三角函数诱导公式公式记忆经典总结

合集下载

三角函数高中数学诱导公式大全

三角函数高中数学诱导公式大全

三角函数高中数学诱导公式大全三角函数是高中数学中的重要内容,它与三角形的关系密切,广泛应用于各个学科中。

掌握三角函数的诱导公式对于解决各种问题是非常有帮助的。

下面我们就来详细介绍一些三角函数的诱导公式。

1.正弦函数的诱导公式:sin(A + B) = sinAcosB + cosAsinBsin(A - B) = sinAcosB - cosAsinBsin2A = 2sinAcosAsinA + sinB = 2sin((A + B)/2)cos((A - B)/2)sinA - sinB = 2cos((A + B)/2)sin((A - B)/2)2.余弦函数的诱导公式:cos(A + B) = cosAcosB - sinAsinBcos(A - B) = cosAcosB + sinAsinBcos2A = 2cos^2A - 1 = 1 - 2sin^2AcosA + cosB = 2cos((A + B)/2)cos((A - B)/2)cosA - cosB = -2sin((A + B)/2)sin((A - B)/2)3.正切函数的诱导公式:tan(A + B) = (tanA + tanB) / (1 - tanAtanB)tan(A - B) = (tanA - tanB) / (1 + tanAtanB)tan2A = 2tanA / (1 - tan^2A)tanA + tanB = sin(A + B) / (cosAcosB)tanA - tanB = sin(A - B) / (cosAcosB)4.余切函数的诱导公式:cot(A + B) = (cotAcotB - 1) / (cotB + cotA)cot(A - B) = (cotAcotB + 1) / (cotB - cotA)cot2A = cot^2A - 2cotA / (cot^2A - 1)cotA + cotB = cotAcotB - 1 / (cotA + cotB)cotA - cotB = cotAcotB + 1 / (cotB - cotA)这些诱导公式可以帮助我们在计算三角函数的复杂表达式时,将其化简为更简洁的形式。

完整版)三角函数诱导公式总结

完整版)三角函数诱导公式总结

完整版)三角函数诱导公式总结三角函数诱导公式与同角的三角函数知识点1】诱导公式及其应用诱导公式是指通过一些特定的公式,将三角函数中的某些角度转化为其他角度,从而简化计算。

以下是常用的诱导公式:公式一:sin(-α) = -sinα;cos(-α) = cosα;tan(-α) = -tanα公式二:sin(π+α) = -sinα;cos(π+α) = -cosα;tan(π+α) =tanα公式三:sin(π-α) = sinα;cos(π-α) = -cosα;tan(π-α) = -tanα公式四:sin(2π-α) = -sinα;cos(2π-α) = cosα;tan(2π-α) = -tanα公式五:sin(π/2-α) = cosα;cos(π/2-α) = sinα公式六:sin(π/2+α) = cosα;cos(π/2+α) = -sinα公式七:sin(-π/2-α) = -cosα;cos(-π/2-α) = -sinα公式八:sin(-π/2+α) = -cosα;cos(-π/2+α) = sinα公式九:sin(α+2kπ) = sinα;cos(α+2kπ) = cosα;tan(α+2kπ) = tanα(其中k∈Z)。

以上公式可以总结为两条规律:1.前四组诱导公式可以概括为:函数名不变,符号看象限。

2.公式五到公式八总结为一句话:函数名改变,符号看象限(原函数所在象限)。

另外,还有一个规律是:奇变偶不变,符号看象限。

也就是说,将三角函数的角度全部化成kπ/2+α或是kπ/2-α的形式,如果k是奇数,那么符号要改变;如果k是偶数,符号不变。

例1、求值:(1)cos(2916π)= ________;(2)tan(-855)= ________;(3)sin(-π)= ________。

例2、已知tan(π+α)=3,求:(2cos(-α)-3sin(π+α))/(4cos(-α)+sin(2π-α))的值。

《诱导公式》记忆口诀

《诱导公式》记忆口诀
诱导公式的记忆口诀
应用诱导公式可将任意角的三角函数值问题转化为0到90间的角的三角函数值的问题,
基本步骤是:
运用诱导公式解题本质上是多次运用"化归”思想方法,化负角为正角,化大角为周内角, 再化为锐角,但是,诱导公式较多,符号难辨,容易混淆,我们可以分两种情况记忆:
一、“函数名不变,符号看象限”
对于一二,二-:,,亠很,2二-:,2k•亠很(k二z)的三角函数值,把:-看成锐角。
—a
ji-a
+a
2n:-a
2k兀(kez)
sin
—sinaБайду номын сангаас
sina
—sina
—sina
sina
cos
cosa
—cosa
—cosa
cosa
cosa
tan
-ta na
-ta na
tana
-ta na
-tana
二、“函数名改变,符号看象限”
13_'
对于—±a丄土a的三角函数值,把a看成锐角。
2'2
—-Ot
2
Tt—+a
2
3兀
——_a
2
3兀
—+a
2
sin
cosa
cosa
-cosa
-cosa
cos
si n。
— sin。
-si n。
si n。
根据以上的记忆技巧,我们很容易求任意角的三角函数的三角函数值。

