introduced in 1958 Thevenot 1979 are positive displacement compressors They are available in the capacity ranges that overlap with reciprocating compressors and small centrifugal compressors Both twin-screw and single-screw compressors are used in chillers The twin-screw compressor is also called the helical rotary compressor A cutaway of a twin-screw compressor design There are two main rotors screws One is designated male and the other female The compression process is accomplished by reducing the volume of the refrigerant with the rotary motion of screws At the low pressure side of the compressor a void is created when the rotors begin to unmesh Low pressure gas is drawn into the void between the rotors As the rotors continue to turn the gas is progressively compressed as it moves toward the discharge port Once reaching a predetermined volume ratio the discharge port is uncovered and the gas is discharged into the high pressure side of the system At a rotation speed of 3600 rpm a screw compressor has over 14000 discharges per minute ASHRAE 1996 Fixed suction and discharge ports are used with screw compressors instead of valves as used in reciprocating compressors These set the built-in volume ratio the ratio of the volume of fluid space in the meshing rotors at the beginning of the compression process to the volume in the rotors as the discharge port is first exposed Associated with thebuilt-in volume ratio is a pressure ratio that depends on the properties of the refrigerant being compressed Screw compressors have the capability to operate at pressure ratios of above 201 ASHRAE 1996 Peak efficiency is obtained if the discharge pressure imposed by the system matches the pressure developed by the rotors when the discharge port is exposed If the interlobe pressure in the screws is greater or less than discharge pressure energy losses occur but no harm is done to the compressor Capacity modulation is accomplished by slide valves that provide a variable suction bypass or delayed suction port closing reducing the volume of refrigerant compressed Continuously variable capacity control is most common but stepped capacity control is offered in some manufacturers machines Variable discharge porting is available on some machines to allow control of the built-in volume ratio during operation Oil is used in screw compressors to seal the extensive clearance spaces between the rotors to cool the machines to provide lubrication and to serve as hydraulic fluid for the capacity controls An oil separator is required for the compressor discharge flow to remove the oil from the high-pressure refrigerant so that performance of system heat exchangers will not be penalized and the oil can be returned for reinjection in the compressorScrew compressors can be direct driven at two-pole motor speeds 50 or 60 Hz Their rotary motion makes these machines smooth running andquiet Reliability is high when the machines are applied properly Screw compressors are compact so they can be changed out readily for replacement or maintenance The efficiency of the best screw compressors matches or exceeds that of the best reciprocating compressors at full load High isentropic and volumetric efficiencies can be achieved with screw compressors because there are no suction or discharge valves and small clearance volumes Screw compressors for building applications generally use either R-134a or R-22中文译文空调系统过去 50 年以来空调得到了快速的发展从曾经的奢侈品发展到可应用于大多数住宅和商业建筑的比较标准的系统在 1970 年的美国 36 的住宅不是全空气调节就是利用一个房间空调器冷却到1997年这一数字达到了 77在那年作的第一次市场调查表明在美国有超过一半的住宅安装了中央空调人口普查局1999 在1998年83的新建住宅安装了中央空调人口普查局 1999 中央空调在商业建筑物中也得到了快速的发展从 1970年到1995年有空调的商业建筑物的百分比从54增加到 73 杰克森和詹森1978建筑物中的空气调节通常是利用机械设备或热交换设备完成在大多数应用中建筑物中的空调器为维持舒适要求必须既能制冷又能除湿空调系统也用于其他的场所例如汽车卡车飞机船和工业设备然而在本章中仅说明空调在商业和住宅建筑中的应用商业的建筑物从比较大的多层的办公大楼到街角的便利商店占地面积和类型差别很大因此应用于这类建筑的设备类型比较多样对于比较大型的建筑物空调设备设计是总系统设计的一部分这部分包括如下项目例如一个管道系统设计空气分配系统设计和冷却塔设计等这些系统的正确设计需要一个有资质的工程师才能完成居住的建筑物即研究对象被划分成单独的家庭或共有式公寓应用于这些建筑物的冷却设备通常都是标准化组装的由空调厂家进行设计尺寸和安装本章节首先对蒸汽压缩制冷循环作一个概述接着介绍制冷剂及制冷剂的选择最后介绍冷水机组11 