2020年高一上学期期末考试数学试题

合集下载

2020年高一数学上期末试题含答案

2020年高一数学上期末试题含答案

2020年高一数学上期末试题含答案一、选择题1.已知函数3()3(,)f x ax bx a b =++∈R .若(2)5f =,则(2)f -=( )A .4B .3C .2D .12.设4log 3a =,8log 6b =,0.12c =,则( ) A .a b c >>B .b a c >>C .c a b >>D .c b a >>3.定义在R 上的偶函数()f x 满足:对任意的1x ,212[0,)()x x x ∈+∞≠,有2121()()0f x f x x x -<-,则( ).A .(3)(2)(1)f f f <-<B .(1)(2)(3)f f f <-<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<-4.已知函数2()log f x x =,正实数,m n 满足m n <且()()f m f n =,若()f x 在区间2[,]m n 上的最大值为2,则,m n 的值分别为A .12,2 B.2C .14,2 D .14,4 5.设函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,则实数的a 取值范围是( )A .()()1,00,1-⋃B .()(),11,-∞-⋃+∞C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃6.已知函数()2x xe ef x --=,x ∈R ,若对任意0,2πθ⎛⎤∈ ⎥⎝⎦,都有()()sin 10f f m θ+->成立,则实数m 的取值范围是( )A .()0,1B .()0,2C .(),1-∞D .(]1-∞, 7.定义在[]7,7-上的奇函数()f x ,当07x <≤时,()26xf x x =+-,则不等式()0f x >的解集为A .(]2,7B .()(]2,02,7-UC .()()2,02,-+∞UD .[)(]7,22,7--U8.已知01a <<,则方程log xa a x =根的个数为( ) A .1个B .2个C .3个D .1个或2个或3根9.已知函数()ln f x x =,2()3g x x =-+,则()?()f x g x 的图象大致为( )A .B .C .D .10.已知3log 2a =,0.12b =,sin 789c =o ,则a ,b ,c 的大小关系是 A .a b c <<B .a c b <<C .c a b <<D .b c a <<11.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则()U P Q ⋃ð= A .{1}B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5}12.已知函数()()f x g x x =+,对任意的x ∈R 总有()()f x f x -=-,且(1)1g -=,则(1)g =( )A .1-B .3-C .3D .1二、填空题13.若155325a b c ===,则111a b c+-=__________. 14.通过研究函数()4221021=-+-f x x x x 在x ∈R 内的零点个数,进一步研究得函数()221021=+--n g x x x x (3n >,n N ∈且n 为奇数)在x ∈R 内零点有__________个15.已知函数()1352=++f x ax bx (a ,b 为常数),若()35f -=,则()3f 的值为______16.已知a ,b R ∈,集合()(){}2232|220D x x a a x a a =----+≤,且函数()12bf x x a a -=-+-是偶函数,b D ∈,则220153a b -+的取值范围是_________. 17.已知函数()22ln 0210x x f x x x x ⎧+=⎨--+≤⎩,>,,若存在互不相等实数a b c d 、、、,有()()()()f a f b f c f d ===,则+++a b c d 的取值范围是______.18.已知关于x 的方程()224log 3log +-=x x a 的解在区间()3,8内,则a 的取值范围是__________.19.函数22log (56)y x x =--单调递减区间是 .20.已知函数()5,222,2x x x f x a a x -+≤⎧=++>⎨⎩,其中0a >且1a ≠,若()f x 的值域为[)3,+∞,则实数a 的取值范围是______.三、解答题21.已知函数132()log 2ax f x x-=-的图象关于原点对称,其中a 为常数. (1)求a 的值;(2)若当(7,)x ∈+∞时,13()log (2)f x x m +-<恒成立.求实数m 的取值范围. 22.已知集合{}24A x x =-≤≤,函数()()2log 31xf x =-的定义域为集合B .(1)求A B U ;(2)若集合{}21C x m x m =-≤≤+,且()C A B ⊆⋂,求实数m 的取值范围. 23.已知幂函数35()()m f x xm N -+=∈为偶函数,且在区间(0,)+∞上单调递增.(Ⅰ)求函数()f x 的解析式;(Ⅱ)设函数()()21g x f x x λ=+-,若()0<g x 对任意[1,2]x ∈恒成立,求实数λ的取值范围. 24.已知集合,,.(1)若,求的值; (2)若,求的取值范围.25.已知函数2()log (421)x xf x a a =+⋅++,x ∈R .(Ⅰ)若1a =,求方程()3f x =的解集;(Ⅱ)若方程()f x x =有两个不同的实数根,求实数a 的取值范围. 26.已知集合{}121A x a x a =-<<+,{}01B x x =<<. (1)若B A ⊆,求实数a 的取值范围; (2)若A B =∅I ,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】【分析】令()3g x ax bx =+,则()g x 是R 上的奇函数,利用函数的奇偶性可以推得(2)f -的值.【详解】令3()g x ax bx =+ ,则()g x 是R 上的奇函数,又(2)3f =,所以(2)35g +=, 所以(2)2g =,()22g -=-,所以(2)(2)3231f g -=-+=-+=,故选D. 【点睛】本题主要考查函数的奇偶性的应用,属于中档题.2.D解析:D 【解析】 【分析】由对数的运算化简可得2log a =log b =,结合对数函数的性质,求得1a b <<,又由指数函数的性质,求得0.121c =>,即可求解,得到答案.【详解】由题意,对数的运算公式,可得24222log 31log 3log 3log log 42a ====28222log 61log 6log 6log log 83b ====,2<<,所以222log log log 21<<=,即1a b <<,由指数函数的性质,可得0.10221c =>=, 所以c b a >>. 故选D. 【点睛】本题主要考查了对数函数的图象与性质,以及指数函数的图象与性质的应用,其中解答中熟练应用指数函数与对数函数的图象与性质,求得,,a b c 的范围是解答的关键,着重考查了推理与运算能力,属于基础题.3.A解析:A 【解析】由对任意x 1,x 2 ∈ [0,+∞)(x 1≠x 2),有()()1212f x f x x x -- <0,得f (x )在[0,+∞)上单独递减,所以(3)(2)(2)(1)f f f f <=-<,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行4.A解析:A 【解析】试题分析:画出函数图像,因为正实数,m n 满足m n <且()()f m f n =,且()f x 在区间2[,]m n 上的最大值为2,所以()()f m f n ==2,由2()log 2f x x ==解得12,2x =,即,m n 的值分别为12,2.故选A .考点:本题主要考查对数函数的图象和性质.点评:基础题,数形结合,画出函数图像,分析建立m,n 的方程.5.C解析:C 【解析】 【分析】 【详解】因为函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,所以220log log a a a >⎧⎨>-⎩或()()122log log a a a <⎧⎪⎨->-⎪⎩,解得1a >或10a -<<,即实数的a 取值范围是()()1,01,-⋃+∞,故选C. 6.D解析:D 【解析】试题分析:求函数f (x )定义域,及f (﹣x )便得到f (x )为奇函数,并能够通过求f′(x )判断f (x )在R 上单调递增,从而得到sinθ>m ﹣1,也就是对任意的0,2πθ⎛⎤∈ ⎥⎝⎦都有sinθ>m ﹣1成立,根据0<sinθ≤1,即可得出m 的取值范围. 详解:f (x )的定义域为R ,f (﹣x )=﹣f (x ); f′(x )=e x +e ﹣x >0; ∴f (x )在R 上单调递增;由f (sin θ)+f (1﹣m )>0得,f (sinθ)>f (m ﹣1); ∴sin θ>m ﹣1; 即对任意θ∈0,2π⎛⎤⎥⎝⎦都有m ﹣1<sinθ成立;∵0<sinθ≤1; ∴m ﹣1≤0;∴实数m 的取值范围是(﹣∞,1]. 故选:D .点睛:本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,但是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集.7.B解析:B 【解析】 【分析】当07x <≤时,()f x 为单调增函数,且(2)0f =,则()0f x >的解集为(]2,7,再结合()f x 为奇函数,所以不等式()0f x >的解集为(2,0)(2,7]-⋃.【详解】当07x <≤时,()26xf x x =+-,所以()f x 在(0,7]上单调递增,因为2(2)2260f =+-=,所以当07x <≤时,()0f x >等价于()(2)f x f >,即27x <≤,因为()f x 是定义在[7,7]-上的奇函数,所以70x -≤< 时,()f x 在[7,0)-上单调递增,且(2)(2)0f f -=-=,所以()0f x >等价于()(2)f x f >-,即20x -<<,所以不等式()0f x >的解集为(2,0)(2,7]-⋃ 【点睛】本题考查函数的奇偶性,单调性及不等式的解法,属基础题.应注意奇函数在其对称的区间上单调性相同,偶函数在其对称的区间上单调性相反.8.B解析:B 【解析】 【分析】在同一平面直角坐标系中作出()xf x a =与()log a g x x =的图象,图象的交点数目即为方程log xa a x =根的个数. 【详解】作出()xf x a =,()log a g x x =图象如下图:由图象可知:()(),f x g x 有两个交点,所以方程log xa a x =根的个数为2.故选:B . 【点睛】本题考查函数与方程的应用,着重考查了数形结合的思想,难度一般.(1)函数()()()h x f x g x =-的零点数⇔方程()()f x g x =根的个数⇔()f x 与()g x 图象的交点数;(2)利用数形结合可解决零点个数、方程根个数、函数性质研究、求不等式解集或参数范围等问题.9.C解析:C 【解析】 【分析】 【详解】因为函数()ln f x x =,()23g x x =-+,可得()()•f x g x 是偶函数,图象关于y 轴对称,排除,A D ;又()0,1x ∈时,()()0,0f x g x <>,所以()()•0f x g x <,排除B , 故选C. 【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.10.B解析:B 【解析】 【分析】 【详解】由对数函数的性质可知34333log 2log 342a =<=<, 由指数函数的性质0.121b =>,由三角函数的性质00000sin 789sin(236069)sin 69sin 60c ==⨯+=>,所以c ∈, 所以a c b <<,故选B.11.C解析:C 【解析】试题分析:根据补集的运算得{}{}{}{}2,4,6,()2,4,61,2,41,2,4,6UP UP Q =∴⋃=⋃=痧.故选C.【考点】补集的运算.【易错点睛】解本题时要看清楚是求“⋂”还是求“⋃”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误.12.B解析:B 【解析】由题意,f (﹣x )+f (x )=0可知f (x )是奇函数, ∵()()f x g x x =+,g (﹣1)=1, 即f (﹣1)=1+1=2 那么f (1)=﹣2. 故得f (1)=g (1)+1=﹣2, ∴g (1)=﹣3, 故选:B二、填空题13.1【解析】故答案为解析:1 【解析】155325a b c ===因为,1553log 25,log 25,log 25a b c ∴===,252525111log 15log 5log 3a b c∴+-=+-25log 251==,故答案为1. 14.3【解析】【分析】令(为奇数)作出两个函数的图象后可判断零点的个数【详解】由题意令则零点的个数就是图象交点的个数如图所示:由图象可知与的图象在第一象限有一个交点在第三象限有一个交点因为当为正奇数时的解析:3【解析】 【分析】令()2n s x x =(n 为奇数,3n >),()21021h x x x =-++,作出()s x 、()h x 两个函数的图象后可判断()g x 零点的个数. 【详解】由题意,令()*2,,5n s x x n N n =∈≥,()21021h x x x =-++,则()()()g x s x h x =-,()g x 零点的个数就是()(),s x h x 图象交点的个数,如图所示:由图象可知,()s x 与()h x 的图象在第一象限有一个交点,在第三象限有一个交点, 因为当n 为正奇数时()2ns x x =的变化速度远大于()h x 的变化速度,故在第三象限内,()s x 、()h x 的图象还有一个交点,故()(),s x h x 图象交点的个数为3,所以()g x 零点的个数为3. 故答案为:3. 【点睛】本题主要考查了函数的零点的判定,其中解答中把函数的零点问题转化为两个函数的图象的交点个数求解是解答的关键,着重考查了数形结合思想的应用,属于中档试题.15.【解析】【分析】由求得进而求解的值得到答案【详解】由题意函数(为常数)且所以所以又由故答案为:【点睛】本题主要考查了函数值的求解其中解答中根据函数的解析式准确运算是解答的关键着重考查了计算能力属于基 解析:1-【解析】 【分析】由()35f -=,求得1532723a b -⋅-+=,进而求解()3f 的值,得到答案. 【详解】由题意,函数()1352=++f x ax bx (a ,b 为常数),且()35f -=, 所以()15332725f a b -=-⋅-+=,所以153273a b -⋅-=,又由()1533272321f a b -=⋅++=-+=-. 故答案为:1-. 【点睛】本题主要考查了函数值的求解,其中解答中根据函数的解析式,准确运算是解答的关键,着重考查了计算能力,属于基础题.16.【解析】【分析】由函数是偶函数求出这样可求得集合得的取值范围从而可得结论【详解】∵函数是偶函数∴即平方后整理得∴∴由得∴故答案为:【点睛】本题考查函数的奇偶性考查解一元二次不等式解题关键是由函数的奇 解析:[2015,2019]【解析】 【分析】由函数()f x 是偶函数,求出a ,这样可求得集合D ,得b 的取值范围,从而可得结论. 【详解】∵函数()12bf x x a a -=-+-是偶函数,∴()()f x f x -=,即1122b bx a a x a a ---+-=--+-, x a x a -=+,平方后整理得0ax =,∴0a =,∴2{|20}{|20}D x x x x x =+≤=-≤≤, 由b D ∈,得20b -≤≤. ∴22015201532019a b ≤-+≤. 故答案为:[2015,2019]. 【点睛】本题考查函数的奇偶性,考查解一元二次不等式.解题关键是由函数的奇偶性求出参数a .17.【解析】【分析】不妨设根据二次函数对称性求得的值根据绝对值的定义求得的关系式将转化为来表示根据的取值范围求得的取值范围【详解】不妨设画出函数的图像如下图所示二次函数的对称轴为所以不妨设则由得得结合图解析:341112,1e e e ⎡⎫+--⎪⎢⎣⎭【解析】 【分析】不妨设,0,,0a b c d ≤>,根据二次函数对称性求得+a b 的值.根据绝对值的定义求得,c d 的关系式,将d 转化为c 来表示,根据c 的取值范围,求得+++a b c d 的取值范围. 【详解】不妨设,0,,0a b c d ≤>,画出函数()f x 的图像如下图所示.二次函数221y x x =--+的对称轴为1x =-,所以2a b +=-.不妨设c d <,则由2ln 2ln c d +=+得2ln 2ln c d --=+,得44,e cd e d c --==,结合图像可知12ln 2c ≤+<,解得(43,c e e --⎤∈⎦,所以(()4432,e a b c d c c e e c ---⎤+++=-++∈⎦,由于42e y x x -=-++在(43,e e --⎤⎦上为减函数,故4341112,21e e e c c e -⎡⎫+--++∈⎢⎣-⎪⎭.【点睛】本小题主要考查分段函数的图像与性质,考查二次函数的图像,考查含有绝对值函数的图像,考查数形结合的数学思想方法,属于中档题.18.【解析】【分析】根据方程的解在区间内将问题转化为解在区间内即可求解【详解】由题:关于的方程的解在区间内所以可以转化为:所以故答案为:【点睛】此题考查根据方程的根的范围求参数的取值范围关键在于利用对数 解析:()23log 11,1-+【解析】【分析】根据方程的解在区间()3,8内,将问题转化为23log x a x +=解在区间()3,8内,即可求解. 【详解】由题:关于x 的方程()224log 3log +-=x x a 的解在区间()3,8内,所以()224log 3log +-=x x a 可以转化为:23log x a x+=,()3,8x ∈,33111,28x x x +⎛⎫=+∈ ⎪⎝⎭, 所以()23log 11,1a ∈-+故答案为:()23log 11,1-+【点睛】此题考查根据方程的根的范围求参数的取值范围,关键在于利用对数运算法则等价转化求解值域.19.【解析】【分析】先求出函数的定义域找出内外函数根据同增异减即可求出【详解】由解得或所以函数的定义域为令则函数在上单调递减在上单调递增又为增函数则根据同增异减得函数单调递减区间为【点睛】复合函数法:复 解析:(,1)-∞-【解析】【分析】先求出函数的定义域,找出内外函数,根据同增异减即可求出.【详解】由2560x x -->,解得6x >或1x <-,所以函数22log (56)y x x =--的定义域为(,1)(6,)-∞-+∞U .令256u x x =--,则函数256u x x =--在(),1-∞-上单调递减,在()6,+∞上单调递增,又2log y u =为增函数,则根据同增异减得,函数22log (56)y x x =--单调递减区间为(,1)-∞-.【点睛】复合函数法:复合函数[]()y f g x =的单调性规律是“同则增,异则减”,即()y f u =与()u g x =若具有相同的单调性,则[]()y f g x =为增函数,若具有不同的单调性,则[]()y f g x =必为减函数.20.【解析】【分析】运用一次函数和指数函数的图象和性质可得值域讨论两种情况即可得到所求a 的范围【详解】函数函数当时时时递减可得的值域为可得解得;当时时时递增可得则的值域为成立恒成立综上可得故答案为:【点 解析:()1,11,2⎡⎫⋃+∞⎪⎢⎣⎭【解析】【分析】运用一次函数和指数函数的图象和性质,可得值域,讨论1a >,01a <<两种情况,即可得到所求a 的范围.【详解】函数函数()5,222,2x x x f x a a x -+≤⎧=++>⎨⎩,当01a <<时,2x ≤时,()53f x x =-≥,2x >时,()22x f x a a =++递减,可得()22222a f x a a +<<++, ()f x 的值域为[)3,+∞,可得223a +≥, 解得112a ≤<; 当1a >时,2x ≤时,()53f x x =-≥,2x >时,()22x f x a a =++递增,可得()2225f x a a >++>, 则()f x 的值域为[)3,+∞成立,1a >恒成立. 综上可得()1,11,2a ⎡⎫∈⋃+∞⎪⎢⎣⎭. 故答案为:()1,11,2⎡⎫⋃+∞⎪⎢⎣⎭. 【点睛】本题考查函数方程的转化思想和函数的值域的问题解法,注意运用数形结合和分类讨论的思想方法,考查推理和运算能力,属于中档题.三、解答题21.(1)1a =-(2)2m ≥-【解析】【分析】(1)根据奇函数性质()()f x f x -=-和对数的运算性质即可解得;(2)根据对数函数的单调性即可求出.【详解】解:(1)∵函数()f x 的图象关于原点对称,∴函数()f x 为奇函数,∴()()f x f x -=-, 即111333222log log log 222ax ax x x x ax ----=-=+--, 2222ax x x ax ---∴=+-,即222414a x x -=- 解得:1a =-或1a =,当1a =时,()11332()log log 21x f x x -==--,不合题意;故1a =-;(2)111133332()log (2)log log (2)log (2)2x f x x x x x ++-=+-=+-, ∵函数13log (2)y x =+为减函数, ∴当7x >时,1133log (2)log (27)2x +<+=-,∵(7,)x ∈+∞时,13()log (2)f x x m +-<恒成立, ∴2m ≥-.【点睛】 本题主要考查函数的奇偶性和单调性,函数恒成立的问题,属于中档题.22.(1){}2x x ≥-;(2)(]2,3【解析】【分析】(1)由对数函数指数函数的性质求出集合B ,然后由并集定义计算;(2)在(1)基础上求出A B I ,根据子集的定义,列出m 的不等关系得结论.【详解】(1)由310x ->,解得0x >, 所以{}0B x x =>. 故{}2A B x x ⋃=≥-.(2)由{}04A B x x ⋂=<≤.因为()C A B ⊆⋂, 所以20,1 4.m m ->⎧⎨+≤⎩所以23m <≤,即m 的取值范围是(]2,3.【点睛】本题考查对数型复合函数的定义域,考查集合的交并集运算,考查集合的包含关系.正确求出函数的定义域是本题的难点. 23.(Ⅰ)2()f x x =(Ⅱ)3,4⎛⎫-∞- ⎪⎝⎭ 【解析】【分析】(I )根据幂函数的奇偶性和在区间(0,)+∞上的单调性,求得m 的值,进而求得()f x 的解析式.(II )先求得()g x 的解析式,由不等式()0<g x 分离常数λ得到122x x λ<-,结合函数122x y x =-在区间[]1,2上的单调性,求得λ的取值范围. 【详解】 (Ⅰ)∵幂函数35()()m f x x m -+=∈N 为偶函数,且在区间(0,)+∞上单调递增, 350m ∴-+>,且35m -+为偶数.又N m ∈,解得1m =,2()f x x ∴=.(Ⅱ)由(Ⅰ)可知2()()2121g x f x x x x λλ=+-=+-.当[1,2]x ∈时,由()0<g x 得122x x λ<-. 易知函数122x y x =-在[1,2]上单调递减, min 1123222224x x λ⎛⎫∴<-=-=- ⎪⨯⎝⎭. ∴实数λ的取值范围是3,4⎛⎫-∞-⎪⎝⎭. 【点睛】本小题主要考查幂函数的单调性和奇偶性,考查不等式在给定区间上恒成立问题的求解策略,属于中档题.24.(1) 或;(2). 【解析】试题分析:(1)由题意结合集合相等的定义分类讨论可得:的值为或.(2)由题意得到关于实数a 的不等式组,求解不等式组可得. 试题解析:(1)若,则,∴. 若,则,,∴. 综上,的值为或. (2)∵,∴∴. 25.(Ⅰ){}1(Ⅱ)1323a -<<-【解析】【分析】(Ⅰ)将1a =代入直接求解即可;(Ⅱ)设2x t =,得到()()2110t a t a +-++=在()0,+∞有两个不同的解,利用二次函数的性质列不等式组求解即可.【详解】(Ⅰ)当1a =时,()()2log 4223x x f x =++=, 所以34222x x ++=,所以4260x x +-=,因此()()23220x x +-=,得22x =解得1x =,所以解集为{}1.(Ⅱ)因为方程()2log 421x x a a x +⋅++=有两个不同的实数根,即4212x x x a a +⋅++=,设2x t =,()()2110t a t a +-++=在()0,+∞有两个不同的解, 令()()()211f t t a t a =+-++,由已知可得()()()2001021410f a a a ⎧>⎪-⎪->⎨⎪⎪=--+>⎩n解得13a -<<-【点睛】本题主要考查了对数函数与指数函数的复合函数的处理方式,考查了函数与方程的思想,属于中档题.26.(1)[]0,1;(2)[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦U . 【解析】【分析】(1)由题得10,211,121,a a a a -⎧⎪+⎨⎪-<+⎩„…解不等式即得解;(2)对集合A 分两种情况讨论即得实数a的取值范围.【详解】(1)若B A ⊆,则10,211,121,a a a a -⎧⎪+⎨⎪-<+⎩„…解得01a ≤≤.故实数a 的取值范围是[]0,1.(2)①当A =∅时,有121a a -≥+,解得2a ≤-,满足A B =∅I .②当A ≠∅时,有121a a -<+,解得 2.a >-又A B =∅Q I ,则有210a +≤或11a -≥,解得12a ≤-或2a ≥, 122a ∴-<≤-或2a ≥. 综上可知,实数a 的取值范围是[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦U . 【点睛】本题主要考查根据集合的关系和运算求参数的范围,意在考查学生对这些知识的理解掌握水平和分析推理能力.。