三角函数诱导公式大全

三角函数诱导公式大全

三角函数诱导公式大全
所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。

想要学好高中数学,三角函数诱导公式就必须掌握好,下面是
小编整理的三角函数诱导公式大全,供参考。

三角函数公式大全三角函数图像与性质知识点总结怎幺求三角函数的值域
和最值三角函数诱导公式大全三角函数奇偶性判断复合函数知识点总结三角
函数诱导公式记忆口诀:“奇变偶不变,符号看象限”。

“奇、偶”指的是π/2的
倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。

(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。

以cos(π/2+α)=-sinα为例,等式左边cos(π/2+α)中n=1,所以右边符号为sinα,把α看成锐角,所以π/2。

三角函数高中数学诱导公式大全

三角函数高中数学诱导公式大全

三角函数高中数学诱导公式大全
一、诱导之和差公式
1.正弦函数的和差公式:
sin(A±B) = sinAcosB ± cosAsinB
2.余弦函数的和差公式:
cos(A±B) = cosAcosB ∓ sinAsinB
3.正切函数的和差公式:
tan(A±B) = (tanA ± tanB) / (1 ∓ tanAtanB)
二、诱导乘积公式
1.正弦函数的乘积公式:
sinAsinB = (1/2)[cos(A-B)-cos(A+B)]
2.余弦函数的乘积公式:
cosAcosB = (1/2)[cos(A-B)+cos(A+B)]
3.正切函数的乘积公式:
tanAtanB = (1-cosAcosB) / (cosAsinB)
三、诱导倒角公式
1.正弦函数的倒角公式:
sin(A/2) = ±√[(1-cosA)/2]
2.余弦函数的倒角公式:
cos(A/2) = ±√[(1+cosA)/2]
3.正切函数的倒角公式:
tan(A/2) = ±√[(1-cosA)/(1+cosA)]
四、三角函数的其他重要关系
1.正弦函数与余弦函数的关系:
sin^2A + cos^2A = 1
2.正切函数与余切函数的关系:
tanA × cotA = 1
3.正切函数与余弦函数的关系:
tanA = sinA / cosA
总结:三角函数诱导公式是高中数学中的重要内容,通过应用这些公式,可以化简复杂的三角函数表达式,简化计算过程。

掌握这些诱导公式,并熟练应用于解题,有助于提高数学运算能力。

诱导公式的记忆口诀

诱导公式的记忆口诀

1 / 1
诱导公式的记忆口诀
应用诱导公式可将任意角的三角函数值问题转化为 0到 90间的角的三角函数值的问题,基本步骤是:
运用诱导公式解题本质上是多次运用“化归”思想方法,化负角为正角,化大角为周内角,再化为锐角,但是,诱导公式较多,符号难辨,容易混淆,我们可以分两种情况记忆:
一、“函数名不变,符号看象限”
对于)(2,2,,,z k k ∈+-+--απαπαπαπα的三角函数值,把α看成锐角。

二、“函数名改变,符号看象限” 对于απ
απ
±±3,
的三角函数值,把α看成锐角。

根据以上的记忆技巧,我们很容易求任意角的三角函数的三角函数值。

(完整版)诱导公式总结大全

(完整版)诱导公式总结大全

e an dAl l t h i ng si nt he i r诱导公式1 所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。

公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2k π+α)=sin α cos (2k π+α)=cos α tan (2k π+α)=tan α cot (2k π+α)=cot α 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)=-sin α cos (π+α)=-cos α tan (π+α)=tan α cot (π+α)=cot α 公式三: 任意角α与 -α的三角函数值之间的关系: sin (-α)=-sin α cos (-α)=cos α tan (-α)=-tan α cot (-α)=-cot α 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)=sin α cos (π-α)=-cos α tan (π-α)=-tan αe an dAl l t 同角三角函数的基本关系式 倒数关系  tan α ·cot α=1 sin α ·csc α=1 cos α ·sec α=1 商的关系 sin α/cos α=tan α=sec α/csc α cos α/sin α=cot α=csc α/sec α 平方关系 sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)同角三角函数关系六角形记忆法 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