蒸汽压缩循环虽然空调系统应用在建筑物中有较大的尺寸和多样性大多数的系统利用蒸汽压缩循环来制取需要的冷量和除湿这个循环也用于制冷和冰冻食物和汽车的空调在1834年一个名叫帕金斯的人在伦敦获得了机械制冷系统的第一专利权在1857年詹姆士和赛博生产出第一个有活力的商业系统除了蒸汽压缩循环之外有两种不常用的制冷方法在建筑物中被应用吸收式循环和蒸发式冷却这些将在后面的章节中讲到对于蒸汽压缩制冷循环有一种叫制冷剂的工作液体它能在适当的工艺设备设计压力下蒸发和冷凝每个蒸汽压缩制冷系统中都有四大部件它们是压缩机冷凝器节流装置和蒸发器压缩机提升制冷剂的蒸汽压力以便使制冷剂的饱和温度微高于在冷凝器中冷却介质温度使用的压缩机类型和系统的设备有关比较大的电冷却设备使用一个离心式的压缩机而小的住宅设备使用的是一种往复或漩涡式压缩机冷凝器是一个热交换器用于将制冷剂的热量传递到冷却介质中制冷剂进入冷凝器变成过冷液体用于冷凝器中的典型冷却介质是空气和水大多数住宅建筑的冷凝器中使用空气作为冷却介质而大型系统的冷凝器中采用水作为冷却介质液体制冷剂在离开冷凝器之后在膨胀阀中节流到一个更低的压力膨胀阀是一个节流的装置例如毛细管或有孔的短管或一个活动的装置例如热力膨胀阀或电子膨胀阀膨胀阀的作用是到蒸发器中分流制冷剂以便当它到压缩物吸入口的时候制冷剂处于过热状态在膨胀阀的出口制冷剂的温度在介质空气或水的温度以下之后制冷剂经过一个热交换器叫做蒸发器它吸收通过蒸发器的空气或水的热量如果空气经过蒸发器在流通该系统叫做一个直接膨胀式系统如果水经过蒸发器在流通它叫做冷却设备在任何情况下在蒸发器中的制冷剂不直接和空气或水接触在蒸发器中制冷剂从一个低品位的两相液体转换成在正常的工艺条件下过热的蒸汽蒸汽的形成要以一定的足够速度被压缩机排出以维持在蒸发器中低压和保持循环进行所有在生产中的机械冷却产生的热量必须经过冷凝器散发在许多例子中在冷凝器中这个热能被直接散发到环境的空气中或间接地散发到一个冷却塔的水中在一些应用中利用这些废热向建筑物提供热量是可能的回收这些最高温度为65℃ 150°F 的废热可以减少建筑物中采暖的费用空调的制冷能力常用冷吨或千瓦千瓦来表示冷吨是一个度量单位它与制冰厂在 24小时内使1吨 907 公斤的水结冰的能力有关其值是351千瓦12000 Btuhr 空调的冷却能力不要和产生冷量所需的电能相互混淆21 制冷剂的使用和选择直到20世纪80年代中叶制冷剂的选择在大多数的建筑物空调设备中不是一个问题因为在制冷剂的使用上还没有统一的的标准在以前用于建筑物空调设备的大多数制冷剂是氟氯碳化物和氟氯碳氢化物且大多数的制冷剂是无毒的和不可燃的然而最近的美国联邦的标准环保署 1993a环保署 1993b 和国际的协议 UNEP1987 已经限制了氟氯碳化物和氟氯碳氢化物的制造和使用现在氟氯碳化物和氟氯碳氢化物在一些场合依然被使用对制冷剂的理解能帮助建筑物拥有者或者工程师更好的了解关于为特定的设备下如何选择制冷剂这里将讨论不同制冷剂的使用并给出影响它们使用的建筑空调设备和标准美国社会的供暖制冷和空调工程师学会 ASHRAE 有一个标准的限制系统表 com 用来区分制冷剂许多流行的氟氯碳化物氟氯碳氢化物和氟碳化物的制冷剂是在甲烷和乙烷的制冷剂系列中因为卤素元素的存在他们被叫作碳化卤或卤化的碳化氢例如氟或氯Zeotropes 和azeotropes 是混合二种或更多不同的制冷剂一种zeotropic混合物能改变饱和温度在它在不变的压力蒸发或冷凝这种现象被称温度的移动在大气压力下R-407 C的沸点沸腾是–44 °C – 47° F 和一个凝结点露点是–37°C –35°F 产生了7°C的温度移动 12°F 一个azeotropic 混合物的性能像单独成份制冷剂那样它在不变的压力下蒸发或冷凝它们的饱和温度不会有少许变化R-410有微小的足够温度滑动少于55 C10°F 可以认为接近azeotropic混合制冷剂ASHRAE组制冷剂 com 根据它们的毒性和易燃性 ASHRAE1994 划分的A1组合是不燃烧的和最没有毒的而B3组是易燃的和最有毒的以空气为媒介的制冷剂最高安全限制是毒性如果制冷剂在少于每百万分之400是无毒的它是一个A级制冷剂如果对泄露少于每百万分之400是有毒的那么该物质被称B级制冷剂这几个级别表示制冷剂的易燃性表 com 的最后一栏列出了常用的制冷剂的毒性和易燃的等级因为他们是无毒的和不燃烧的所以在A1组中制冷剂通常作为理想的制冷剂能基本满足舒适性空调的需求在A1中的制冷剂通常用在建筑空调设备方面的包括 R-11R-12R-22R-134a和R-410AR-11R-12R-123和R-134a是普遍用在离心式的冷却设备的制冷剂R-11氟氯碳化物和R-123 HCFC 都有低压高容积特性是用在离心式压缩机上的理想制冷剂在对氟氯碳化物的制造的禁令颁布之前R-11和R-12已经是冷却设备的首选制冷剂在已存在的系统维护中现在这两种制冷剂的使用已经被限制现在R-123 和 R-134a都广泛的用在新的冷却设备中R-123拥有的效率优势在 R-134a之上表 com 然而R-123有 B1安全等级这就意谓它有一个比较低的毒性而胜于R-134a如果一个使用R-123冷却设备在一栋建筑物中被用当使用这些或任何其他有毒的或易燃的制冷剂时候标准 15 ASHRAE1992 提供安全预防的指导方针制冷剂22 属于HCFC在多数的相同设备中被用也是在多数往复和螺旋式冷却设备和小型商业和住宅的集中式设备中的首选制冷剂它可以在一个更高的压力下运行这一点要优于R-11或R-12中的任何一个从2004开始HCFCs的制造将会受到限制在2010年R-22不能在新的空调设备中被使用 2020年之后R-22不允许生产环保署1993bR-407C和R-410A是 HFCs的两种混合物两者都是R-22的替代品R-407C预期将很快地替换R-22在空调设备中它的蒸发和冷凝压力接近R-22 com 然而用R-407C来替换R-22应该在和设备制造者商议之后才能进行至少润滑油和膨胀装置将需要更换在1998年第一个使用R-410A的空调设备的住宅在美国出现使用R-410A的系统运作中压力大约比R-22高50 表 com 因此R-410A不能够用于当作速冻制冷剂来替代 R-22R-410A系统利用特定的压缩机膨胀阀和热交换器来利用该制冷剂氨广泛地被在工业的冷却设备和氨水吸收式制冷中用它具有可燃性并且分毒性等级为B因此在商业建筑物中使用受到限制除非冷却设备的制造工厂独立于被冷却的建筑物之外作为制冷剂氨有许多良好的品质例如它有较高的比热和高的导热率它的蒸发焓通常比那普遍使用的卤化碳高6到8倍而且氨和卤化碳比较来看它能提供更高的热交换量而且它能用在往复式和离心式压缩机中天然制冷剂的使用例如二氧化碳 R-744 和碳化氢在空调和制冷系统中的使用正在研究之中二氧化碳能在高于传统的HCFCs或HFCs的压力下工作和在超过临界点的典型的空调设备中工作人们通常认为碳化氢制冷剂易燃且比较危险但它在传统的压缩机中和有的工业设备中都可以被使用R-290 丙烷都有接近R-22的工作压力并被推荐来替代R-22 Kramer 1991 目前在美国没有用二氧化碳或可燃的制冷剂的商业系统用于建筑部门31冷水机组1995年在美国冷水机组应用在至少4%的商用建筑中而且由于制冷机组通常安装在较大的建筑中在同一年里制冷机组冷却了多于28%的商用建筑的地板空间DOE1998在商用建筑中普遍采用五种型式的制冷机往复式螺杆式旋涡式离心式和吸收式前四种利用蒸汽压缩式循环来制得冷冻水它们的不同主要在于使用的压缩机种类的不同吸收式制冷机在吸收循环中利用热能典型的是来自蒸汽或燃料燃烧并利用氨-水或水-锂溴化物制得冷冻水32总的系统大约86%的制冷机和表所示的一样用在多台制冷机系统中Bitondo和Tozzi1999在冷冻水系统中建筑物的回水通过每个蒸发器循环流动在蒸发器中回水被冷却到合意的温度典型的为4~7℃-39~45℉然后冷冻水通过各设备传送到水-空气换热器在换热器中空气被冷冻水冷却和加湿在这个过程中冷水的温度升高然后必须回送到蒸发器中制冷机组是冷水机组水通过每个机组的冷凝器循环在冷凝器中水吸收了来自高压制冷剂的热量接着水用水泵打到冷却塔中水通过蒸发而降温冷却塔将在后一部分讲述冷凝器也可以是空冷式的在这种循环中冷凝器应是制冷剂-空气热交换器空气吸收来自高压制冷剂的热量制冷机组名义制冷量为30~18000kw8~5100tons在美国出售的大部分制冷机组是用电的利用蒸汽压缩制冷循环来制得冷冻水在设计中这种系统所使用的压缩机也有往复式螺杆式旋涡式和离心式一小部分的离心式制冷机利用内燃机或蒸汽机代替电来启动压缩机在建筑中所使用的制冷机组类型根据应用场所来确定对于大的办公室建筑或制冷机组需服务于多个建筑时通常使用离心式压缩机在所需制冷量小于1000kw280tons时使用往复式或螺杆式制冷机组较合适在小的应用场合若低于100kw30tons时使用往复式或旋涡式制冷机组33蒸汽压缩式制冷机四种电启动的蒸汽压缩式制冷机组的名义制冷量范围每种制冷机以所使用的压缩机类型来命名各种系统的制冷能力范围从最小的旋涡式30kw8tons到最大的离心式18000kw5000tons制冷机可使用HCFCsR22R123或HFCsR-134a制冷剂制冷机的效率通常用输入功用kw表示与制冷量用tons表示的比值表示1tons 的制冷量等于352kw或1200btu/h用这种方法衡量效率其数值越小越好离心式制冷机的效率最高而往复式是这四种类型中效率最低的表中所提供的效率是根据ASHRAE Standard30ASHRAE1995在稳定状态下测得满负荷时的效率这些效率中不包括辅助设备的能耗比如泵冷却塔的风机而这些设备可以增加006~。