吉林省2020学年高一数学上学期期末考试试题

吉林省2020学年高一数学上学期期末考试试题

高一数学上学期期末考试试题考试时间:120分 试卷满分:150分第Ⅰ卷(共60分)一、选择题(每小题5分,共60分,每小题只有一个正确答案)1、已知集合}0)1(|{≤-=x x x A ,}012|{>-=x x B ,则=B A ( )A .),21(+∞ B .)21,0[ C .]1,0[ D .]1,21( 2、π32018cos 的值为 ( ) A .21- B .21 C .23- D .23 3.已知sin 3cos 3cos sin αααα+-=5,则2sin 3sin cos ααα-的值是( ) A .25 B .-25 C .-2 D .2 4.将x y sin =图象上所有点横坐标缩短到原来的一半,纵坐标不变,再把图象向右平移6π 个单位,这时图象对应的解析式为 ( ) A )32sin(π-=x y B )62sin(π-=x y C )32sin(π-=x y D .)62sin(π-=x y 5、函数22)(x x f x -=的零点个数为 ( )A .0B .1C .2D .36、已知定义在R 上的函数12)(||-=-m x x f 为偶函数,记)3(log 5.0f a =,)5(log 2f b =, )2(m f c =,则 ( )A . c b a <<B .b c a <<C .b a c <<D .a b c <<7、若向量与的夹角为3π,4||=,72)3()2(-=-⋅+,则=+||||( ) A .6 B .10 C .8 D .128.已知函数f(x)=x 2-πx ,α,β,γ∈(0,π),且sin α=13,tan β=54,cos γ=-13,则( )A .f(α)>f(β)>f(γ)B .f(α)>f(γ)>f(β)C .f(β)>f(α)>f(γ)D .f(β)>f(γ)>f(α)9、若点M 是ABC ∆所在平面内一点,且满足0|3|=--AC AB AM ,则A B M ∆与ABC ∆ 面积之比等于 ( )A .21B .31C .32 D .2 10.函数)0,20)(2sin()(>≤<+=A x A x f πϕϕ部分图象如图所示,且()()0f a f b ==,对不同的[]12,,x x a b ∈,若()()12f x f x =,有()12f x x +=,则( )A.()f x 在5,1212ππ⎛⎫- ⎪⎝⎭上是减函数 B.()f x 在5,1212ππ⎛⎫- ⎪⎝⎭上是增函数 C.()f x 在5,36ππ⎛⎫ ⎪⎝⎭上是减函数 D. ()f x 在5,36ππ⎛⎫ ⎪⎝⎭上增函数 11、已知)(x f 是定义在),0(+∞上的函数,对任意两个不相等的正数21,x x ,当21x x ≠时, 都有0)()(122112<--x x x f x x f x 。

2020-2020学年贵阳市高一(上)期末数学试卷(含答案解析)

2020-2020学年贵阳市高一(上)期末数学试卷(含答案解析)

2020-2020学年贵州省贵阳市高一(上)期末数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)已知集合A={0,1,2},B={2,3},则集合A∪B=()A.{1,2,3}B.{0,1,2,3}C.{2}D.{0,1,3}2.(4分)化简÷(b)(a>0,b>0)结果为()A.a B.b C.D.3.(4分)正弦函数f(x)=sinx图象的一条对称轴是()A.x=0 B.C.D.x=π4.(4分)下列函数中,既是偶函数又存在零点的是()A.f(x)=sinx B.f(x)=x2+1 C.f(x)=lnx D.f(x)=cosx5.(4分)设y1=log0.70.8,y2=log1.10.9,y3=1.10.9,则有()A.y3>y1>y2B.y2>y1>y3C.y1>y2>y3D.y1>y3>y26.(4分)已知正方形ABCD的边长为1,则•=()A.1 B.C.D.27.(4分)如果cos(π+A)=﹣,那么sin(+A)的值是()A.B.C.D.8.(4分)要得到函数y=sin(2x+)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位9.(4分)函数y=f(x)在区间上的简图如图所示,则函数y=f(x)的解析式可以是()A.f(x)=sin(2x+)B.f(x)=sin(2x﹣)C.f(x)=sin(x+)D.f(x)=sin(x﹣)10.(4分)对于函数f(x),如果存在非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,已知函数y=f (x)(x∈R)满足f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=x2,则y=f(x)与y=log5x的图象的交点个数为()A.3 B.4 C.5 D.6二、填空题(共5小题,每小题4分,满分20分)11.(4分)学校先举办了一次田径运动会,某班有8名同学参赛,又举办了一次球类运动会,该班有12名同学参赛,两次运动会都参赛的有3人.两次运动会中,这个班共有名同学参赛.12.(4分)溶液酸碱度是通过pH值刻画的,pH值的计算公式为pH=﹣lg[H+],其中[H+]表示溶液中氢离子的浓度,单位是摩尔/升,纯净水中氢离子的浓度为[H+]=10﹣7摩尔/升,则纯净水的pH=.13.(4分)已知,那么=.14.(4分)计算(lg2)2+lg2•lg50+lg25=.15.(4分)设A,B是非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合中B都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射,设f:x→是从集合A到集合B的一个映射.①若A={0,1,2},则A∩B=;②若B={1,2},则A ∩B=.三、解答题(共4小题,满分32分)16.(8分)已知向量=(1,0),=(1,1),=(﹣1,1).(Ⅰ)λ为何值时,+λ与垂直?(Ⅱ)若(m+n)∥,求的值.17.(8分)已知函数f(x)=x﹣.(Ⅰ)判断f(x)的奇偶性;(Ⅱ)用函数单调性的定义证明:f(x)在(0,+∞)上是增函数.18.(8分)已知函数f(x)=sin2+sin cos.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若x∈[,π],求f(x)的最大值与最小值.19.(8分)已知函数f(x)=1﹣(a>0且a≠1)是定义在R上的奇函数.(Ⅰ)求a的值;(Ⅱ)若关于x的方程|f(x)•(2x+1)|=m有1个实根,求实数m的取值范围.四、阅读与探究(共1小题,满分8分)20.(8分)阅读下面材料,尝试类比探究函数y=x2﹣的图象,写出图象特征,并根据你得到的结论,尝试猜测作出函数对应的图象.阅读材料:我国著名数学家华罗庚先生曾说:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征.我们来看一个应用函数的特征研究对应图象形状的例子.对于函数y=,我们可以通过表达式来研究它的图象和性质,如:(1)在函数y=中,由x≠0,可以推测出,对应的图象不经过y轴,即图象与y轴不相交;由y≠0,可以推测出,对应的图象不经过x轴,即图象与x轴不相交.(2)在函数y=中,当x>0时y>0;当x<0时y<0,可以推测出,对应的图象只能在第一、三象限;(3)在函数y=中,若x∈(0,+∞)则y>0,且当x逐渐增大时y逐渐减小,可以推测出,对应的图象越向右越靠近x轴;若x∈(﹣∞,0),则y<0,且当x逐渐减小时y逐渐增大,可以推测出,对应的图象越向左越靠近x轴;(4)由函数y=可知f(﹣x)=﹣f(x),即y=是奇函数,可以推测出,对应的图象关于原点对称.结合以上性质,逐步才想出函数y=对应的图象,如图所示,在这样的研究中,我们既用到了从特殊到一般的思想,由用到了分类讨论的思想,既进行了静态(特殊点)的研究,又进行了动态(趋势性)的思考.让我们享受数学研究的过程,传播研究数学的成果.2020-2020学年贵州省贵阳市高一(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)已知集合A={0,1,2},B={2,3},则集合A∪B=()A.{1,2,3}B.{0,1,2,3}C.{2}D.{0,1,3}【解答】解:∵集合A={0,1,2},B={2,3},则集合A∪B={0,1,2,3},故选:B.2.(4分)化简÷(b)(a>0,b>0)结果为()A.a B.b C.D.【解答】解:原式==a,故选:A3.(4分)正弦函数f(x)=sinx图象的一条对称轴是()A.x=0 B.C.D.x=π【解答】解:f(x)=sinx图象的一条对称轴为+kπ,k∈Z,∴当k=0时,函数的对称轴为,故选:C.4.(4分)下列函数中,既是偶函数又存在零点的是()A.f(x)=sinx B.f(x)=x2+1 C.f(x)=lnx D.f(x)=cosx【解答】解:对于A,是奇函数;对于B,是偶函数,不存在零点;对于C,非奇非偶函数;对于D,既是偶函数又存在零点.故选:D.5.(4分)设y1=log0.70.8,y2=log1.10.9,y3=1.10.9,则有()A.y3>y1>y2B.y2>y1>y3C.y1>y2>y3D.y1>y3>y2【解答】解:y1=log0.70.8∈(0,1);y2=log1.10.9<0;y3=1.10.9>1,可得y3>y1>y2.故选:A.6.(4分)已知正方形ABCD的边长为1,则•=()A.1 B.C.D.2【解答】解:.故选A.7.(4分)如果cos(π+A)=﹣,那么sin(+A)的值是()A.B.C.D.【解答】解:由题意可得:,根据诱导公式可得cosA=,所以=cosA=,故选B.8.(4分)要得到函数y=sin(2x+)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【解答】解:由于函数y=sin(2x+)=sin2(x+),∴将函数y=sin2x的图象向左平移个单位长度,可得函数y=sin(2x+)的图象,故选:B9.(4分)函数y=f(x)在区间上的简图如图所示,则函数y=f(x)的解析式可以是()A.f(x)=sin(2x+)B.f(x)=sin(2x﹣)C.f(x)=sin(x+)D.f(x)=sin(x﹣)【解答】解:由图象知A=1,∵=,∴T=π,∴ω=2,∴函数的解析式是y=sin(2x+φ)∵函数的图象过()∴0=sin(2×+φ)∴φ=kπ﹣,∴φ=﹣∴函数的解析式是y=sin(2x﹣)故选B.10.(4分)对于函数f(x),如果存在非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,已知函数y=f (x)(x∈R)满足f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=x2,则y=f(x)与y=log5x的图象的交点个数为()A.3 B.4 C.5 D.6【解答】解:∵函数y=f(x)(x∈R)满足f(x+2)=f(x),∴f(x)是周期为2的周期性函数,又x∈[﹣1,1]时,f(x)=x2.根据函数的周期性画出图形,如图,由图可得y=f(x)与y=log5x的图象有4个交点故选:B.二、填空题(共5小题,每小题4分,满分20分)11.(4分)学校先举办了一次田径运动会,某班有8名同学参赛,又举办了一次球类运动会,该班有12名同学参赛,两次运动会都参赛的有3人.两次运动会中,这个班共有17名同学参赛.【解答】解:设A={x|x是参加田径运动会比赛的学生},B={x|x是参加球类运动会比赛的学生},A∩B={x|x是两次运动会都参加比赛的学生},A∪B={x|x是参加所有比赛的学生}.因此card(A∪B)=card(A)+card(B)﹣card(A∩B)=8+12﹣3=17.故两次运动会中,这个班共有17名同学参赛.故答案为:17.12.(4分)溶液酸碱度是通过pH值刻画的,pH值的计算公式为pH=﹣lg[H+],其中[H+]表示溶液中氢离子的浓度,单位是摩尔/升,纯净水中氢离子的浓度为[H+]=10﹣7摩尔/升,则纯净水的pH=7.【解答】解:由题意可得:该溶液的PH值为﹣lg10﹣7=7故答案为:713.(4分)已知,那么=.【解答】解:因为,所以||=.故答案为.14.(4分)计算(lg2)2+lg2•lg50+lg25=2.【解答】解:原式=2 lg5+lg2•(1+lg5)+(lg2)2=2 lg5+lg2(1+lg5+lg2)=2 lg5+2 lg2=2;故答案为2.15.(4分)设A,B是非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合中B都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射,设f:x→是从集合A到集合B的一个映射.①若A={0,1,2},则A∩B={0,1} ;②若B={1,2},则A∩B={1}或∅.【解答】解:①根据题意,A={0,1,2},通过对应关系f:x→,B={0,1,},所以A∩B={0,1};②根据题意,B={1,2}时,过对应关系f:x→,得A={1}或{4}或{1,4};所以A∩B={1}或∅.故答案为:{0,1},{1}或∅.三、解答题(共4小题,满分32分)16.(8分)已知向量=(1,0),=(1,1),=(﹣1,1).(Ⅰ)λ为何值时,+λ与垂直?(Ⅱ)若(m+n)∥,求的值.【解答】解:(Ⅰ)∵向量=(1,0),=(1,1),=(﹣1,1).∴=(1+λ,λ),∵+λ与垂直,∴()•=1+λ+0=0,解得λ=﹣1,∴λ=1时,+λ与垂直.(Ⅱ)∵=(m,0)+(n,n)=(m+n,n),又(m+n)∥,∴(m+n)×1﹣(﹣1×n)=0,∴=﹣2.∴若(m+n)∥,则=﹣2.17.(8分)已知函数f(x)=x﹣.(Ⅰ)判断f(x)的奇偶性;(Ⅱ)用函数单调性的定义证明:f(x)在(0,+∞)上是增函数.【解答】解:(Ⅰ)函数f(x)=x﹣的定义域是D=(﹣∞,0)∪(0,+∞),任取x∈D,则﹣x∈D,且f(﹣x)=﹣x﹣=﹣(x﹣)=﹣f(x),∴f(x)是定义域上的奇函数;(Ⅱ)证明:设x1,x2∈(0,+∞),且x1<x2,则f(x1)﹣f(x2)=(x1﹣)﹣(x2﹣)=(x1﹣x2)+(﹣)=;∵0<x1<x2,∴x1x2>0,x1﹣x2<0,x1x2+1>0,∴<0,即f(x1)<f(x2),∴f(x)在(0,+∞)上是增函数.18.(8分)已知函数f(x)=sin2+sin cos.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若x∈[,π],求f(x)的最大值与最小值.【解答】解:(Ⅰ)函数f(x)=sin2+sin cos=+sinx=sinx﹣cosx+=sin(x﹣)+,由T==2π,知f(x)的最小正周期是2π;(Ⅱ)由f(x)=sin(x﹣)+,且x∈[,π],∴≤x﹣≤,∴≤sin(x﹣)≤1,∴1≤sin(x﹣)+≤,∴当x=时,f(x)取得最大值,x=π时,f(x)取得最小值1.19.(8分)已知函数f(x)=1﹣(a>0且a≠1)是定义在R上的奇函数.(Ⅰ)求a的值;(Ⅱ)若关于x的方程|f(x)•(2x+1)|=m有1个实根,求实数m的取值范围.【解答】解:(Ⅰ)∵f(x)=1﹣(a>0且a≠1)是定义在R上的奇函数,∴f(0)=0,即1﹣=0,∴a=2;(Ⅱ)设h(x)=|f(x)•(2x+1)|,g(x)=m,如图所示,m=0或m≥1,两函数图象有一个交点,∴关于x的方程|f(x)•(2x+1)|=m有1个实根时,实数m的取值范围是m=0或m≥1.四、阅读与探究(共1小题,满分8分)20.(8分)阅读下面材料,尝试类比探究函数y=x2﹣的图象,写出图象特征,并根据你得到的结论,尝试猜测作出函数对应的图象.阅读材料:我国著名数学家华罗庚先生曾说:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征.我们来看一个应用函数的特征研究对应图象形状的例子.对于函数y=,我们可以通过表达式来研究它的图象和性质,如:(1)在函数y=中,由x≠0,可以推测出,对应的图象不经过y轴,即图象与y轴不相交;由y≠0,可以推测出,对应的图象不经过x轴,即图象与x轴不相交.(2)在函数y=中,当x>0时y>0;当x<0时y<0,可以推测出,对应的图象只能在第一、三象限;(3)在函数y=中,若x∈(0,+∞)则y>0,且当x逐渐增大时y逐渐减小,可以推测出,对应的图象越向右越靠近x轴;若x∈(﹣∞,0),则y<0,且当x逐渐减小时y逐渐增大,可以推测出,对应的图象越向左越靠近x轴;(4)由函数y=可知f(﹣x)=﹣f(x),即y=是奇函数,可以推测出,对应的图象关于原点对称.结合以上性质,逐步才想出函数y=对应的图象,如图所示,在这样的研究中,我们既用到了从特殊到一般的思想,由用到了分类讨论的思想,既进行了静态(特殊点)的研究,又进行了动态(趋势性)的思考.让我们享受数学研究的过程,传播研究数学的成果.【解答】解:(1)在y=x2﹣中,x≠0,可以推测出:对应的图象不经过y轴,即与y轴不相交,(2)令y=0,即x2﹣=0,解得x=±1,可以推测出,对应的图象与x相交,交点坐标为(1,0)和(﹣1,0),(3)在y=x2﹣中,当0<x<1时,>1>x2,则y<0,当x>1时,<1<x2,则y>0,可以推测出:对应的图象在区间(0,1)上图象在x轴的下方,在区间(1,+∞)上图象在x轴的上方,(4)在y=x2﹣中,若x∈(0,+∞),则当x逐渐增大时逐渐减小,x2﹣,逐渐增大,即y逐渐增大,所以原函数在(0,+∞)是增函数,可以推测出:对应的图象越向右逐渐升高,是单调递增的趋势,(5)由函数y=x2﹣可知f(﹣x)=f(x),即函数为偶函数,可以推测出:对应的图象关于y轴对称。