倒数关系 对角线上两个函数互为倒数; 商数关系 六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

(主要是两条虚线两端的三角函数值的乘积)。

三角函数诱导公式及经典记忆方法

三角函数诱导公式及经典记忆方法

三角函数诱导公式及影象要领之阳早格格创做一、共角三角函数的基原闭系式(一)基原闭系1、倒数闭系tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=12、商的闭系sinα/cosα=tanαsecα/cscα=tanαcosα/sinα=cotαcscα/secα=cotα3、仄圆闭系sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(二)共角三角函数闭系六角形影象法构制以"上弦、中切、下割;左正、左余、中间1"的正六边形为模型.1、倒数闭系对于角线上二个函数互为倒数;2、商数闭系六边形任性一顶面上的函数值等于取它相邻的二个顶面上函数值的乘积.(主假如二条真线二端的三角函数值的乘积,底下4个也存留那种闭系.).由此,可得商数闭系式.3、仄圆闭系正在戴有阳影线的三角形中,上头二个顶面上的三角函数值的仄圆战等于底下顶面上的三角函数值的仄圆.二、诱导公式的真量所谓三角函数诱导公式,便是将角n·(π/2)±α的三角函数转移为角α的三角函数.(一)时常使用的诱导公式1、公式一:设α为任性角,末边相共的角的共一三角函数的值相等:sin(2kπ+α)=sinα, k∈z cos(2kπ+α)=cosα, k∈ztan (2kπ+α)=tanα, k ∈z cot (2kπ+α)=cotα, k ∈z sec (2kπ+α)=secα, k ∈z csc (2kπ+α)=cscα, k ∈z 2、公式二:α为任性角,π+α的三角函数值取α的三角函数值之间的闭系:sin (π+α)=-sinα cos (π+α)=-cosα tan (π+α)=tanα cot (π+α)=cotα sec(π+α)=—secα csc(π+α)=—cscα3、公式三:任性角α取 -α的三角函数值之间的闭系: sin (-α)=-sinα cos (-α)=cosα tan (-α)=-tanα cot (-α)=-cotα sec(—α)=secα csc(—α)=—cscα4、公式四:利用公式二战公式三不妨得到π-α取α的三角函数值之间的闭系:sin (π-α)=sinα cos (π-α)=-cosα tan (π-α)=-tanα cot (π-α)=-cotα sec(π—α)=—secα csc(π—α)=cscα5、公式五:利用公式一战公式三不妨得2π-α取α的三角函数值之间的闭系:sin (2π-α)=-sinα cos (2π-α)=cosα tan (2π-α)=-tanα cot (2π-α)=-cotα sec(2π—α)=secα csc(2π—α)=—cscα6、公式六:2π+α取α的三角函数值之间的闭系: sin (2π+α)=cosα cos (2π+α)=-sinα tan (2π+α)=-cotα cot (2π+α)=-tanα sec(2π+α)=—cscα csc(2π+α)=secα7、公式七:2π-α取α的三角函数值之间的闭系: sin (2π-α)=cosα cos (2π-α)=sinα tan (2π-α)=cotα cot (2π-α)=tanαsec(2π—α)=cscα csc(2π—α)=secα 8、推算公式:23π+α取α的三角函数值之间的闭系:sin (23π+α)=-cosα cos (23π+α)=sinαtan (23π+α)=-cotα cot (23π+α)=-tanα sec(23π+α)=cscα csc(23π+α)=—secα9、推算公式:23π—α取α的三角函数值之间的闭系:sin (23π-α)=-cosα cos (23π-α)=-sinαtan (23π-α)=cotα cot (23π-α)=tanαsec (23π-α)=—cscα csc (23π—α)=—secα诱导公式影象心诀:“奇变奇没有变,标记瞅象限”. “奇、奇”指的是2π的倍数的奇奇,“变取没有变”指的是三角函数的称呼的变更:“变”是指正弦变余弦,正切变余切.(反之亦然创制)“标记瞅象限”的含意是:把角α瞅干钝角,没有思量α角地圆象限,瞅n·(π/2)±α是第几象限角,进而得到等式左边是正号仍旧背号. 标记推断心诀:“一齐正;二正弦;三二切;四余弦”. 那十二字心诀的意义便是道:第一象限内所有一个角的四种三角函数值皆是“+”; 第二象限内惟有正弦是“+”,其余局部是“-”;第三象限内惟有正切战余切是“+”,其余局部是“-”; 第四象限内惟有余弦是“+”,其余局部是“-”.“ASCT”意即为“all(局部)”、“sin”、“tan ”、“cos ” (二)其余三角函数知识1、二角战好公式sin (α+β)=sinαcosβ+cosαsinβ sin (α-β)=sinαcosβ-cosαsinβcos (α+β)=cosαcosβ-sinαsinβ cos (α-β)=cosαcosβ+sinαsinβtan (α+β)=(tanα+tanβ )/(1-tanα·tanβ) tan (α-β)=(tanα-tanβ)/(1+tanα·tanβ)2、二倍角的正弦、余弦战正切公式 sin2α=2sinαcosαcos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α tan2α=αα2tan -12tan3、半角的正弦、余弦战正切公式 sin22α=2cos -1αcos22α=2cos 1α+tan22α=ααcos 1cos -1+tan 2α=ααsin cos -1=ααcos 1sin +4、万能公式sinα=2t an 122t an 2αα+cosα=2tan12tan -122αα+tanα=2tan -122tan2αα5、三倍角的正弦、余弦战正切公式sin3α=3sinα-4sin 3αcos3α=4cos 3α-3c osα tan3α=α—α—α233tan 1tan 3tan6、三角函数的战好化积公式 sinα+sinβ=2sin2βα+·cos2β—αsinα-sinβ=2cos2βα+·sin2β—αcosα+cosβ=2cos 2βα+·cos 2β—αcosα-cosβ=-2sin 2βα+·sin2β—α7、三角函数的积化战好公式sinα·cosβ=21[sin(α+β)+sin(α-β)]cosα·sinβ=21[sin(α+β)-sin(α-β)] cosα·cosβ=21[cos(α+β)+cos(α-β)]sinα·sinβ=-21[cos(α+β)-cos(α-β)]三、公式推导历程 (一)万能公式推导sin2α=2sinαcosα=αααα22sin cos cos sin 2+(果为cos 2α+sin 2α=1)再把上头的分式上下共除cos 2α,可得sin2α=2t an 122t an2αα+而后用2α代替α即可.共理可推导余弦的万能公式.正切的万能公式可通过正弦比余弦得到.(二)三倍角公式推导tan3α=ααcos3sin3=αα—ααααααcos sin2sin cos2sin 2cos cos sin2+=αα—αα—αα—ααααcos sin 2sin cos cos sin sin cos cos sin 22222+上下共除以cos 3α,得:tan3α=α—α—α233tan 1tan 3tansin3α=sin(2α+α)=sin2αcosα+cos2αsinα=2sinαcos 2α+(1-2sin 2α)sinα =2sinα-2sin 3α+sinα-2sin 3α =3sinα-4sin 3αcos3α=cos(2α+α)=cos2αcosα-sin2αsinα=(2cos 2α-1)cosα-2cosαsin 2α =2cos 3α-cosα+(2cosα-2cos 3α) =4cos 3α-3cosα即 sin3α=3sinα-4sin 3α cos3α=4cos 3α-3cosα(三)战好化积公式推导最先,咱们知讲sin(α+β)=sin αcos β+cos αsin β, sin(α-β)=sin αcos β-cos αsin β咱们把二式相加便得到sin(α+β)+sin(α-β)=2sin αcos β所以,sin αcos β=2sin sin β)—(αβ)(α++共理,若把二式相减,便得到cos αsin β=2sin sin β)—(α—β)(α+共样的,咱们还知讲cos(α+β)=cos αcos β-sin αsin β, cos(α-β)=cos αcos β+sin αsin β所以,把二式相加,咱们便不妨得到cos(α+β)+cos(α-β)=2cos αcos β所以咱们便得到,cos αcos β=2cos cos β)—(αβ)(α++共理,二式相减咱们便得到sin αsin β=—2cos cos β)—(α—β)(α+那样,咱们便得到了积化战好的四个公式: sin αcos β=2sin sin β)—(αβ)(α++ cos αsin β=2sin sin β)—(α—β)(α+cos αcos β=2cos cos β)—(αβ)(α++ sin αsin β=-2cos cos β)—(α—β)(α+佳,有了积化战好的四个公式以来,咱们只需一个变形,便不妨得到战好化积的四个公式.咱们把上述四个公式中的α+b 设为x,α-β设为y,那么α=2y x +,β=2y x -把α,β分别用x,y 表示便不妨得到战好化积的四个公式: sinx+siny=2sin 2y x +cos 2yx -sinx-siny=2cos 2y x +sin 2yx -cosx+cosy=2cos 2y x +cos 2yx -yx+sin2yx-cosx-cosy=—2sin2。