空调、制冷词汇中英文对照表最新版

空调、制冷词汇中英文对照表最新版

QJGD10.01.001-A 空调制冷词汇中英文对照表(新)空调、制冷词汇中英文对照表1主题内容与适用范围本标准适用于本公司的所有空调产品及技术文件所使用的名[词、木语。

本标准提供一套标准的,统一的制冷、空调名词,术语的中英文对照表,用作产品说明书,图样及有关技术文件的用词规范。

2词汇中英文对照表2.1通用词汇部分refrigerati on空气调节air con diti oning环境条件en vir onmen tal con diti ons标准工况sta ndard con diti on空调工况air con diti oning con diti on制冷量refrigerat ing capacity(cooli ng capacity)标准制冷量standard rati ng性能系数coefficie nt of performa nee温度temperature湿度humidity压力pressure干空气dry air湿空气moist air大气压力atmospheric pressure 饱和空气saturated air干球温度dry bulb temperature 湿球温度wet bulb temperature 露点温度dew point temperature 机器露点apparatus dew point 绝对湿度absolute humidity相对湿度relative humidity含湿量specific humidity空气循环air circulatio n制冷系统refrigeration system制冷循环refrigeration cycle制热循环heati ng cycle蒸发evaporati on冷凝conden sati on过冷subcooli ng过热superheat过程process压缩compressi on膨胀expa nsion节流throttli ng灌注量refrigera nt charge制冷剂refrigera nt氟利昂22 freon22润滑油lubrica nt oil吸气端sucti on end排气端discharge end低压侧low pressure side高压侧high pressure side蒸发压力evaporat ing pressure冷凝压力con dess ing pressure吸气压力sucti on pressure排气压力discharge pressure蒸发温度evaporat ing temperature冷凝温度condensing temperature吸气温度sucti on temperature排气温度discharge temperature压缩比compressi on ratio制冷系统故障breakdown of the refrigeration system 冰堵ice plug 脏堵filth blockage油堵greasy blockage液击sluggi ng结霜frost formatio n除霜defrosti ng自动除霜automatic defrosti ng定时除霜time defrost ing空气净化air clea ning空气除臭air deodorizati on空气离子化air ioni zati on循环风量air flow volume制热量heat ing capacity噪声no ise空气动力性噪声air power noise机械噪声mmecha ni cal no ise 消声sound atte nu ati on声强级sound inten sity level产品product图纸draw ing技术文件tech nical file尺寸dime nsion技术要求tech ni cal requireme nt 长度1en gth宽度width超薄ultra —thin系列series保护装置protecti on devices纠正correct(correctio n) 更改modificatio n(modify) 编制compile标准化sta ndardize校对look through工艺tech no logy(workma nship)审核check审定exam ine and approve 批准approve签名sig nature(sig n)日期date爆炸图assembly draw ing组件comp onents零件parts结构structure厂商manu facturer认证资料approved in formati on 附录attachme nt方案procedure标题栏un derl ine明细栏specification list绝缘电阻in sulati on resista nee 起动电流starti ng current运转电流running curre nt泄漏电流leakage curre nt耐压试验high-voltage test安全试验security test温升试验temperture-raise test溢水试验water over-flow test(rain test)潮态试验humidity-state test把手han dle功率power电流curre nt起动试验starti ng test非正常运行abno rmal operati on堵转试验locked test机械强度试验mecha ni cal stre ngth test 接地方式earthi ng methods开路circuit-ope n断路circuit-break短路circuit-short接线端子wiring terminal(terminal bed)爬电距离creepage dista nee电气间隙cleara nee基本绝缘basic in sulati on附加绝缘suppleme ntary in sulatio n加强绝缘rei nforced in sulatio n对重绝缘double in sulati on额定电压rated voltage额定电压范围rated voltage range工作电压work ing voltage额定输入功率rated in put额定电流rated curre nt额定频率rated freque ncy额定频率范围rated freque ncy range 电源软线power supply cordX连接type X attachme nt丫连接type 丫 attachme ntZ连接type Z attachme nt电源引线supply leadsI类器具class I applia nee正常负截no rmal load气候类别climate type塑料件plastic parts内部结构in ternal structure流线型streamli ne特点(性)features数据data性能考数specsificatio ns诊断diag no stic、k 1 、<height咼度直径diameter公差tolera nee用户手册owner' s manual产品说明节product in structi on manual 包装箱package cart on装箱单pack ing list铭牌n ameplate型号model型号标识model mark图样目录in dex文件目录in dex of files7匚总表specifications list自制件self-mak ing part外协件cooperati on part外购件purchased part商标trademark合格证quality certificate保修卡guara ntee card用户档案files of con sumer项目item外形尺寸outli nes and dime nsions控制系统con trolli ng systems功能fun cti on液晶显示liquid crystol in dicate加工工艺machi ne workma nshiop装饰decoratio n装配质量assembly quality抗干扰immu nity机械制图mecha nic draw ing标准件stardard parts总装gen eral assembly工艺总结sunmary of tech no logical work喇叭口outlet with flare检汛leakage test防潮moisture resista nee电气强度dielectric stre ngth工艺性tech nol ogicul efficie ncy工艺性审查review of tech no logical efficie ncy 可加工性machi nability生产过程producti on process工艺过程process序号item no代号code no名称descripti on规格sta ndards页数page no.备注remarks格力电器GREE electric幅面size工艺文件tech no logical docume ntati on 工艺路线process route工艺设计process desig n工艺要素process factor工艺规范process specificati on工艺参数process parameter工艺准备process preparati on of producti on工艺设备manu facturi ng equipme nt 生产纲领producti on program生产类型type of producti on生产批量producti on batch生产周期producti on cycle原材料raw material主要材料primary material ,辅助材料auxiliary material工件workpiece在制品work-i n-process半成品semifi ni shed product成品final product合格品conforming product不合格品non-conforming product 废品scrap焊接weldi ng热处理heat treatme nt表面处理surface treatme nt机械加工machi ning装配assembly工序operatio n安装set up基准datum工艺孔auxiliary hole工艺尺寸process dime nsi on尺寸链dime nsion cha in力口工精度machi ning accuracy表面粗糙度surface rough ness夹具jigs and fixtures弯管pipe bending扩口flari ng缩口n eck ing去毛刺deburri ng除锈rust removal清洗clea ning2.2机器词汇部分房间空调器room air con diti oner单元式空调机un itary air con diti oner窗式空调机win dow-type air con diti oner分体式空调器split-type air con diti oner室内机in door un it室外机outdoor unit蒸发器evaporator冷凝器condenser毛细管capillary tube压缩机compressor往复式压缩机reciprocat ing compressor(回转)转子式压缩机rotary compressor 涡旋式压缩机scroll compressor气缸cyli nder吸气阀sucti on valve排气阀discharge valve理论排量theoretical displaceme nt实除排量actual displaceme nt热交换器heat exchangerU形管U-shape tube吊顶式ceili ng suspe nded吸顶式ceili ng cassettes(ceili ng con cealed)壁挂式wall moun ted落地式floor sta nding光管pla in copper pipe内螺纹管inner groove copper pipe翅片管finned tube四通换向阀 4 —way revers ing valve单向阀check valve轴流风机axial flow fan( propeller fan)离心风机cen trifugal fan( sirocco fan)贯流风机cross flow fan (1i nefrow fan)截止阀cut-off valve(ball valve)过滤器strai ner底盘(底板)chassis(lower pan el)安装板in stallati