陕西省2020学年高一数学上学期期末考试试题

陕西省2020学年高一数学上学期期末考试试题

第一学期期末考试高一数学试题(时间:120分钟满分:120分)一.选择题(本大题包括10小题,每小题4分,共40分,每小题给出的四个选项中,只有..一项..是符合题目要求的,请将正确选项填涂在答题卡上.)1. 若过两点A(4,y)、B(2,-3)的直线的倾斜角为45°,则y等于 ( )A.-32B.32C.-1 D.12. 某人用如图所示的纸片,沿折痕折后粘成一个四棱锥形的“走马灯”,正方形做灯底,且有一个三角形面上写上了“年”字,当灯旋转时,正好看到“新年快乐”的字样,则在①、②、③处应依次写上( )A.快、新、乐B.乐、新、快C.新、乐、快D.乐、快、新3. 已知A(2,5,-6),点P在y轴上,|PA|=7,则点P的坐标是( )A.(0,8,0) B.(0,2,0)C.(0,8,0)或(0,2,0) D.(0,-8,0)4. 已知直线l1:ax+4y-2=0与直线l2:2x-5y+b=0互相垂直,垂足为(1,c),则a+b+c的值为( )A.20 B.-4 C.0 D.245. 设m,n是两条不同的直线,α、β、γ是三个不同的平面,给出下列四个命题:①若m⊥α,n∥α,则m⊥n;②若α∥β,β∥γ,m∥α,则m∥γ;③若m∥α,n∥α,则m∥n;④若α⊥γ,β⊥γ,则α∥β.其中正确命题的序号是( )A.① B.②和③C.③和④ D.①和④6. 平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是( )A.2x+y+5=0或2x+y-5=0 B.2x+y+5=0或2x+y-5=0C.2x-y+5=0或2x-y-5=0 D.2x-y+5=0或2x-y-5=07. 已知某几何体的三视图如图所示,则该几何体的体积为( ) A .8π3B .3πC .10π3D .6π8. 已知点A (1,3)、B (-2,-1) ,若过点P (2,1)的直线l 与线段AB 相交,则直线l 的斜率k 的取值范围是 ( ) A .k ≥12B .k ≤-2C .k ≥12或k ≤-2D .-2≤k ≤129. 如图,四棱锥S -ABCD 的底面为正方形,SD⊥底面ABCD ,则下列结论中不正确的是( ) A .AC⊥SB B .AB∥平面SCDC .平面SDB⊥平面SACD .AB 与SC 所成的角等于DC 与SA 所成的角10. 对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线l 1:ax +3y +6=0,l 2:2x +(a +1)y +6=0与圆C :x 2+y 2+2x =b 2-1(b >0)的位置关系是“平行相交”,则实数b 的取值范围为 ( ) A .(2,322)B .(0,322)C .(0,2)D .(2,322)∪(322,+∞) 二.填空题(本大题包括5小题,每小题4分,共20分,把答案填在答题卡的相应位置上.) 11.已知圆C :(x -a )2+(y -2)2=4(a >0)及直线l :x -y +3=0,当直线l 被圆C 截得的弦长为23时,a 的值等于________.12.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是_________.13. 方程1-x2=x+k有惟一解,则实数k的范围是________.14. 正方体AC1中,E,F分别是DD1,BD的中点,则直线AD1与EF所成角的余弦值是_______.15. 正三棱锥P­ABC的底面边长为1,E,F,G,H分别是PA,AC,BC,PB的中点,四边形EFGH的面积为S,则S的取值范围是________.三.解答题(本大题包括5小题,每小题12分,共60分,解答应写出文字说明,证明过程或演算步骤.)16. (12分)求满足下列条件的直线方程.(1)经过点A(-1,-3),且斜率等于直线3x+8y-1=0斜率的2倍;(2)过点M(0,4),且与两坐标轴围成三角形的周长为12.17. (12分)有一圆与直线l:4x-3y+6=0相切于点A(3,6),且经过点B(5,2),求此圆的方程.18. (12分) 正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB=2,CE=EF =1.求证:(1)AF∥平面BDE;(2)CF⊥平面BDE.19.(12分) 已知点P(2,0)及圆C:x2+y2-6x+4y+4=0.(1)若直线l过点P且与圆心C的距离为1,求直线l的方程;(2)设过点P的直线l1与圆C交于M,N两点,当|MN|=4时,求以线段MN为直径的圆Q的方程;(3)设直线ax-y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.20.(12分) 如图(1),在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图(2).(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?并说明理由.答案(时间:120分钟 满分:120分)一. 选择题(本大题包括10小题,每小题4分,共40分,每小题给出的四个选项中,只有..一项..是符合题目要求的,请将正确选项填涂在答题卡上.)二.填空题(本大题包括5小题,每小题4分,共20分,把答案填在答题卡的相应位置上.) 11. 2-1 12. 24π13. k =2或-1≤k <1 14.6315. ⎝⎛⎭⎪⎫312,+∞ 三.解答题(本大题包括5小题,每小题12分,共60分,解答应写出文字说明,证明过程或演算步骤.) 16. (12分)解: (1)因为3x +8y -1=0可化为y =-38x +18. 所以直线3x +8y -1=0的斜率为-38则所求直线的斜率k =2×(-38)=-34.又直线经过点(-1,-3)因此所求直线的方程为y +3=-34(x +1)即3x +4y +15=0.(2)设直线与x 轴的交点为(a,0)因为点M (0,4)在y 轴上,所以由题意有4+a 2+42+|a |=12 解得a =±3.所以所求直线的方程为x 3+y 4=1或x -3+y4=1即4x +3y -12=0或4x -3y +12=0. 17. (12分)解: 法一:由题意可设所求的方程为(x -3)2+(y -6)2+λ(4x -3y +6)=0,又因为此圆过点(5,2),将坐标(5,2)代入圆的方程求得λ=-1,所以所求圆的方程为x 2+y 2-10x -9y +39=0.法二:设圆的方程为(x -a)2+(y -b)2=r 2,则圆心为C(a ,b),由|CA|=|CB|,CA⊥l,解得⎩⎪⎨⎪⎧a =5,b =92,r 2=254.所以所求圆的方程为(x -5)2+(y -92)2=254.法三:设圆的方程为x 2+y 2+Dx +Ey +F =0,由CA⊥l,A(3,6),B(5,2)在圆上,得⎩⎪⎨⎪⎧32+62+3D +6E +F =0,52+22+5D +2E +F =0,-E2-6-D 2-3×43=-1,解得⎩⎪⎨⎪⎧D =-10,E =-9,F =39.所以所求圆的方程为x 2+y 2-10x -9y +39=0.法四:设圆心为C ,则CA⊥l,又设AC 与圆的另一交点为P ,则CA 的方程为y -6=-34(x -3),即3x +4y -33=0.又因为k AB =6-23-5=-2,所以k BP =12,所以直线BP 的方程为x -2y -1=0.解方程组⎩⎪⎨⎪⎧3x +4y -33=0,x -2y -1=0,得⎩⎪⎨⎪⎧x =7,y =3.所以P(7,3).所以圆心为AP 的中点(5,92),半径为|AC|=52.所以所求圆的方程为(x -5)2+(y -92)2=254.18. (12分)解: (1)设AC 与BD 交于点G .因为EF ∥AG ,且EF =1,AG =12AC =1.所以四边形AGEF 为平行四边形.所以AF ∥EG.因为EG 平面BDE .AF 平面BDE ,所以AF ∥平面BDE .(2)连接FG ,EG .因为EF ∥CG ,EF =CG =1,且CE =1,所以四边形CEFG 为菱形. 所以CF ⊥EG .因为四边形ABCD 为正方形,所以BD ⊥AC . 又因为平面ACEF ⊥平面ABCD ,且平面ACEF ∩平面ABCD =AC . 所以BD ⊥平面ACEF .所以CF ⊥BD .又BD ∩EG =G , 所以CF ⊥平面BDE . 19.(12分)解: (1)直线l 斜率存在时,设直线l 的斜率为k ,则方程为y -0=k (x -2),即kx -y -2k =0.又圆C 的圆心为(3,-2),半径r =3,由|3k +2-2k |k 2+1=1,解得k =-34.所以直线方程为y =-34(x -2),即3x +4y -6=0.当l 的斜率不存在时,l 的方程为x =2,经验证x =2也满足条件. 即直线l 的方程为3x +4y -6=0或x =2. (2)由于|CP |=5,而弦心距d =r 2-|MN |22=5,所以d =|CP |= 5. 所以P 恰为MN 的中点.故以MN 为直径的圆Q 的方程为(x -2)2+y 2=4.(3)把直线y =ax +1代入圆C 的方程,消去y ,整理得(a 2+1)x 2+6(a -1)x +9=0.由于直线ax -y +1=0交圆C 于A ,B 两点, 故Δ=36(a -1)2-36(a 2+1)>0, 即-2a >0,解得a <0.则实数a 的取值范围是(-∞,0). 设符合条件的实数a 存在,由于l 2垂直平分弦AB ,故圆心C (3,-2)必在l 2上.所以l 2的斜率k PC =-2,而k AB =a =-1k PC,所以a =12.-∞,0),故不存在实数a ,使得过点P (2,0)的直线l 2垂直平分弦AB . 20.(12分)解: (1)证明 ∵D ,E 分别为AC ,AB 的中点, ∴DE ∥BC .又∵D 平面A1CB,BC平面A1CB,∴DE∥平面A1CB.(2)证明由已知得AC⊥BC且DE∥BC,∴DE⊥AC.∴DE⊥A1D,DE⊥CD,A1D∩CD=D,∴DE⊥平面A1DC.而A1F平面A1DC,∴DE⊥A1F.又∵A1F⊥CD,DE∩CD=D,∴A1F⊥平面BCDE,BE平面BCDE,∴A1F⊥BE.(3)解线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又∵DE∥BC,∴DE∥PQ.∴平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,A1C平面A1DC,∴DE⊥A1C.又∵P是等腰三角形DA1C底边A1C的中点,∴A1C⊥DP,DE∩DP=D,∴A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q(中点),使得A1C⊥平面DEQ.。