三角函数的8个诱导公式(汇总)

三角函数的8个诱导公式(汇总)

三角函数的8个诱导公式(汇总)三角函数的8个诱导公式1. 正弦函数的诱导公式sin(-x) = -sin(x)这个公式表明,正弦函数的值在x轴上是关于原点对称的。

也就是说,如果一个角度的正弦值为a,那么它的相反数的正弦值就是-a。

这个公式在解三角形问题时非常有用,为它可以帮助我们计算负角度的正弦值。

2. 余弦函数的诱导公式cos(-x) = cos(x)这个公式表明,余弦函数的值在y轴上是关于原点对称的。

也就是说,如果一个角度的余弦值为a,那么它的相反数的余弦值也是a。

这个公式同样也可以帮助我们计算负角的余弦值。

3. 正切函数的诱导公式tan(-x) = -tan(x)这个公式表明,正切函数的值在原点上是关于y轴对称的。

也就是说,如果一个角的正切值为a,那么它的相反数的正切值就是-a。

这个公式在计算负角的正切值时非常有用。

4. 余切函数的诱导公式cot(-x) = -cot(x)这个公式表明,余切函数的值在原点上是关于x轴对称的。

也就是说,如果一个角的余切值为a,那么它的相反数的余切值就是-a。

这个公式同样也可以帮助我们计算负角的余切值。

5. 正弦函数的平方的诱导公式sin^2(x) + cos^2(x) = 1这个公式是三角函数中最著名的公式之一,它表明正弦函数的平方加上余弦函数的平方等于1。

这个公式在解三角形问题时非常有用,为它可以帮助我们计算三角形中的未知边长。

6. 正切函数的平方的诱导公式tan^2(x) + 1 = sec^2(x)这个公式表明,正切函数的平方加1等于其对应的正割函数的平方。

这个公式在计算三角形中的未知边长时非常有用。

7. 余切函数的平方的诱导公式cot^2(x) + 1 = csc^2(x)这个公式表明,余切函数的平方加1等于其对应的余割函数的平方。

这个公式同样也可以帮助我们计算三角形中的未知边长。

8. 正弦函数和余弦函数的诱导公式sin(x + π/2) = cos(x)cos(x + π/2) = -sin(x)这两个公式表明,正弦函数和余弦函数之间存在一种特殊的关系,即它们的相位差为π/2。