on sheet前(后)面板panel fron t(rear)侧板side plate(side pan el)边板end plate (end pan el)风扇电机fan motor电机支架motor support中间隔板mid . isolation sheet(separator support plate)网罩protecti on grill n ets扫风电机swi ng motor(louver motor)步进电机step motor (va ne motor)进风格栅air in take grill步进电机座vane crank继电器引线relay assy lead电器安装板electrical support ing plate 盖板cover plate(top plate) 电容capacitor电容夹capacitor clamp胶圈o-gasket管路系统tub ing systems排气管discharge pipe吸气管sucti on pipe电气原理图electrical prin ciple diagram 电气接线图electrical wring diagram线路图circuit diagram保温管thermal in sulati on pipe连接管堵头conn ecti on pipe cap电器安装盒electrical box汽液分离器liquid-gas separator接线板Term inal Board交流接触器AC con tactor贮液器liquid accumlator波纹软管corrugated pipe四芯(六芯)控制线sig nal cable with 4(6)cores 电热管heater eleme nt扫风叶片支架louver support左右端盖side box (L,R)电源线power cord控制器con troller红外遥控器remote con troller继电器relay主令开关mai n switch温控器thermostat螺钉screw螺栓bolt螺母nut垫圈gasket排水管drain age pipe油分离器oil separator插片in set block插孔in set bolt电机保护器motor protector保险丝fusePTC发热兀件P TC electrical heater变压器tran sformer控制面膜con trolli ng panel 脚轮castor固定螺丝set screw底板un der plate水位开关water-level switch触摸开关touch switch热断路thermal cut-out限温器temperature limiter电脑芯片IC集成电路in tegrated circuit可控硅con trolled silic on蜂鸣器buzzer插座socket插头plug过滤网air filter过滤栅filter grille蜗壳propeller hous ing水箱water tank水箱盖tank cover上隔板upper inner cover下隔板lower inner cover上卡板top cover下卡板bottom cover扫风叶片swing louver支撑条support bar导风叶片lower louver出风格栅front grill出水管drain age duct出水槽outlet for water模具mould灯箱light box机壳body感温包temp.se nsor电磁阀sole noid valve电磁线圈sole noid coil压缩机过载保护thermal switch咼压保护high pressure switch低压保护low pressure switch吊顶机风扇蜗壳casi ng set集水盘drain pan安装螺钉盖screw cover(screw cap) 壁挂机安装板wall frame电机固定件motor holder电机固定圈rubber mount风叶护网fan guard2.3仪器,仪表词汇部分温度计thermometer水银温度计mercurial thermometer电阻温度计resista nee thermometer热敏电阻thermistor热电偶thermocouple热电偶温度计thermocouple thermometor 量热计calorimeter表压gauge pressure绝对压力absolute pressure压力计pressure gauge真空vacuum真空计pressure gauge真空压力计compo und gauge干球温度计dry bulb thermometer温球温度计wet bulb thermometer温度计hygrometer干湿球温度计dry-wet bulb hygrometer流量计flowrator喷嘴flow no zzle质量流量计mass flowmeter温度传感器temperature sen sor湿度传感器humidity sen sor风速仪an emometer机械风速仪meeha ni eal an emometer数字风速仪digital an emometer热线风速仪hot-wire an emometer声级计sound level meter工具tool测量放大器measureme nt amplifier电容传声器conden ser mieroph one绝缘电阻表in solatio n resista nee meter耐压测试仪high_voltage reliability meter接地电阻测试台testi ng stati on of earthi ng resista nee泄漏电流测试装置test ing equipme nt of leak ing eurre nt直流电阻电桥electric bridge of DC resista nee灼热丝试验装置test ing equipme nt for seorehi ng漏电起痕试验装置testi ng equipme nt of serap with leak ing eurre nt球压装置ball-pressure apparatus扩口器rube-outlet expamder弯管器rube ben der卤素检漏仪haloge n leak deteetor电子检漏仪eleetrieal leak deteetor板子wrench冲击钻eleetrie drive n rotary hammer3.0附录附录一按英文字母顺序排列的词汇表附录二按汉语拼音字母顺序排列的词表附加说明:附录一按英文字母顺序排列的词汇表空气调节air conditioning空调工况air conditioning condition大气压力atmospheric pressure机器露点apparatus dew point绝对湿度absolute humidity空气循环air circulation自动除霜automatic defrosting空气净化air cleaning空气除臭air deodorization空气离子化air ioni zati on循环风量air flow volume空气动力性噪声air power noise批准approve爆炸图assembly draw ing认证资料approved information附录attachme nt非正常运行abno rmal operati on装配质量assembly quality辅助材料auxiliary material装配assembly工艺孑L auxiliary hole实除排量actual displacemant车由流风机axial flow fan (propeller fan)进风格栅air in take grill交流接触器AC con tactor过滤网air filter绝对压力absolute pressure风速仪an emometer制冷系统故障breakdow n of the refrigerati on system 基本绝缘basic insulation螺栓bolt蜂鸣器buzzer下卡板bottom cover机壳body球压装置ball-pressure apparatus性能系数coefficient of performanee冷凝conden sati on压缩compressi on冷凝压力condensing pressure冷凝温度condensing temperature压缩比compressi on ratio纠正correct (correcti on)编制compile审核check组件comp onents电流curre nt开路circuit-ope n断路circuit-break短路circuit-short爬电距离creepage distanee电气间隙clearaneeI 类器具class I applianee气候类别climate type夕卜协件cooperati on part控制系统controlling systems代号code no合格品con formi ng product清洗clea ning冷凝器conden ser毛细管capillary tube压缩机compressor气缸cylinder吊顶式ceili ng suspe nded吸顶式ceili ng cassettes (ceili ng con cealed) 单向阀check valve离心风机centrifugal fan (sirocco fan) 贯流风机cross-flow fan (linefrowfan) 截止阀cut-off valve (ball valve) 底盘(底板)chassis(lower pan el) 盖板cover plate(top plate) 电容capacitor 电容夹capacitor clamp 线路图circuit diagram 连接管堵头conn ecti on pipe cap波纹软管corrugated pipe 控制器con troller 控制面膜controlling panel 脚轮castor 可控硅con trolled silic on吊顶机风扇蜗壳casing set 量热计calorimeter 真空压力计compo und gauge电容传声器conden ser micropho ne干空气dry air干球温度dry bulb temperature 露点温度dew point temperature 排气端discharge end 排气压力discharge pressure排气温度discharge temperature除霜defrosti ng图纸draw ing尺寸dime nsion日期date对重绝缘double insulation数据data诊断diag no stic直径diameter装饰decorati on电气强度dielectric strength名称descripti on基准datum尺寸链dime nsion cha in去毛刺deburri ng排气阀discharge valve排气管discharge pipe排水管drain age pipe出水管drain age duct集水盘drain pan干球温度计dry bulb thermometer干湿球温度计dry-wet bulb hygrometer 数字风速仪digital an emometer环境条件environmentai conditions蒸发evaporati on膨胀expa nsion蒸发压力evaporating pressure蒸发温度evaporating temperature审定exam ine and approve接地方式earthing methods蒸发器evaporator边板end plate(e nd pan el)电器安装板electrical support ing plate 电气原理图electrical prin ciple diagram电气接线图electrical wring diagram电器安装盒electrical box电子检漏仪electrical leak detector直流电阻电桥electric bridge of DC rdsista nee 冲击钻electric drive n rotary hammer氟时昂22 freon22脏堵filth blockage结霜frost formatio n特点(性)features用户档案files of consumer功能fun cti on成品final product扩口flari ng落地式floor sta nding翅片管finned tube风扇电机 fan