吉林省2020学年高一数学上学期期末考试试题

吉林省2020学年高一数学上学期期末考试试题

高一数学上学期期末考试试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。

考试结束后,将答题卡交回。

注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信 息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书 写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效; 在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5. 保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷一、选择题:本题共12小题,每小题 5分,共60 分(在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 32cos π 的值为( ) A .23- B .23 C .21 D .21- 2.已知集合{}3,2,1=A ,{}Z x x x x B ∈<--=,022,则=B A ( ) A .{}1 B .{}2,1 C.{}3,2,1,0 D.{}3,2,1,0,1- 3. 函数()15--=x x x f 在下列区间一定有零点的是( ) A .[]1,0 B .[]2,1 C .[]3,2 D .[]4,34. 下列函数中,与函数(0)y x x =≥相同的是( )A.2x y x= B.2y = C.lg(10)x y = D.2log 2x y =5. 下列函数中,在),0(+∞上为减函数的是( )A.x y 3=B.x y 1-=C.x y =D.x y 21log = 6. 对于函数cos 22y x π⎛⎫=- ⎪⎝⎭,下列命题正确的是( ) A.周期为2π的偶函数 B.周期为2π的奇函数C.周期为π的偶函数D.周期为π的奇函数7. 则设,7,3.0,3.0log 3.077===c b a ( )A. b c a <<B. a c b <<C. c b a <<D. c a b <<8. 将函数sin()3y x π=-的图象上所有点向左平移3π个单位,再将所得的图象的所有点 的横坐标伸长到原来的2倍(纵坐标不变),得到的图象对应的解析式是( ) A.1sin2y x = B.1sin()22y x π=- C.1sin()26y x π=- D.sin(2)6y x π=-9. 已知tan θ=,2πθπ<<,那么cos sin θθ-的值是( ) A. 231+- B. 231+- C. 231- D. 231+10. 函数()()ϕ+=x x f 3cos 的图象关于原点成中心对称,则ϕ等于( ) A. 2π- B. ()Z k k ∈+22ππ C. ()Z k k ∈π D. ()Z k k ∈+2ππ 11.已知)(x f 是奇函数,且0<x 时,x x x f 2sin cos )(+=,则当0>x 时,)(x f 的 表达式是( )A.x x 2sin cos +B.x 2sin x cos +-C.x 2sin x cos -D.x 2sin x cos --12. 已知函数()x f 的定义域为R ,当0<x 时,()13-=x x f ,当11≤≤-x 时,()()x f x f -=-,当21>x 时,⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+2121x f x f ,则()=6f ( ) A .2 B .0 C .1- D .2-第Ⅱ卷二、填空题:(本题共4小题,每小题5分,共20分)13. 若角α的终边经过点()2,1-P ,则αsin 的值为 ;14. ()1,012≠>-=-a a a y x 且的图象恒过定点 ;15. 已知())(1,43)(x g x f x x g =--=,则()=x f ; 16. 若函数()x f y =的定义域为⎥⎦⎤⎢⎣⎡3,21,则函数()x f 3log 的定义域为 . 三、解答题:解答应写出文字说明、证明过程或演算步骤。

2020 年高一(上)期期末考试 数学试卷

2020 年高一(上)期期末考试 数学试卷

2020 年高一(上)期期末考试 数学试卷一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选 项中,只有一项是符合题目要求的.1.120° 化成弧度制为( ) A .34π B .65π C .32π D .3π2.设集合 B = { x |2x − 4 x + m= 0},若1 ∈B ,则 B= ()A .{1 ,3}B .{1,0}C .{1 ,−3}D .{1 ,5}3.已知弧度数为 2 的圆心角所对的弦长也是 2,则这个圆心角所对的弧长为 ( ) A .2B .1sin 2 C .2sin 1 D .sin2 4.已知点 P(sin1050°, cos1050°) ,则 P 在平面直角坐标系中位于( )A .第一象限B .第二象限C .第三象限D .第四象限 5.函数 f ( x) = x+23+x 的零点所在区间为( ) A .( − 3, −2) B .( − 2, −1) C .( −1, 0) D .(0,1) 6.角α的终边经过点(2, −1) ,则2αsin + 3αcos 的值为( )A .55-B .55C.554-D .554 7.已知幂函数 f ( x) =nx 的图象经过点(3,3) ,则 f (9)的值为()A .3B . ±3C .21D .338.函数 x x x x f +=cos )(在[−π,π] 上的图象大致为()A .B . C. D.9.函数 y = x 2cos − sin x+1 的值域是( )A .[0 ,2]B .[2,49] C .[1 ,3]D .[0,49]10.已知 a =5log 21- , b= 27log 8, c = 51⎪⎭⎫⎝⎛e ,则 a ,b ,c 的大小关系为( )A . a > c > bB . b > a > cC . c > a > bD . a > b > c11.已知函数 f ( x) 是定义在 R 上的奇函数, f (23+ x) = f ( x −23) ,且 x ∈(23-, 0) 时, f ( x) =log (−3 x+ 1) ,则 f(2020) = ( )A .4B .7log 2C .2D .−212.已知函数 f(x) =⎩⎨⎧≥+--<-2,2)3(2,)2(log 23x x x x ,g( x) =11-+xx ,则方程 f ( g( x)) = a 的实根个数最多为( ) A .6 B .7 C .8D .9二、填空题:本题共 4 小题,每小题 5 分,共 20 分. 13、 函数 y = )1,0(32≠>+=-a a ay x的图象恒过定点,则这个定点的坐标是14.若函数)(x f = )20)(tan(πϕωϕω<>+且x 的一个单调区间为⎪⎭⎫⎝⎛-6,3ππ ,且 f(0) =33,则 )12(πf =15.若函数1++=xax y 有两个零点,则实数 a 的取值范围是16.已知 [x] 表示不超过 x 的最大整数(如[2.5] = 2) ,若函数 221)(x x x f +=,则[21)(-x f ] + [21)1(-x f ] 的值域为三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.17、(本小题满分 10 分)化简或求下列各式的值.(1) )4()5()2(3543132323b a b a b a ÷-⨯ ; (2)15log 4log 20lg 5lg )5(lg 222++⨯+.18、(本小题满分 12 分)计算下列各式:(1)已知2tan =θ,求)sin()cos()2cos()23sin(θπθπθπθπ--++--的值; (2)若 43tan =α,求αααcos sin 4cos 2+的值.已知集合 A = { x | a −1 < x < 2a+ 3}, B = { x | −2 ≤ x ≤ 4},全集U = R . (1)当 a = 2时,求 B A ;(2)若A B A = ,求实数 a 的取值范围. 20、(本小题满分 12 分)首届中国国际进口博览会在2018年115日−10日在上海国家会展中心举办.会议期间,某公司欲采购东南亚某水果种植基地的水果,公司刘总经理与该 种植基地的负责人陈老板商定一次性采购一种水果的采购价 y (元/ 吨)与 采购量 x (吨) 之间的函数关系的图象如图中的折线 ABC 所示(不包含端点 A ,但包含端点C) .(1)求 y 与 x 之间的函数关系式;(2)已知该水果种植基地种植该水果的成本是 2800 元/ 吨,那么刘总经理的 采购量为多少时,该水果基地在这次买卖中所获得利润 W 最大?最大利润是多 少?已知函数)2,0(),sin(2)(πϕωϕω<>+=x x f 的最小正周期为π ,且图象关于 x =3π对称. (1)求 ω和 ϕ的值;(2)将函数f(x)的图象上所有横坐标伸长到原来的4倍,再向右平移3π个单位,得到函数 g( x) 的图象,求 g( x) 的单调递增区间以及 1)(≥x g 的 x 取值范围. 22、(本小题满分 12 分)已知函数11log )(21--=x axx f 的图象关于原点对称,其中a 为常数.(1)求 a 的值;(2)当),1(+∞∈x 时, m x x f <-+)1(log )(21恒成立,求实数 m 的取值范围;(3)若关于 x 的方程)(log )(21k x x f +=在 [2,3] 上有解,求 k 的取值范围.。

2020学年高一数学上学期高一年级期末考试

2020学年高一数学上学期高一年级期末考试

2020学年上学期高一年级期末考试数学试卷一、选择题(每小题4 分,共48 分)1、在空间直角坐标系中,点P(1,2,3),过点P作平面xoy的垂线PQ,垂足为Q,则Q点的坐标为().A、(0,2,0)B、(0,2,3)C、(1,03)D、(1,2,0)2、下列函数关系中,可以看着是指数型函数x kay=()1ak且模型的是().R∈a>,≠A、竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)。

B、我国人口年自然增长率为1﹪,这样我国人口总数随年份的变化关系。

C、如果某人ts内骑车行进了1km,那么此人骑车的平均速度v与时间t的函数关系。

D、信件的邮资与其重量间的函数关系。

3、设集合},2,1,0,2⋃-=A则满足上述条件=⋂A-}1,0,1}2,0,2{{-{},1,0{的集合A的个数为().A .1B .2C .3D .44、根据表格中的数据,可以断定方程02=--x e x 的一个根所A 、(1-,0)B 、(0,1)C 、),(21D 、(2,3)5、圆122=+y x 上的点到直线02543=-+y x 的距离最小值为( )A 、1B 、4C 、5D 、66、有一个几何体的三视图位cm ),则该几何体的表面积( )A.24πcm 2,12πcm 3 πcm 3C.24πcm 2,36πcm37、原点在直线l 上的射影是P(-2,1),则直线l 的方程是 ( )。

2020高一上学期数学期末试卷及答案

2020高一上学期数学期末试卷及答案

祝同学们期末考出好成绩!欢迎同学们下载,希望能帮助到你们!2020高一上学期数学期末试卷及答案考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题1.sin (−690°)=( )A. 12B. −12C.√32 D. −√32 2.设集合A ={A |2A +1A −2≤0},A ={A |A <1},则A ∪A =( ) A. [−12,1) B. (−1,1)∪(1,2) C. (−1,2) D. [−12,2)3.已知向量a =(3,1),a =(A,−2),a =(0,2),若a ⊥(a −a ),则实数A 的值为( )A. 43B. 34C. −34D. −434.已知A =sin 153°,A =cos 62°,A =log 1213,则( ) A. A >A >A B. A >A >A C. A >A >A D. A >A >A5.在△AAA 中,点A 满足AA ⃗⃗⃗⃗⃗⃗ =3AA ⃗⃗⃗⃗⃗⃗ ,且AA ⃗⃗⃗⃗⃗⃗ =AAA ⃗⃗⃗⃗⃗⃗ +AAA ⃗⃗⃗⃗⃗⃗ ,则A −A =( )A. 12B. −12C. −13D. 136.已知函数A (A )=A sin (AA +A ),(A >0,A >0,0<A <A ),其部分图象如下图,则函数A (A )的解析式为( )A. A (A )=2sin (12A +A 4)B. A (A )=2sin (12A +3A 4) C. A (A )=2sin (14A +3A 4) D. A (A )=2sin (2A +A 4) 7.函数A (A )=(1−21+2A )tan A 的图象( )A. 关于A 轴对称B. 关于A 轴对称C. 关于A =A 轴对称D. 关于原点轴对称8.为了得到函数A =sin (2A −A 6)的图象,可以将函数A =cos 2A 的图象( )A. 向右平移A 6个单位长度B. 向右平移A 3个单位长度C. 向左平移A 6个单位长度D. 向左平移A 3个单位长度9.不等式|A −3|−|A +1|≤A 2−3A 对任意实数A 恒成立,则实数A 的取值范围是( )A. (−∞,1]∪[4,+∞)B. [−1,4]C. [−4,1]D. (−∞,−4]∪[1,+∞)10.将函数A=A−3A2的图象向左平移1个单位,再向下平移1个单位得到函数A(A),则函数A(A)的图象与函数A=2sin AA(−2≤A≤4)的图象的所有交点的横坐标之和等于()A. 2B. 4C. 6D. 811.设函数A(A)=A A−|ln(−A)|的两个零点为A1,A2,则()A. A1A2<0B. A1A2=1C. A1A2>1D. 0<A1A2<112.已知定义在A上的偶函数A(A)满足A(A+1)=−A(A),且当A∈[−1,0]时,A(A)=4A+38,函数A(A)=log12|A+1|−18,则关于A的不等式A(A)<A(A)的解集为()A. (−2,−1)∪(−1,0)B. (−74,−1)∪(−1,−14)C. (−54,−1)∪(−1,−34) D. (−32,−1)∪(−1,−12)第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.8−13+log3tan210°=__________.14.已知向量|a|=1,|a|=2,a⊥(a+a),则向量a与a的夹角为__________.15.某教室一天的温度(单位:℃)随时间(单位:ℎ)变化近似地满足函数关系:A(A)=20−2sin(A24A−A6),A∈[0,24],则该天教室的最大温差为__________℃.16.若函数A(A)={3A−A,A<1A2−3AA+2A2,A≥1恰有两个零点,则实数A的取值范围为__________.三、解答题17.已知0<A<A,sin(A−A)+cos(A+A)=A. (1)当A=1时,求A;(2)当A=√55时,求tan A的值.18.已知函数A(A)=√2−A3+A +ln(3A−13)的定义域为A.(1)求A;(2)当A ∈A 时,求A (A )=4A +12−2A +2+1的值域.19.已知函数A (A )=2sin (AA +A ),(A >0,|A |<A 2)的最小正周期为A ,且图象关于A =A 3对称.(1)求A 和A 的值;(2)将函数A (A )的图象上所有横坐标伸长到原来的4倍,再向右平移A 3个单位得到函数A (A )的图象,求A (A )的单调递增区间以及A (A )≥1的A 取值范围.20.已知A (A )=A |A −A |(A ∈A ).(1)若A =1,解不等式A (A )<2A ;(2)若对任意的A ∈[1,4],都有A (A )<4+A 成立,求实数A 的取值范围.21.已知函数A (A )为A 上的偶函数,A (A )为A 上的奇函数,且A (A )+A (A )=log 4(4A +1).(1)求A (A ),A (A )的解析式;(2)若函数ℎ(A )=A (A )−12log 2(A ⋅2A +2√2A )(A >0)在A 上只有一个零点,求实数A 的取值范围.22.已知A (A )=AA 2−2(A +1)A +3(A ∈A ).(1)若函数A (A )在[32,3]单调递减,求实数A 的取值范围;(2)令ℎ(A )=A (A )A −1,若存在A 1,A 2∈[32,3],使得|A (A 1)−A (A 2)|≥A +12成立,求实数A 的取值范围.参考答案1.A【解析】sin (−690°)=sin (720°−690°)=sin 30°=12,故选A.。

天津市2020年高一上学期期末考试数学试题

天津市2020年高一上学期期末考试数学试题

第一学期期末考试 高一年级数学学科试卷本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分共100分,考试用时100分钟.第I 卷(选择题 共40分)一.选择题:本大题共8小题,每小题5分,共40分,在每小题的4个选项中,只有一项是符合题目要求的,将答案涂在答题卡上.......... 1.105sin 15cos 75cos 15sin +等于A. 0B. 1C.23 D. 212. 把函数x y cos =的图象上的所有点的横坐标缩小到原来的一半(纵坐标不变),然后把图象向左平移4π个单位,则所得图象对应的函数解析式为 A. )421cos(πx y += B. )42cos(πx y +=C. )821cos(πx y +=D. )22cos(πx y +=3. 7.03=a ,37.0=b ,7.0log 3=c ,则c b a ,,的大小关系是A. b a c <<B. a c b <<C. a b c <<D. c a b <<4.设R ϕ∈,则“=0ϕ”是“()=cos(+)f x x ϕ()x R ∈为偶函数”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞单调递增. 若实数a 满足212(log )(log )2(1)f a f f a ≤+, 则a 的取值范围是A .[1,2]B .10,2⎛⎤ ⎥⎝⎦C .(0,2]D .1,22⎡⎤⎢⎥⎣⎦6. 在ABC ∆中,若tan tan tan A B A B ++=⋅,且sin cos B B ⋅=, 则ABC ∆的形状为A. 直角三角形B. 等边三角形C. 等边三角形或直角三角形D. 等腰直角三角形7.若02πα<<,02πβ<<-,1cos 43πα⎛⎫+= ⎪⎝⎭,cos 42πβ⎛⎫-=⎪⎝⎭,则cos 2βα⎛⎫+= ⎪⎝⎭AB. CD.- 8.已知函数22()4sin sin ()2sin 24x f x x x ωπωω=⋅+-()0ω>在区间2,23ππ⎡⎤-⎢⎥⎣⎦上是增函数,且在区间[]0,π上恰好取得一次最大值,则ω的取值范围是A .(]0,1B .30,4⎛⎤ ⎥⎝⎦ C .13,34⎡⎤⎢⎥⎣⎦ D .13,24⎡⎤⎢⎥⎣⎦第II 卷(非选择题 共60分)二.填空题:本大题共7小题,每小题4分,共28分,将答案填写在答题卡上........... 9. 求值:=-+-ππππ313cos 4tan 713cos )623sin( . 10.化简:7sin(2)cos()cos()cos()225cos()sin(3)sin()sin()2πππαπαααππαπαπαα+--------++= . 11.函数21()21x x f x -=+的值域为 .12.已知奇函数()x f 的定义域为R ,且对任意实数x 满足()()2f x f x =-,当()1,0∈x 时,()21xf x =+,则121log 15f ⎛⎫⎪⎝⎭=___________. 13.已知()()x x x f a a log log 2+-=对任意⎪⎭⎫ ⎝⎛∈21,0x 都有意义,则实数a 的取值范围是 .14.已知函数()sin()(0,0,)2f x A x A πωϕωϕ=+>><的图象与y 轴的交点为()0,1,它在y 轴右侧的第一个最高点和第一个最低点的坐标分别为()0,2x 和()02,2x π+-.则ϕ= ,0x = .15. 给出下列命题:(1)函数)32sin(4)(πx x f +=的图象关于点)0,6(π-对称; (2)函数)32sin(3)(πx x g --=在区间)125,12(ππ-内是增函数;(3)函数)2732sin()(πx x h -=是偶函数;(4)存在实数x ,使3cos sin πx x =+;(5)如果函数()3cos(2)f x x ϕ=+的图象关于点403π⎛⎫⎪⎝⎭,中心对称,那么ϕ的最小值为3π.其中正确的命题的序号是 .三.解答题:本大题共3小题,共32分,将解题过程及答案填写在答题卡上................ 16. (本小题满分10分)设函数()cos(2)22,(,)3f x x x m x R m R π=+++∈∈,(1)求函数()f x 的最小正周期及单调增区间; (2)当04x π≤≤时,()f x 的最小值为0,求实数m 的值.17.(本小题满分10分)已知]2,0[,cos sin sin )(2πx x x x x f ∈+= (1)求)(x f 的值域; (2)若65)(=αf ,求α2sin 的值。