三角函数诱导公式大全

三角函数诱导公式大全

三角函数诱导公式大全常用的诱导公式有以下几组:三角函数诱导公式一:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα三角函数诱导公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα三角函数诱导公式三:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα三角函数诱导公式四:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)三角函数诱导公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα三角函数诱导公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。

三角函数诱导公式记忆口诀

三角函数诱导公式记忆口诀

三角函数诱导公式记忆口诀三角函数诱导公式是学习数学中的一个重要内容,也是解决三角函数相关问题的基础。

通过记忆口诀,我们可以更加方便地掌握这些公式。

下面将介绍三角函数诱导公式,并给出一些记忆方法。

一、正弦函数的诱导公式正弦函数是三角函数中最基本的函数之一,它的诱导公式是:sin(α±β) = sinαcosβ±cosαsinβ这个公式可以帮助我们计算两个角的正弦值之和或差。

为了记忆这个公式,我们可以联想“正正相乘,余余相减”。

二、余弦函数的诱导公式余弦函数也是三角函数中的重要函数,它的诱导公式是:cos(α±β) = cosαcosβ∓sinαsinβ这个公式可以帮助我们计算两个角的余弦值之和或差。

为了记忆这个公式,我们可以联想“余余相乘,正正相减”。

三、正切函数的诱导公式正切函数是三角函数中另一个重要的函数,它的诱导公式是:tan(α±β) = (tanα±tanβ)/(1∓tanαtanβ)这个公式可以帮助我们计算两个角的正切值之和或差。

为了记忆这个公式,我们可以联想“正正相加,余余相除”。

四、余切函数的诱导公式余切函数是正切函数的倒数,它的诱导公式是:cot(α±β) = (cotαcotβ∓1)/(cotβ±cotα)这个公式可以帮助我们计算两个角的余切值之和或差。

为了记忆这个公式,我们可以联想“余余相加,正正相除”。

五、正割函数的诱导公式正割函数是余弦函数的倒数,它的诱导公式是:sec(α±β) = (secαsecβ±tanαtanβ)/(secβ±tanαtanβ)这个公式可以帮助我们计算两个角的正割值之和或差。

为了记忆这个公式,我们可以联想“正余相乘,余正相除”。

六、余割函数的诱导公式余割函数是正弦函数的倒数,它的诱导公式是:csc(α±β) = (cscαcscβ∓cotαcotβ)/(cscβ±cotαcotβ)这个公式可以帮助我们计算两个角的余割值之和或差。

高中三角函数公式及诱导公式大全

高中三角函数公式及诱导公式大全

高中三角函数公式及诱导公式大全以下是高中三角函数公式及诱导公式的大全:1.三角函数的基本关系:•正弦函数(sin):sinθ = 对边/斜边•余弦函数(cos):cosθ = 邻边/斜边•正切函数(tan):tanθ = 对边/邻边2.三角函数的诱导公式:•正弦函数的诱导公式:sin(-θ) = -sinθ•余弦函数的诱导公式:cos(-θ) = cosθ•正切函数的诱导公式:tan(-θ) = -tanθ•正弦函数的互余公式:sin(π/2 - θ) = cosθ•余弦函数的互余公式:cos(π/2 - θ) = sinθ•正切函数的互余公式:tan(π/2 - θ) = 1/tanθ3.三角函数的和差公式:•正弦函数的和差公式:sin(θ ± φ) = sinθcosφ ± cosθsinφ•余弦函数的和差公式:cos(θ ± φ) = cosθcosφ ∓ sinθsinφ•正切函数的和差公式:tan(θ ± φ) = (tanθ ± tanφ) / (1 ∓tanθtanφ)4.三角函数的倍角公式:•正弦函数的倍角公式:sin2θ = 2sinθcosθ•余弦函数的倍角公式:cos2θ = cos^2θ - sin^2θ•正切函数的倍角公式:tan2θ = (2tanθ) / (1 - tan^2θ)5.三角函数的半角公式:•正弦函数的半角公式:sin(θ/2) = ±√[(1 - cosθ) / 2]•余弦函数的半角公式:cos(θ/2) = ±√[(1 + cosθ) / 2]•正切函数的半角公式:tan(θ/2) = ±√[(1 - cosθ) / (1 + cosθ)]6.三角函数的和的积公式:•正弦函数的和的积公式:sinθ + sinφ = 2sin((θ + φ)/2)cos((θ - φ)/2)•余弦函数的和的积公式:cosθ + cosφ = 2cos((θ + φ)/2)cos((θ - φ)/2)•正弦函数的差的积公式:sinθ - sinφ = 2cos((θ + φ)/2)sin((θ - φ)/2)•余弦函数的差的积公式:cosθ - cosφ = -2sin((θ + φ)/2)sin((θ - φ)/2)这些公式是三角函数中常见的重要公式,掌握它们能够帮助解决各种三角函数相关的数学问题,并在数学推导和计算中提供便利。