motor保险丝fuse过滤栅filter grille出风格栅 front grill风叶护网 fan guard测量计flowrator喷嘴flow no zzle油堵greasy blockage保修卡guara ntee card总装gen eral assembly 格力电器GREE electric 垫圈gasket表压gauge pressure 湿度humidity制热循环heati ng cycle高压侧high pressure side制热量heat ing capacity耐压试验 high-voltage test潮态试验humidity-state test把手han dle高度height热处理heat treatme nt热交换器heat exchanger 电热管heater eleme nt 高压保护high pressure switch 湿度计hygrometer 热线风速仪hot-wire an emometer耐压测试仪high-voltage reliability meter 卤素检漏仪haloge n leak detector温度传感器humidity sen sor冰堵ice plug绝缘电阻in sulati on resista nee内部结构internal structure图样目录index文件目录index of files项目item抗干扰immu nity序号item no室内机in door unit内螺纹管inner groove copper pipe安装板in stallati on sheet插片in set block插孔in set bolt电脑芯片IC集成电路integrated circuit绝缘电阻表in solatio n resista nee meter 夹具jigs and fixtures润滑油lubriea nt oil低压侧low pressure side长度len gth校对look through泄漏电流leakage current堵转试验locked test液晶显示liquid crystol indicate检汛leakage test汽液分离器liquid-gas separator贮液器liquid accumlator扫风叶片支架louver support下隔板lower inner cover导风叶片lower louver灯箱light box低压保护low pressure switch湿空气moist air机械噪声mechanical noise更改modificati on (modify)厂商manu facturer机械强度试验mecha ni cal stren gth test 型号model型号标识model mark力口工工艺machine workmanship机械制图mechanic drawing防潮moisture resista nee可加工性mach in ability工艺设备manufacturing equipment机械加工machining力口工精度machining accuracy电机支架motor support中间隔板mid isolation sheet(separator support plate) 主令开关ma in switch电机保护器motor protector模具mould电机固定件motor holder水银温度计mercurial thermometer质量流量计mass flowmeter机械风速仪mecha ni cal an emometer测量放大器measureme nt amplifier噪声no ise正常负截normal load铭牌n ameplate不合格品non-conforming product缩口n eck ing螺母nut用户手册owner' smanual夕卜形尺寸outlines and dimensions喇叭口outlet with flare工序operatio n室外机out door un it胶圈o-gasket油分离器oil separator出水槽outlet for water压力pressure过程process产品product保护装置protection devices零件parts方案procedure功率power电源软线power supply cord塑料件plastic parts产品说明书product in structi on manual 包箱package cart on装箱单pack ing list夕卜购件purchased part生产过程production process工艺过程process页数page no工艺路线process route工艺设计process design工艺要素process factor工艺规范process specification工艺参数process parameter工艺准备process preparation of production工艺纲领production program工艺批量production batch生产周期production cycle主要材料primary material工艺尺寸process dimension弯管pipe bending光管pla in copper pipe前(后)面板panel front (rear)网罩protecti on grill n ets电源线power cordPTC发热元件PTC electrical heater插头plug蜗壳propeller hous ing压力计pressure gauge真空计vauuc n gauge合格证quality certificate制冷refrigeration制冷量refrigerati ng capacity (cooli ng capacity) 相对湿度relative humidity制冷系统refrigeration system制冷循环refrigeration cycle灌注量refrigera nt charge制冷齐【J refrigera nt运转电流running current加强绝缘reinforced insulation额定电压rated voltage额定电压范围rated voltage range额定输入功率rated in put额定电流rated current额定频率rated frequency额定频率范围rated freque ncy range工艺性审查review of tech no logical efficie ncy 备注remarks原材料raw material除锈rust removal房间空调器room air con diti oner往复式压缩机reciprocating compressor转子式压缩机rotary compressor继电器引线relay assy lead无线遥控器remote con troller继电器relay电机固定圈rubber mount电阻温度计resista nee thermometer标准工况standard condition 标准制冷量standard rati ng饱和空气saturated air 含湿量specific humidity 过冷subcooli ng 过热superheat 吸气端sucti on end吸气压力suction pressure 吸气温度suction temperature 液击sluggi ng 丫肖声sound atte nu ati on 声强级sou nd intensity level系列series标准化sta ndardize 签名sig nature(sig n) 结构structure明细栏specificati on list起动电流starting current安全试验security test起动试验starting test附加绝缘supplementary insulation电源引线supply leads流线型streamli ne性能考数specsifications7 匚总表specificati ons list自制件self-mak ing part标准件stardard parts工艺总结summary of tech no logical work规格sta ndards幅面size半成品semifi ni shed product废品scrap表面处理surface treatment安装set up表面粗糙度surface rough ness分体式空调器split-type air con diti oner涡旋式压缩机scroll compressor吸气阀sucti on valve过滤器strai ner侧板side plate (side pan el)扫风电机swing motor (louver motor)步进电机step motor(vane motor)吸气管sucti on pipe四芯(六芯)控制线sig nal cable with 4(6) cores 左右端盖side box(L.R)螺钉screw固定螺丝set screw插座socket扫风叶片swing louver支撑条support bar电磁阀sole noid valve电磁线圈solenoid coil安装螺钉盖screw cover (screw cap)声级计sound level meter温度temperature节流throttli ng定时除霜time defrosting技术文件technical file技术要求technical requirement工艺tech no logy (workma nship)温升试验temperture-raise testX 连接type X attachmentY连接type Y attachmentZ 连接type Z attachment公差toleranee 商标trademark工艺性tech no logicul efficie ncy工艺文件tech no logical docume ntati on 生产类型type of producti on理论排量theoretical displacement管路系统tubing systems保温管thermal in sulati on pipe温控器thermostat变压器tran sformer触摸开关touch switch热断路thermal cut-out限温器temperature limiter水箱盖tank cover上卡板top cover感温包temp. sen sor压缩机过载保护thermal switch温度计thermometer热敏电阻thermistor热电偶thermocouple热电偶温度计thermocouple thermometor 温度传感器temperature sen sorleak ing工具 tool扩口器 tube-outlet expamder接地电阻测试台 testi ng stati on of earthi ng resista nee 泄漏电流测试装置 test ing equipme nt of leak ing eurre nt灼热丝试验装置 testing equipment for seorehing 漏电起痕试验装置testi ng equipme nt of scrap with eurre nt弯管器 tube ben der超簿 ultra-thin标题栏 un derl ine单元式空调机un itary air con diti oner U 形管 U-shape tube底板 un derplate上隔板 upper inner eover步进电机座 vane crank真空 vaeuum湿球温度 wet bulb temperature宽度 width溢水试验 water over-flow test (rain test)接线端子 wiring terminal (terminal bed)工作电压 working voltage工件 workpieee在制品 work-i n-process焊接weldi ng窗式空调机win dow-type air con diti oner壁挂式wall moun ted接线板Termi nal Board水位开关water-level switch水箱water tank壁挂机安装板wall frame湿球温度计wet bulb thermometer板子wrench四通换向阀4-way revers ing valve附录二按汉语拼音字母顺序排列的词汇表安全试验security test安装set up安装板in stallati on sheet安装螺钉盖screw cover (screw