2020年高一上学期数学期末考试试题及答案

2020年高一上学期数学期末考试试题及答案

精选完整教案文档,希望能帮助到大家,祝心想事成,万事如意!完整教案@_@2020年高一上学期数学期末考试试题及答案考试范围:xxx;考试时间:100分钟;命题人:xxx题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明一、选择题1.sin (−690°)=( ) A. 12 B. −12 C. √32D. −√322.设集合A ={A |2A +1A −2≤0},A ={A |A <1},则A ∪A =( )A. [−12,1)B. (−1,1)∪(1,2)C. (−1,2)D. [−12,2)3.已知向量a =(3,1),a =(A,−2),a =(0,2),若a ⊥(a −a ),则实数A 的值为( ) A. 43 B. 34 C. −34 D. −434.已知A =sin 153°,A =cos 62°,A =log 1213,则( )A. A >A >AB. A >A >AC. A >A >AD. A >A >A5.在△AAA 中,点A 满足AA ⃗⃗⃗⃗⃗⃗ =3AA ⃗⃗⃗⃗⃗⃗ ,且AA ⃗⃗⃗⃗⃗⃗ =AAA ⃗⃗⃗⃗⃗⃗ +AAA ⃗⃗⃗⃗⃗⃗ ,则A −A =( ) A. 12B. −12C. −13D. 136.已知函数A (A )=A sin (AA +A ),(A >0,A >0,0<A <A ),其部分图象如下图,则函数A (A )的解析式为( )A. A (A )=2sin (12A +A 4)B. A (A )=2sin (12A +3A4) C. A (A )=2sin (14A +3A4) D. A (A )=2sin (2A+A4)7.函数A (A )=(1−21+2A)tan A 的图象( )A. 关于A 轴对称B. 关于A 轴对称C. 关于A =A 轴对称D. 关于原点轴对称 8.为了得到函数A =sin (2A −A 6)的图象,可以将函数A =cos 2A 的图象( ) A. 向右平移A6个单位长度 B. 向右平移A3个单位长度 C. 向左平移A 6个单位长度 D. 向左平移A 3个单位长度9.不等式|A −3|−|A +1|≤A 2−3A 对任意实数A 恒成立,则实数A 的取值范围是( ) A. (−∞,1]∪[4,+∞) B. [−1,4] C. [−4,1] D. (−∞,−4]∪[1,+∞) 10.将函数A =A −3A −2的图象向左平移1个单位,再向下平移1个单位得到函数A (A ),则函数A (A )的图象与函数A =2sin AA (−2≤A ≤4)的图象的所有交点的横坐标之和等于( )A. 2B. 4C. 6D. 811.设函数A (A )=A A−|ln (−A )|的两个零点为A 1,A 2,则( ) A. A 1A 2<0 B. A 1A 2=1 C. A 1A 2>1 D. 0<A 1A 2<112.已知定义在A 上的偶函数A (A )满足A (A +1)=−A (A ),且当A ∈[−1,0]时,A (A )=4A +38,函数A (A )=log 12|A +1|−18,则关于A 的不等式A (A )<A (A )的解集为( )A. (−2,−1)∪(−1,0)B. (−74,−1)∪(−1,−14) C. (−54,−1)∪(−1,−34) D. (−32,−1)∪(−1,−12)第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.8−13+log3tan210°=__________.14.已知向量|a|=1,|a|=2,a⊥(a+a),则向量a与a的夹角为__________.15.某教室一天的温度(单位:℃)随时间(单位:ℎ)变化近似地满足函数关系:A(A)=20−2sin(A24A−A6),A∈[0,24],则该天教室的最大温差为__________℃.16.若函数A(A)={3A−A,A<1A2−3AA+2A2,A≥1恰有两个零点,则实数A的取值范围为__________.三、解答题17.已知0<A<A,sin(A−A)+cos(A+A)=A. (1)当A=1时,求A;(2)当A=√55时,求tan A的值.18.已知函数A(A)=√2−A3+A +ln(3A−13)的定义域为A.(1)求A;(2)当A∈A时,求A(A)=4A+12−2A+2+1的值域.19.已知函数A(A)=2sin(AA+A),(A>0,|A|<A2)的最小正周期为A,且图象关于A=A3(1)求A 和A 的值;(2)将函数A (A )的图象上所有横坐标伸长到原来的4倍,再向右平移A3个单位得到函数A (A )的图象,求A (A )的单调递增区间以及A (A )≥1的A 取值范围. 20.已知A (A )=A |A −A |(A ∈A ). (1)若A =1,解不等式A (A )<2A ;(2)若对任意的A ∈[1,4],都有A (A )<4+A 成立,求实数A 的取值范围.21.已知函数A (A )为A 上的偶函数,A (A )为A 上的奇函数,且A (A )+A (A )=log 4(4A+1). (1)求A (A ),A (A )的解析式;(2)若函数ℎ(A )=A (A )−12log 2(A ⋅2A+2√2A )(A >0)在A 上只有一个零点,求实数A 的取值范围.22.已知A (A )=AA 2−2(A +1)A +3(A ∈A ).(1)若函数A (A )在[32,3]单调递减,求实数A 的取值范围; (2)令ℎ(A )=A (A )A −1,若存在A 1,A 2∈[32,3],使得|A (A 1)−A (A 2)|≥A +12成立,求实数A 的取值范围.参考答案1.A 【解析】sin (−690°)=sin (720°−690°)=sin 30°=12,故选A. 2.C 【解析】因为A ={A |−12≤A <2},A ={A |−1<A <1},所以A ∪A ={A |−1<A <2},故选C.【解析】因为a −a =(A ,−4),a ⊥(a −a ),所以3A −4=0,故A =43,故选A. 4.D 【解析】因A =sin 27°,A =sin 28°⇒A <A <1,A =lg 3lg 2>1,故选D. 5.B 【解析】因AA ⃗⃗⃗⃗⃗⃗ =3AA ⃗⃗⃗⃗⃗⃗ ,故AA ⃗⃗⃗⃗⃗⃗ −AA ⃗⃗⃗⃗⃗⃗ =3(AA ⃗⃗⃗⃗⃗⃗ −AA ⃗⃗⃗⃗⃗⃗ ),则AA ⃗⃗⃗⃗⃗⃗ =14AA ⃗⃗⃗⃗⃗⃗ +34AA ⃗⃗⃗⃗⃗⃗ ,又AA ⃗⃗⃗⃗⃗⃗ =AAA ⃗⃗⃗⃗⃗⃗ +AAA ⃗⃗⃗⃗⃗⃗ ,所以A =14,A =34,即A −A =−24=−12,故选B. 6.B 【解析】结合图象可以看出A =2,T =4π,故ω=12,又sin (A 4+A )=0,则φ=3A4,故选B.7.B 【解析】 因A (−A )=(1−21+2−A)tan (−A )=−(1−2⋅2A 1+2A)tan A =−(1−2A 1+2A)tan A =A (A ),故A =A (A )是偶函数,故选B. 8.B 【解析】因A =cos 2A =sin (2A +A2)=sin 2(A +A4),故向右平移A3个单位长度即可得到函数A =sin (2A −A6)的图象,故选B. 9.A【解析】因|A −3|−|A +1|≤4,故A 2−3A ≥4,解之得A ≤−1或A ≥4,故选A. 10.D 【解析】因A =1−1A −2,故左平移1个单位,再向下平移1个单位得到函数A (A )=−1A −1,由于该函数与函数A =2sin AA 的图像都关于点(1,0)成中心对称,则A 1+A 2=2,又因为两个函数的图像有四个交点,所以其交点的横坐标之和为2×4=8,故选D. 11.D 【解析】由题设可得A A=|ln (−A )|,画出两函数A =A A,A =|ln (−A )|的图象如图,结合图象可设A 1<−1,−1<A 2<0,因A A 1<A A 2,故A A 1−A A2=ln (−A 1)+ln (−A 2)=ln (A 1A 2)<0,则0<A 1A 2<1,故选D.12.D 【解析】解析:因A (A +2)=−A (A +1)=A (A ),故函数A (A )是周期为2的偶函数,如图,当A =−1 2,A=−32时,两函数的图像相交,故当A∈(−32,−1)∪(−1,−12)时,A(A)<A(A),应选答案D。

2020-2020学年浙江省杭州市高一上期末数学试卷(含答案解析)

2020-2020学年浙江省杭州市高一上期末数学试卷(含答案解析)