三角函数诱导公式及经典记忆方法

三角函数诱导公式及经典记忆方法

三角函数诱导公式及记忆方法一、同角三角函数得基本关系式(一)基本关系1、倒数关系tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=12、商得关系sinα/cosα=tanαsecα/cscα=tanαcosα/sinα=cotαcscα/secα=cotα3、平方关系sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α(二)同角三角函数关系六角形记忆法构造以"上弦、中切、下割;左正、右余、中间1"得正六边形为模型。

1、倒数关系对角线上两个函数互为倒数;2、商数关系六边形任意一顶点上得函数值等于与它相邻得两个顶点上函数值得乘积。

(主要就是两条虚线两端得三角函数值得乘积,下面4个也存在这种关系。

)。

由此,可得商数关系式。

3、平方关系在带有阴影线得三角形中,上面两个顶点上得三角函数值得平方与等于下面顶点上得三角函数值得平方。

二、诱导公式得本质所谓三角函数诱导公式,就就是将角n·(π/2)±α得三角函数转化为角α得三角函数。

(一)常用得诱导公式1、公式一: 设α为任意角,终边相同得角得同一三角函数得值相等:sin(2kπ+α)=sinα, k∈z cos(2kπ+α)=cosα, k∈ztan(2kπ+α)=tanα, k∈z cot(2kπ+α)=cotα, k∈zsec(2kπ+α)=secα, k∈z csc(2kπ+α)=cscα, k∈z2、公式二:α为任意角,π+α得三角函数值与α得三角函数值之间得关系:sin(π+α)=-sinα cos(π+α)=-cosαtan(π+α)=tanα cot(π+α)=cotαsec (π+α) =—secα csc (π+α) =—cscα3、公式三:任意角α与 -α得三角函数值之间得关系:sin(-α)=-sinα cos(-α)=cosαtan(-α)=-tanα cot(-α)=-cotαsec (—α) = secα csc (—α) =—cscα4、公式四:利用公式二与公式三可以得到π-α与α得三角函数值之间得关系:sin(π-α)=sinα cos(π-α)=-cosαtan(π-α)=-tanα co t(π-α)=-cotαsec (π—α) =—secα csc (π—α) = cscα5、公式五:利用公式一与公式三可以得2π-α与α得三角函数值之间得关系:sin(2π-α)=-sinα cos(2π-α)=cosαtan(2π-α)=-tanα cot(2π-α)=-cotαsec (2π—α) = secαcsc (2π—α) =—cscα6、公式六:+α与α得三角函数值之间得关系:sin(+α)=cosα cos(+α)=-sinαtan(+α)=-cotα cot(+α)=-tanαsec (+α) =—cscα csc (+α) = secα7、公式七:-α与α得三角函数值之间得关系:sin(-α)=cosα cos(-α)=sinαtan(-α)=cotα cot(-α)=tanαsec (—α) = cscα csc (—α) = secα8、推算公式:+α与α得三角函数值之间得关系:sin(+α)=-cosα cos(+α)=sinαtan(+α)=-cotα cot(+α)=-tanαsec (+α) = cscα csc (+α) =—secα9、推算公式:—α与α得三角函数值之间得关系:sin(-α)=-cosα cos(-α)=-sinαtan(-α)=cotα cot(-α)=tanαsec(-α) =—cscα csc(—α) =—secα诱导公式记忆口诀:“奇变偶不变,符号瞧象限”。

初中数学三角函数诱导公式总结最新6篇

初中数学三角函数诱导公式总结最新6篇

初中数学三角函数诱导公式总结最新6篇初中数学三角函数诱导公式总结篇一三角函数的诱导公式二所表示的是,π+α的三角函数值与α的三角函数值之间的关系。

公式二设α为任意角:对于x轴负半轴为起点轴而言弧度制下的角的表示:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsec(π+α)=-secαcsc(π+α)=-cscα角度制下的角的表示:sin(180°+α)=-sinαcos(180°+α)=-cosαtan(180°+α)=tanαcot(180°+α)=cotαsec(180°+α)=-secαcsc(180°+α)=-cscα看过上面的。

公式,我们就知道了其实π+α的三角函数值与α的三角函数值可以轻松地转化。

高中数学三角函数诱导公式篇二紧接着上一章节的知识,我们可以利用公式二和公式三可以得到π-α与α的三角函数值之间的关系。

公式四弧度制下的角的表示:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsec(π-α)=-secαcsc(π-α)=cscα角度制下的角的表示:sin(180°-α)=sinαcos(180°-α)=-cosαtan(180°-α)=-tanαcot(180°-α)=-cotαsec(180°-α)=-secαcsc(180°-α)=cscα以上的内容就是π-α与α的三角函数值之间的关系转化公式,是大家必须掌握的重点内容。