cap)把手handle 板子wrench半成品semifi ni shed product包箱package cart on保护装置protection devices保修卡guara ntee card保温管thermal in sulati on pipe保险丝fuse饱和空气saturated air爆炸图assembly draw ing备注remarks壁挂式wall moun ted壁挂机安装板wall frame 边板end plate (end pan el) 编制compile变压器tran sformer标准工况standard condition 标准制冷量standard rati ng标准化sta ndardize标题栏un derl ine标准件sta ndard parts表面处理surface treatment 表面粗糙度surface rough ness表压gauge pressure 冰堵ice plug波纹软管corrugated pipe不合格品non-conforming product 步进电机step motor(vane motor) 步进电机座vane crank 侧板side plate(side pan el) 测量放大器measureme nt amplifier插片in set block 插孔in set bolt插座socket 插头plug产品product 长度len gth产品说明书product in structi on manual厂商manufacturer 超薄ultra-thin潮态试验humidity - state test成品final product尺寸dime nsion尺寸链dime nsion cha in翅片管finned tube冲击钻electric drive n rotary hammer出风格栅front grill出水管drain age duct出水槽outlet for water除霜defrosti ng除锈rust removal触摸开关touch switch窗式空调机win dow-type air con diti oner大气压力atmospheric pressure代号code no单元式空调机un itary air con diti oner 单向阀check valve导风叶片lower louver灯箱light box低压侧low pressure side 低压保护low pressure switch 底盘(底板)chassis(lower pan el) 底板un derplate 垫圈gasket 电流curre nt 电气间隙clearanee 电源软线power supply cord 电源引线supply leads 电气强度dielectric strength 电机支架motor support电器安装板electrical supporting plate 电容capacitor 电容夹c apacitor clamp电气原理图electrical prin ciple diagram电气接线图electrical wring diagram电器安装盒electrical box电热管heater eleme nt电源线power cord电机保护器motor protector电脑芯片IC 电磁阀sole noid valve电磁线圈solenoid coil电机固定件motor holder电机固定圈rubber mount电阻温度计resista nee thermometer电容传声器conden ser mieropho ne电子检漏仪electrical leak detector吊顶式ceili ng suspe nded吊顶机风扇窝壳casing set 定时除霜time defrosting 堵转实验locked test 短路circurt-short 断路circuit-break 对重绝缘double insulation 额定电压rated voltage 额定电压范围r ated voltage range额定输入功率rated in put额定电流rated current 额定频率rated frequency 额定频率范围rated freque ncy range方案procedure 房间空调器room air con diti oner防潮moisture resista nee 非正常运行abno rmal operati on废品scrap分体式空调器split-type air con diti oner蜂鸣器buzzer风扇电机fan motor风叶护网fan guard风速仪an emometer幅面size氟时昂22 freon22辅助材料auxiliary matial附录attachme nt附加绝缘supplementary insulation盖板cover plate (top plate)干空气dry air干球温度dry bulb temperature干湿球温度计dry bulb thermometer感温包temp.se nsor高压侧high pressure side高度height高压保护high pressure switch格力电器GREE electric更改modificatio n(modify)工艺tech no logy (workma nship) 工作电压working voltage工艺总结sunmary of tech no logical work工艺性tech no logicul efficie ncy工艺性审查review of tech no logical efficie ncy工艺过程process工艺文件tech no logical docume ntati on工艺路线process route工艺设计process design工艺要素process factor工艺规范process specification工艺参数process parameter工艺准备process preparation of production 工艺设备manufacturing equipment工件workpiece工序operatio n工艺孑L auxiliary hole工艺尺寸process dimension工具tool功率power功能fun cti on公差tolera nee固定螺丝set screw管路系统tubing systems灌注量refrigera nt charge贯流风机cross-flow fan(linefrow fan)光管pla in copper pipe规格sta ndards过冷subcooli ng过热superheat过程process过滤器strai ner过滤网air filter过滤栅filter grille含湿量specific humidity焊接weldi ng合格证quality certificate合格品con formi ng product环境条件environmental condition7 匚总表specificati ons list基本绝缘basic insulation基准datum机器露点apparatus dew point机械噪声mechanical noise机械强度试验mecha ni cal stre ngth test 机械制图mechanic drawing机械加工machining机壳body机械风速仪mecha ni cal an emometer集成电路integrated circuit集水盘drain pan技术文件technical file技术要求technical requirement继电器引线relay assy lead继电器relay夹具jigs and fixtures加强绝缘reinforced insulation力口工工艺machine workmanshiop力口工精度machining accuracy检汛leakage test胶圈o-gasket交流接触器AC con tactor脚轮castor接地方式earthing methods接线端子wiring terminal (terminal bed)接线板wiri ng termi nal (termi nal bed)接地电阻测试台testi ng stati on of earthi ng resista nee 截止阀cut-off valve(ball valve)节流throttli ng结霜frost formatio n结构structure进风格栅air in take grill纠正correct (correcti on)绝对湿度absolute humidity绝缘电阻in sulati on resista nee绝对压力absolute pressure绝缘电阻表in solatio n resista nee meter 开路circuit-ope n抗干扰immu nity可加工性mach in ability可控硅con trolled silic on空气调节air conditioning空调工况air conditioning condition空气循环air circulation空气净化air cleaning空气除臭air deodorization空气离子化air ioni zati on空气动力性噪声air power noise控制系统controlling systems控制器con troller控制面膜controlling panel宽度width扩口flari ng扩口器tube-outlet expamder喇叭口outlet with flare冷凝conden sati on冷凝压力con dess ing pressure冷凝温度condensing temperatureleak ing冷凝器 conden ser离心风机 centrifugal fan(sirocco fan)理论排量 theoretical displacement连接管堵头 conn ecti on pipe cap量热计 calorimeter零件 parts流线型 streamli ne流量计 flowrator漏电起痕试验装置testi ng equipme nt of scrap with curre nt卤素检漏仪 haloge n leak detector露点温度 dew point temperature螺钉 screw螺栓 bolt螺母 nut落地式 floor sta nding毛细管 capillary tube明细栏 specificati on list铭牌 n ameplate名称 mould模具 high-voltage test耐压测试仪 high-voltage reliability meter内部结构 internal structure内螺纹管inner groove copper pipe 爬电距离creepage distanee排气端discharge end排气压力discharge pressure排气温度discharge temperature 排气阀discharge valve排气管discharge pipe排水管drain age pipe喷嘴flow no zzle膨胀expa nsion批准approve起动电流starting current起动试验starting test气候类别climate type气缸cylinder汽液分离器liquid-gas separator 签名sig nature(sig n)前(后)面板panel front (rear)清洗clea ning球压装置ball-pressure apparatus 去毛刺deburri ng热处理heat treatme nt热交换器heat exchanger热断路thermal cut-out热敏电阻thermistor热电偶thermocouple热电偶温度计thermocouple thermometor 热线风速仪hot-wire an emometer认证资料approved information润滑油lubrica nt oil扫风电机swing motor(louver motor)扫风叶片支架louever support扫风叶片swing louver商标trademark上隔板upper inner cover上卡板top cover审核check审定exam ine and approve声强级sou nd intensity level声级计sound level meter生产过程production process生产纲领production program生产类型type of production。