2020-2020学年浙江省杭州市高一(上)期末数学试卷一、选择题(本大题有14小题,每小题3分,共42分.每小题的四个选项中,只有一项是符合要求的,请将答案填写在答案卷相应的答题栏内)1.(3分)sin120°的值为()A.B.C.D.﹣2.(3分)已知sinα=,α为第二象限角,则cosα的值为()A.B.﹣ C.D.﹣3.(3分)已知集合A={x∈R|x2﹣4x<0},B={x∈R|2x<8},则A∩B=()A.(0,3) B.(3,4) C.(0,4) D.(﹣∞,3)4.(3分)函数f(x)=log3x+x﹣3的零点所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,+∞)5.(3分)函数y=的定义域是()A.[1,+∞)B.(1,+∞)C.(0,1]D.(,1]6.(3分)一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高,则自服药那一刻起,心率关于时间的一个可能的图象是()A.B.C.D.7.(3分)已知函数f(x)=,则f(5)的值为()A.B.1 C.2 D.38.(3分)已知函数y=f(2x)+2x是偶函数,且f(2)=1,则f(﹣2)=()A.5 B.4 C.3 D.29.(3分)函数f(x)=|sinx+cosx|+|sinx﹣cosx|是()A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数10.(3分)记a=sin1,b=sin2,c=sin3,则()A.c<b<a B.c<a<b C.a<c<b D.a<b<c11.(3分)要得到函数y=cos(2x﹣)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位12.(3分)已知函数在(﹣∞,+∞)上是增函数,则实数a的取值范围是()A.1<a<3 B.1<a≤3 C.<a<5 D.<a≤513.(3分)定义min{a,b}=,若函数f(x)=min{x2﹣3x+3,﹣|x﹣3|+3},且f(x)在区间[m,n]上的值域为[,],则区间[m,n]长度的最大值为()A.1 B.C.D.14.(3分)设函数f(x)=|﹣ax|,若对任意的正实数a,总存在x0∈[1,4],使得f(x0)≥m,则实数m的取值范围为()A.(﹣∞,0]B.(﹣∞,1]C.(﹣∞,2]D.(﹣∞,3]二、填空题(本大题有6小题,15~17题每空3分,18~20题每空4分,共30分,把答案填在答题卷的相应位置)15.(3分)设集合U={1,2,3,4,5,6},M={2,3,4},N={4,5},则M∪N=,∁U M=.16.(3分)()+()=;log412﹣log43=.17.(3分)函数f(x)=tan(2x﹣)的最小正周期是;不等式f(x)>1的解集是.18.(4分)已知偶函数f(x)和奇函数g(x)的定义域都是(﹣4,4),且在(﹣4,0]上的图象如图所示,则关于x的不等式f(x)•g(x)<0的解集是.19.(4分)已知不等式(ax+2)•ln(x+a)≤0对x∈(﹣a,+∞)恒成立,则a 的值为.20.(4分)已知函数f(x)=x+,g(x)=f2(x)﹣af(x)+2a有四个不同的零点x1,x2,x3,x4,则[2﹣f(x1)]•[2﹣f(x2)]•[2﹣f(x3)]•[2﹣f(x4)]的值为.三、解答题:(本大题有4小题,共48分.解答应写出文字说明,证明过程或演算步骤)21.(10分)已知幂函数f(x)=xα(α∈R),且.(1)求函数f(x)的解析式;(2)证明函数f(x)在定义域上是增函数.22.(12分)已知函数f(x)=2sin(ωx+φ)(﹣π<φ<0,ω>0)的图象关于直线对称,且两相邻对称中心之间的距离为.(1)求函数y=f(x)的单调递增区间;(2)若关于x的方程f(x)+log2k=0在区间上总有实数解,求实数k 的取值范围.23.(12分)一辆汽车在某段路程中的行驶速率与时间的关系如图所示.(1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车在行驶该段路程前里程表的读数是8018km,试求汽车在行驶这段路程时里程表读数s(km)与时间t (h)的函数解析式,并作出相应的图象.24.(13分)已知函数f(x)=(x﹣1)|x﹣a|﹣x﹣2a(x∈R).(1)若a=﹣1,求方程f(x)=1的解集;(2)若,试判断函数y=f(x)在R上的零点个数,并求此时y=f(x)所有零点之和的取值范围.2020-2020学年浙江省杭州市高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题有14小题,每小题3分,共42分.每小题的四个选项中,只有一项是符合要求的,请将答案填写在答案卷相应的答题栏内)1.(3分)sin120°的值为()A.B.C.D.﹣【解答】解:因为sin120°=sin(90°+30°)=cos30°=.故选C.2.(3分)已知sinα=,α为第二象限角,则cosα的值为()A.B.﹣ C.D.﹣【解答】解:∵sinα=,且α为第二象限的角,∴cosα=﹣=﹣.故选:D.3.(3分)已知集合A={x∈R|x2﹣4x<0},B={x∈R|2x<8},则A∩B=()A.(0,3) B.(3,4) C.(0,4) D.(﹣∞,3)【解答】解:∵集合A={x∈R|x2﹣4x<0}={x|0<x<4},B={x∈R|2x<8}={x|x<3},∴A∩B={x|0<x<3}=(0,3).故选:A.4.(3分)函数f(x)=log3x+x﹣3的零点所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,+∞)【解答】解:∵函数f(x)=log3x+x﹣3,定义域为:x>0;函数是连续函数,∴f(2)=log32+2﹣3<0,f(3)=log33+3﹣3=1>0,∴f(2)•f(3)<0,根据函数的零点的判定定理,故选:C.5.(3分)函数y=的定义域是()A.[1,+∞)B.(1,+∞)C.(0,1]D.(,1]【解答】解:要使函数有意义,则log0.5(3x﹣2)≥0,即0<3x﹣2≤1,得<x≤1,即函数的定义域为(,1],故选:D6.(3分)一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高,则自服药那一刻起,心率关于时间的一个可能的图象是()A.B.C.D.【解答】解:患者服用某种药物后心率立刻明显减慢,则函数的图象应呈下降趋势,之后随着药力的减退,心率再次慢慢升高,则函数的图象应一直呈上升趋势,但上升部分的图象比下降的图象要缓,排除AB,根据正常人的心率约为65,可排除D,只有C符合,故选:C7.(3分)已知函数f(x)=,则f(5)的值为()A.B.1 C.2 D.3【解答】解:∵函数f(x)=,∴f(5)=f(3)=f(1)=2.故选:C.8.(3分)已知函数y=f(2x)+2x是偶函数,且f(2)=1,则f(﹣2)=()A.5 B.4 C.3 D.2【解答】解:∵函数y=f(2x)+2x是偶函数,∴设g(x)=f(2x)+2x,则g(﹣x)=f(﹣2x)﹣2x=g(x)=f(2x)+2x,即f(﹣2x)=f(2x)+4x,当x=1时,f(﹣2)=f(2)+4=1+4=5,故选:A9.(3分)函数f(x)=|sinx+cosx|+|sinx﹣cosx|是()A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数【解答】解:f(﹣x)=|sin(﹣x)+cos(﹣x)|+|sin(﹣x)﹣cos(﹣x)|=|﹣sinx+cosx|+|﹣sinx﹣cosx|=|six+cosx|+|sinx﹣cosx|=f(x),则函数f(x)是偶函数,∵f(x+)=|sin(x+)+cos(x+)|+|sin(x+)﹣cos(x+)|=|cosx﹣sinx|+|cosx+sinx|=|sinx+cosx|+|sinx﹣cosx|=f(x),∴函数f(x)的周期是,故选:D10.(3分)记a=sin1,b=sin2,c=sin3,则()A.c<b<a B.c<a<b C.a<c<b D.a<b<c【解答】解:如图所示,∵>π﹣2>1>0,∴sin2=sin(π﹣2)>sin1,∵,∴sin1=sin(π﹣1)>sin3.综上可得:sin2>sin1>sin3.故选B.11.(3分)要得到函数y=cos(2x﹣)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【解答】解:∵y=cos(2x﹣)=cos(﹣2x)=sin(2x+)=sin[2(x+)],∴将函数y=sin2x的图象向左平移个单位即可得到函数y=cos(2x﹣)的图象.故选:B.12.(3分)已知函数在(﹣∞,+∞)上是增函数,则实数a的取值范围是()A.1<a<3 B.1<a≤3 C.<a<5 D.<a≤5【解答】解:函数在(﹣∞,+∞)上是增函数,可得:,解得:1<a≤3.故选:B.13.(3分)定义min{a,b}=,若函数f(x)=min{x2﹣3x+3,﹣|x﹣3|+3},且f(x)在区间[m,n]上的值域为[,],则区间[m,n]长度的最大值为()A.1 B.C.D.【解答】解:根据定义作出函数f(x)的图象如图:(蓝色曲线),其中A(1,1),B(3,3),即f(x)=,当f(x)=时,当x≥3或x≤1时,由3﹣|x﹣3|=,得|x﹣3|=,即x C=或x G=,当f(x)=时,当1<x<3时,由x2﹣3x+3=,得x E=,由图象知若f(x)在区间[m,n]上的值域为[,],则区间[m,n]长度的最大值为x E﹣x C=﹣=,故选:B.14.(3分)设函数f(x)=|﹣ax|,若对任意的正实数a,总存在x0∈[1,4],使得f(x0)≥m,则实数m的取值范围为()A.(﹣∞,0]B.(﹣∞,1]C.(﹣∞,2]D.(﹣∞,3]【解答】解:对任意的正实数a,总存在x0∈[1,4],使得f(x0)≥m⇔m≤f (x)max,x∈[1,4].令u(x)=﹣ax,∵a>0,∴函数u(x)在x∈[1,4]单调递减,∴u(x)max=u(1)=4﹣a,u(x)min=1﹣4a.①a≥4时,0≥4﹣a>1﹣4a,则f(x)max=4a﹣1≥15.②4>a>1时,4﹣a>0>1﹣4a,则f(x)max={4﹣a,4a﹣1}max>3.③a≤1时,4﹣a>1﹣4a≥0,则f(x)max=4﹣a≥3.综上①②③可得:m≤3.∴实数m的取值范围为(﹣∞,3].故选:D.二、填空题(本大题有6小题,15~17题每空3分,18~20题每空4分,共30分,把答案填在答题卷的相应位置)15.(3分)设集合U={1,2,3,4,5,6},M={2,3,4},N={4,5},则M∪N={2,3,4,5} ,∁U M={1,5,6} .【解答】解:集合U={1,2,3,4,5,6},M={2,3,4},N={4,5},则M∪N={2,3,4,5};∁U M={1,5,6},故答案为:{2,3,4,5},{1,5,6}16.(3分)()+()=3;log412﹣log43=1.【解答】解:()+()==;log412﹣log43=.故答案为:3,1.17.(3分)函数f(x)=tan(2x﹣)的最小正周期是;不等式f(x)>1的解集是.【解答】解:由正切函数的周期公式得函数的周期T=;由f(x)>1得tan(2x﹣)>1,得+kπ<2x﹣<+kπ,得+<x<+,k∈Z,即不等式的解集为;故答案为:,;18.(4分)已知偶函数f(x)和奇函数g(x)的定义域都是(﹣4,4),且在(﹣4,0]上的图象如图所示,则关于x的不等式f(x)•g(x)<0的解集是(﹣4,﹣2)∪(0,2).【解答】解:设h(x)=f(x)g(x),则h(﹣x)=f(﹣x)g(﹣x)=﹣f(x)g (x)=﹣h(x),∴h(x)是奇函数,由图象可知:当﹣4<x<﹣2时,f(x)>0,g(x)<0,即h(x)>0,当0<x<2时,f(x)<0,g(x)>0,即h(x)<0,∴h(x)<0的解为(﹣4,﹣2)∪(0,2).故答案为(﹣4,﹣2)∪(0,2)19.(4分)已知不等式(ax+2)•ln(x+a)≤0对x∈(﹣a,+∞)恒成立,则a 的值为﹣1.【解答】解:∵x∈(﹣a,+∞),∴当﹣a<x<1﹣a时,y=ln(x+a)<0,当x>1﹣a时,y=ln(x+a)>0,又(ax+2)•ln(x+a)≤0对x∈(﹣a,+∞)恒成立,①若a>0,y=ax+2与y=ln(x+a)均为定义域上的增函数,在x∈(﹣a,+∞)上,可均大于0,不满足题意;②若a=0,则2lnx)≤0对x∈(0,+∞)不恒成立,不满足题意;∴a<0.作图如下:由图可知,当且仅当方程为y=ln(x+a)的曲线与方程为y=ax+2的直线相交于点A,即满足时,(ax+2)•ln(x+a)≤0对x∈(﹣a,+∞)恒成立,解方程得,解得a=﹣1.故答案为:﹣1.20.(4分)已知函数f(x)=x+,g(x)=f2(x)﹣af(x)+2a有四个不同的零点x1,x2,x3,x4,则[2﹣f(x1)]•[2﹣f(x2)]•[2﹣f(x3)]•[2﹣f(x4)]的值为16.【解答】解:∵令t=f(x),则y=g(x)=f2(x)﹣af(x)+2a=t2﹣at+2a,∵g(x)=f2(x)﹣af(x)+2a有四个不同的零点x1,x2,x3,x4,故t2﹣at+2a=0有两个根t1,t2,且t1+t2=a,t1t2=2a,且f(x1),f(x2),f(x3),f(x4)恰两两相等,为t2﹣at+2a=0的两根,不妨令f(x1)=f(x2)=t1,f(x3)=f(x4)=t2,则[2﹣f(x1)]•[2﹣f(x2)]•[2﹣f(x3)]•[2﹣f(x4)]=(2﹣t1)•(2﹣t1)•(2﹣t2)•(2﹣t2)=[(2﹣t1)•(2﹣t2)]2=[4﹣2(t1+t2)+t1t2]2=16.故答案为:16三、解答题:(本大题有4小题,共48分.解答应写出文字说明,证明过程或演算步骤)21.(10分)已知幂函数f(x)=xα(α∈R),且.(1)求函数f(x)的解析式;(2)证明函数f(x)在定义域上是增函数.【解答】(1)解:由得,,所以;(2)证明:定义域是[0,+∞),设任意的x2>x1≥0,则,∵,∴f(x2)>f(x1),函数f(x)在定义域上是增函数.22.(12分)已知函数f(x)=2sin(ωx+φ)(﹣π<φ<0,ω>0)的图象关于直线对称,且两相邻对称中心之间的距离为.(1)求函数y=f(x)的单调递增区间;(2)若关于x的方程f(x)+log2k=0在区间上总有实数解,求实数k 的取值范围.【解答】解:(1)周期T=π,所以ω=2,当时,,(2分)得,又﹣π<φ<0,所以取k=﹣1,得(2分)所以,(1分)由,得,k∈Z所以函数y=f(x)的单调递增区间是得(k∈Z),(2分)(2)当时,,所以,(2分)所以log2k=﹣f(x)∈[﹣1,2],得.(3分)23.(12分)一辆汽车在某段路程中的行驶速率与时间的关系如图所示.(1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车在行驶该段路程前里程表的读数是8018km,试求汽车在行驶这段路程时里程表读数s(km)与时间t (h)的函数解析式,并作出相应的图象.【解答】解:(1)阴影部分的面积为:50+70+90+60=270,表示汽车在4小时内行驶的路程为270 km.(4分)(2)∵这辆汽车在行驶该段路程前里程表的读数是8018km,汽车在行驶这段路程时里程表读数s(km)与时间t (h)的函数解析式为:(4分)图象如下图:(4分)24.(13分)已知函数f(x)=(x﹣1)|x﹣a|﹣x﹣2a(x∈R).(1)若a=﹣1,求方程f(x)=1的解集;(2)若,试判断函数y=f(x)在R上的零点个数,并求此时y=f(x)所有零点之和的取值范围.【解答】解:(1)方法一:当a=﹣1时,(2 分)由f(x)=1得或(2 分)解得x=0,1,﹣2,即解集为{0,1,﹣2}.(2分)方法二:当a=﹣1时,由f(x)=1得:(x﹣1)|x+1|﹣(x﹣1)=0(x﹣1)(|x+1|﹣1)=0(3分)∴得x=1或|x+1|=1∴x=1或x=0或x=﹣2即解集为{0,1,﹣2}.(3分)(2)当x≥a时,令x2﹣(a+2)x﹣a=0,∵,∴△=a2+8a+4=(a+4)2﹣12>0得,(2分)且先判断2﹣a,与大小:∵,即a<x1<x2,故当x≥a时,f(x)存在两个零点.(2分)当x<a时,令﹣x2+ax﹣3a=0,即x2﹣ax+3a=0得∵,∴△=a2﹣12a=(a﹣6)2﹣36>0得,同上可判断x3<a<x4,故x<a时,f(x)存在一个零点.(2分)综上可知当时,f(x)存在三个不同零点.且设,易知g(a)在上单调递增,故g(a)∈(0,2)∴x1+x2+x3∈(0,2).(2分)。

2020-2020学年深圳市高一(上)期末数学试卷(含答案解析)

2020-2020学年深圳市高一(上)期末数学试卷(含答案解析)