初中数学正方形定理公式关于正方形定理公式的内容精讲知识,希望同学们很好的掌握下面的内容。

正方形定理公式正方形的特征:①正方形的四边相等;②正方形的四个角都是直角;③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;正方形的判定:①有一个角是直角的菱形是正方形;②有一组邻边相等的矩形是正方形。

高1数学-三角函数-诱导公式

高1数学-三角函数-诱导公式

高一数学诱导公式知识点1.诱导公式一~四(1)公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos α,tan(α+2k π)=tan α,其中k ∈Z .(2)公式二:sin(π+α)=-sin α,cos(π+α)=-cos α,tan(π+α)=tan α.(3)公式三:sin(-α)=-sin α,cos(-α)=cos α,tan(-α)=-tan α.(4)公式四:sin(π-α)=sin α,cos(π-α)=-cos α,tan(π-α)=-tan α.2.诱导公式的记忆2k π+α(k ∈Z ),π+α,π-α,-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.简记为“函数名不变,符号看象限”.3.诱导公式五~六(1)公式五:sin ⎝⎛⎭⎫π2-α=cos α;cos ⎝⎛⎭⎫π2-α=sin α. 以-α替代公式五中的α,可得公式六.(2)公式六:sin ⎝⎛⎭⎫π2+α=cos α;cos ⎝⎛⎭⎫π2+α=-sin α. 4.诱导公式的理解、记忆与灵活应用公式一~四归纳:α+2k π(k ∈Z ),-α,π±α的三角函数值,等于角α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号,简记为:“函数名不变,符号看象限”.公式五~六归纳:π2±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号,简记为:“函数名改变,符号看象限”或“正变余、余变正、符号象限定”.六组诱导公式可以统一概括为“k ·π2±α(k ∈Z )”的诱导公式.当k 为偶数时,函数名不改变;当k 为奇数时,函数名改变;前面加一个把α视为锐角时原函数值的符号,记忆口诀为“奇变偶不变,符号看象限”.题型一 给角求值【例1】求下列各三角函数值.(1)sin(-83π); (2)cos 196π; (3)sin[(2n +1)π-23π].【过关练习】1.求下列三角函数值.(1)sin ⎝⎛⎭⎫-436π;(2)cos 296π;(3)tan(-855°).2.sin 585°的值为( )A .-22 B.22 C .-32 D.323.cos(-16π3)+sin(-16π3)的值为( ) A .-1+32B.1-32C.3-12 D.3+12题型二 给值求值问题【例1】已知cos(α-75°)=-13,且α为第四象限角,求sin(105°+α)的值.【例2】已知cos ⎝⎛⎭⎫α+π6=35,π2≤α≤3π2,求sin ⎝⎛⎭⎫α+2π3的值.【过关练习】1.已知cos(α-π)=-513,且α是第四象限角,则sin α等于( ) A .-1213 B.1213 C.512 D .±12132.已知sin(5π2+α)=15,那么cos α等于( ) A .-25 B .-15 C.15 D.253.若sin(3π+α)=-12,则cos(7π2-α)等于( ) A .-12 B.12 C.32 D .-324.已知cos(π+α)=-35,π<α<2π,求sin(α-3π)+cos(α-π)的值.5.已知sin ⎝⎛⎭⎫π6+α=33,求cos ⎝⎛⎭⎫α-π3的值.题型三 三角函数式的化简【例1】化简下列各式.(1)tan (2π-α)sin (-2π-α)cos (6π-α)cos (α-π)sin (5π-α);(2)1+2sin 290°cos 430°sin 250°+cos 790°.【过关练习】1.化简:(1)sin (540°+α)·cos (-α)tan (α-180°);(2)cos (θ+4π)·cos 2(θ+π)·sin 2(θ+3π)sin (θ-4π)sin (5π+θ)cos 2(-π+θ).2.化简:cos (180°+α)sin (α+360°)sin (-α-180°)cos (-180°-α).题型四 利用诱导公式证明恒等式【例1】求证:tan (2π-α)sin (-2π-α)cos (6π-α)sin ⎝⎛⎭⎫α+3π2cos ⎝⎛⎭⎫α+3π2=-tan α.【过关练习】1.求证:2sin ⎝⎛⎭⎫θ-3π2cos ⎝⎛⎭⎫θ+π2-11-2sin 2 (π+θ)=tan (9π+θ)+1tan (π+θ)-1.题型五 诱导公式的综合应用【例1】已知f (α)=sin (α-3π)cos (2π-α)sin ⎝⎛⎭⎫-α+3π2cos (-π-α)sin (-π-α). (1)化简f (α);(2)若α是第三象限的角,且cos ⎝⎛⎭⎫α-3π2=15,求f (α)的值; (3)若α=-31π3,求f (α)的值.【过关练习】1.已知角α终边经过点P (-4,3),求cos (π2+α)sin (-π-α)cos (11π2-α)sin (9π2+α)的值.2.已知tan(3π+α)=2,则sin (α-3π)+cos (π-α)+sin (π2-α)-2cos (π2+α)-sin (-α)+cos (π+α)= .【补救练习】1.cos 600°的值为( ) A.32 B.12 C .-32 D .-122.若sin α=12,则cos(π2+α)的值为( ) A.12 B.32 C .-12 D .-323.化简下列各式.(1)sin(-193π)cos 76π; (2)sin(-960°)cos 1 470°-cos(-240°)sin(-210°).4.已知sin(π+α)=-13.