空调工作过程和节能技术中英文对照外文翻译文献

空调工作过程和节能技术中英文对照外文翻译文献

中英文对照外文翻译英文:How Air Conditioners Work and energy conservationtechnology researchAbstract:An air conditioner is basically a refrigerator without the insulated box. It uses the evaporation of a refrigerant, like Freon, to provide cooling. The mechanics of the Freon evaporation cycle are the same in a refrigerator as in an air conditioner.Keywords:water towers 、weather-resistant、compressor、energy conservation When the temperature outside begins to climb, many people seek the cool comfort of indoor air conditioning. Like water towers and power lines, air conditioners are one of those things that we see every day but seldom pay much attention to. Wouldn't it be nice to know how these indispensable machines work their magic? In this article, we will examine air conditioners -- from small to huge -- so you know more about what you're seeing!The Many Faces of CoolAir conditioners come in various sizes, cooling capacities and prices. One type that we see all the time is the window air conditioner.Window air conditioners are an easy and economical way to cool a small area. Most people who live in suburban areas usually have one of these in their backyard: If you live in an apartment complex, this is probably a familiar sight: Most businesses and office buildings have condensing units on their roofs, and as you fly into any airport you notice that warehouses and malls may have 10 or 20 condensingunits hidden on their roofs:And then if you go around back at many hospitals, universities and office complexes, you find large cooling towers that are connected to the air conditioning system:Even though each of these machines has a pretty distinct look, they all work on the same principles. Let's take a closer look.The Basic IdeaAn air conditioner is basically a refrigerator without the insulated box. It uses the evaporation of a refrigerant, like Freon, to provide cooling. The mechanics of the Freon evaporation cycle are the same in a refrigerator as in an air conditioner. According to the Merriam-Webster Dictionary Online, the term Freon is generically "used for any of various conditioner. According to the Merriam-Webster Dictionary Online, the term Freon is generically "used for any of various nonflammable fluorocarbons used as refrigerants and as propellants for aerosols."This is how the evaporation cycle in an air conditioner works (See How Refrigerators Work for complete details on this cycle):1.The compressor compresses cool Freon gas, causing it to become hot,high-pressure Freon gas (red in the diagram above).2.This hot gas runs through a set of coils so it can dissipate its heat, and it condenses into a liquid.3.The Freon liquid runs through an expansion valve, and in the process it evaporates to become cold, low-pressure Freon gas (light blue in the diagram above).4.This cold gas runs through a set of coils that allow the gas to absorb heat and cool down the air inside the building.Mixed in with the Freon is a small amount of a light weight oil. This oil lubricates the compressor.Window UnitsA window air conditioner unit implements a complete air conditioner in a smallspace. The units are made small enough to fit into a standard window frame. You close the window down on the unit, plug the unit in and turn it on to get cool air. If you take the cover off of an unplugged window unit, you will find that it contains:A compressorAn expansion valveA hot coil (on the outside)A chilled coil (on the inside)A control unitThe fans blow air over the coils to improve their ability to dissipate heat (to the outside air) and cold (to the room being cooled).BTU and EERMost air conditioners have their capacity rated in British thermal units (BTU). Generally speaking, a BTU is the amount of heat required to raise the temperature of one pound (0.45 kg) of water 1 degree Fahrenheit (0.56 degrees Celsius). Specifically, 1 BTU equals 1,055 joules. In heating and cooling terms, 1 "ton" equals 12,000 BTU.A typical window air conditioner might be rated at 10,000 BTU. For comparison, a typical 2,000-square-foot (185.8 m2) house might have a 5-ton (60,000-BTU) air conditioning system, implying that you might need perhaps 30 BTU per square foot. (Keep in mind that these are rough estimates. To size an air conditioner for your specific needs, contact an HV AC contractor.)The energy efficiency rating (EER) of an air conditioner is its BTU rating over its wattage. For example, if a 10,000-BTU air conditioner consumes 1,200 watts, its EER is 8.3 (10,000 BTU/1,200 watts). Obviously, you would like the EER to be as high as possible, but normally a higher EER is accompanied by a higher price.Is the higher EER is worth it?Let's say that you have a choice between two 10,000-BTU units. One has an EER of 8.3 and consumes 1,200 watts, and the other has an EER of 10 and consumes1,000 watts. Let's also say that the price difference is $100. To understand what the payback period is on the more expensive unit, you need to know:1.Approximately how many hours per year you will be operating the unit2.How much a kilowatt-hour (kWh) costs in your areaLet's say that you plan to use the air conditioner in the summer (four months a year) and it will be operating about six hours a day. Let's also imagine that the cost in your area is $0.10/kWh. The difference in energy consumption between the two units is 200 watts, which means that every five hours the less expensive unit will consume 1 additional kWh (and therefore $0.10 more) than the more expensive unit.Assuming that there are 30 days in a month, you find that during the summer you are operating the air conditioner:Since the more expensive unit costs $100 more that means that it will take about seven years for the more expensive unit to break even.See this page for a great explanation of seasonal energy efficiency rating (SEER).Split-system UnitsA split-system air conditioner splits the hot side from the cold side of the system。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中英文对照资料外文翻译文献空调节能技术的研究1、引言节能可以说是楼宇自动控制系统的出发点和归宿。

众所周知,在智能建筑中HV AC (采暖、通风和空调)系统所耗费的能量要占到大楼消耗的总能量的极大部分比例,大致在50%~60%左右。

特别是冷冻机织、冷却塔、循环水泵和空调机组、新风机组,都是耗能大户。

所以实有必要发展一种有效的空调系统节能方法,尤其用是在改善现有大楼空调系统自动化上方面。

DDC(Dircctdigitalcontrol)直接数字化控制,是一项构造简单操作容易的控制设备,它可借由接口转接设各随负荷变化作系统控制,如空调冷水循环系统、空调箱变频自动风量调整及冷却水塔散热风扇的变频操控等,可以让空调系统更有效率的运转,这样不仅为物业管理带来很大的经济效益,而且还可使系统在较佳的工况下运行,从而延长设备的使用寿命以及达到提供舒适的空调环境和节能之目的。

一般大楼常用的空调系统有CA V、V A V、VWV等,各有不同操控方式,都可以用DDC控制。

(1)定风量系统(CA V)定风量系统(ConstantAirV olume,简称CA V)定风量系统为空调机吹出的风量一定,以提供空调区域所需要的冷(暖)气。

当空调区域负荷变动时,则以改变送风温度应付室内负荷,并达到维持室内温度度于舒适区的要求。

常用的中央空调系统为AHU(空调机)与冷水管系统(FCU系统)。

这两者一般均以定风量(CA V)来供应空调区,为了应付室内部分负荷的变动,在AHU定风量系统以空调机的变温送风来处理,在一般FCU系统则以冷水阀ON/OFF控制来调节送风温度。

(2)变风量系统(V A V)变风量系统(VarlableAirV olume,简称V A V)即是空调机(AHU或FCU)可以调变风量。

常用的中央空调系统为AHU(空调机)与冷水管系统FCL系统。

这两者一般均以定风量(CA V)来供应空调区,为了应付室内部分负荷的变动,在AHU定风量系统以空调机的变温送风来处理,在一般FCU系统则以冷水阀ON/OFF控制来调节送风温度。

然而这两者在送风系统上浪费了大量能源。

因为在长期低负荷时送风机亦均执行全风量运转而耗电,这不但不易维持稳定的室内温湿条件,也浪费大量的送风运转能源。

变风量系统就是针对送风系统耗电缺点的节能对策。

(3)变流量系统(VWV)所谓变流量系统(VariableWaterV olume,简称VWV),是以一定的水温供应空调机以提高热源机器的效率,而以特殊的水泵来改变送水量,顺便达成节约水泵用电的功效。

变水量系统对水泵系统的节能效率依水泵的控制方式和VWV使用比例血异,一般VWV 的控制方式有无段变速(SP)与双向阀控制方式。

以上三种空调系统是日前大楼空调最常被设计的系统。

中央空调控制也就是把管路、管件、阀体或阀门集中设定控制流体提供冷气。

所以有效组合中央空调控制即能有效控制耗能,设计合乎节能的空调系统。

近年来,我国大部分地区,尤其是东南沿海地区夏季空调能耗正在急剧上升,空调用电激增的趋势己引起电网供电紧张。

据统计,近年来我国侮年炎热季节空调耗电己占全社会用电的三分之一,大量电能被工业和民用建筑空调所吞噬,尤其是大型建筑中央空调系统,如各类商业建筑(写字楼、商场、医院、饭店等)的中央空调由其空间大、人流量多、运作日寸间长、管理复杂的特点,使得运行能耗相当.高,商业建筑空调能耗几乎占其总能耗的50%。