2020-2020学年广东省深圳市高一(上)期末数学试卷一、选择题(本大题共12小题,每小题5分,共60分).1.(5分)函数的零点为1,则实数a的值为()A.﹣2 B.C.D.22.(5分)下列方程表示的直线倾斜角为135°的是()A.y=x﹣1 B.y﹣1=(x+2)C.+=1 D.x+2y=03.(5分)设a、b是两条不同的直线,α、β是两个不同的平面,则下列四个命题①若a⊥b,a⊥α,则b∥α②若a∥α,α⊥β,则a⊥β③a⊥β,α⊥β,则a∥α④若a⊥b,a⊥α,b⊥β,则α⊥β其中正确的命题的个数是()A.0个 B.1个 C.2个 D.3个4.(5分)以下四个命题中,正确命题是()A.不共面的四点中,其中任意三点不共线B.若点A,B,C,D共面,点A,B,C,E共面,则A,B,C,D,E共面C.若直线a,b共面,直线a,c共面,则直线b,c共面D.依次首尾相接的四条线段必共面5.(5分)如图Rt△O′A′B′是一平面图形的直观图,斜边O′B′=2,则这个平面图形的面积是()A.B.1 C.D.6.(5分)下列函数f(x)中,满足“对任意x1,x2∈(﹣∞,0),当x1<x2时,都有f(x1)<f(x2)”的函数是()A.f(x)=﹣x+1 B.f(x)=x2﹣1 C.f(x)=2x D.f(x)=ln(﹣x)7.(5分)已知三棱锥的四个面中,最多共有()个直角三角形?A.4 B.3 C.2 D.18.(5分)一个体积为8cm3的正方体的顶点都在球面上,则球的表面积是()A.8πcm2B.12πcm2C.16πcm2D.20πcm29.(5分)2001年至2013年北京市电影放映场次的情况如图所示.下列函数模型中,最不合适近似描述这13年间电影放映场次逐年变化规律的是()A.y=ax2+bx+c B.y=ae x+b C.y=a ax+b D.y=alnx+b10.(5分)某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为()A.4 B.2 C.D.811.(5分)函数f(x)=ln,则f(x)是()A.奇函数,且在(0,+∞)上单调递减B.奇函数,且在(0,+∞)上单凋递增C.偶函数,且在(0,+∞)上单调递减D.偶函数,且在(0,+∞)上单凋递增12.(5分)正方体ABCD﹣A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线()A.有无数条B.有2条C.有1条D.不存在二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)在正方体ABCD﹣A1B1C1D1中,若AD的中点为M,DD1的中点为N,则异面直线MN与BD所成角的大小是.14.(5分)已知A(3,2),B(﹣4,1),C(0,﹣1),点Q线段AB上的点,则直线CQ的斜率取值范围是.15.(5分)边长为2的两个等边△ABD,△CBD所在的平面互相垂直,则四面体ABCD的体积是.16.(5分)在函数①y=2x;②y=2﹣2x;③f(x)=x+x﹣1;④f(x)=x﹣x﹣3中,存在零点且为奇函数的序号是.三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.17.(10分)已知A(5,﹣1),B(m,m),C(2,3)三点.(1)若AB⊥BC,求m的值;(2)求线段AC的中垂线方程.18.(12分)已知集合A={a|一次函数y=(4a﹣1)x+b在R上是增函数},集合B=.(1)求集合A,B;(2)设集合,求函数f(x)=x﹣在A∩C上的值域.19.(12分)已知四棱锥P﹣ABCD的正视图1是一个底边长为4、腰长为3的等腰三角形,图2、图53分别是四棱锥P﹣ABCD的侧视图和俯视图.(1)求证:AD⊥PC;(2)求四棱锥P﹣ABCD的侧面积.20.(12分)如图,已知四棱锥P﹣ABCD,侧面PAD是正三角形,底面ABCD是菱形,∠BAD=60°,设平面PAD∩平面PBC=l.(Ⅰ)求证:l∥平面ABCD;(Ⅱ)求证:PB⊥BC.21.(12分)如图,AB是圆O的直径,PA垂直圆所在的平面,C是圆上的点.(I)求证:平面PAC⊥平面PBC;(II)若AC=1,PA=1,求圆心O到平面PBC的距离.22.(12分)已知函数f(x)=lg(a>0)为奇函数,函数g(x)=+b(b ∈R).(Ⅰ)求a;(Ⅱ)若b>1,讨论方徎g(x)=ln|x|实数根的个数;(Ⅲ)当x∈[,]时,关于x的不等式f(1﹣x)≤lgg(x)有解,求b的取值范围.2020-2020学年广东省深圳市高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分).1.(5分)函数的零点为1,则实数a的值为()A.﹣2 B.C.D.2【解答】解:∵函数的零点为1,即解得a=﹣,故选B.2.(5分)下列方程表示的直线倾斜角为135°的是()A.y=x﹣1 B.y﹣1=(x+2)C.+=1 D.x+2y=0【解答】解:根据题意,若直线倾斜角为135°,则其斜率k=tan135°=﹣1,依次分析选项:对于A、其斜率k=1,不合题意,对于B、其斜率k=,不合题意,对于C、将+=1变形可得y=﹣x+5,其斜率k=﹣1,符合题意,对于D、将x+2y=0变形可得y=﹣x,其斜率k=﹣,不合题意,故选:C.3.(5分)设a、b是两条不同的直线,α、β是两个不同的平面,则下列四个命题①若a⊥b,a⊥α,则b∥α②若a∥α,α⊥β,则a⊥β③a⊥β,α⊥β,则a∥α④若a⊥b,a⊥α,b⊥β,则α⊥β其中正确的命题的个数是()A.0个 B.1个 C.2个 D.3个【解答】解:①可能b∈α,命题错误②若α⊥β,只有a与α,β的交线垂直,才能够推出a⊥β,命题错误③a可能在平面α内,命题错误④命题正确.故选B.4.(5分)以下四个命题中,正确命题是()A.不共面的四点中,其中任意三点不共线B.若点A,B,C,D共面,点A,B,C,E共面,则A,B,C,D,E共面C.若直线a,b共面,直线a,c共面,则直线b,c共面D.依次首尾相接的四条线段必共面【解答】解:不共面的四点中,其中任意三点不共线,故A为真命题;若点A,B,C,D共面,点A,B,C,E共面,则A,B,C,D,E可能不共面,故B为假命题;若直线a,b共面,直线a,c共面,则直线b,c可能不共面,故C为假命题;依次首尾相接的四条线段可能不共面,故D为假命题;故选:A5.(5分)如图Rt△O′A′B′是一平面图形的直观图,斜边O′B′=2,则这个平面图形的面积是()A.B.1 C.D.【解答】解:∵Rt△O'A'B'是一平面图形的直观图,斜边O'B'=2,∴直角三角形的直角边长是,∴直角三角形的面积是,∴原平面图形的面积是1×2=2故选D.6.(5分)下列函数f(x)中,满足“对任意x1,x2∈(﹣∞,0),当x1<x2时,都有f(x1)<f(x2)”的函数是()A.f(x)=﹣x+1 B.f(x)=x2﹣1 C.f(x)=2x D.f(x)=ln(﹣x)【解答】解:根据已知条件知f(x)需在(﹣∞,0)上为增函数;一次函数f(x)=﹣x+1在(﹣∞,0)上为减函数;二次函数f(x)=x2﹣1在(﹣∞,0)上为减函数;指数函数f(x)=2x在(﹣∞,0)上为增函数;根据减函数的定义及对数函数的单调性,f(x)=ln(﹣x)在(﹣∞,0)上为减函数;∴C正确.故选C.7.(5分)已知三棱锥的四个面中,最多共有()个直角三角形?A.4 B.3 C.2 D.1【解答】解:如果一个三棱锥V﹣ABC中,侧棱VA⊥底面ABC,并且△ABC中∠B是直角.因为BC垂直于VA的射影AB,所以VA垂直于平面ABC的斜线VB,所以∠VBC是直角.由VA⊥底面ABC,所以∠VAB,∠VAC都是直角.因此三棱锥的四个面中∠ABC;∠VAB;∠VAC;∠VBC都是直角.所以三棱锥最多四个面都是直角三角形.故选:A8.(5分)一个体积为8cm3的正方体的顶点都在球面上,则球的表面积是()A.8πcm2B.12πcm2C.16πcm2D.20πcm2【解答】解:正方体体积为8,可知其边长为2,体对角线为=2,即为球的直径,所以半径为,表面积为4π2=12π.故选B.9.(5分)2001年至2013年北京市电影放映场次的情况如图所示.下列函数模型中,最不合适近似描述这13年间电影放映场次逐年变化规律的是()A.y=ax2+bx+c B.y=ae x+b C.y=a ax+b D.y=alnx+b【解答】解:根据图象得出单调性的规律,单调递增,速度越来越快,y=ax2+bx+c,单调递增,速度越来越快,y=ae x+b,指数型函数增大很快,y=e ax+b,指数型函数增大很快,y=alnx+b,对数型函数增大速度越来越慢,所以A,B,C都有可能,D不可能.故选:D.10.(5分)某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为()A.4 B.2 C.D.8【解答】解:三视图复原的几何体是长方体,长方体长、宽、高分别是:2,2,3,所以这个几何体的体积是2×2×3=12,长方体被一个平面所截,得到的几何体的是长方体的,如图所示,则这个几何体的体积为12×=8.故选D.11.(5分)函数f(x)=ln,则f(x)是()A.奇函数,且在(0,+∞)上单调递减B.奇函数,且在(0,+∞)上单凋递增C.偶函数,且在(0,+∞)上单调递减D.偶函数,且在(0,+∞)上单凋递增【解答】解:由x(e x﹣e﹣x)>0,得f(x)的定义域是(﹣∞,0)∪(0,+∞),而f(﹣x)=ln=ln=f(x),∴f(x)是偶函数,x>0时,y=x(e x﹣e﹣x)递增,故f(x)在(0,+∞)递增,故选:D.12.(5分)正方体ABCD﹣A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线()A.有无数条B.有2条C.有1条D.不存在【解答】解:由题设知平面ADD1A1与平面D1EF有公共点D1,由平面的基本性质中的公理知必有过该点的公共线l,在平面ADD1A1内与l平行的线有无数条,且它们都不在平面D1EF内,由线面平行的判定定理知它们都与面D1EF平行;故选A二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)在正方体ABCD﹣A1B1C1D1中,若AD的中点为M,DD1的中点为N,则异面直线MN与BD所成角的大小是60°.【解答】解:如图,连接BC1,DC1,则:MN∥BC1,且△BDC1为等边三角形;∴MN与BD所成角等于BC1与BD所成角的大小;又∠DBC1=60°;∴异面直线MN与BD所成角的大小是60°.故答案为:60°.14.(5分)已知A(3,2),B(﹣4,1),C(0,﹣1),点Q线段AB上的点,则直线CQ的斜率取值范围是.【解答】解:k CA==1,k CB==.∵点Q线段AB上的点,则直线CQ的斜率取值范围是:.故答案为:.15.(5分)边长为2的两个等边△ABD,△CBD所在的平面互相垂直,则四面体ABCD的体积是1.【解答】解:如图,取DB中点O,连结AO,CO,∵△ABD,△CBD边长为2的两个等边△‘∴AO⊥BD,CO⊥BD,又∵面ABD⊥面BDC;∴AO⊥面BCD,AO=,四面体ABCD的体积v=,故答案为:1.16.(5分)在函数①y=2x;②y=2﹣2x;③f(x)=x+x﹣1;④f(x)=x﹣x﹣3中,存在零点且为奇函数的序号是④.【解答】解:函数①y=2x不存在零点且为非奇非偶函数,故不满足条件;函数②y=2﹣2x存在零点1,但为非奇非偶函数,故不满足条件;函数③f(x)=x+x﹣1不存在零点,为奇函数,故不满足条件;函数④f(x)=x﹣x﹣3存在零点1且为奇函数,故满足条件;故答案为:④.三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.17.(10分)已知A(5,﹣1),B(m,m),C(2,3)三点.(1)若AB⊥BC,求m的值;(2)求线段AC的中垂线方程.【解答】解:(1),…(2分)…(5分)(2)…(6分)中垂线的斜率…(7分)AC的中点是()…(8分)中垂线的方徎是化为6x﹣8y﹣13=0…(10分)18.(12分)已知集合A={a|一次函数y=(4a﹣1)x+b在R上是增函数},集合B=.(1)求集合A,B;(2)设集合,求函数f(x)=x﹣在A∩C上的值域.【解答】解:(1)∵集合A={a|一次函数y=(4a﹣1)x+b在R上是增函数},∴4a﹣1>0,解得:a>,故…(1分),由得:当0<a<1时,log a<1=log a a,解得:0<a<,当a>1时,log a<1=log a a,解得:a>,而a>1,故a>1,∴…(6分)(2)…(7分)∵函数y=x在(0,+∞)是增函数,在(0,+∞)上是减函数,∴在(0,+∞)是增函数…(9分)所以当时…(12分)有…(11分)即函数的值域是…(12分)19.(12分)已知四棱锥P﹣ABCD的正视图1是一个底边长为4、腰长为3的等腰三角形,图2、图53分别是四棱锥P﹣ABCD的侧视图和俯视图.(1)求证:AD⊥PC;(2)求四棱锥P﹣ABCD的侧面积.【解答】(1)证明:依题意,可知点P在平面ABCD上的正射影是线段CD的中点E,连接PE,则PE⊥平面ABCD.…(1分)∵AD⊂平面ABCD,∴AD⊥PE.…(2分)∵AD⊥CD,CD∩PE=E,CD⊂平面PCD,PE⊂平面PCD,∴AD⊥平面PCD.…(4分)∵PC⊂平面PCD,∴AD⊥PC.…(5分)(2)解:依题意,在等腰三角形PCD中,PC=PD=3,DE=EC=2,在Rt△PED中,,…(6分)过E作EF⊥AB,垂足为F,连接PF,∵PE⊥平面ABCD,AB⊂平面ABCD,∴AB⊥PE.∵EF⊂平面PEF,PE⊂平面PEF,EF∩PE=E,∴AB⊥平面PEF.∵PF⊂平面PEF,∴AB⊥PF.依题意得EF=AD=2.在Rt△PEF中,,…(9分)∴四棱锥P﹣ABCD的侧面积.…(12分)20.(12分)如图,已知四棱锥P﹣ABCD,侧面PAD是正三角形,底面ABCD是菱形,∠BAD=60°,设平面PAD∩平面PBC=l.(Ⅰ)求证:l∥平面ABCD;(Ⅱ)求证:PB⊥BC.【解答】(本题满分为12分)证明:(Ⅰ)∵BC⊄平面PAD,AD⊂平面PAD,AD∥BC,∴BC∥平面PAD…(2分)又BC⊂平面PBC,平面PAD∩平面PBC=l,∴BC∥l.…(4分)又∵l⊄平面ABCD,BC⊂平面ABCD,∴l∥平面ABCD.…(6分)(Ⅱ)取AD中点O,连OP、OB,由已知得:OP⊥AD,OB⊥AD,又∵OP∩OB=O,∴AD⊥平面POB,…(10分)∵BC∥AD,∴BC⊥平面POB,∵PB⊂平面POB,∴BC⊥PB.…(12分)21.(12分)如图,AB是圆O的直径,PA垂直圆所在的平面,C是圆上的点.(I)求证:平面PAC⊥平面PBC;(II)若AC=1,PA=1,求圆心O到平面PBC的距离.【解答】解:(1)证明:由AB是圆的直径得AC⊥BC,由PA⊥平面ABC,BC⊂平面ABC,得PA⊥BC∴BC⊥平面PAC,…(4分)又∴BC⊂平面PBC,所以平面PAC⊥平面PBC…(6分)(2)过A点作AD⊥PC于点D,则由(1)知AD⊥平面PBC,…(8分)连BD,取BD的中点E,连OE,则OE∥AD,又AD⊥平面PBCOE⊥平面PBC,所以OE长就是O到平面PBC的距离.…(10分)由中位线定理得…(12分)22.(12分)已知函数f(x)=lg(a>0)为奇函数,函数g(x)=+b(b ∈R).(Ⅰ)求a;(Ⅱ)若b>1,讨论方徎g(x)=ln|x|实数根的个数;(Ⅲ)当x∈[,]时,关于x的不等式f(1﹣x)≤lgg(x)有解,求b的取值范围.【解答】解:(Ⅰ)由为奇函数得:f(﹣x)+f(x)=0,即,(2分)所以,解得a=1,(4分)(Ⅱ)当b>1时,设,则h(x)是偶函数且在(0,+∞)上递减又所以h(x)在(0,+∞)上有惟一的零点,方徎g(x)=ln|x|有2个实数根.…(8分)(Ⅲ)不等式f(1﹣x)≤lgg(x)等价于,即在有解,故只需,(10分)因为,所以,函数,所以,所以b≥﹣13,所以b的取值范围是[﹣13,+∞).(12分)。

【人教版】2020学年高一数学上学期期末考试试题(含解析)新人教版 新 版

【人教版】2020学年高一数学上学期期末考试试题(含解析)新人教版 新 版

2020学年上学期期末考试高一数学试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合,则=()A. B. C. D.【答案】D【解析】,所以,故选D。

2. 等于()A. B. C. D.【答案】B【解析】,故选B。

3. 已知角的终边上一点的坐标为(),则角的最小正值为( )A. B. C. D.【答案】D【解析】试题分析:因为,,所以点在第四象限.又因为,所以角的最小正值为.故应选B.考点:任意角的三角函数的定义.4. 要得到的图像, 需要将函数的图像()A 向左平移个单位B 向右平移个单位C. 向左平移个单位 D 向右平移个单位【答案】A【解析】,所以是左移个单位,故选A。

5. 已知,则()A. B. C. D.【答案】C【解析】,得,,故选C。

6. 函数的最小值和最大值分别为()A. -3,1B. -2,2C. -3,D. -2,【答案】C【解析】试题分析:因为,所以当时,;当时,,故选C.考点:三角函数的恒等变换及应用.视频7. 下列四个式子中是恒等式的是()A. B.C. D.【答案】D【解析】由和差公式可知,A、B、C都错误,,正确。

故选D。

8. 已知()A. ﹣3B. 3C. ﹣1D. 1【答案】B【解析】,,所以,所以当时取最小值,故选B。

9. 已知向量,若与垂直,则的值等于()A. B. C. 6 D. 2【答案】B所以,则,故选B。

10. 设为所在平面内一点,若,则下列关系中正确的是()A. B.C. D.【答案】A【解析】,故选A。

点睛:本题考查平面向量的线性表示。

利用向量加法的三角形法则,以及题目条件,得到,再利用向量减法的三角形法则,,代入得到答案,11. 在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为,大正方形的面积是,小正方形的面积是,则的值等于()A. 1B.C.D.【答案】B【解析】由题易知,直角三角形的直角边边长为,所以,所以,故选B。

安徽省2020学年高一数学上学期期末考试试卷

安徽省2020学年高一数学上学期期末考试试卷

上学期高一年级期末考试数学试题考生注意:本试题分第Ⅰ卷和第Ⅱ卷,共 4页。

满分150分,考试时间为120分钟第Ⅰ卷(60分)一、选择题(本大题共12小题,每小题5分,共60分) 1.已知集合{}11A x x =-<<,{}03B x x =<<,那么AB =( )A .(1,2)-B .(0,1)C .(1,0)-D .(1,3)- 2.下列函数中,既是偶函数,又在区间(0,)+∞上是增函数的为( ) A .cos y x = B .2xy = C .lg y x = D .y x = 3. 5cos 3π的值是( )A .12-B.2C.12D.2-4.已知幂函数()y f x =的图象经过点(2,2,则(4)f 的值为( ) A .12 B .2 C .16 D .1165.函数3()log 3f x x x =+-的零点所在的区间是( ) A .(0,1) B .(1,2) C .(2,3)D .(3,)+∞6.函数2()2f x x ax =-+在区间(1,4)上单调递减,则实数a 的取值范围是( ) A .[8,)+∞ B .(,8]-∞ C .[2,)+∞ D .(,2]-∞7.把函数sin y x =的图像上所有点的纵坐标保持不变,横坐标伸长到原来的2倍,再将所得函数图像向左平移3π个单位,所得图像对应的函数解析式为( ) A .sin(2)3y x π=+ B.2sin(2)3y x π=+ C.1sin()23y x π=+ D.1sin()26y x π=+8.若tan 24πα⎛⎫-= ⎪⎝⎭,则tan 2α=( ) A. 3- B. 3 C. 34-D. 349.我市“万达广场”在2019年新年到来之际开展“购物折上折”活动,商场内所有商品先按标价打八折,折后价格每满500元再减100元,如某商品标价1500元,则购买该商品的实际付款额为1500×0.8-200=1000元.设购买某商品的=100%⨯实际付款额实际折扣率商品的标价,某人欲购买标价为2700元的商品,那么他可以享受的实际折扣率约为( ) A .55% B .65% C .75% D .80%10.已知函数()y f x =的图象关于直线1x =对称,当1x <时,1()()12x f x =-,那么当1x >时,函数()f x 的递增区间是( )A .(,0)-∞B .(1,2)C .(2,)+∞D .(2,5)11.已知0ω>,函数()sin()3f x x πω=+在(,)3ππ上单调递减,则ω的取值范围是( )A . 15[,]24B.50,]4(C.17[,]26 D.7(0,]612.定义在R 上的奇函数()f x ,当0x ≥时,12log (1),[0,1)(),13,[1,)x x f x x x +∈⎧⎪=⎨--∈+∞⎪⎩则关于x 的函数()()(01)F x f x a a =-<<的所有零点之和为( ) A .12a- B .21a- C .12a-- D .21a--第II 卷(90分)二、填空题(本大题共4小题,每小题5分,共20分) 13.函数y =的定义域为 .14.在平面直角坐标系内,已知角α的顶点落在坐标原点,始边与x 的非负半轴重合,终边经过点(3,4)P -,则sin 3cos sin cos αααα+-的值为________.15.在平行四边形ABCD 中,1AD =,2AB =,60BAD ︒∠=,E 是CD 的中点,则AC BE =_________.16. 外卖逐渐成为一种新兴的生活方式,塑料污染也日益严重。