计算: (1)cos ⎝⎛⎭⎫α-3π2; (2)sin ⎝⎛⎭⎫π2+α; (3)tan(5π-α).1.sin 2(π+α)-cos(π+α)cos(-α)+1的值为( )A .1B .2sin 2αC .0D .22.tan(5π+α)=m ,则sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)的值为( ) A.m +1m -1 B.m -1m +1C .-1D .1 3.若sin(π-α)=log 8 14,且α∈⎝⎛⎭⎫-π2,0,则cos(π+α)的值为( ) A.53B .-53C .±53D .以上都不对4.已知cos ⎝⎛⎭⎫π6+θ=33,则cos ⎝⎛⎭⎫5π6-θ= .5.已知sin ⎝⎛⎭⎫α-π6=13,则cos ⎝⎛⎭⎫α+π3的值为( ) A .-233 B.233 C.13 D .-136.已知sin ⎝⎛⎭⎫α-π4=13,则cos ⎝⎛⎭⎫π4+α的值等于( ) A .-13 B.13 C .-223 D.2237.已知f (α)=tan (π-α)·cos (2π-α)·sin (π2+α)cos (-α-π),化简f (α)= .1.若sin(π+α)+cos ⎝⎛⎭⎫π2+α=-m ,则cos ⎝⎛⎭⎫32π-α+2sin(2π-α)的值为( ) A .-2m 3 B.2m 3 C .-3m 2 D.3m 22.已知cos(π2+φ)=32,且|φ|<π2,则tan φ等于( ) A .-33 B.33C .- 3 D.3 3.式子cos 2(π4-α)+cos 2(π4+α)= . 4.若cos(α-π)=-23,求sin (α-2π)+sin (-α-3π)cos (α-3π)cos (π-α)-cos (-π-α)cos (α-4π)的值.5.在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos(π-B ),求△ABC 的三个内角.6.已知cos ⎝⎛⎭⎫π2+α=2sin ⎝⎛⎭⎫α-π2,求sin 3(π-α)+cos (α+π)5cos ⎝⎛⎭⎫5π2-α+3sin ⎝⎛⎭⎫7π2-α的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数诱导公式公式记忆经典总结
公式一:设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα tan(2kπ+α)=tanαsec(2kπ+α)=secαcos(2kπ+α)=cosαcot(2kπ+α)=cotαcsc(2kπ+α)=cscα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα tan(π+α)=tanαsec(π+α)=-secαcos(π+α)=-cosαcot(π+α)=cotα csc(π+α)=-cscα
公式三:任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinα tan(-α)=-tanαsec(-α)=secα
cos(-α)=cosα cot(-α)=-cotα csc(-α)=-cscα
公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα tan(π-α)=-tanαsec(π-α)=-secαcos(π-α)=-cosαcot(π-α)=-cotα csc(π-α)=cscα
公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα sec(2π-α)=secα
tan(2π-α)=-tanα cot(2π-α)=-cotα csc(2π-α)=-cscα
公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα cos(π/2+α)=-sinα sec(π/2+α)=-cscαtan(π/2+α)=-cotα cot(π/2+α)=-tanα csc(π/2+α)=secα公式七:
sin(π/2-α)=cosα cos(π/2-α)=sinα sec(π/2-α)=cscαtan(π/2-α)=cotα cot(π/2-α)=tanα csc(π/2-α)=secα公式八:
sin(3π/2+α)=-cosα cos(3π/2+α)=sinα sec(3π/2+α)=cscαtan(3π/2+α)=-cotα cot(3π/2+α)=-tanα csc(3π/2+α)=-secα公式九:
sin(3π/2-α)=-cosα tan(3π/2-α)=cotαsec(3π/2-α)=-cscαcos(3π/2-α)=-sinαcot(3π/2-α)=tanαcsc(3π/2-α)=-secα
诱导公式记忆口诀 ※规律总结※
上面这些诱导公式可以概括为: 对于k·π/2±α(k ∈Z)的个三角函数值, ①当k 是偶数时,得到α的同名函数值,即函数名不改变;
②当k 是奇数时,得到α相应的余函数值,sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号.(符号看象限) 所以记忆口诀是: 奇变偶不变,符号看象限。

公式右边的符号为把α视为锐角时,
角k·360°+α(k ∈Z ),-α、180°±α,360°-α 所在象限的原三角函数值的符号可记忆 :水平诱导名不变;符号看象限。

各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四余弦”. 经典十二字口诀的意思就是说:
第一象限内任何一个角的四种三角函数值都是“+”;
第二象限内只有正弦,余割是“+”,其余全部是“-”;
第三象限内切函数是“+”,其余全部是“-”;
第四象限内只有余弦,正割是“+”,其余全部是“-”.
全正 tana.cota=1
+ + Cosa.sec=1 + + Sina.csca =1
+ +。

相关文档
最新文档