中央空调的设计容量是按最大负荷计算的,而大部份建筑物一年中只有几十天时间中央空调处于最大负荷状态。

中央空调冷负荷始终处于动态变化之中,如每大早晚、每季交替、每年轮回、环境及人文状况,实时影响着中央空调的冷负荷。

这给中央空调的节能控制带来了严峻的课题,也给广大的节能控制领域的工作者带来了极大的施展才华的空间。

电力负荷缺口增大,电力供应紧张局而近几年难以得到缓和。

因此,节能尤其是节电,不仅其有重大的社会意义向且具有迫切的现实意义。

积极研究开发推广绿色环保新型空调技术和设备,抑制空调能耗增加,己成为建筑暖通空调领域一个迫切而热门的研究课题。

依靠技术创新、体制创新,节能降耗,提高能源利用效率,保证在“能源消耗少,环境污染最小”的基础上,实现“节能优先,结构多元,环境友好”的能源发展战略。

在我们电信生产中,空调的节能管理工作较为薄弱,能源浪费现象较为严重,所以加强空调的维护管理和技术改造,可以达到节能的目的。

从空调的压焓图来看,只有运行在在最佳的工况和条件,才能发挥空调的最大制冷量,达到空调节能的目的。

空调的节能,我们维护部门应该从运行成本、维护保养方而的角度进行考虑。

2、空调节能系统的研究概况(1)通过负荷控制,达到节能目的(a)炎热季节新风负荷占到整个冷负荷的25%-40%减少新风负荷,降低新风能耗,选择最小必要新风量,也能达到目的。

但是新风量的最小供应一方面国家已有标准,另外新风量不足将影响空气质量,危及人体健康。

(b)优化建筑外围护结构的节能设计,采用保温隔热材料技术,降低空调负荷,实现建筑节能,但同时也一皆致建筑成本上升,推广受到一定的限制。

(2)蓄能空调通过冰蓄冷,避开白大的用电高峰,夜间将空调冷冻水制冷储存起来,白天不开动空调主机仅使用水系统循环。

这种方法本身并不节能省电,而是优化了电网供电,对己经实行分时电价的地区,起到“省钱不节能”的作用,具地区性推广意义。

(3)水源热泵相对于空气和土壤而言,水是最为理想的空调用冷热源,水源热泵也因此其有环保、高效、节能等众多优点,但我国水源热泵技术研究还不是很成熟,与一些发达国家相比还存在一定的差距。

同时,水源热泵尽管其有很多优点,但所受的地质、环境、政策等的限制也比较大,这就使得水源热泵在我国更广泛的应用受到了限制。

(4)中央空调系统中单个耗能设备节能改造(a)风机和水泵通用变频器调速节能,这是目前采用较多的技术。

这种方法简便实用,节电效果明显,但水泵、风机等产品属系统辅机部分,占整个系统能耗约为40%,所以挖掘空间有限。

(b)制冷主机,制冷机组的耗电量在空调系统中占有很大份额,节约这部分的耗能是整个空调系统经济运行的关键。

目前一般都采用降低室内温度标准、提高冷水初混等措施实现制冷主机的节能。

上面几种方法的不足之处是仅考虑了局部的节能,而没有从整个系统的全局去考虑。

动态负荷跟踪的节能控制系统以整个中央空调系统为一体,根据空调区负荷的不断变化的状况,通过改变主机及循环系统内各参数运行变化情况,同步跟踪负荷的变化,以实现在满足负荷需求的前提下及时定量供给冷量,即做到“按需供应”基本达到“不滞后、不多给、不少给”的目的。

这种方法不但与恒流量的水泵和风机相比实现了辅机最大幅度的节能,而且优化了主机运行工况,可达到整个系统节能15%-35%。

3、动态负荷跟踪的节能控制方案传统的中央空调系统的调节方案是:采用恒流量模式或冷源侧恒流量但负荷侧变流量模式,系统所需负荷是按最大负荷、最恶劣的气象条件及最差的使用工作环境来设计,而实际运行时50%以上的时间,系统所需负荷都在50%以下,存在有极大的能量浪费。

且当负荷Q在变化时,传统的系统运行参数根本不能做到同步调节,滞后的调节手段除通过主机被功地加载卸载外,几乎没有什么其他的控制手段。

本研究课题将摒弃以往的控制方案,以模型辨识、随动控制系统理论、智能控制系统理论为基础,与中央空调主机制冷技术与冷媒循环系统控制相结合,以变频技术为辅助手段,实现中央空调全系统的整体协调运行和综合性能优化。

本研究是空调节能的新理念,代表了节能技术的新的发展趋势。

(1)循环系统节能:以系统的角度,通过对末端负荷参数、中央空调主机、辅机的运行工况变化,采集温度、压力等多种变化参数,然后通过负荷随动计算,改系统冷冻水流量,冷却水流量和冷却塔风机风量来适应空调负荷的变化,同时使主机运行工况始终处于优化的最佳工作点上。

对冷冻水系统采用最佳输出能量控制。

当环境温度、空调末端负荷发生变化时,各路冷冻水供回水温度、混差、压差和流量亦随之变化,流量计、压差传感器和温度传感器将检测到的这些参数送至智能控制器,控制器依据所采集的实时数据及系统的历史运行数据,实时计算出末端空调负荷所需的制冷量,以及各路冷冻水供回水深度、温差、压差和流量的最佳值,井以此调节各变频器输出频率,控制冷冻水泵的转速,改变其流量使冷冻水系统的供回水温度、温斧、压差和流量运行在控制器给出的最优值。

由于冷冻水系统采用了输出能量的动态控制,实现空调主机冷媒流量跟随末端负荷的需求供应,使空调系统在各种负荷情沉下,都能既保证末端用户的舒适性,又最大限度地节省了系统的能量消耗。

冷却水系统采用最佳热转换效率控制。

冷却水及冷却塔风机系统采用最佳转换效率控制。

当环境温度、空调末端负荷发生变化时,中央空调主机的负荷率将随之变化,主机冷凝器的最佳热转换温度也随之变化。

智能控制器依据所采集的实时数据及系统的历史运行数据,计算出主机冷凝器的最佳热转换温度(拐点温度)及冷却水最佳出、入口温度,并以此调节冷却水泵和冷却塔风机变频器的输出频率,控制冷却水泵和冷却塔风机转速,动态调节冷却水的流量和冷却塔风机的风量,使冷却水的进、出口温度逼近智能控制器给出的最优值,从而保证中央空调主机随时处于最佳转换效率状态下运行。

(2)由于冷却水系统采用最佳转换效率控制,保证了中央空调主机在满负荷和部份负荷的情况下,均处于最佳工作状态,始终保持最佳的能源利用率(即COP值),从而降低了空调主机的能量消耗,同时因冷却水泵和冷却塔风机经常在低于额定负荷下运行,也最大限度地节约了冷却水泵和冷却塔风机的能量消耗。

辅机节能:各种泵类(冷冻泵、冷水泵、风机等)的运行节能。

采用带有空间矢量控制的变频调速方式,将定量泵改为变量泵,辅机节能不少40%。

(3)优化辅机运行模式:一般在满负荷时泵机需全速运行,没有节能空间,但采用冗余技术与变频技术相结合,定量泵与变量泵相配合,优化运行模式,可使辅机机组综合节能。

(4)多参量非线性控制:本系统为多参量、时变、非线性系统,以计算机为控制手段,设计一套其有自寻优自适应的智能控制、功能完善的稳定安全的控制系统。

本中央空调动态负荷跟踪节能控制系统,与中央空调系统配套使用,可实现中央空调系统的高效节能,效果显著。

经理论计算,与恒流量中央空调系统相比,全年平均节电率可达20%-30%。

该项目技术含量高,是集暖通空调技术、制冷技术、智能控制理论和计算机控制技术为一体的中央空调高效节能系统。

4、展望设各系统投入市场后,若每年有超过200套产品全部女装在建筑而积大于5万平方米的商业建筑中央空调机房内,其节省电量相当于每年新建一座5万千瓦的发电厂,对夏大电网削峰用电也将起到一定的缓解作用,真正实现社会可持续协调发展。

相关文档
最新文档