吉林2020学年高一数学上学期期末考试试题

吉林2020学年高一数学上学期期末考试试题

高一数学上学期期末考试试题第Ⅰ卷一.选择题:(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.集合A={x|x 2+2x >0},B={x|x 2+2x ﹣3<0},则A ∩B=( )A. (﹣3,1)B. (﹣3,﹣2)C. RD. (﹣3,﹣2)∪(0,1) 2.下列函数中,既是偶函数又在区间()0,+∞上单调递减的是( ) A. ln y x = B. 21y x =-+ C. 1y x=D. cos y x = 3.已知向量a =(x -1,2),b =(x ,1),且a ∥b ,则x 的值是 A. -1 B. 0 C. 1 D. 2 4. 下列运算结果中正确的为( ) A. 236a a a ⋅= B. ()()3223aa -=-C.)11= D. ()326aa -=-5.设()f x 是定义在R 上的奇函数,当0x ≤时, ()22f x x x =-,则()1f =( ) A. 1 B. 3 C. -3 D. 06.已知函数()()221,1{log 4,1x f x x x x <=+≥,则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭( ) A. 2 B. 3 C. 4 D. 87. 函数y的定义域是( )A. [1,2]B. [1,2)C. 1,12⎡⎤⎢⎥⎣⎦D. 1,12⎛⎤⎥⎝⎦8.函数()2log 2f x x x =+-的零点所在的区间是( ) A. ()0,1 B. ()1,2 C. ()2,3 D. ()3,49. 已知 1.20.812,2a b -⎛⎫== ⎪⎝⎭, 522c log =,则,,a b c 的大小关系为( )A. c b a <<B. c a b <<C. b a c <<D. b c a <<10. 已知函数()f x 是定义在R 上周期为4的奇函数,当02x <<时, ()2log f x x =,则()722f f ⎛⎫+= ⎪⎝⎭( )A. 1B. -1C. 0D. 211.若5sin 13α=,且α为第二象限角,则tan α的值等于( ) A. 125 B. 125- C. 512 D. 512-12. .函数()()sin f x A x b ωϕ=++的部分图像如图,则()2017f =( )A. 1B.32 C. 12 D. 34第Ⅱ卷二、填空题:(本大题共4小题,每小题5分.)13. 已知角α的终边经过点)3,4(-P ,则=αcos . 14. ()sin135cos 15cos225sin15︒-︒+︒︒等于__________. 15.cos2π8–sin 2π8= .16.函数())22sin2cos sin f x x x x =-的图象为C ,如下结论中正确的是_________.①图象C 关于直线1112x π=对称; ②图象C 关于点2,03π⎛⎫⎪⎝⎭对称; ③函数()f x 在区间5,1212ππ⎛⎫- ⎪⎝⎭内是增函数;④由2sin2y x =的图象向右平移3π个单位长度可以得到图象C .三、解答题:(第17题10分,第18题-22题,每个试题12分)解答应写文字说明,证明过程或演算步骤.17. (本小题满分10分)已知集合{}{}25,121A x x B x m x m =-≤≤=+≤≤-. (1)当3m = 时,求集合,A B A B ⋂⋃; (2)若B A ⊆,求实数m 的取值范围.18.(本小题满分12分)已知1,2a b ==,且向量a 与向量b 的夹角为120°. 求:(1))2)(3(b a b a +-;(2)2a b -. 19. (本小题满分12分)设函数 ()21x f x x +=-. (1)用定义证明函数 ()f x 在区间 ()1,+∞ 上是单调递减函数; (2)求()f x 在区间[]35,上的最值.20.(本小题满分12分)已知两个向量(cos ,sin ),(22sin ,cos )a x x b x x ==+, f(x)= a b ∙,[0,]x π∈(1)求f(x)的值域;(2)若1=∙,求7cos()12x π+的值21.(本小题满分12分)已知函数()()cos sin 244πππ⎛⎫⎛⎫+⋅+-+ ⎪ ⎪⎝⎭⎝⎭f x x x x .(1)求()f x 的最小正周期; (2)若将()f x 的图像向右平移4π个单位,得到函数()g x 的图像,求函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.22(本小题满分12分)已知定义在R 上的函数满足:()()()f x y f x f y +=+,当0x <时,()0f x <. (1)求证:()f x 为奇函数; (2)求证:()f x 为R 上的增函数;(3)解关于x 的不等式:22()(2)()(2)f ax f x f ax f a ->-.(其中0a >且a 为常数).数学答题卡一 选择题(每小题5分)二 填空题(每小题5分)13_________________________________ 14_________________________________15_________________________________ 16_________________________________三 .解答题答案 1. 【答案】D 2. 【答案】B 3. 【答案】A 4. 【答案】D 5. 【答案】C 6. 【答案】B 7. 【答案】D 8. 【答案】B 9. 【答案】B 10.【答案】A 11.【答案】D 12. 【答案】B 13. 【答案】54- 14. 【答案】1215. 16. 【答案】①②③17. 【答案】(1){}45A B x x ⋂=≤≤ , {}25A B x x ⋃=-≤≤ ;(2)3m ≤ ; 【解析】试题分析:(1)由题意求得集合B ,然后进行集合集合运算可得:{}{}|45,|25A B x x A B x x ⋂=≤≤⋃=-≤≤;(2)分类讨论集合B 为空集和集合B 不是空集两种情况,当B =∅时, 2m <,当B ≠∅时,23m ≤≤,则实数m 的取值范围是{}|3m m ≤.试题解析: (1)当时,,则,(2)当时,有,即当时,有综上,的取值范围:18. 【答案】(1) 5-;(2)(1) 由题意可知: 01···cos1201212a b a b ⎛⎫==⨯⨯-=- ⎪⎝⎭, ∴()()()223225?3251125a ba b aa b b -+=--=-⨯--=-;(2)()222222227a b a b a a b b -=-=-⋅+=19. 【答案】(1)见解析(2)max min 57;24f f == 试题解析:解:(1)由定义得()()()()()2112121231,011x x x x f x f x x x -<-=--,所以函数 ()f x 在区间()1,+∞ 上是单调递减函数;(2)∵函数 ()f x 在区间 []35,上是单调递减函数,()()max min 573;524f f f f ∴====.20.【解析】(1)()4sin()4f x x π=+ ()[4]f x ∈-…6分(2) 1=∙,sin()4x π+=14 50444x x ππππ≤≤∴≤+≤若x 为锐角,则sin()4x π+≥,所以x 为钝角, cos()4x π+=-47cos()cos[()]1243x x πππ+=++=-8 21. 【答案】(1)π(2)最大值为2,最小值为-1.试题解析:解 (1)()()cos sin 244πππ⎛⎫⎛⎫+⋅+-+ ⎪ ⎪⎝⎭⎝⎭f x x xx 2sin 22π⎛⎫=++ ⎪⎝⎭x xsin 2=+x x 2sin 23π⎛⎫=+ ⎪⎝⎭x 5分22ππ∴==T . 7分 (2)由已知得()2sin 22sin 24436ππππ⎡⎤⎛⎫⎛⎫⎛⎫=-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦g x f x x x , 9分 0,2π⎡⎤∈⎢⎥⎣⎦x ,52,666πππ⎡⎤∴-∈-⎢⎥⎣⎦x , 11分 故当266ππ-=-x 即0=x 时,()()min 01==-g x g ; 故当262ππ-=x 即3π=x 时,()max 23π⎛⎫== ⎪⎝⎭g x g , 故函数g (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值为2,最小值为-1. 22.【答案】(1)见解析;(2)见解析;(3)当2a a <,即a >2{|x x a<或}x a >;当2a a =,即a ={|x x ≠;当2a a>,即0a <<时,不等式解集为{|x x a <或2}x a >. 【解析】试题分析:(1),令0x y ==,得(0)0f =,再令y x =-即可证明函数()f x 为奇函数;(2)设12x x R ∈、,且12x x <,则120x x -<,由121212()()()()()0f x x f x f x f x f x -=+-=-<即可证明;(3)22()(2)()(2)f ax f a f ax f x +>+22(2)(2)f ax a f a x x ⇔+>+⇔2222ax a a x x +>+22(2)20ax a x a ⇔-++>2()()0x x a a⇔-->,讨论两根的大小,写出不等式的解集即可.试题解析: (1)由()()()f x y f x f y +=+,令0x y ==,得:(0)(0)(0)f f f =+,即(0)0f =.再令0x y +=,即y x =-,得:(0)()()f f x f x =+-.∴()()f x f x -=-,∴()f x 是奇函数.(2)设12x x R ∈、,且12x x <,则120x x -<.由已知得:12()0f x x -<,∴121212()()()()()0f x x f x f x f x f x -=+-=-<,∴12()()f x f x <.即()f x 在R 上是增函数.(3)∵22()(2)()(2)f ax f a f ax f x +>+,∴22(2)(2)f ax a f a x x +>+,∴2222ax a a x x +>+.即22(2)20ax a x a -++>.∵0a >,22()20x a x a-++>,∴2()()0 x x aa-->.当2aa<,即a>2{|x xa<或}x a>.当2aa=,即a={|x x≠.当2aa>,即0a<<时,不等式解集为{|x x a<或2}xa>.。

湖南省2020学年高一上学期期末考试数学试卷

湖南省2020学年高一上学期期末考试数学试卷

上学期高一年级数学科期末考试试卷时量:2小时 满分:150分一.选择题(每题5分,共60分)1.已知角α的终边经过点P(-3,4),则下列计算结论中正确的是( )A .4sin 5α=- B .3cos 5α= C .4tan 3α=- D .3sin 5α=2.cos 14ºcos16º-sin14ºsin16º的值是( ) A .23 B .21 C .-23 D .-213.把正弦函数y=sin x (x ∈R )图象上所有的点向左平移6π个长度单位,再把所得函数图象上所有的点的横坐标缩短到原来的21倍,得到的函数是( ) A .y=sin 1()26x π+ B .y=sin 1()26x π-C .y=sin (2)6x π+D .y=sin (2)3x π+4.在[0,π2]上满足21sin ≥x 的x 的取值范围是( ) A .[0,6π] B. [65,6ππ] C. [32,6ππ] D. [ππ,65]5.已知函数f (x )=sin(2x +φ)在x =π6处取得最大值,则函数y =cos(2x +φ)的图象( )A .关于点(π6,0)对称B .关于点(π3,0)对称C .在于直线x =π6对称D .关于直线x =π3对称6.已知平面向量(3,1)a =,(,3)b x =-,且a b ⊥,则x=( )A .-1B .1C .31- D .31 7.化简:2sin (4π-x )cos (4π-x )=( ). A.sin2xB.cos2xC.-cos2xD.-sin2x8.在△ABC 中,A =60°,a =43,b =42,则B 等于( )A .45°或135°B .135°C .45°D .以上答案都不对9.如图,正方形ABCD 中,点E 、F 分别是DC 、BC 的中点,那么EF →=( )A .12AB →+12AD →B .-12AB →-12AD →C .-12AB →+12AD →D .12AB →-12AD →10.有3张奖券,其中2张可中奖,现3个人按顺序依次从中抽一张,小明最后抽,则他抽到中奖券的概率是 ( )A.13B.16C.12D.2311.在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或B .006045或C .0060120或D .0015030或12.函数f (x )=(13)x -|sin2x |在[0,5π4]上零点的个数为( )A .2B .4C .5D .6二.填空题(每题5分,共20分)13.在△ABC 中,A =60°,AB =4,AC =23,则△ABC 的面积等于________. 14.等边△ABC 的边长为2,则→→•BC AB =_________15.在△ABC 中,已知ab b a c -+=222,则角C 为_________.16.若函数f (x )=sin2x +cos2x ,且函数y =f (x +φ2)(0<φ<π)是一个偶函数,则φ的值等于______.三.解答题(共70分)17. (本小题10分)某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100), [100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36, (1)请将频率分布直方图补充完整;(2)求样本中净重大于或等于98克并且小于104克的产品的个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学试卷注意事项:1. 本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,答卷前,考生务必将自己的姓名、班级,考号填写在答题卡上;2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应的题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在本试卷上无效;3. 回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1.若集合2{|20}A x x x =-<, {|1}B x x =≤,则A B ⋂=( )A .[)1,0-B . [)1,2-C .(]0,1D .[)1,22.已知α∠的终边与单位圆交于点⎪⎭⎫ ⎝⎛5354-,,则αtan 等于( )A . 43- B . 53-C . 54-D . 34-3. 把 1125-化为)20,(2πααπ<≤∈+Z k k 的形式是 ( )A .46ππ-- B .476ππ+- C .48ππ-- D .478ππ+-4.时针走过了2小时40分,则分针转过的角度是( )A . 80°B . -80°C . 960°D . -960° 5.已知2log 5.0=a ,5.02=b ,25.0=c ,则c b a ,,的大小关系为( )A .b c a <<B .a c b <<C . c b a <<D . a b c <<6. 如果向量)1,0(=a ,)1,2(-=b ,那么=+|2|b a ( )A .6 B.5 C.4D.37.要得到函数x y cos 2=的图象,只需将函数)42cos(2π+=x y 的图象上所有的点作( )A .横坐标伸长到原来的2倍,再向右平行移动4π个单位长度; B .横坐标伸长到原来的2倍,再向右平行移动8π个单位长度;C .横坐标缩短到原来的21倍,再向右平行移动4π个单位长度; D .横坐标缩短到原来的21倍,再向左平行移动8π个单位长度。

8.已知函数()542++=+x x x f,则()x f 的解析式为()A .()12+=x x fB .()()212≥+=x x x fC . ()2x x f =D . ()()22≥=x x x f9.已知向量(2,3)a =,(1,2)b =-,若4ma b +与2a b -共线,则m 的值为( )A. 21 B. 2C. 2-D.21-10.若,314cos ,02,20=⎪⎭⎫ ⎝⎛+<<-<<απβππα,3324cos =⎪⎭⎫ ⎝⎛-βπ则=⎪⎭⎫ ⎝⎛+2cosβα( ) A .- B .C. -D 11.已知(21)4(1)()log (1)aa x a x f x x x -+≤⎧=⎨>⎩是R 上的单调递减函数,则实数a 的取值范围为( )A . ()0,1B . 10,3⎛⎫ ⎪⎝⎭C .⎪⎭⎫⎢⎣⎡2161, D . ⎪⎭⎫⎢⎣⎡161, 12.已知函数()()πϕωωϕω<<∈≤<+=*0,,120sin )(N x x f 图象关于y 轴对称,且在区间⎥⎦⎤⎢⎣⎡24ππ,上不单调,则ω的可能值有( )A . 10个B . 9个C . 8个D . 7个第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每题5分,共20分。

) 13.若1cos 2θ=-,且θ为第三象限的角,则tan θ=______.14.在△ABC 中,AB a =,BC b =,AD 为边BC 的中线,G 为△ABC 心,则用a , b示向量AG =______.15.已知函数()()⎪⎭⎫⎝⎛<>>+=2,0,0sin πϕωϕωA x A x f 的部分图象如图所示,则函数()x f 的解析式为 ______.16.已知函数21,0()1,0x x f x x ⎧+≥=⎨<⎩则满足不等式2(1)(2)f x f x ->的x 的取值范围是______.三、解答题(解答应写出文字说明,证明过程或演算步奏) 17.(本小题满分10分) (1)若0cos 2sin =-αα,求2sin cos cos sin cos ααααα++-的值.(2)计算:()23)2(lg 1000lg 8lg 5lg ++18.(本小题满分12分)函数)32lg()(2--=x x x f 的定义域为集合A , 函数)2(2)(≤-=x a x g x的值域为集合B . (1)求集合B A ,; (2)若集合B A ,满足A B B =,求实数a 的取值范围.19.(本小题满分12分)已知函数()f x 的图像可以由2y cos x =的图像先纵坐标不变横坐标伸长到原来的2倍,再横坐标不变纵坐标伸长到原来的2倍,最后向右平移6π个单位而得到.(I )求()f x 的解析式与最小正周期. (II )求()f x 在(0,)x π∈上的值域与单调性.20.(本小题满分12分)已知)2cos(2sin 32sin)(2xx x x f ++=π, (Ⅰ)求)(x f 的单增区间和对称轴方程;(Ⅱ)若20π<<x ,101)(-=x f ,求)32(sin π+x21.(本小题满分12分)已知二次函数2()(2)3f x ax b x =+-+,且-1,3是函数()f x 的零 点.(Ⅰ)求()f x 解析式,并解不等式()3f x ≤; (Ⅱ)若()(sin ),g x f x =求函数()g x 的值域.22.(本小题满分12分)已知R a ∈,函数()21log 2x f x a ⎛⎫=+ ⎪⎝⎭. (Ⅰ)当1a =时,解不等式1)(≤x f ;(Ⅱ)若关于x 的方程()20f x x +=的解集中恰有两个元素,求a 的取值范围;数学试卷答案一.选择题(1)--17.(本小题满分10分)解: (1)2tan 0cos 2sin =∴=-ααα,原式22sin 11tan 11cos sin 1tan tan 11tan 1cos αααααααα++=+=++-+- 22111621125+=+=-+ ………5分 (2)22lg 3)32lg 3(5lg )(原式++⨯= 22lg 35lg 32lg 5lg 3)(++⨯= 5lg 3)2lg 5(lg 2lg 3++⨯= 5lg 32lg 3+= )5lg 2(lg 3+=3= ………………10分18(本小题满分12分)解: (1){}2|230A x x x =-->={}|(3)(1)0x x x -+>={}|13x x x <->或}4|{}2,2|{a y a y x a y y B x -≤<-=≤-==………………….8分(2))5(]3--53314∞+∞>-≤∴≥--<-∴⊆∴= ,的取值范围(即或或a a a a a AB B B A ……………..12分19(本小题满分12分)解:(1)由题意可知: ()2cos 6f x x π=-⎛⎫ ⎪⎝⎭∴2T π=…………6分 (2)(0,)x π∈即0x π<< ∴6566πππ<-<-x , ∴1)6cos(23≤-<-πx ,()f x值域为(2⎤⎦.分别令066<-<-ππx , 6560ππ<-<x得()f x 增区间为0,6π⎛⎫ ⎪⎝⎭,减区间为,6ππ⎛⎫ ⎪⎝⎭…………12分 20.(本小题满分12分) (1))6sin(x -21)x (π+=f单增区间Z k ]2k 34,2k 3[∈++,ππππ对称轴方程Z ∈+=k k 3x ,ππ………………………..6分(2)23536x sin <=+)(由π易知,266πππ<+<x 536x sin =+)(π546x cos =+)(π24sin 2x =sin2x =sin x x 366625ππππ++++=()()2()cos ()…………12分21.(本小题满分12分)(1)2-1,3()(2)3f x ax b x =+-+是的零点2()23f x x x ∴=-++223302x x x x -++≤≤≥解不等式得或 ,{}|02x x x ∴≤≥不等式的解集为或……………………….6分(2) 2()(sin )=-sin +2sin +3g x f x x x =2=-sin -1+4x ()-1sin 1,0()4x g x ≤≤∴≤≤又()[0,4]g x ∴的值域为………….12分22(本小题满分12分)解:(1)当1a =时,2log 1)121(log )(22=≤+=x x f∴2121≤+x ,解得0x ≥ ∴原不等式的解集为),∞+0[……………………4分(2)方程()20f x x +=,即为()22221log 212xx a log log ⎛⎫++= ⎪⎝⎭, ∴22211log 22x x a log ⎛⎫⎛⎫+=⎪ ⎪⎝⎭⎝⎭, ∴21122x xa +=,…………………………… …8分 令1(0)2x t t =>,则2t a t +=,由题意得方程2a t t =-在()0,+∞上只有两解,令()2g t t t =-, ()t 0,∈+∞,结合图象可得,当041-<<a 时,直线()2y a g t t t ==-和函数的图象只有两个公共点,即方程只有两个解.∴实数a 的范围),(041-…………………………………………12分。

相关文档
最新文档